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Motivations

Why should a reduced model be robust ?
some parameters or terms of the original
system are poorly known,

to regularize a badly-conditioned model,

to widen the range of the model validity.

Uncertainty sources
physical properties,

boundary / initial conditions,

parameters of the system (e.g. geometry),

. . .

The robust control tends to guarantee a minimum level of performance with a given
probability.
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Cooking recipe for a robust control

Need for a reliable and fast method able to “predict” the future. Requires:

a light model→ a reduced model which retains the essential dynamics and
features,

a cheap and stable time-marching scheme.

Settings of the problem at hand: 2-D flow around a circular cylinder (laminar
regime)

- control intensity µ unknown a priori, µ ∈ Ωµ,

- uncertain parameters: flow Reynolds number, Re ∈ ΩRe.

→ the reduced model must remain accurate on the whole range Ωµ ⊗ ΩRe.

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Cooking recipe (cont’d)

Objective function: need for a robust formulation of the cost function to minimize.

Robust cost function→ tries to guarantee maximum performance despite fluctuating /
unknown external conditions.

=⇒ Investigation of the relevance and performance of this cooking recipe through the
drag reduction of the 2-D flow around a circular cylinder with an uncertain Reynolds
number (Re = 200).

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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1st ingredient: robust reduced basis
Need to derive a basis truly robust w.r.t. uncertain flow parameters. Use of the Proper
Orthogonal Decomposition (POD).

u(x , t) =
X

i

ai (t) ϕi (x).

The reduced basis is optimal in the energy sense:

ϕ \ arg maxϕ′

(
〈| (u;ϕ′) |2〉
‖ϕ′‖2

)
, ϕ′ ∈ L2([0; 1]).

The ensemble operator is defined as

〈f 〉 =

Z
T

Z
Ωµ

Z
ΩRe

f (t , µ,Re) p(t) p(µ) p(Re) dRe dµ dt ,

with p(t), p(Re) et p(µ) the probability density function of t , Re et µ respectively.

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Robust basis - POD
Assuming p(t) constant and approximating the µ- et Re-integrals using cubature, it
yields:

〈f 〉 '
Z

T

NqX
i

f (t , µi ,Rei ) wi dt , Cubature

with Nq the number of cubature points and wi the associated weights. The POD
formulation then writes:Z

T ′

NqX
j

R(t , t ′, µi , µj ,Rei ,Rej ) a(t ′, µj ,Rej ) wj dt ′ = λ a(t , µi ,Rei ),

where

R(t , t ′, µi , µj ,Rei ,Rej ) =

Z
Ωx′

u(x′, t ′, µi ,Rei ) u(x′, t , µj ,Rej ) dx′,

and finally

ϕj (x) =
1
λj

Z
T

NqX
i

aj (t , µi ,Rei ) u(x , t , µi ,Rei ) wi dt .

=⇒ Optimal basis for the energy in the p(Re) and p(µ) sense.
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2-D Navier-Stokes code

Simulating the 2-D flow around a circular cylinder

ψ − ω formulation,

boundary conditions are imposed through an influence matrix technique,

centered 2nd order scheme (spatial), 1st order in time. Convection terms: 4th
order upwind,

180× 180 mesh,

solver based on a Fast Fourier Transform for the laplacian and the Poisson
operator.

POD determined from 70 * (Nq = 17) snapshots.

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Basis robustness

The reduced basis accuracy is quantified by EΩ =

R
Ωx

(ωDNS − ωPOD)2 dxR
Ωx
ω2

DNS dx
.

Re = 200 Re = 210
“Energy” defect of the robust reduced basis in time.

=⇒Reasonably good performance throughout the range of flow parameters.

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Robust POD modes

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Time integration: mapping technique (MTS)

POD→ reduction of the flow to a dynamical system Σ of low dimensionality n:

u(x , t) =
nX
i

ai (t) ϕi (x),

ai (t) = 0 but no further a priori information on temporal coefficients ai of Σ→
assumed uniformly distributed on their subspace Ωi ,
use of polynomials to get an approximation of the mappingMT : Rn → Rn of the
coefficients over a time horizon T : a(t + T ) =MT (a(t)),
Smolyak cubature to approximate the inner products in the phase space (greedy
approach suitable as well):

〈f (x , t , ξ) g(x , t , ξ)〉 =

Z
Ωξ

f (x , t , ξ) g(x , t , ξ) p(ξ) dξ '
NqX
i=1

f (x , t , ξi ) g(x , t , ξi ) wi

→ Nq points only. Their trajectory in the phase space is to be determined using
“DNS” over the time horizon T .
Successive applications of the mapping to time integrate. Intrinsic stability even
for very long time integration (several thousands of Kármán periods).

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Mapping technique (MTS)

Mapping in the plane mode 1 - mode 2. The exact limit
cycle (DNS) is plotted for comparison. T = 20, 12 POD

modes.
Temporal evolution of mode 2. DNS (solid line) and MTS

(dotted line). Frequency (top) and amplitude (bottom).

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Drag control
The control is applied with a uniform suction µ(t) throughout the surface of the porous
cylinder. One minimizes the objective function using an optimal control technique
based on the H∞ formulation.

J =
α

2
〈µ;µ〉+

β

2
〈〈FD ; FD〉〉 −

γ

2
〈φ;φ〉,

where 〈·〉 expresses as

〈f ; g〉 =

Z t0+Tw

t0
f (t).M♦.g∗(t) dt + c.c.,

and 〈〈·〉〉 as

〈〈f ; g〉〉 =

Z t0+Tw

t0

Z
Ωξ

f (t , ξ).M�.g
∗(t , ξ) p(ξ) dξ dt + c.c.,

Here, M♦ ≡ I , M♦ ≡ I, ξi = N (0, 1).

−→ Use of a stochastic code to get FD(t , ξ).
Notions on UQ

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Drag control - A few results

Temporal evolution of the cost
function (-15%). The control is

applied at t = 500.

Suction:
→ narrows the cylinder
wake,

→ postpones the boundary
layers separation.

Optimal distribution of the control intensity µ(t).

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.



Physical system reduction
Time marching

Open loop robust control
Optimal reduction for experiments

Appendices: a few words on UQ

Control characterization

Phase portraits evolution with control. Circles: non-controlled flow; solid line: controlled
flow.

=⇒ Strong impact of the control.

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Control performance

Drag time-evolution.

=⇒ Reduction by 11 % of the total drag (CD = 1.38−→ 1.23)
depends on α, β (and γ)

=⇒ Control relevant for actual flows (validated by DNS)

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Performance of the robust approach

Performance of the different control strategies. ∆J between robust and non-robust (deterministic) control.

=⇒ The control is robust.

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Application to a “real” flow

Cost function for different Re. J gap between robust and deterministic control (DNS).

=⇒ Considering robustness of the control is all the more necessary as it is
based on a reduced model !

The model reduction is here similar to a perturbation from the control performance
point of view.

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Part II: Optimal reduction for experiments

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Optimal reduction for subsequent use in experiments
One wants the ROM:

to accurately reproduce the action of the actuator (controllability),
to be optimal w.r.t. the objective function to control (say cylinder drag FD).

It is further desirable the basis be orthonormal. It leads to:

uh(t , x) =
X

i

ai (t) φi (x) , J =

fi“
FD(t , µ,Re)− F h

D(a, µ,Re)
”2
fl

Ωt⊗Ωµ

with the desirable properties:
orthogonality,

`
φi (x);φj (x)

´
= δij (φi (x);φi (x)),

normality, (φi (x);φi (x)) = 1.

and the constraint: ai (t) = (u(t , x);φi (x)).

The ROM is supposed to belong to the subspace spanned by the primal snapshots
(from a dirac impulsion of the actuators): φi (x) =

X
j

γj up(x).

Further, in a closed-loop context, one may want the ROM to be observable.

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Optimal reduction for subsequent use in experiments
(cont’d)

L =

fi“
FD(t , µ,Re)− F h

D(a, µ,Re)
”2
fl

+

*
β1
X
i,j>i

`
φi (x);φj (x)

´+

+

*
β2
X

i

(1− (φi (x);φi (x)))2

+
− β3 Tr (Y∗Φ) +

X
i

〈λi (ai (t)− (u(t , x);φi (x)))〉.

This is an optimization problem.
Solved using a l-BFGS algorithm. Efficient and cheap as the process only deals with
the ROM.

Solution method:
1 solve the state and adjoint equations,
2 compute the Lagrangian gradient and evaluate the cost function J ,
3 update γs according to the Lagrangian gradient,
4 compute the new basis vectors φi and come back to step 1 until convergence.

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Primal and adjoint snapshot

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Objective functions

Objective function for optimal basis. Objective function for optimal and observable basis.

Effect of the inclusion of the observability criterion on the basis performance.

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Optimal basis modes

Optimal ROM modes 1 to 11.

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Observable optimal basis modes

Observable optimal ROM modes 1 to 11.

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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As a conclusion...
Three ingredients of the recipe have been investigated:

a robust reduced model of the original system which was proved both robust and
accurate,

a cheap and accurate time marching scheme,

a H∞-formulation of the objective function allowing for a robust control while
maintaining good performances.

Derivation of a ROM suitable for experimental setup and closed-loop control was
skimmed though more work is necessary.

Perspectives:
improve the model robustness (robust balanced POD, H∞ basis, . . . ),

guarantee an upper bound for the probability of “undershoot” below a certain
level of performance,

development of techniques allowing to deal with large scale problems with a
larger number of independent random variables,

preliminary work on invariant subspace optimal reduction.

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Notions on uncertainty quantification

One needs to be able to quantify the uncertainty in the drag.

Several techniques:

MonteCarlo and variants. Simple but potentially extremely costly (DNS. . . ),

FORM/SORM. Limited to low variance systems,

Neumann series decomposition. Complex, or even impossible, in the general
case,

Polynomial Chaos. None of these drawbacks ?

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Notions on the Polynomial Chaos

Parameterization of the data: D = D(θ) = D(ξ(θ)) with θ an elementary event of the
probability space (Θ,B, dP).

Spectral decomposition of a random variable:

U(x , t , ξ) =
PX

j=0

uj (x , t) Ψj (ξ(θ)), ξ ∈ Ωξ ⊂ Rn,

with

〈Ψk Ψl 〉Ωξ
=

Z
Ωξ

Ψk (ξ) Ψl (ξ) pξ(ξ) dξ = δkl

D
Ψ2

k

E
Ωξ

,

P + 1 =
(n + p)!

n! p!
.

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Two major formulations for PC

Let the physical model:

M(S(θ),D(θ)) = 0, ∀θ ∈ Θ.

Solving by Galerkin projection. . .

〈Ψk ;M(S(θ),D(θ))〉 = 0, ∀k = 1, 2, . . .

. . . or by non intrusive formulation using quadrature / cubature:

Sk = 〈S(ξ(θ)); Ψk (ξ(θ))〉 , ∀k = 1, 2, . . .

Back to the control

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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Sparse grid integration

Gauss-Legendre quadrature: 961 points. Smolyak scheme: 257 points.

Comparison of tensorized and regular sparse integration (2-D).

We are using adapative sparse grid→ even less number of points to
consider. Back to the robust POD

L. Mathelin, O. Le Maître Model reduction for fluid flows in a probabilistic framework.
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