Le contexte de l'expérience Les réalisations des élèves Travail préalable Conclusions Résumé

Création de dessins animés avec WIMS en sections européennes Mathématiques-Anglais Partage d'expérience au colloque WIMS 2010

Alexandre Abbes

¹ Mathématiques Sections Européennes, Lycée Marcelin Berthelot, Toulouse, France

Troisième Colloque International WIMS 2010

Le contexte de l'expérience Les réalisations des élèves Travail préalable Conclusions Résumé

Tracé de courbes animées avec WIMS

- Le contexte de l'expérience
- Les réalisations des élèves
- Travail préalable
- Conclusions

Le lycée Berthelot

- Grande mixité sociale.
- Plusieurs Sections Européennes, dont une Mathématique-Anglais, qui attire un public de bon, voire très bon niveau.

- 2 heures par semaine de DNL (discipline non linguistique) en première et en terminale.
- Utiliser l'anglais pour faire des mathématiques et réciproquement.
- Nous avons une relative liberté pour expérimenter d'autres façons d'aborder les mathématiques.
- Les effectifs sont réduits et le niveau est élevé.
- Les conditions de travail sont bonnes, voire très bonnes lorsque le réseau fonctionne.

- 2 heures par semaine de DNL (discipline non linguistique) en première et en terminale.
- Utiliser l'anglais pour faire des mathématiques et réciproquement.
- Nous avons une relative liberté pour expérimenter d'autres façons d'aborder les mathématiques.
- Les effectifs sont réduits et le niveau est élevé.
- Les conditions de travail sont bonnes, voire très bonnes lorsque le réseau fonctionne.

- 2 heures par semaine de DNL (discipline non linguistique) en première et en terminale.
- Utiliser l'anglais pour faire des mathématiques et réciproquement.
- Nous avons une relative liberté pour expérimenter d'autres façons d'aborder les mathématiques.
- Les effectifs sont réduits et le niveau est élevé.
- Les conditions de travail sont bonnes, voire très bonnes lorsque le réseau fonctionne.

- 2 heures par semaine de DNL (discipline non linguistique) en première et en terminale.
- Utiliser l'anglais pour faire des mathématiques et réciproquement.
- Nous avons une relative liberté pour expérimenter d'autres façons d'aborder les mathématiques.
- Les effectifs sont réduits et le niveau est élevé.
- Les conditions de travail sont bonnes, voire très bonnes lorsque le réseau fonctionne.

- 2 heures par semaine de DNL (discipline non linguistique) en première et en terminale.
- Utiliser l'anglais pour faire des mathématiques et réciproquement.
- Nous avons une relative liberté pour expérimenter d'autres façons d'aborder les mathématiques.
- Les effectifs sont réduits et le niveau est élevé.
- Les conditions de travail sont bonnes, voire très bonnes lorsque le réseau fonctionne.

La place des logiciels mathématiques

- Faire des mathématiques autrement en utilisant des logiciels mathématiques configurés en anglais.
- Nos choix : WIMS, Maxima, Geogebra.

La place des logiciels mathématiques

- Faire des mathématiques autrement en utilisant des logiciels mathématiques configurés en anglais.
- Nos choix : WIMS, Maxima, Geogebra.

Le contexte de l'expérience Les réalisations des élèves Travail préalable Conclusions Bésumé

les dessins animés

http://pagesperso-orange.fr/matheuro-Berthelot/production_2010.html

L'exercice final

- Concevoir un scénario d'animation de courbes.
- Le réaliser avec WIMS "Tracés Animés".
- Rédiger en anglais un compte-rendu du travail effectué.

Le contexte de l'expérience Les réalisations des élèves Travail préalable Conclusions Résumé

L'exercice final

- Concevoir un scénario d'animation de courbes.
- Le réaliser avec WIMS "Tracés Animés".
- Rédiger en anglais un compte-rendu du travail effectué.

Le contexte de l'expérience Les réalisations des élèves Travail préalable Conclusions Résumé

L'exercice final

- Concevoir un scénario d'animation de courbes.
- Le réaliser avec WIMS "Tracés Animés".
- Rédiger en anglais un compte-rendu du travail effectué.

- Une fois que la conception a eu lieu, il s'agit de déterminer les équations.
- C'est la réciproque du classique "tracer la courbe à partir de son équation".
- C'est la modélisation mathématique des formes physiques (simples).
- En pratique, il y a des allers-retours permanents entre l'équation et son expérience (le dessin).

- Une fois que la conception a eu lieu, il s'agit de déterminer les équations.
- C'est la réciproque du classique "tracer la courbe à partir de son équation".
- C'est la modélisation mathématique des formes physiques (simples).
- En pratique, il y a des allers-retours permanents entre l'équation et son expérience (le dessin).

- Une fois que la conception a eu lieu, il s'agit de déterminer les équations.
- C'est la réciproque du classique "tracer la courbe à partir de son équation".
- C'est la modélisation mathématique des formes physiques (simples).
- En pratique, il y a des allers-retours permanents entre l'équation et son expérience (le dessin).

- Une fois que la conception a eu lieu, il s'agit de déterminer les équations.
- C'est la réciproque du classique "tracer la courbe à partir de son équation".
- C'est la modélisation mathématique des formes physiques (simples).
- En pratique, il y a des allers-retours permanents entre l'équation et son expérience (le dessin).

- Familiarisation avec les différents systèmes de coordonnées dès la première.
- Tracé de tangentes animées .

$$y = (x - s) * f'(s) + f(s)$$

en même temps que

$$y = f(x)$$

Représentation d'homotopies simples (morphing) :

$$H(s,t) = (1-s)f(t) + sg(t)$$

- Familiarisation avec les différents systèmes de coordonnées dès la première.
- Tracé de tangentes animées .

$$y = (x - s) * f'(s) + f(s)$$

en même temps que

$$y = f(x)$$

Représentation d'homotopies simples (morphing) :

$$H(s,t) = (1-s)f(t) + sg(t)$$

- Familiarisation avec les différents systèmes de coordonnées dès la première.
- Tracé de tangentes animées .

$$y = (x - s) * f'(s) + f(s)$$

en même temps que

$$y = f(x)$$

Représentation d'homotopies simples (morphing) :

$$H(s,t) = (1-s)f(t) + sg(t)$$

- Dans "'Tracés Animés"', le paramètre s varie de 0 à 1.
- On utilise donc son image par une fonction, pour modifier l'ensemble parcouru, faire des aller-retours, changer la vitesse.
- Les élèves ont compris le principe, certains ont su faire des homotopies (morphing) entre surfaces : exemple
- Représentation de la 4ème dimension, suite à la projection des premiers chapitres du film *Dimension Maths*.

- Dans "'Tracés Animés"', le paramètre s varie de 0 à 1.
- On utilise donc son image par une fonction, pour modifier l'ensemble parcouru, faire des aller-retours, changer la vitesse.
- Les élèves ont compris le principe, certains ont su faire des homotopies (morphing) entre surfaces : exemple
- Représentation de la 4ème dimension, suite à la projection des premiers chapitres du film Dimension Maths.

- Dans "'Tracés Animés"', le paramètre s varie de 0 à 1.
- On utilise donc son image par une fonction, pour modifier l'ensemble parcouru, faire des aller-retours, changer la vitesse.
- Les élèves ont compris le principe, certains ont su faire des homotopies (morphing) entre surfaces : exemple
- Représentation de la 4ème dimension, suite à la projection des premiers chapitres du film Dimension Maths.

- Dans "'Tracés Animés"', le paramètre s varie de 0 à 1.
- On utilise donc son image par une fonction, pour modifier l'ensemble parcouru, faire des aller-retours, changer la vitesse.
- Les élèves ont compris le principe, certains ont su faire des homotopies (morphing) entre surfaces : exemple
- Représentation de la 4ème dimension, suite à la projection des premiers chapitres du film *Dimension Maths*.

Autres exercices intermédiaires

- Chalenges: trouver l'équation d'une forme mouvante proposée par d'autres élèves.
- Réalisation de "tangentes animées" avec des premières
 STG: uniquement en faible effectif.

Le contexte de l'expérience Les réalisations des élèves Travail préalable Conclusions Résumé

Autres exercices intermédiaires

- Chalenges : trouver l'équation d'une forme mouvante proposée par d'autres élèves.
- Réalisation de "tangentes animées" avec des premières
 STG: uniquement en faible effectif.

Le contexte de l'expérience Les réalisations des élèves Travail préalable Conclusions Bésumé

Sur le module

- Le module est très commode d'utilisation.
- Les élèves l'utilisent facilement.

Sur l'exercice proposé

- Les élèves ont du plaisir à créer en faisant des mathématiques.
- Les animations ont été réalisées par des élèves d'excellent niveau, sérieux et motivés, issus des séries S et ES.

Projets

- Utiliser le module "polyray" de la même façon.
- Faire des montages moins lourds avec le programme "gifsicle", disponible sous Linux.
- Joindre du son aux dessins animés.

Projets

- Utiliser le module "polyray" de la même façon.
- Faire des montages moins lourds avec le programme "gifsicle", disponible sous Linux.
- Joindre du son aux dessins animés.

Projets

- Utiliser le module "polyray" de la même façon.
- Faire des montages moins lourds avec le programme "gifsicle", disponible sous Linux.
- Joindre du son aux dessins animés.

Résumé

- Le module "Tracés Animés" de WIMS permet un apprentissage qui laisse la place à la créativité.
- C'est une interface commode et robuste.