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Motivations

» Can we (significantly) reduce the cost of data assimilation
in the context of ocean/atmosphere simulation without

(significantly) degrading the results ? (cf K. Kunisch, M. Navon)

» More generally, can the concept of “order reduction” lead
to improvements in data assimilation methods ?
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4D-Var data assimilation

g t € [to,t
Model 1at = F®X)  t€ltoty]

Observations in time and space : yi,..., YN

Find xo that minimizes

Teo) = N (H(x) — v TR (H (<) — yi)
Jo(x0)
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Incremental 4D-Var : find dx that minimizes

1 N o
J(0x) = ¥ (H;My, 0% — dg) "Ry (H;My, 10x — ;)
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—|—2(5x)TB_16x

where 0x = xg — x? and d; =y; — H(wb(tz‘))

—> Adjoint method : VJ = —p(p) + B~ 1éx

dx
P
x(tg) = x? + dx
Optimality T
d dF
System : dIt) T [dx] .p = H'(Hx —y)

p(ty) =0

VJ(x) =0




Main difficulties in the context
of ocean/atmosphere modelling

» Non-linearities : non convexity, local minima,
tangent linear hypothesis

»Huge dimension [x] = 106 - 10/

» Error statistics (R and B) are badly known.
However B is fundamental in the process.




Approximation of B

B is represented in most cases somewhat empirically,
using +/- analytical models.

» Monovariate covariances : analytical functions for
spatial covariances (gaussian, or generalized
gaussian), with a particular role of the vertical
dimension (e.g.Weaver et al., 2001)

» Multivariate covariances : balance relationships, either
analytical and/or observed (e.g. Ricci et al., 2005)




Bell-shaped covariance
+ balance operator
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Reduced order 4D-Var

Data assimilation methods are looking for an optimal
correction in a space of huge dimension — try to
describe (most of) this correction in a subspace of low
dimension.




Control space Span (Lj, ..., L)

r
b= > ’UJ,,;LZ'ZLW

0X = Xp — X
=1

1
Cost Function Jp(w) = 2wTB;Ulw
with B, = E ’(w —w)(w — v‘v)T

Covariance matrix in the full space
B, = E |(6x — %) (6x — 6%)T]|
=LE|(w — w)(w — w)T|LT
= LBy LT (singular low-rank matrix)

+ Minimization in a space of dimension r << [X]
+ Almost no modification of the algorithm
- Choice of (L, ..., Lr) and estimation of B,
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In this context, the subspace must represent most of the
natural variability of the system. But which definition for
the variability ?

» Statistical approach : PODs (EOFs, Principal
Components...)

» Dynamical systems: vectors of maximum growth




EOFs : Empirical Orthogonal Functions
(principal components, Proper Orthogonal Decomposition)

Sample of a model trajectory : (x(t1), - - - s x(p))

L,,...,L :directions in which the variance is maximum

They are the first eigenvectors of the empirical
correlation matrix XXT' with X = (Xy,...,Xp)

X;(6) = [x(t;) — ¥

1 »p 2 1 p N\ 2
X=— ¥ x(t; o; =— ¥ (X;(2))
p j=1 t3) 0= 5




Vectors of maximal growth

Amplification rate of some perturbation Z(t)) :

||Mt1—>t2 (X (t1) + Z(t1)) — Mt1—>t2 (X (t1)) ||

p(Z(t1)) = 1 Z(t1)]]

Find Z3(¢1) such that p(Z7(t1)) = max p(Z(t1))

Degrees of freedom : [ti,t2] ,M,|| .|| ,forward / backward




Vectors of maximal growth (2)

Tangent linear Full (nonlinear)
approximation model
[t1,t2] . non-linear singular
: singular vectors
finite vectors
[t1,L2] Lyapunov vectors breeding vectors
infinite

Such vectors are used in particular for stability analysis and
for ensemble simulations.




lllustration in the context
of an idealized shallow water model
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Colinearity of the
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» Impact of non linearities (bred modes vs Lyapunov vectors)
» Infformation contained in the PODs is quite “different”
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Data assimilation : control of the initial condition

» Use of a POD basis

Preliminary experiments with the
idealized shallow water model : PODs
lead to good results.

Covariance Due to the definition of PODs, the covariance
matrix in this basis is diagonal : By = diag(A1, ..., Ar)




Experiments in a model of the Tropical Pacific ocean

OPA - TDH model
(Weaver et al.)




Primitive Equations

Momentum

Conservation of mass

Equations for tracers

Equation of state

+ boundary conditions

at

iR Au — fo+ 100 %

- ]« Vu—vau — fo4+ ——=

ot po Ox

duv 1 dp

— 4+ U -Vv—vAv+ fu+ .Imﬂ

at po Oy

ap hvd . . .

o =Py (hydrostatic approximation)
rz
div U=0

(Boussinesq approximation)

-4+ U-VT = K7 AT
a5

+U-VS=KgAS
at :

p=p(T,S,p)




Experiments in a model of the Tropical Pacific ocean

ot am | OPA - TDH model
D S e (Weaver et al.)

Resolution : 1° x 1/2° - 2° x 25 vertical levels

State variable : [x] ~10°¢

Timestep = a few minutes

Comparison of Reduced-4D-Var with “usual” 4D-Var
using a standard gaussian covariance matrix B
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Structure of B :assimilation of a single observation

Innovation of 1°C, located on the equator at 160°VWV, in the
thermocline, at the end of a one-month assimilation window

Temperature component of dx

Z=5m vertical section
Full | maximal
4D-Var correction :0,94 °C

=
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Twin experiments : assimilation of simulated observations

300N e e e e e — I
20°N - TAO/TRITON Array

10°N

0°
10°S -
20°S 7
1 o ATLAS oTRITON = Subsurface ADCP I
30°5 | e T T
120°E  140°E  160°E 180° 160°W 140°W 120°W 100°W 80°W

Reference simulation one-year experiment

Simulated data 70 TAO moorings : vertical sampling of T in
the 500 first meters (0,17% of [x]), every 6h + gaussian
noise

Background x® a model state three months before

Numerical experiment |2 one-month assimilation windows




[2 - norm of the error as a function of time
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Cost function
(In ] vs iteration #)

log10 Jtot
5.8 T T
— J4D-Var
+++ J Reduced 4D-Var
56}
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6 one-month windows, 22 iterations each
The necessary number of iterations is divided

by a factor of 4-5




Assimilation of real data : the role of model error

The model error makes unefficient the POD basis obtained
by analysis of a free run.

» Compute PODs from a simulation using data assimilation

or

»Use Reduced-4D-Var as a preconditionner for full 4D-
Var —>“two-step 4D-Var”




The number of iterations is divided
by a factor of (at least) 2.
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Misfit with observations at (110°WV, 0°N)

X-axis :time , y-axis : depth

temperature (aSS|m|Iated) zonal veIOC|ty (non aSS|m|Iated)

model
without &
assimilation .|

2004

4D-Var
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How could we go further ?

Two aspects limit the effectiveness of reduced order
variational data assimilation :
) truncation error (reduction of the dimension of the
control space)
» model error (unknown physics)

Tentative approaches :
» weak constraint optimization : control of (part of) the
model error
» hybrid stochastic/deterministic approach in order to
improve the relevance of the reduced basis
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Explicit control of the model error

Xip1 = M;_;11(x3) +e;1
X0 = x0 + &x
1 N

> (H(x;) — i) TR (H(x;) —

J(5X,e1,...,eN):2i:1 ;

Difficulties

- Dimension of the control space : N x [x] !!
- Estimation of Qi




» Dual approach - minimization in the observation

space : representers (Bennett 92), 4D-PSAS (Amodei 95,
Courtier 97, Louvel 01,Auroux 02)




» Dual approach - minimization in the observation

space : representers (Bennett 92), 4D-PSAS (Amodei 95,
Courtier 97, Louvel 01,Auroux 02)

» Reduced order modelling of e; :
» systematic bias (Vidard 01, Griffith and Nichols 01,
D’Andréa and Vautard 01, Bell et al 02) : e; = €




Control of the model bias

xj41 = M;_;11(x;) + @
X0 = xP + 6x

6%, = ¥ (H(x) —y) TR (H () — vi)

1 N

Vesxd = —po + B~ 16x

N
Ve =— % pi+ NSl
1=

Default choice :S =B




Results with the shallow-water model -

5

- “Cousin” experiments (a reference =
model and a perturbed model) ' ’
- Obs : sub-sampling of h >

exact bias




Error on the initial correction

Control of the initial Control of the initial
condition only condition + bias




The use of the identified bias significantly improves

the forecast.
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Results with the Primitive Equations Troplcal model

“Cousin experiments”

Bias :vertical section at the equator

Coupe Zonale a l'equateur de l'e y emati q esti m 1 mp rature
T ; T 7 T T \

ngitude
=-5.90, de 4.95, Int= 0.50

estimate exact bias

Difficulty : definition of the covariance matrix for the bias
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Experiments with assimilation of real data

Vertical section of the analysis increments :
mean and standard deviation

d) increment en T sur Nino3 b) increment en T sur Nino4
(moyenne et ecart type) (moyenne et ecart type)
T T T T T T T T ‘ T T T T T T T T T T T T T

0 : S ‘ 0 : T \ I
100 100 -
200 200
300 300
400 400
500 L T | 500 L
-0.5 0.0 -0.5

-- Control of the initial condition
-- Control of the initial condition + bias

The correction is weaker, and closer to zero on average.




» Dual approach - minimization in the observation

space : representers (Bennett 92), 4D-PSAS (Amodei 95,
Courtier 97, Louvel 01,Auroux 02)

» Reduced order modelling of e; :
» systematic bias (Vidard 01, Griffith and Nichols 01,
D’Andréa and Vautard 01, Bell et al 02) : ¢; = ¢
» decomposition in a low-rank basis (Durbiano et al. 01,

Vidard et al. 04) : .
e, =€+ X C;-Lj

J=1




Control of the model error in a reduced space
p

xj41 = Mi_;11(x3) +€+ le CJL]
X0 = xP 4+ 6x
1 _
J@x,e,ct L eM)= S (HG) — vi) TR (H () — i)

N
+2(5X)TB—15X +, &8ss

1 N . :
3 C’LTQ—lc’L

+2 i=1 p

Vsxd = —po + B 1ox

N
Vel =— pz—I—NS g

VCJ——L pz—l—Q




Numerical results with a shallow-water model:

- “Cousin” experiments (a reference
model and a perturbed model)
- Obs : sub-sampling of h

Control of : h
|.C.
|.C. + bias

|.C. + bias + time-varying part
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A hybrid sequential-variational approach

How can we make the basis evolve in time, in order to be
more relevant ? —> Sequential data assimilation methods
do compute an evolution of the covariance matrices.

@ ./\

—— ‘/\\// )
Sequential ° s & ®

filtering o~ o
7~

Variational




Reduced rank Kalman filter : SEEK filter (Pham et al. 98)

x"(tgs1) = M(tg, teo1)x (tk) + e(ty)

Initialization  x%(to) = xo
P%(tg) = Po = SgS;  with So(n,r)
Forecast
xT (tgr1) = M(tg, tpr1)x%(tx)
P/ (tg1) = M(tg, ter1)P? (t)MT (tg, thy1) + Qg
M (tg, trt1)ST (t) (ST (8)) TMT (8, tr1-1) + Qg

Correction
x%(tgr1) = xF (tgr1) + Kig1 | yer1 — Hopaxd (tp41)]
Kipi1 = Pf(tk+1)H£_|-1 Hy 1 PS(tpp1)HE | + Ryyq
Pa(tk+1) = PJ(t41) — Kk+1Hk+1Pf(tk+1)
Sg (Sg )t

—1




|dea : build a hybrid method, where we add to the reduced
order 4D-Var an equation for the evolution of the
correction basis.

» Theoretical fundation (Veerse, 2000) : some kind of
“equivalence” between incremental 4D-Var and Kalman
smoother.

» Numerical experiments :

» Preliminary experiments in a simplified implementation
(filter instead of smoother - Robert et al. 2006)

» On going experiments : exact implementation




Hybrid method : use the evolution of B provided by the
SEEK filter/smoother in the reduced-order 4D-Var

D%
Ok

f  _mpamn’
'y = MPIM
| | | -

| | |

fo ty Ly
@ xZ = x| + xo [via 4D-VAR] on [to, 4]
Q x| = M(x})
© P2 [via smoother]
Q P =P’
© P’ injected into 4D-VAR on [t;, t ]
Q 4D-VAR on [t} t4+] coincides with the first step of the algorithm

- B is initially the same for both methods
- The reduced-order 4D-Var performs the analysis
- B evolves in time using the equation of the SEEK filter/smoother




Results with a simplified implementation

Twin experiments

Tropical Pacific ocean
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Hybridization seems potentially able to improve the results




Preliminary results with a “correct” implementation

Twin experiments with the
idealized shallow water model

» The hybrid metho can lead to some systematic improvement,
both on observed and unobserved variables.
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Present investigations :
» Are these results robust ?

» Which “stable” criteria to define the basis ?
» Does the subspace initially spanned by PODs converge ?

» What could be learnt from the (evolution of the) structure
of the reduced rank error covariance matrix ?
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Summary

» A reduced-order 4D-Var has been implemented.
It greatly reduces the dimension of the control
space (from 10 - 107 to 20-30), and it provides a
naturally multivariate formulation for B.

»When the model is perfect (twin experiments),
this method leads to improved results for a much
lower cost.

»When the model is not perfect (real data), this
method can be used as a preconditioner for “full”
4D-Var. This two-step method leads to similar
results as 4D-Var, for a lower cost (factor of 2).

»A hybrid method is presently under investigation,
to improve the evolution of B.




» Other vectors than PODs can also be of interest. There
is (to my knowledge) almost no theoretical results
concerning nonlinear vectors (NL Singular vectors, Bred

modes - Mu, Kalnay, Toth...).

» Order reduction / modal decomposition ideas can also
be used for other purposes... (example :in the observation
space, project the observation on some basis in order to
assimilate only the relevant information)
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