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Part I

Introduction and model reduction problem
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The big picture
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Dynamical systems

x1(·)
x2(·)

...
xn(·)

u1(·) −→
u2(·) −→

...
um(·) −→

−→ y1(·)
−→ y2(·)

...
−→ yp(·)

We consider explicit state equations

Σ : ẋ(t) = f(x(t), u(t)), y(t) = h(x(t), u(t))

with state x(·) of dimension n � m, p.
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Problem statement

Given: dynamical system

Σ = (f, h) with: u(t) ∈ Rm, x(t) ∈ Rn, y(t) ∈ Rp.

Problem: Approximate Σ with:

Σ̂ = (f̂, ĥ) with : u(t) ∈ Rm, x̂(t) ∈ Rk , ŷ(t) ∈ Rp, k � n :

(1) Approximation error small - global error bound

(2) Preservation of stability/passivity

(3) Procedure must be computationally efficient
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Approximation by projection

Unifying feature of approximation methods: projections.

Let V, W ∈ Rn×k , such that W∗V = Ik ⇒ Π = VW∗ is a projection.
Define x̂ = W∗x. Then

Σ̂ :

{
d
dt x̂(t) = W∗f(Vx̂(t), u(t))

y(t) = h(Vx̂(t), u(t))

Thus Σ̂ is ”good” approximation of Σ, if x− Πx is ”small”.
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Special case: linear dynamical systems

Σ: Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

Σ =

(
E, A B
C D

)
Problem: Approximate Σ by projection: Π = VW∗

Σ̂ =

(
Ê, Â B̂
Ĉ D̂

)
=

(
W∗EV, W∗AV W∗B

CV D

)
, k � n

Norms:
• H∞-norm: worst output error ‖y(t)− ŷ(t)‖ for ‖u(t)‖ = 1.
• H2-norm: ‖h(t)− ĥ(t)‖E, An

n

C

B

D

⇒ Ê, Âk

k

Ĉ

B̂

D̂

Σ: : Σ̂

= V
n

k

W∗
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n

C

B

D

⇒ Ê, Âk
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Part II

Motivating examples
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Motivating Examples: Simulation/Control

1. Passive devices • VLSI circuits
• Thermal issues
• Power delivery networks

2. Data assimilation • North sea forecast
• Air quality forecast

3. Molecular systems • MD simulations
• Heat capacity

4. CVD reactor • Bifurcations
5. Mechanical systems: •Windscreen vibrations

• Buildings
6. Optimal cooling • Steel profile
7. MEMS: Micro Electro-

-Mechanical Systems • Elf sensor
8. Nano-Electronics • Plasmonics
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Passive devices: VLSI circuits

1960’s: IC 1971: Intel 4004 2001: Intel Pentium IV
10µ details 0.18µ details
2300 components 42M components
64KHz speed 2GHz speed

2km interconnect
7 layers
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Passive devices: VLSI circuits

Typical Gate
Delay 

0.1

1.0
D

el
ay

 (n
s)

1.01.3 0.8 0.30.5
Technology (μm)

0.1 0.08

Average Wiring
Delay

≈ 0.25 μm

Today’s Technology: 
65 nm

65nm technology: gate delay < interconnect delay!

Conclusion: Simulations are required to verify that internal electromagnetic
fields do not significantly delay or distort circuit signals. Therefore
interconnections must be modeled.

⇒ Electromagnetic modeling of packages and interconnects ⇒ resulting
models very complex: using PEEC methods (discretization of Maxwell’s
equations): n ≈ 105 · · · 106 ⇒ SPICE: inadequate

• Source: van der Meijs (Delft)
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Power delivery network for VLSI chips
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Mechanical systems: cars

Car windscreen simulation subject to acceleration load.

Problem: compute noise at points away from the window.
PDE: describes deformation of a structure of a specific material; FE
discretization: 7564 nodes (3 layers of 60 by 30 elements). Material:
glass with Young modulus 7·1010 N/m2; density 2490 kg/m3; Poisson
ratio 0.23 ⇒ coefficients of FE model determined experimentally.
The discretized problem has dimension: 22,692.

Notice: this problem yields 2nd order equations:

Mẍ(t) + Cẋ(t) + Kx(t) = f(t).

• Source: Meerbergen (Free Field Technologies)
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Mechanical Systems: Buildings
Earthquake prevention

Taipei 101: 508m Damper between 87-91 floors 730 ton damper

Building Height Control mechanism Damping frequency
Damping mass

CN Tower, Toronto 533 m Passive tuned mass damper
Hancock building, Boston 244 m Two passive tuned dampers 0.14Hz, 2x300t
Sydney tower 305 m Passive tuned pendulum 0.1,0.5z, 220t
Rokko Island P&G, Kobe 117 m Passive tuned pendulum 0.33-0.62Hz, 270t
Yokohama Landmark tower 296 m Active tuned mass dampers (2) 0.185Hz, 340t
Shinjuku Park Tower 296 m Active tuned mass dampers (3) 330t
TYG Building, Atsugi 159 m Tuned liquid dampers (720) 0.53Hz, 18.2t

• Source: S. Williams
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MEMS: Elk sensor

Mercedes A Class semiconductor rotation sensor

• Source: Laur (Bremen)
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Part III

Overview of approximation methods

Thanos Antoulas ( Rice University ) Model reduction of large-scale systems 18 / 55



Approximation methods: Overview
PPPPPPPPq
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SVD Approximation methods
A prototype approximation problem – the SVD

(Singular Value Decomposition): A = UΣV∗.

Supernova Clown

0.5 1 1.5 2 2.5

−5

−4

−3

−2

−1

Singular values of Clown and Supernova Supernova: original picture

Supernova: rank 6 approximation Supernova: rank 20 approximation

green: clown
red: supernova
(log−log scale) 

Clown: original picture Clown: rank 6 approximation

Clown: rank 12 approximation Clown: rank 20 approximation

Singular values provide trade-off between accuracy and complexity
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POD: Proper Orthogonal Decomposition

Consider: ẋ(t) = f(x(t), u(t)), y(t) = h(x(t), u(t)).
Snapshots of the state:

X = [x(t1) x(t2) · · · x(tN)] ∈ Rn×N

SVD: X = UΣV∗ ≈ UkΣk V∗k , k � n. Approximate the state:

x̂(t) = U∗k x(t) ⇒ x(t) ≈ Uk x̂(t), x̂(t) ∈ Rk

Project state and output equations. Reduced order system:

˙̂x(t) = U∗k f(Uk x̂(t), u(t)), y(t) = h(Uk x̂(t), u(t))

⇒ x̂(t) evolves in a low-dimensional space.

Issues with POD:
(a) Choice of snapshots, (b) singular values not I/O invariants.
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SVD methods: balanced truncation

Trade-off between accuracy and complexity for linear dynamical systems is
provided by the Hankel Singular Values. Define the gramians as solutions
of the Lyapunov equations

AP + PA∗ + BB∗ = 0, P > 0
A∗Q + QA + C∗C = 0, Q > 0

}
⇒ σi =

√
λi(PQ)

σi : Hankel singular values of the system. There exists balanced basis
where P = Q = S = diag (σ1, · · · , σn). In this basis partition:

A =

(
A11 A12

A21 A22

)
, B =

(
B1

B2

)
, C = (C1 | C2), S =

(
Σ1 0
0 Σ2

)
.

The reduced system is obtained by balanced truncation(
A11 B1

C1

)
, where Σ2 contains the small Hankel singular values.
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Properties of balanced reduction

1 Stability is preserved
2 Global error bound:

σk+1 ≤‖ Σ− Σ̂ ‖∞≤ 2(σk+1 + · · ·+ σn)

Drawbacks

1 Dense computations, matrix factorizations and inversions ⇒ may
be ill-conditioned

2 Need whole transformed system in order to truncate ⇒ number of
operations O(n3)

3 Bottleneck: solution of two Lyapunov equations
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Approximation methods: Krylov methods
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The basic Krylov iteration

Given A ∈ Rn×n and b ∈ Rn, let v1 = b
‖b‖ . At the k th step:

AVk = Vk Hk + fk e∗k where

ek ∈ Rk : canonical unit vector
Vk = [v1 · · · vk ] ∈ Rk×k , V∗v Vk = Ik
Hk = V∗k AVk ∈ Rk×k

⇒ vk+1 = fk
‖fk‖ ∈ Rn

Computational complexity for k steps: O(n2k); storage O(nk).

The Lanczos and the Arnoldi algorithms result.

The Krylov iteration involves the subspace Rk =
[
b, Ab, · · · , Ak−1b

]
.

• Arnoldi iteration ⇒ arbitrary A ⇒ Hk upper Hessenberg.
• Symmetric (one-sided) Lanczos iteration ⇒ symmetric A = A∗

⇒ Hk tridiagonal and symmetric.
• Two-sided Lanczos iteration with two starting vectors b, c

⇒ arbitrary A ⇒ Hk tridiagonal.
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Three uses of the Krylov iteration

(1) Iterative solution of Ax = b: approximate the solution x iteratively.

(2) Iterative approximation of the eigenvalues of A. In this case b is not fixed
apriori. The eigenvalues of the projected Hk approximate the dominant
eigenvalues of A.

(3) Approximation of linear systems by moment matriching.

⇒ Item (3) is of interest in the present context.
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Approximation by moment matching

Given Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), expand transfer function
around s0:

G(s) = η0 + η1(s − s0) + η2(s − s0)
2 + η3(s − s0)

3 + · · ·

Moments at s0: ηj .

Find Ê ˙̂x(t) = Âx̂(t) + B̂u(t), y(t) = Ĉx̂(t) + D̂u(t), with

Ĝ(s) = η̂0 + η̂1(s − s0) + η̂2(s − s0)
2 + η̂3(s − s0)

3 + · · ·

such that for appropriate s0 and `:

ηj = η̂j , j = 1, 2, · · · , `
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Ĝ(s) = η̂0 + η̂1(s − s0) + η̂2(s − s0)
2 + η̂3(s − s0)

3 + · · ·

such that for appropriate s0 and `:

ηj = η̂j , j = 1, 2, · · · , `

Thanos Antoulas ( Rice University ) Model reduction of large-scale systems 27 / 55



Approximation by moment matching
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Projectors for Krylov and rational Krylov methods

Given:

Σ =

(
E, A B
C D

)
by projection: Π = VW∗, Π2 = Π obtain

Σ̂ =

(
Ê, Â B̂
Ĉ D̂

)
=

(
W∗EV, W∗AV W∗B

CV D

)
, where k < n.

Krylov (Lanczos, Arnoldi): let E = I and

V =
[
B, AB, · · · , Ak−1B

]
∈ Rn×k

W̄∗ =


C

CA
.
.
.

CAk−1

 ∈ Rk×n

⇒ W∗ = (W̄∗V)−1W̄∗

then the Markov parameters match:

CAiB = ĈÂiB̂

Rational Krylov: let

V =
[
(λ1E− A)−1B · · · (λk E− A)−1B

]
∈ Rn×k

W̄∗ =


C(λk+1E− A)−1

C(λk+2E− A)−1

.

.

.
C(λ2k E− A)−1

 ∈ Rk×n

⇒ W∗ = (W̄∗V)−1W̄∗

then the moments of Ĝ match those of G at λi :

G(λi) = D+C(λiE−A)−1B = D̂+ Ĉ(λiÊ− Â)−1B̂ = Ĝ(λi)
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Properties of Krylov methods

(a) Number of operations: O(kn2) or O(k2n) vs. O(n3) ⇒ efficiency

(b) Only matrix-vector multiplications are required. No matrix factorizations
and/or inversions. No need to compute transformed model and then truncate.

(c) Drawbacks

• global error bound?
• Σ̂ may not be stable.

Q: How to choose the projection points?
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Part IV

Approximation methods: two recent results
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Choice of projection points in Krylov methods

1 Passivity preserving model reduction.

2 Optimal H2 model reduction.
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Choice of Krylov projection points:
Passivity preserving model reduction

Passive systems:
Re

∫ t
−∞ u(τ)∗y(τ)dτ ≥ 0, ∀ t ∈ R, ∀ u ∈ L2(R).

Positive real rational functions:
(1) G(s) = D + C(sE− A)−1B, is analytic for Re(s) > 0,
(2) Re G(s) ≥ 0 for Re(s) ≥ 0, s not a pole of G(s).

Theorem: Σ =

(
E, A B
C D

)
is passive ⇔ G(s) is positive real.

Conclusion: Positive realness of G(s) implies the existence of a spectral
factorization G(s) + G∗(−s) = W(s)W∗(−s), where W(s) is stable rational
and W(s)−1 is also stable. The spectral zeros λi of the system are the zeros
of the spectral factor W(λi) = 0, i = 1, · · · , n.
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Passivity preserving model reduction
New result

Method: Rational Krylov
Solution: projection points = spectral zeros

Recall:


V =

[
(λ1E− A)−1B · · · (λk E− A)−1B

]
∈ Rn×k

W∗ =

 C(λk+1E− A)−1

...
C(λ2k E− A)−1

 ∈ Rk×n

Main result. If V, W are defined as above, where λ1, · · · , λk are
spectral zeros, and in addition λk+i = −λ∗i , the reduced system
satisfies:

(i) the interpolation constraints,
(ii) it is stable, and
(iii) it is passive.
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Spectral zero interpolation preserving passivity
Hamiltonian EVD & projection

• Hamiltonian eigenvalue problem A 0 B
0 −A∗ −C∗

C B∗ ∆−1

  X
Y
Z

 =

 E 0 0
0 E∗ 0
0 0 0

  X
Y
Z

 Λ

The generalized eigenvalues Λ are the spectral zeros of Σ

• Partition eigenvectors X
Y
Z

 =

 X− X+

Y− Y+

Z− Z+

 , Λ =

 Λ−
Λ+

±∞


Λ− are the stable spectral zeros

• Projection
V = X−, W = Y−

Ê = W∗EV, Â = W∗AV, B̂ = W∗B, Ĉ = CV, D̂ = D
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Dominant spectral zeros – SADPA

What is a good choice of k spectral zeros out of n ?

Dominance criterion: Spectral zero sj is dominant if: |Rj |
|<(sj )|

, is
large.
Efficient computation for large scale systems: we compute the
k � n most dominant eigenmodes of the Hamiltonian pencil.
SADPA (Subspace Accelerated Dominant Pole Algorithm ) solves
this iteratively.

Conclusion:

Passivity preserving model reduction becomes a
structured eigenvalue problem
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Choice of Krylov projection points:
Optimal H2 model reduction

The H2 norm of a (scalar) system is:

‖Σ‖H2 =

(∫ +∞

−∞
h2(t)dt

)1/2

Goal: construct a Krylov projection such that

Σk = arg min
deg(Σ̂) = r
Σ̂ : stable

∥∥∥Σ− Σ̂
∥∥∥
H2

.

That is, find a Krylov projection Π = VW∗, V, W ∈ Rn×k , W∗V = Ik ,
such that:

Â = W∗AV, B̂ = W∗B, Ĉ = CV
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Necessary optimality conditions & resulting algorithm
Let (Â, B̂, Ĉ) solve the optimal H2 problem and let λ̂i denote the eigenvalues
of Â. The necessary optimality conditions are

G(−λ̂∗i ) = Ĝ(−λ̂∗i ) and d
ds G(s)

∣∣
s=−λ̂∗i

= d
ds Ĝ(s)

∣∣∣
s=−λ̂∗i

Thus the reduced system has to match the first two moments of the original
system at the mirror images of the eigenvalues of Â. The proposed algorithm
produces such a reduced order system.

1 Make an initial selection of σi , for i = 1, . . . , k

2 W̄ = [(σ1I− A∗)−1C∗, · · · , (σk I− A∗)−1C∗]

3 V = [(σ1I− A)−1B, · · · , (σk I− A)−1B]

4 while (not converged)

1 Â = (W̄∗V)−1W̄∗AV,

2 σi ←− −λi (Â) + Newton correction, i = 1, . . . , k ,

3 W̄ = [(σ1I− A∗)−1C∗, · · · , (σk I− A∗)−1C∗],

4 V = [(σ1I− A)−1B, · · · , (σk I− A)−1B]

5 Â = (W̄∗V)−1W̄∗AV, B̂ = (W̄∗V)−1W̄∗B, Ĉ = CV
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Moderate-dimensional example
SZM with SADPA implementation

total system variables n = 902, independent variables dim = 599, reduced
dimension k = 21
SADPA computed 2k = 42 dominant spectral zeros automatically
(95 iterations, CPU time: ∼ 16 s)
reduced model captures dominant modes
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H∞ and H2 error norms

Relative norms of the error systems

Reduction Method
n = 902, dim = 599, k = 21 H∞ H2

PRIMA 1.4775 -
Spectral Zero Method with SADPA 0.9628 0.841

Optimal H2 0.5943 0.4621
Balanced truncation (BT) 0.9393 0.6466

Riccati Balanced Truncation (PRBT) 0.9617 0.8164
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Approximation methods: Summary
PPPPPPPPq

��
����

Krylov

• Realization
• Interpolation
• Lanczos
• Arnoldi

SVD

@
@
@R

�
�

�	

Nonlinear systems Linear systems
• POD methods • Balanced truncation
• Empirical Gramians • Hankel approximation@

@
@

@R
�

��	

Krylov/SVD Methods

�
�	

r
@

@R

r
Properties

• numerical efficiency

• n� 103

• choice of matching moments

Properties

• Stability

• Error bound

• n ≈ 103
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Properties

• numerical efficiency

• n� 103

• choice of matching moments

Properties

• Stability

• Error bound

• n ≈ 103
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Model reduction from data:
On-chip analog electronics

Chips for communication systems consist of large analog and RF blocks. To
avoid costly re-fabrication, a verification cycle is developed for simulation and
design optimization. A common approach to this verification is to replace the
circuit block layout by systems of equations and subsequently use their
accurate approximants for system simulation. Example: FPGA (Field
Programmable Gate Arrays).

Methodology. An input-output approach for modeling of the analog systems
can be employed. It treats them as black boxes. In the linear passive case,
this leads to identification problems using

multi-port S-parameters
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Measurement of S-parameters

VNA (Vector Network Analyzer) - Magnitude of S-parameters for 2 ports
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Analysis of model reduction from S-parameters
Tangential interpolation

Given: • right data: (λi ; ri , wi), i = 1, · · · , k
• left data: (µj ; `j , vj), j = 1, · · · , q.

We assume for simplicity that all points are distinct.
Problem: Find rational p ×m matrices H(s), such that

H(λi)ri = wi `jH(µj) = vj

Right data:

Λ =

 λ1
. . .

λk

 ∈ Ck×k ,
R = [r1 r2, · · · rk ] ∈ Cm×k ,

W = [w1 w2 · · · wk ] ∈ Cp×k

Left data:

M =

 µ1
. . .

µq

∈Cq×q, L =

 `1
...
`q

∈Cq×p, V =

 v1
...

vq

 ∈ Cq×m
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The Loewner and the shifted Loewner matrices
We define the Loewner matrix

L =


v1r1−`1w1

λ1−µ1
· · · v1rk−`1wk

λ1−µk
...

. . .
...

vqr1−`qw1
λq−µ1

· · · vqrk−`qwk
λq−µk

 ∈ Cq×k

and the shifted Loewner matrix

σL =


λ1v1r1−`1w1µ1

λ1−µ1
· · · λ1v1rk−`1wk µk

λ1−µk
...

. . .
...

λqvqr1−`qw1µ1
λq−µ1

· · · λqvqrk−`qwk µk
λq−µk

 ∈ Cq×k

Remark. For a single interpolation point the Loewner and shifted
Loewner matrices reduce to Hankel matrices.

Thanos Antoulas ( Rice University ) Model reduction of large-scale systems 44 / 55



Construction of Interpolants (Models)

Assume that k = `, and let

det (xL− σL) 6= 0, x ∈ {λi} ∪ {µj}

Then

E = −L, A = −σL, B = V, C = W

is a minimal realization of an interpolant of the data, i.e., the function

H(s) = W(σL− sL)−1V

interpolates the data.
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Construction of interpolants: New procedure
Main assumption:

rank (xL− σL) = rank
(

L σL
)

= rank
(

L
σL

)
=: k , x ∈ {λi} ∪ {µj}

Then for some x ∈ {λi} ∪ {µj}, we compute the SVD

xL− σL = YΣX

with rank (xL− σL) = rank (Σ) = size (Σ) =: k , Y ∈ Cν×k , X ∈ Ck×ρ.

Theorem. A realization [E, A, B, C], of an interpolant is given as follows:

E = −Y∗LX∗ B = Y∗V
A = −Y∗σLX∗ C = WX∗

Remark. The singular values of xL− σL play a role similar to the that of the
Hankel singular values.
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Example: Four-pole band-pass filter

•1000 measurements between 40 and 120 GHz; S-parameters 2× 2, MIMO interpolation ⇒ L, σL ∈ R2000×2000.
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Summary: Advantages of this method

(1): No need to invert E.
(2): Rank (sing. vals) of xL− σL provides the model complexity.
(3): Can handle large-number of inputs/outputs by means of tangential
interpolation.
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Part V

Challenges in complexity reduction
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(Some) Challenges in complexity reduction

Model reduction of uncertain systems

Model reduction of differential-algebraic (DAE) systems

Domain decomposition methods

Parallel algorithms for sparse computations in model reduction

Development/validation of control algorithms based on reduced
models

Model reduction and data assimilation (weather prediction)

Active control of high-rise buildings

MEMS and multi-physics problems

VLSI design

Molecular Dynamics (MD) simulations

Nanoelectronics
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Future challenge: Nanoelectronics
Moore’s law and scaling in integrated circuits
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Future challenge: Nanoelectronics
Heat generation

Kitchen stove: 18cm diameter, P≈ 1.5kW ⇒ 6W/cm2

Pentium IV: Area≈ 2cm2, P≈ 88W ⇒ 40W/cm2

Conclusion: According to the 2006 ITRS, at the present rate of
miniaturization, the current technology can be sustained for a few more years
(until the feature size reaches 45nm).
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Future challenge: Nanoelectronics
Proposed interconnect solution: carbon nanotubes

• CNTs have been proposed as a replacement for on-chip copper
interconnects due to their large conductivity and current carrying capabilities.

• Advantages over copper:

1 Resistance. CNTs have lower resistance than standard copper

2 Current density. Single-wall Carbon Nanotubes (SWCNTs) with
diameters ranging from 0.4nm to 4nm have been reported, with current
densities as large as 1010A/cm2, versus traditional metallic interconnect
with typical current densities on the order of 105A/cm2.

3 Electromigration. CNTs are much less susceptible to electromigration
problems with thermal conductivity more than 10 times higher than
conventional copper.
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Future challenge: Nanoelectronics
Carbon nanotubes (CNTs): modeling

Ground Plane

Carbon
Nanotube

h

d

Copper Interconnect Carbon Nanotube Interconnect

Analytical model of SWCNT: transmission line involving magnetic and kinetic inductance,
as well as electrostatic and quantum capacitance.

RC+RCNT LM+LK LM+LK RC+RCNT

CQ

CE

CQ

CE

Driver Load

Single wall carbon nanotube equivalent model

+=E x A x B u
.

EM Filed Solver with MQS,
EMQS and Full Wave Analysis

CNTs Based Interconnect Bundles
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Future challenge: Nanoelectronics
Some mathematical challenges

CNTs: Develop a scalable state space representation of carbon
nanotube circuit models that accurately capture the statistical distribution
of single as well as carbon nanotube bundles.

CNTs: Develop model reduction techniques to solve and accurately
approximate CNT based interconnects resulting from field solvers.
Evaluate the complexity of these methods used for CNT based
interconnects and conventional copper interconnects for their suitability
in fast simulation.
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