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Reinforcement Learning, the big picture

Learning to make decisions from interactions with an unknown
environment.

Agent décisionnel

Etat Action

4
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complexe
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Markov decision Process

A MDP is defined by
@ State space X,
@ Action space A,
@ Transition probabilities P(-|x, a),
@ Reward functionr: X x A— R.

Goal: Find policy 7 : X — A that maximizes the (expected)
sum of discounted rewards

V7 (x) = E[ny’r(xt, (X)) X0 = x; 7,

t>0

where the discount factor v < 1.
Definitions:

@ V7 is called the value funcion for policy ,
@ V*(x) = sup, V™(x) = V™ (x) is the optimal value function
and 7* an optimal policy.
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Policy iteration: illustration

Inverted pendulum:

-_—

(click to start movie. Thanks to Martin Riedmiller)
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Policy iteration: setting

Start with a policy mg, then iterate: for k > 0,

@ Policy evaluation step: For policy mx, compute an
approximation Vj of the value function V7«

@ Policy improvement step: Build a new policy
() & argmax [r(x. ) + 7 | P(oylx.a) Vi)
acA X

How good is 7, compared to 7*?
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Policy iteration: results

Known results:

@ Exact policy evaluation:
If Vk = V7Tk, 'then V7Tk+1 Z Vﬂ'k and Ilmkﬂoo Vﬂ'k — V*

@ Approximate policy evaluation in L..-norm [Bertsekas
and Tsitsiklis, 1996]:

2
limsup || V* — V| < ———5 limsup || Vx — V™||«.
k—oo (1 - ’Y) k—oo
@ Approximate policy evaluation in L,-norm [Munos,
2003]:
limsup || V= V™|, < 5 C(u, p)"/Plimsup || V= V™|,
k—o0 (1 - 7) k—oo

Performance of Pl results from performance of the policy
evaluation steps.
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What this talk is about...

For a given policy, the MDP reduces to a Markov chain. Our
goal is to approximate the corresponding value function V

V(x) < E[Z A (X Xo = x]

>0

Methodology:
@ Choose a function space F
@ Observe a trajectory Xj, ..., X, following the policy

@ Build an estimate V € F of V
@ Derive bounds on the approximation error ||V — V|| in
terms of
e How well the function space F can approximate V
e Capacity of F
e Number of samples n (sample complexity)
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Some properties of the value function

@ V is unique solution to the Bellman equation:

V(x) = r(x) + 7 / P(ay[x)V(y) (1)

@ Define the Bellman operator T:

def

TW(x) & r(x) + / P(dy|X)W(y).

Then (1) writes
V=TV.
@ Property: T is a contration in || - ||co-

@ Thus from Banach fixed point theorem, T has a unique
fixed point, which is V.
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Linear approximation

Let o4,...,pq be a set of functions X — R, and the linear
space

d
FELL)EY aipilx),a e R}
i=1

Best approximation of V in F is . Y
NV =argmin||V — f|| i 7
feF | n
n mnv
(i.e. M is the projection onto F) Vip =TTV

LSTD solution: fixed point of NT, i.e. Vip = NTVpp.

Question: what norm should we use in the projection?
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Known result [Tsitsiklis and Van Roy, 1997]

Assuming that the Markov chain has a stationary distribution p
(i.e. uP = ), then T is a contraction mapping in Ly ,-norm

(i.e. such that ||f||ﬁ = [ f(x)2u(dx)).

Thus MT is a contraction mapping and there exits a TD solution
Vrp, fixed-point of MT. We have

1
IV = Vrolly < 5[V =V

/1=
Now we wish to address those questions:

@ Is it possible to approximate Vrp using a finite number of
samples?

@ What is the quality of that approximation?

@ What if the chain does not possess a stationary
distribution?
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Pathwise LSTD

Observe a sample path (Xj, ..., Xj,) of the Markov chain.
@ Consider Fp = {(f,(X1), ..., f(Xn))T,a € R} C R
e Define the empirical projection: Mu = infycx, ||u — wl|,
@ Define the empirical Bellman operator:

= [ (X)) U fort<n,
(Tu)e = { r(Xn) otherwise

Property: T is a contraction mapping. Thus N7 has a unique
fixed-point, v € F,, whose corresponding & solves the linear
system Ao = b with

n—1

Ay (000 e (Xl + X))

t=1

w1
b D rXeX).

~

V = f; is called the pathwise LSTD solution.
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Finite-time analysis of pathwise LSTD

Define the empirical norm ||f||, & DY f(Xt)Q]”Z.

With probability 1 — § (w.r.t. the sample path),

- 1
WV-V|p < —— inf||V—fl,

A1 = 2fe}‘

27VmaXL /2dlog(2d/6) +O(1),
1-— nv n

where L = maxi<ij<q||¢illc @ndv > 0 is the smallest strictly
positive eigenvalue of the Gram matrix:

(& 1
M Z@ (XDe(Xe)"
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@ This is a no-assumption theorem...
o Vis well-defined for any n and any Markov chain.
@ No assumption about stationarity!

Example:

@ Markov chain on the real line where transitions always
move to the right — no stationary distribution

| | | | |
T T T T T

X1 X2 Xt X77

@ A good estimate of the value function at a state X; is
learned from noisy pieces of information at states that may
be far away from X;.

Learning the value function at a given state does not require
making an average over many samples close to that state.
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Sketch of proof

Let v,V € R", v; = V(X)), V; = V(X)) A

Tv
Fn={(f{(X1),...,f(Xn)), f € F} CR" /
Empirical projection operator: n To ‘
Empirical Bellman operator: T ﬁ Fn
= [ n+yvg fort<n, 3 3 S
(Tu)e= { n otherwise o Fﬁv/ 1

Property: T is a contraction
o~ o~ AN AN AN A~ 2 o~
WV=viZ < ([Vv=1Tv|[o+|INTv = v|]n) + [[Av - v|f3

= [INTV —=NTV||s <||TV — Tv|[n <AV - V][
< (V—=vla+ [ATv=Tv|[p )2+ [Nv—v|2 .
e’ N e’

estimation error approx. error
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Estimation error term

Estimation error: 'f/” T
IV — NTV[[F = [[N|I7, where T

&= V(X)) — [r(Xe) + vV (Xi41)] / iTv T
We have E[¢|X;] = 0, g 1
thus E[¢] = 0. 0

... but the &; are NOT independent! and M is itself random...
Thus E[M¢] # 0 and

B fel 3] = ~BleTMie] # B¢l ) < €.

(which would be the case with a deterministic design).
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Regression with Markov design

Let Xi,..., X, be a sample path of the Markov chain. Let
Yt = f(Xt) + ft, with E[§t|X1 s Xt] = 0,

and ¢; adapted to the filtration generated by Xi,..., Xii1.
Write TN¢ the projection of the noise £ onto Fp,.

Lemma
For any 6 > 0, with probability 1 — ¢,

~ 2dlog(2d/§
Al < o/ 29109(20/0)
nv
where C is a bound on ||t]|, L is @ bound on ||f||~, and v is

the smallest strictly-positive eigenvalue of the Gram matrix
It e(X)e(X) T

Corollary: This concludes the proof of the Theorem since the
estimation error |[Iv — N Tv||, = [|1¢]|n.
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Proof of the Lemma

Since ﬁ§ € F,, there exists @ € RY such that ﬁ§ = ZL o
(choose the one of minimal norm if there are several). Thus

IRENE = (&N¢)n Z@Zw,xta,— Za,zftw,xt
i=1 t=
d 1/2
fr|a||2[z(zw,xt)} .
i=1 =

%,_/
martingale

IN

Concentration for martingale: O(\/nlog1/d), w.p. 1 — 6.
Now, & is orthogonal to the null-space of the Gram matrice:

~ AT A . 1=
6l =a"a < —a'elea = —[Ngp

1
nv

from which we deduce that ||T1¢||, = O(y/ 2229/%),

nv
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Generalization bound

Recall the result in empirical norm:
= dlog(d/o
V= Vil < dloatd/o)y,

f@;y\v—fuﬁo( e

1
V1 =72
Now, in the case the Markov chain possesses a stationary
distribution p and is 8-mixing, then we have the generalization
bound: with probability 1 — 4,

dlog(d/é))

V- <
1V =V, < P

c
——inf ||V f 0]
=z IV = Al + O
expressed in terms of
@ the best possible approximation of V in 7 measured with
@ the smallest eigenvalue v of the Gram matrix (f(p,'cpjd,u,)ij
@ -mixing coefficients of the chain (hidden in O).
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Conclusions

We derived finite-sample high probability bounds for LSTD:

@ Empirical bound at the states of the Markov chain, without
any assumption about the chain

@ Generalization bound in the case the Markov chain has a
stationary distribution and is -mixing.

Those approximation error bounds can be used to derive
performance bounds for Policy Iteration (i.e. bounds on

Ve = V7).

Open questions:
@ can we get rid of v?
@ Similar analysis for Bellman residual minimization?
@ Similar analysis for off-policy LSTD?
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