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\ Introduction

Clustering has become a recurring problem:

m it usually occurs in all applications for which a partition is
necessary (interpretation, decision, )

m but modern data are very often high-dimensional (p large),

m and the number of observations is sometimes small as well
(n < p).

Example : segmentation of hyper-spectral images
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\ The classification problem

The classification problem consists in:
m organizing the observations x1,...,x, € RP into K classes,
m j.e. associating the labels z1, ..., 2z, € {1,..., K} to the data.

Supervised approach: complete dataset (x1,21), ..., (2, 2,)

e
L

Non-supervised approach :

ons Iy, ..
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The classical probabilistic framework assumes that:

m the observations x1, ..., z,, are independant realizations of a
random vector X € XP,

m the labels z1, ..., 2, are independant realizations of a random
variable Z € {1, ..., K'},
m where z; = k indicates that x; belongs to the kth class.

Charles BOUVEYRON | Model-based clustering of high-dimensional data: an overview and some recent advances 6/64



The classical probabilistic framework assumes that:

m the observations x1, ..., z,, are independant realizations of a
random vector X € XP,

m the labels z1, ..., 2, are independant realizations of a random
variable Z € {1, ..., K'},
m where z; = k indicates that x; belongs to the kth class.

The classification aims to build a decision rule ¢ :

§: X7 — {1,.., K},
r — oz

The optimal rule 6* is the one which assigns x to the class with the
highest posterior probability (called the MAP rule):

0*(z) = argmax P(Z = k| X = ).
k=1,..,K

9eeey
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. Generative and discriminative approaches

The difference between both approaches:
m the way they estimate the posterior probability P(Z|X)

m which is used in the MAP decision rule.

Discriminative methods:
m they directly model the posterior probability P(Z|X),

m by building a boundary between the classes.

Generative methods:
m they first model the joint distribution P(X, Z),

m and then deduce the posterior probability using the
Bayes' rule:

P(X,2)

PZIX) = 555

x P(Z)P(X|Z).
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Fig. Discriminative (left) and generative (right) methods.

Discriminative methods:
m logistic regression (it models log(fi(z)/ f2(x))),
m Support Vector Machines (SVM), decision trees, ...

Generative methods:
m mainly, model-based classification methods,
m but it exists also non-parametric methods.
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The mixture model:

m the observations z1, ..., z, are assumed to be independant
realizations of a random vector X € AP with a density:

K
fl@) =" mf(x,0n),
k=1

m K is the number of classes,
m 7 are the mixture proportions,
m f(x,0) is a probability density with its parameters 6.

The Gaussian mixture model:
m among all mixture models, the Gaussian mixture model is
certainly the most used in the classification context,
m in this case, f(x,6}) is the Gaussian density N (ux, Xi)
with 0, = {/Lk, Zk}
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where Hy, is defined by Hy(x) = —2log(my f(z,0k)).

The building of the decision rule consists in:
estimate the parameters 0, of the mixture model,

calculate the value of Hy(z) for each new observation x.
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ﬁi Gaussian mixtures for classification
o i

Gaussian model Full-GMM (QDA in discrimination):

Hy(x) = (z — u)'S; e — pg) + log(det Xy,) — 2log(mg) + C*.

Gaussian model Com-GMM which assumes that Vk, ¥ = ¥ (LDA
in discrimination):

Hy(x) = pp 2" g — 204X ' — 2log(my ) + C*.

Fig. Decision boundaries for Full-GMM (left) and Com-GMM (right).
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\ The curse of dimensionality

The curse of dimensionality:

m this term was first used by R. Bellman in the introduction of
his book “Dynamic programming” in 1957:

All [problems due to high dimension] may be subsumed under
the heading “the curse of dimensionality” Since this is a
curse, [...], there is no need to feel discouraged about the
possibility of obtaining significant results despite it.

m he used this term to talk about the difficulties to find an
optimum in a high-dimensional space using an exhaustive
search,

m in order to promotate dynamic approaches in programming.
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\ The curse of dimensionality

In the mixture model context:

m the building of the data partition mainly depends on:
Hy(z) = —2log(mx f (w0, 0k)),
m model Full-GMM:
Hy () = (2 — )20 (2 — ) +log(det X ) — 2log(my,) + 7.
m model Com-GMM which assumes that Vk, 3, = X:
Hy(2) = pip 2 e — 2035 ' — 2log (k) + -

Important remarks :
m it is necessary to invert X or X,

m and this will cause big difficulties in certain cases!
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\ The curse of dimensionality

In the mixture model context:
m the number of parameters grows up with p?,

—6— Full-GMM
—&— Com-GMM|

20000

15000

Nb de paramétres

10000

5000(

0
50
Dimension

Fig. Number of parameters to estimate for the models Full-GMM
and Com-GMM regarding to the dimension and with k = 4.

m if n is small compared to p?, the estimates of ¥, are
ill-conditionned or singular,
m it is therefore difficult or impossible to invert .
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gs of dimensionality

As Bellman thought:
m all is not bad in high-dimensional spaces (hopefully!)

m there are interesting things which happen in high-dimensional
spaces.

The empty-space phenomenum [Scott83]:

m classical thoughts true in 1, 2 or 3-dimensional spaces are in
fact wrong in higher dimensions,

m particularly, high-dimensional spaces are almost empty!
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\ The blessings of dimensionality

First example : the volume of a sphere

7P/2
V(p) = m;

<x
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Fig. Volume of a sphere of radius 1 regarding to the dimension p.
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The blessings of dimensionality

Second example:
m since high-dimensional spaces are almost empty,

m it should be easier to separate groups in high-dimensional
space with an adapted classifier.
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Fig. Correct classification rate of the optimal classifier
versus the data dimension on simulated data.
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Outline

Classical ways to deal with HD data
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2 Classical ways to avoid the curse of dimensionality

Dimension reduction:
m the problem comes from that p is too large,
m therefore, reduce the data dimension to d < p,
m such that the curse of dimensionality vanishes!

Parsimonious models:
m the problem comes from that the number of parameters to
estimate is too large,
m therefore, make additional assumptions to the model,

m such that the number of parameters to estimate becomes
more “decent”!

Regularization:
m the problem comes from that parameter estimates are instable,
m therefore, regularize these estimates,
m such that the parameter are correctly estimated!
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» Dimension reduction

Linear dimension reduction methods:
m feature combination: PCA,

m feature selection: ...

Non linear dimension reduction methods:
m Kohonen algorithms, Self Organising Maps,

m LLE, Isomap, ...
m Kernel PCA, principal curves, ...

Supervised dimension reduction methods:
m the old fashion method: Fisher Discriminant Analysis (FDA),

m many recent works on this topic... but useless in our context!
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Parsimonious models:

m can be obtained by making additional assumptions on the
original model

m in order to adapt the model to the available data.

Parsimonious Gaussian models:
m com-GMM:

m the assumption: ¥ = X,
m nb of par. for K =4 and p = 100: 5453

m diag-GMM:

m the assumption: 3, = diag(og1, ..., Okp),
m nb of par. for K =4 and p = 100: 803

m sphe-GMM:

m the assumption: ¥ = o1,
m nb of par. for K =4 and p = 100: 407
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Fig. The family of 14 parsimonious Gaussian models [Celeux95].
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i Regularization
[

Regularization of the covariance matrix estimates:
m ridge-like regularization: ¥ = Se + orlp,

m PDA [Hast95] : 3, = 35 4 0,9,

m RDA [Frie89] proposed a regularized classifier which varies
between a quadratic and a linear classifier:

- tr(Sk(A
Si0) = (=) + (M)
where S}, is defined by:

ng —1)(1 =N + (n— K)AD
(L= Nk~ 1)+ A(n—K)

Sk(A) = (
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v = 1 )\ = 0 = 1 >\ = 0 5 y=1A=
Fig. 4. Influence des parametres v et \ sur le cIass:fleur RDA
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Outline

Recent model-based methods for HD data clustering
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i Subspace clustering methods

Recent approaches propose:
m to model the data of each group in specific subspaces,

m to keep all dimensions in order to facilitate the discrimination
of the groups.

Several works on this topic in the last years:

m mixture of factor analyzers: Ghahramani et al. (1996) and
McLachlan et al. (2003),

mixture of probabilistic PCA: Tipping & Bishop (1999) ,
mixture of HD Gaussian models: Bouveyron & Girard (2007),
mixture of parsimonious FA: McNicholas and Murphy (2008),
mixture of common FA: Beak et al. (2009).
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Subspace clustering methods

‘ Mixture of Factor Analyzers ‘

e —

‘ Beak et al. ‘ ‘McNicholas & Murphy‘ Tipping & Bishop Bouveyron & Girard
Common FA: Parsimonious Mixture of HDDC:
- 1 model, GMM: PPCA: - 24 models,
- unconstrained - 8 models, - 1 model, - isotropic noise
noise variance, - constrained or - isotropic noise variance
- common unconstrained variance, - free or
orientations, noise variance, - free common
- common - free or orientations, orientations
dimensions common - common - free or
orientations, dimensions common
- common dimensions
dimensions

I

Figure: A tentative family tree of subspace clustering methods.
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The model [a;b;Qrdy]

Bouveyron & Girard (2007) proposed to consider the Gaussian mix-
ture model:

K
f(@) = mf(x,00),
k=1

where 6, = {uk, Xx} foreach k=1,..., K.

Based on the spectral decomposition of ¥, we can write:
Sk = Qr Ak Qf,

where:
m () is an orthogonal matrix containing the eigenvectors of X,

m Ay is diagonal matrix containing the eigenvalues of .
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We assume that Ay has the following form:

(075} U
0 dy,
0 (J/kdk
0 - (p — dk)
0 by
where:
moag >bg, forj=1..d,andk=1,. K,

mandd, <p, fork=1,.. K.
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Fig. The subspace E; and its supplementary Ei.

We also define:
m the affine space [E;, generated by eigenvectors associated to
the eigenvalues ay; and such that py € Ky,
m the affine space Eﬁ such that E;, @ E- = R? and Ui € E,ﬁ
m the projectors P and P;- respectively on Ej and Ej-.
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\ The model [ay;b;Qrdy] and its submodels

We thus obtain a re-parameterization of the Gaussian model:
m which depends on ay;, by, Q) and dy,

m the model complexity is controlled by the subspace
dimensions.

We obtain increasingly regularized models:

m by fixing some parameters to be common within or between
the classes,

m from the most complex model to the simplest model.

Our family of GMM contains 28 models and can be splitted into
three branches:

m 14 models with free orientations,
m 12 models with common orientations,

m 2 models with common covariance matrices.
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s The model [ay;brQrd;] and its submodels

Model Number of Asymptotic Nb of prms k = 4, ML
i parameters order d =10, p =100 estimation
(a:;0:Q:di] ptr+2k+D Tpd 123 CF
0;;bQid;] pHT+k+D+1 kpd 4228 CF
a;b;iQid;] p+7T+3k kpd 4195 CF
ab;Q;d;] p+TH+2k+1 kpd 4192 CF
a:bQ;d;] p+T+H2k+1 kpd 4192 CF
abQ;d;] ptTHk+2 kpd 4189 CF
ai;b:iQid]  p+h(r+d+1)+1 kpd 4228 CF
a;;Q;d) prk(r+1)+d+1 kpd 4198 CF
ai;bQid) p+k(r+d)+2 kpd 4225 CF
a;6Q;d) p+kT+d+2 kpd 4195 CF
a;biQid] pHE(r+2)+1 kpd 4192 CF
ab; Qid) ptk(r+1)+2 kpd 4189 CF
a;bQid) ptk(r+1)+2 kpd 4189 CF
abQ;d) pkT+3 kpd 4186 CF
0:;b:Qd;] ptr+D+2k pd 1396 FG
a:;bQd;] p+T+D+E+1 pd 1393 FG
a;b;Qd;] p+T+3k pd 1360 FG
a;bQd;] prTH2k+1 pd 1357 FG
ab;Qd;] pHTH2k+1 pd 1357 FG
abQd;] p+THE+2 pd 1354 FG
a6 Qd] pHTAHkd+E+1 pd 1393 FG
a;b;Qd] pHTHEk+d+1 pd 1363 FG
a;;bQd) p+T+kd+2 pd 1390 FG
a;b;Qd] pHTH2k+1 pd 1357 P
ab; Qd) prTHE+2 pd 1354 g
a;bQd] p+THEk+2 pd 1354 P
a;bQd] pHTH+d+2 pd 1360 CF
abQd] pHT+3 pd 1351 CF
Full-GMM p+kpp+ 1)/2 kp?/2 20603 CF
Com-GMM p+plp+1)/2 P?/2 5453 CF
Diag-GMM p+kp 2kp 803 CF
Sphe-GMM Ptk kp 407 CF

Table: Properties of the sub-models of [ay;byQrdk]
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Model Ns iflp(;,r?':[(l&f Classifier type
[(ijbkcgkd]\] 4231 Quadratic
[ak;brQdy] 1396 Quadratic
[a;0Qd] 1360 Linear
Full-GMM 20603 Quaderatic
Com-GMM 5453 Linear

Table. Properties of the sub-models of [a},;b, Q}d}]
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model [akkakd} model [akakd] model [akakd]

A\

model [abrQd] model [abQd] model [abl2d)]

Fig. Influence of parameters ay, b, et Q) on the densities
of 2 classes in dimension 2 with di = do = 1.
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Construction of the classifier

In the supervised context:
m the classifier has been named HDDA,

m the estimation of parameters is direct since we have complete
data,

m parameters are estimated by maximum likelihood.

In the unsupervised context:
m the classifier has been named HDDC,

m the estimation of parameters is not direct since we do not
have complete data,

m parameters are estimated through a EM algorithm which
iteratively maximizes the likelihood.
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%" .. HDDC: the E step
e

In the case of the model [axbrQrdk] :

1 1
Hi(z) = *kHlMc - Pk($)\|2+a||l’ — Py(2)||”+dx log(ar)+(p—dx) log(bx) —2log ().

a
EL .

_X

Leh

Pra) - ;

. 1d(z, )

d(f"'ur),' H

'
X _,_,'(Pa(l)

" d(gw, P(x))

X

Fig. The subspaces E;, and Ef of the kth mixture composant.

Charles BOUVEYRON | Model-based clustering of high-dimensional data: an overview and some recent advances 36/64



\ HDDC: the M step

The ML estimators for the model [ay;b,.(Q1d).] are closed forms:
m Subspace Ej: the dj. first columns of () are estimated by the

eigenvectors associated to the dj, largest eigenvalues )\, of
the empirical covariance matrix Wj, of the kth class.

m Estimator of ay;: the parameters ay; are estimated by the dj,
largest eigenvalues \y; of W.

m Estimator of by: the parameter of by is estimated by:

- 1
by = —— | tra — ;
k o= d) race(Wy) 2::1 Akj
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ﬁ: HDDC: hyper-parameter estimation

Fig. The scree-test of Cattell based on the eigenvalue scree.

Estimation of the intrinsic dimensions d, :
m we use the scree-test of Cattell [Catt66],

m it allows to estimate the K parameters d; in a common way.

Estimation of the nomber of groups K :
m in the supervised context, K is known,

m in the unsupervised context, K is chosen using BIC.
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> Numerical considerations

m Numerical stability : the decision rule of HDDC does not
depend on the eigenvectors associated with the smallest
eigenvalues of Wi.

m Reduction of computing time : there is no need to compute
the last eigenvectors of W}, — reduction of computing time
with a designed procedure (x60 for p = 1000).

m Particular case n < p : from a numericzil pf)int of view, it is
better to compute the eigenvectors of X, X! instead of
Wi, = XL X}, (%500 for n =13 and p = 1000).
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of the dimensionality
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Fig. Correct classification rate versus
data dimension (simulated data according to [a;;b;Q;d;]).
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2 Estimation of intrinsic dimensions

Nb of classes k | Chosen threshold s | Dimensions d; | BIC value
2 0.18 2,16 414
3 0.21 2,5,10 407
4 0.25 2,2,5,10 414
5 0.28 2,5,5,10,12 416
6 0.28 2,5,6,10,10,12 424

Table. Selection of discrete parameters using BIC
on simulated data where d; are equal to 2, 5 and 10.
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Model On original features re}i/\L/JIctthioi dsltr::}iocnp)
Sphe-GMM 0.340 0.340
Diag-GMM 0.355 0.535
Com-GMM 0.625 0.635
Full-GMM 0.640 0.845
VS-GMM [Raft05] 0.925 /

Table. Correct classification rate on a real dataset: Crabs € R5.
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Fig. Projection of the «Crabs» data on the first principal axes.

«Crabsy» data:

m 200 observations in a 5-dimensional space (5 morphological
features),

m 4 classes: BM, BF, OM and OF.
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Fig. Step n° 1 of HDDC on the «Crabs» data.
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: an EM-based algorithm

Fig. Step n° 4 of HDDC on the «Crabs» data.
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Fig. Step n° 7 of HDDC on the «Crabs» data.
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: an EM-based algorithm

Fig. Step n° 10 of HDDC on the «Crabs» data.
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: an EM-based algorithm

Fig. Step n° 12 of HDDC on the «Crabs» data.
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Fig. Categorization of the Martian surface based on HD spectral images.
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Fig. Object localization of an object “bike” in a natural image.
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i Texture recognition

Brique Moquette Tissu  Sol 1 SolZ Marbre  Bois

I‘;_;. 41.52%
\‘rv 43.39%
79.91%
94.29%

Fig. Segmentation of an image containing several textures: diag-GMM, HD-GMM,
diag-GMM with hidden Markov field and HD-GMM with hidden Markov field.
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Outline

Intrinsic dimension selection by ML in subspace clustering
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2 Intrinsic dimension selection

In subspace clustering:

m the different models are all parametrized by the intrinsic
dimension of the subspaces,

m Bouveyron et al. have proposed to use the scree-test of
Cattell to determine the dimensions dy,

m this approach works quite well in practice and can be combine
to either cross-validation or BIC to select the threshold.

A priori, ML should not be used to determine the dy:

m since the dj determine the model complexity and therefore the
likelihood increases with dy,

m except for the model [ajbyQrdy]!
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X" 5 The isotropic PPCA model
I&Jﬁv

To simplify, let us define the isotropic PPCA model:
m the observed variable Y € RP and the latent variable X € R?
are assumed to be linked:

Y =QX +pu+e,

m where X and ¢ have Gaussian distributions such that
A = Q'EQ has the following form:

Ay

where a > b and d < p.
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Proposition:

The maximum likelihood estimate of the actal intrinsic
dimension d* is asymptotically unique and consistent.

Sketch of the proof: .
At the optimum, the maximization of £() is equivalent to the minimization of:

fn(d) = dlog(a) + (p — d) log(b) + p.

Ifd<d*:a—aandb—
n — oo and fp, — f:

pid [(d* —d)a+ (p — d*)b] almost surely when

a+

(d* —d) (P*d*)>
(p—d) (p—d) )’

ﬂ@:dma@+wp—@mg(

which has a unique minimum in d = d*.
Ifd>d*: a— é (d*a + (d — d*)b) and b — b almost surely when n — oo and

fod o d—dr
#(d) = dlog (‘—a 4 I=°
d

, _ 0+@—®mw,

which has as well a unique minimum in d = d*.
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\ Experimental setup

To verify the practical interest of the result:

m we define the parameters o and f:

o= —,
d*a
(p—d*)b’

m « controls the estimation conditions through the ratio
between the number of observations and the observation
space dimension,

m [ controls the signal to noise ratio through the ratio between
the variances in the latent subspace and in its orthogonal
subspace.

8=
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Figure: Intrinsic dimension estimation with d* = 20 and o = 5.
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%o Influence of the signal to noise ratio
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Figure: Average selected dimension according to /3 for « =4,3,2 and 1.
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Figure: Average selected dimension according to « for f =4,3,2 and 1.
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Figure: Recommended criteria for intrinsic dimension selection according
to a and S for the isotropic PPCA model.
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i Outline

Conclusion & further works
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N Conclusion & further works

Dimension reduction:
m is usefull for visualization purposes,

m but clustering a reduced dataset is suboptimal.

Parsimonious models & regularization:
m allow to adapt the model complexity to the data,

m parsimonious models are usually valid for data with p<25,

Subspace clustering:
m adapted for real high dimensional data (p>25,100,1000,...),
m even when n is small compared to p,

m the best of dimension reduction and parsimonious models.
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N Conclusion & further works

Intrinsic dimension selection:

m intrinsic dimension of the subspaces is the key parameter in
subspace clustering,

m the old-fashion method of Cattell works quite well in practice,

m BIC, AIC and even ML can also be used in specific contexts.

Further works:

m use ML in HDDA and HDDC to make these methods fully
automatic,

m integration of this approach in softwares.
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HDDA / HDDC:

m Matlab toolboxes are available at:

http://samm.univ-paris1.fr/-charles-bouveyron-
m 8 models are available in the Mixmod software:
http://www-math.univ-fcomte.fr/mixmod/

m A R package, nammed HDclassif, is available for a few
weeks on the CRAN servers (thanks to L. Bergé & R. Aidan).

Fisher-EM:

m a R package is planned for next year...
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