Règles de minorité sur des graphes

Lucas Gerin Université Paris-Ouest

Journées MAS 2010

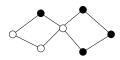
Le modèle

G graphe localement fini. Chaque sommet a un nombre pair de voisins.

Définition

L'Automate Minorité la chaîne de Markov $(\sigma(t))_{t\geq 0}$ sur $\{0,1\}^G$, définie de la façon suivante :

- À chaque instant, un sommet est tiré uniformément au hasard.
- ▶ On le colorie dans l'état minoritaire parmi lui-même et ses voisins.



Les questions

Pour un graphe G fixé,

- Quels sont les configurations fixes?
- ► Lesquelles peuvent être atteintes?
 - ► En combien de temps?

Plan

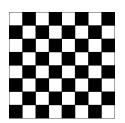
Minorité sur un graphe fini

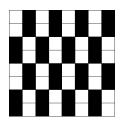
Minorité sur \mathbb{Z} et $\mathbb{Z}/n\mathbb{Z}$

Minorité sur une grille

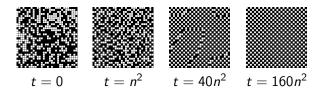
Pour n pair, on prend comme G la grille torique $\{1,\ldots,n\} \times \{1,\ldots,n\}$.

Deux exemples de configurations fixes :





Minorité sur une grille



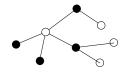
Soit

$$T_{\mathrm{fix}} = \inf\{t \geq 0; \ \sigma(t) \ \mathrm{est \ fixe.} \ \}.$$

Théorème (Régnault *et al.* 2007 - Gerin 2008) Pour n assez grand,

$$n^4 \log n \leq \max_{\sigma(0)} \mathbb{E}[T_{fix}] \leq (n^2)^{n^2}$$

Minorité sur un arbre fini



Théorème (Regnault-Rouquier-Thierry 2009)

Pour G un arbre à n sommets :

• $Si \deg(G) \leq 3$,

$$\mathbb{E}[T_{fix}] = \mathcal{O}(n^4).$$

▶ Si G est l'arbre complet de degré 4,

$$\mathbb{E}[T_{fix}] \geq 1.5^n$$
.

Plan

Minorité sur un graphe fini

Minorité sur \mathbb{Z} et $\mathbb{Z}/n\mathbb{Z}$

 $p \in (0,1)$ fixé.

Définition

- \blacktriangleright À l'instant t, chaque site est tiré au sort avec proba p/1-p.
- ► Ceux qui sont tirés au sort sont mis dans l'état minoritaire (en regardant $\sigma(t-1)$).

 $p \in (0,1)$ fixé.

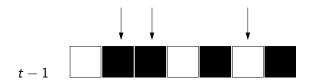
Définition

- \blacktriangleright À l'instant t, chaque site est tiré au sort avec proba p/1-p.
- ► Ceux qui sont tirés au sort sont mis dans l'état minoritaire (en regardant $\sigma(t-1)$).

 $p \in (0,1)$ fixé.

Définition

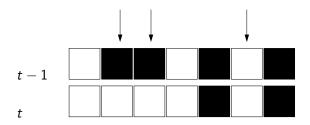
- \blacktriangleright À l'instant t, chaque site est tiré au sort avec proba p/1-p.
- ► Ceux qui sont tirés au sort sont mis dans l'état minoritaire (en regardant $\sigma(t-1)$).



 $p \in (0,1)$ fixé.

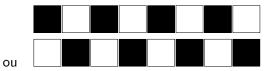
Définition

- \blacktriangleright À l'instant t, chaque site est tiré au sort avec proba p/1-p.
- ► Ceux qui sont tirés au sort sont mis dans l'état minoritaire (en regardant $\sigma(t-1)$).



Le comportement sur $\mathbb{Z}/n\mathbb{Z}$

▶ *n* pair : on finit par être piégé dans



▶ n impair : chaîne irréductible sur $\{0,1\}^{\mathbb{Z}/n\mathbb{Z}}$.

La p-minorité sur \mathbb{Z}

Conjecture (Busic-Mairesse-Marcovici)

Il existe un seuil critique p_c tel que

- Si $p < p_c$, les mesures stationnaires triviales.
- ▶ Si $p > p_c$, il existe des mesures stationnaires non-triviales.

La p-minorité sur \mathbb{Z}

Conjecture (Busic-Mairesse-Marcovici)

Il existe un seuil critique p_c tel que

- Si $p < p_c$, les mesures stationnaires triviales.
- ▶ Si $p > p_c$, il existe des mesures stationnaires non-triviales.

Premier pas pour comprendre/nier/prouver la

Conjecture des taux positifs (Gacs, Gray, ... 80's)

Si un système de particules sur $\{0,1\}^{\mathbb{Z}}$ est "suffisamment" mélangeant, alors il n'a qu'une seule mesure stationnaire.