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ROM: Principles

Dimension reduction means representing a vector in high dimensional space
x ∈ Rn with a corresponding vector in a much lower dimensional space
x̃ ∈ Rm.

• Consider the state equations

S : ẋ(t) = f (x(t), u(t)), y(t) = h(x(t), u(t))

∗ x(·) ∈ Rn : state vector
∗ y(·) ∈ Rp : observation vector
∗ u(·) ∈ Rm : input vector

n � m, p
• Find S̃ := (f̃ , h̃) with x̃(t) ∈ Rk, k � n assuring
∗ Preservation of stability
∗ Computational stability and efficient
∗ Approximation error small-global error bound
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POD Generalities:

• POD is related to the principal component analysis, Karhunen-Loève
expansion in the stochastic process theory, and principal of empirical
orthogonal eigenfunctions.

• POD is the most used technique for the reduced-order modeling of
nonlinear PDEs.

• POD proceeds by retaining the characteristics of the data set that
contribute most to its variance.
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POD Principles:

• Find a projection Pr : Rn −→ Rn of fixed rank r that minimizes the
error ∫ T

0
‖x(t)− Prx(t)‖2dt, x(t) ∈ Rn, with 0 ≤ t ≤ T

• Introduce the symmetric, positive-semi-definite n× n matrix

C =

∫ T

0
x(t) [x(t)]T dt

• Solve the eigenvalue problem

C φk = λkφk, k = 1, · · · , n

with

λ1 ≥ λ2 ≥ · · · ≥ λn, and
∫ T

0
φiφj dt = δi,j

• The optimal projection is Pr =
r∑

k=1

φk [φk]
T
.
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POD Steps:

• Replace the set of data x(t) by the snapshots x(tj) at discrete times
t1, t2, · · · , tm.

• Transform the n× n eigenvalue problem into the m× m eigenvalue
problem with C replaced by

C̃ =
m∑

j=1

x(tj) [x(tj)]
T
ωi, ωi quadrature weights

• Define the n× m matrix X = [x(t1) x(t2), . . . , x(tm)] and the m× m
matrix W = diag{ω(t1), ω(t2), . . . , ω(tm)}

• The reduced eigenvalue problem becomes

X TWXuk = λkuk, uk ∈ Rm
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POD Shortcomings:

• POD is sensitive to details of snapshots used
• POD is sensitive to the choice of inner products
• POD depends on how well the data ensemble captures the relevant

system behavior
• POD sometimes yields unstable models despite the original system

being stable
• POD does not take account of system outputs when performing the

reduction, and hence the reduced-order models produced may be
inefficient
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4D-Var Principles:

• Four dimensional variational data assimilation is in principle a
least-squares fit in 4 dimensions between the predicted state of the
atmosphere and the observations.
The adjustment to the predicted state is made at the initial time t0,
which ensures that the analysis state (4-dimensional) is a model
trajectory .

• 4D-Var is a method of estimating a set of parameters by optimizing the
fit between the solution of the model and a set of observations which
the model is meant to predict. In this context, the procedure of
adjusting the parameters until the model ’best predicts’ the observables,
is known as optimization.
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4D-Var data assimilation Results:

• Given
∗ x, y, xb state, observation and background vectors,
∗ M,H model and observation operators,
∗ B,R background and observational error covariance matrices,

• Find an optimal estimate (analysis) state vector xa solution of

min
x∈Rn

J (x); xa = arg min J

where the cost function J is

J =
1
2
(x− xb)

TB(x− xb) +
1
2

[y−H(x)]T R−1 [y−H(x)]

or the discrete form

J =
1
2
(x−xb)

TB(x−xb)+
1
2

p∑
k=1

[yk −Hk(Mk(x))]
T
R−1

k [yk −Hk(Mk(x))]
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2

Four-dimensional variational data assimilation

x b

x 0
a

x(t) = M(xb)

x(t) = M(x0
a)

time

y(t)

state

min
x0∈Rm

J (x0)

xa
0 = Arg minJ

J (x0) =
1
2
‖x0 − xb‖2

B−1 +
1
2

N∑
k=1

‖Hkxk − yk‖2
R−1

k
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Typical dimension is of order m ∼ 106 − 107

Reduced Order 4D-Var Data Assimilation



Framework :

• Given an ensemble data set collected from observational data at various
instants in time t1, t2, . . . , tp snapshots[

x(1), x(2), . . . , x(p)
]

x(k) ∈ Rn

• Define
∗ the weighted ensemble average of the data and the perturbation X

x̄ =

p∑
k=1

ωkx(k), with 0 ≤ ωk ≤ 1, and
p∑

k=1

ωk = 1

X =
[
x(1) − x̄, x(2) − x̄, . . . , x(p) − x̄

]
∗ the weighted covariance matrix

C = X TWX where W = diag{ω1, ω2, . . . , ωp}

∗ the norm ‖x‖2
A =< x, x >A= xTAx, A ∈ Rn×n is an SPD matrix,

A =

{
Id for the Euclidean norm
Λ a diagonal matrix for the total energy metric.
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POD basis:

• Find a projection operator Pr : Rn −→ Rp of fixed rank r that
minimizes the error

p∑
k=1

ωk‖(x(k) − x̄)− Pr(x(k) − x̄)‖2
A

• Solve the eigenvalue problem

C Aφk = σ2
kφk, k = 1, · · · , p with < φi, φj >A= δi,j, 1 ≤ i, j ≤ p

• The optimal r-dimensional subspace is {φ1, φ2, · · · , φr}, and the
optimal projection is

Pr =
r∑

k=1

[φk]
T Aφk
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Computational aspects:

• Solve the eigenvalue problem

W1/2X TAXW1/2ψk = σ2
k

• Use the singular value decomposition (SVD)

A1/2XW1/2 = UΣVT

• Compute the POD modes

φk =
1
σk
XW1/2ψk

• Test of the fraction of total information captured
∗ for 0 < γ ≤ 1

∗ select l such that {
l∑

k=1

σ2
k}�{

r∑
k=1

σ2
k} ≥ γ
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Reduced order control Results:

• Set the following
∗ Φ = [φ1, φ2, · · · , φr] the Rn×r matrix of POD basis, and
η = (η1, η2, . . . , ηr) the coordinates vector in Rr

∗ Project x− x̄ onto the r-dimensional subspace {φ1, φ2, · · · , φr}

Pr(x−x̄) =
r∑

k=1

ηk(t)φk, where ηk = φT
kAPr(x−x̄) or η = ΦTAPr(x−x̄)

• Find an optimal estimate (analysis) state vector ηa ∈ Rr solution of

min
η∈Rr

Ĵ (η); ηa = arg min Ĵ

where the reduced cost function Ĵ is given by

Ĵ (x) = 1
2

[
Pr(x− xb)

T
]
PT

r BPr [Pr(x− xb)]

+ 1
2

r∑
k=1

[
Pr{yk −Hk(Mk(x))}T]

PT
r R−1

k Pr [Pr{yk −Hk(Mk(x))}]
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Evaluation of the weights ωi using the 4D-Var cost function :

• From the tangent linear model M(ti, t) and MT(t, ti)

δJ ≈ 〈∇x(t)J (x(t)), δx(t)〉 = 〈∇x(t)J (x(t)),M(ti, t)δx(ti)〉 =

〈MT(t, ti)∇x(t)J (x(t)), δx(ti)〉 = 〈A−1MT(t, ti)∇x(t)J (x(t)), δx(ti)〉A
• The dual-weights ωi to the snapshots are the normalized values

αi = ‖A−1MT(t, ti)∇x(t)J (x(t))‖A, ωk =
αk∑r
j=1 αj

, k = 1, 2, . . . r

•
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3

Reduced order 4D-Var - general framework
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The Proper Orthogonal Decomposition Method

Empirical Orthogonal Functions, Karhunen-Loève decomposition
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x − Px(i)(i)

x(i)

(i)

Ensemble data {x(i)}, i = 1, n

Optimal order k representation

min
{ψ}

n∑
i=1

ωj

∥∥∥x(i) − Pψ,k
x(i)
∥∥∥2

A

〈ψi,ψj〉A = δij, 1 ≤ i ≤ j ≤ k
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Dependence on the metric A and the weights ω

Reduced Order 4D-Var Data Assimilation



Problem Description:

•• Model: A two-dimensional global shallow-water (SW) model
• Two data assimilation experiments are set up:
∗ DAS-I, is a model inversion problem where data is provided for all
discrete state components and no background term is included in the
cost functional
∗DAS-II, the background term is included in the cost and data is
provided at every 4th grid point on the longitudinal and latitudinal
directions (i.e. only 6% of the state is observed every six hours).

• Algorithms & schemes
∗ the explicit flux-form semi-Lagrangian (FFSL) scheme of Lin and
Rood (1997)
∗ The adjoint model to the SW-FFSL scheme of Akella and Navon
(2006) and TAMC software (Giering and Kaminski 1998).
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Problem Description: continued

• Input: the ECMWF ERA-40 atmospheric data to specify the SW model
state variables at the initial time

• Resolution & time step : (144× 72 grid cells) such that the dimension
of the discrete state vector x = (h, u, v) is ∼ 3× 104. The time step
∆t = 450 s

• Reference initial state xref
0 : the 500mb ECMWF ERA-40 data valid for

06h UTC 15 March 2002.
• Snapshots: from small random perturbations δx0 in the reference initial

conditions and a full model integration starting with xref
0 + δx0.

I.M. Navon



Problem Description: continued

• Input: the ECMWF ERA-40 atmospheric data to specify the SW model
state variables at the initial time

• Resolution & time step : (144× 72 grid cells) such that the dimension
of the discrete state vector x = (h, u, v) is ∼ 3× 104. The time step
∆t = 450 s

• Reference initial state xref
0 : the 500mb ECMWF ERA-40 data valid for

06h UTC 15 March 2002.
• Snapshots: from small random perturbations δx0 in the reference initial

conditions and a full model integration starting with xref
0 + δx0.

I.M. Navon



Problem Description: continued

• Input: the ECMWF ERA-40 atmospheric data to specify the SW model
state variables at the initial time

• Resolution & time step : (144× 72 grid cells) such that the dimension
of the discrete state vector x = (h, u, v) is ∼ 3× 104. The time step
∆t = 450 s

• Reference initial state xref
0 : the 500mb ECMWF ERA-40 data valid for

06h UTC 15 March 2002.
• Snapshots: from small random perturbations δx0 in the reference initial

conditions and a full model integration starting with xref
0 + δx0.

I.M. Navon



Problem Description: continued

• Input: the ECMWF ERA-40 atmospheric data to specify the SW model
state variables at the initial time

• Resolution & time step : (144× 72 grid cells) such that the dimension
of the discrete state vector x = (h, u, v) is ∼ 3× 104. The time step
∆t = 450 s

• Reference initial state xref
0 : the 500mb ECMWF ERA-40 data valid for

06h UTC 15 March 2002.
• Snapshots: from small random perturbations δx0 in the reference initial

conditions and a full model integration starting with xref
0 + δx0.

I.M. Navon



Results:

Figure: Isopleths of the geopotential height (m) for the reference run configuration at
the initial time specified from ECMWF ERA-40 data sets Bottom:the 24h forecast of
the shallow water model
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Figure: Isopleths of the geopotential height (m) for the reference run the 24h forecast
of the shallow water model
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Results:
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Figure: The fraction of the variance captured by the POD and DWPOD modes from
the snapshot data as a function of the dimension of the reduced space.
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Figure: Isopleths of the POD and DWPOD modes of rank 1, 5, and 10. A total
energy norm is used to provide point values.
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Results:
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Figure: Comparative results for the reduced-order POD and DWPOD forecasts for
k = 5, 10, 15, 20, 25. Top figure: error (log 10) in the reduced-order representation of
the time integrated total energy of the system
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Figure: Comparative results for the reduced-order POD and DWPOD forecasts for
k = 5, 10, 15, 20, 25. Total energy error (log 10) ‖xref

i − x̂i‖A of the reduced-order
representation of the forecast at each time step in the interval 0-24h.
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Results:

Figure: Zonal averaged errors in the background estimate to the initial conditions.
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Results:
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Figure: The iterative minimization process in the full state space for DAS-I (left) and
DAS-II (right).
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Figure: The dual weights to the snapshot data determined by the adjoint model in
DAS-I and in DAS-II
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Results:
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Figure: Isopleths of the 10th mode in the DWPOD basis for DAS-I
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Results:
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Figure: Isopleths of the 10th mode in the DWPOD basis for DAS-II. A distinct
configuration it is noticed since the DWPOD basis is adjusted to the optimization
problem at hand.

I.M. Navon



Results:
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Figure: The iterative minimization process in the reduced space for the POD and
DWPOD spaces of dimension 5, 10, and 15. Optimization without background term
and dense observations, corresponding to DAS-I
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Figure: The iterative minimization process in the reduced space for the POD and
DWPOD spaces of dimension 5, 10, and 15.Optimization with background term and
sparse observations, corresponding to DAS-II
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Results:

Figure: Zonal averaged errors in the analysis provided by the reduced order 4D-Var
data assimilation Results for the DAS-I experiments with POD and DWPOD spaces
of dimension 5, 10, and 15.
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Results:

Figure: Zonal averaged errors in the analysis provided by the reduced order 4D-Var
data assimilation. Results for the DAS-II experiments with POD and DWPOD spaces
of dimension 5, 10, and 15.
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Conclusions:

• An adjoint-model approach is proposed to directly incorporate
information from the DAS into the optimality criteria that defines the
reduced space basis.

• The dual weighted POD method is novel in reduced order 4D-Var data
assimilation and relies on a weighted ensemble data mean and weighted
snapshots with weights determined by the adjoint DAS ( Data
Assimilation System).

• The DWPOD space was found to increase the accuracy in the
representation of a forecast aspect by as much as an order of magnitude
versus the POD space representation.

I.M. Navon



Conclusions:

• An adjoint-model approach is proposed to directly incorporate
information from the DAS into the optimality criteria that defines the
reduced space basis.

• The dual weighted POD method is novel in reduced order 4D-Var data
assimilation and relies on a weighted ensemble data mean and weighted
snapshots with weights determined by the adjoint DAS ( Data
Assimilation System).

• The DWPOD space was found to increase the accuracy in the
representation of a forecast aspect by as much as an order of magnitude
versus the POD space representation.

I.M. Navon



Conclusions:

• An adjoint-model approach is proposed to directly incorporate
information from the DAS into the optimality criteria that defines the
reduced space basis.

• The dual weighted POD method is novel in reduced order 4D-Var data
assimilation and relies on a weighted ensemble data mean and weighted
snapshots with weights determined by the adjoint DAS ( Data
Assimilation System).

• The DWPOD space was found to increase the accuracy in the
representation of a forecast aspect by as much as an order of magnitude
versus the POD space representation.

I.M. Navon



Conclusions: continued

• The benefit gained from the dual-weighted procedure diminishes as the
dimension of the reduced space increases from 10 to 15, indicating that
most of the information provided by the snapshot data is captured by
the reduced basis.

• In 4D-Var data assimilation twin experiments, optimization in the
DWPOD space provided a reduction in the analysis errors by as much
as a factor of three when compared to the POD-based optimization.

• Use of dual weighted goal oriented criteria may also serve also as
goal-oriented a posteriori error estimate to drive grid adaptivity.
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The reduced-gravity model:

A reduced order approach to four-dimensional variational data assimilation
using proper orthogonal decomposition. Yanhua Cao, Jiang Zhu, I.M. Navon
and Zhendong Luo International Journal for Numerical Methods in Fluids ,
Volume 53, Issue 10 , 1571-1583 (2007)
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The reduced-gravity model:



∂u
∂t
− fv = −g′

∂h
∂x

+
∂τ x

∂ρ0H
+ A∇2u− αu

∂v
∂t
− fu = −g′

∂h
∂y

+
∂τ y

∂ρ0H
+ A∇2v− αv

∂h
∂t

+ H(
∂u
∂x

+
∂v
∂y

) = 0

∗ (u, v) : the horizontal velocity components of the depth-averaged currents
∗ h : the total layer thickness
∗ f : the Coriolis force
∗ H : the mean depth of the layer
∗ ρ0 : the density of water
∗ A : the horizontal eddy coefficient
∗ α : the friction coefficient
∗ (τ x, τ y) : the wind stress
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POD 4D-Var:

• The dynamic model governing the ocean flow U(t, x)
dU
dt

= F(t,U)

U(0, x) = U0(x)
• the reduced dynamic model: the forward model

dck

dt
= 〈F(t, Ū +

p∑
i=1

ciφi), φk〉

ck(t = 0) = ck(0)
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POD 4D-Var:

∗ UPOD
0 ,V,Ub, Ū state, observation, background and mean vectors,

∗ M,H model and observation operators,
∗ B,R background and observational error covariance matrices

• Find an optimal estimate (analysis) state vector {UPOD
0 }a solution of

J (UPOD
0 ) = (UPOD

0 − Ub)
TB(UPOD

0 − Ub) +

+
[
V −H(UPOD)

]T
R−1

[
V −H(UPOD)

]
with

(UPOD
0 )(x) = (UPOD

0 )(0, x) = Ū(x) +

p∑
k=1

ck(0)φk(x)

(UPOD)(x) = (UPOD
0 )(t, x) = Ū(x) +

p∑
k=1

ck(t)φk(x)

•
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Computational aspects :

•• The adjoint model of the reduced forward model is used to calculate the
gradient of the cost function J (UPOD

0 )

• The initial value of the cost function in the full model space is different
from the initial value of the cost function in the POD space.
∗ U0 = Ub for the full model
∗ β0 = PT

r (Ub − Ū) for the reduced model
• Use of an adaptive POD 4D-Var
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Adaptive POD 4D-Var :

1 Establish POD model using background initial conditions
2 Perform optimization iterations to obtain the optimal solution
3 Generate a new set of snapshots if after a preset number of iterations,

the cost function cannot be reduced.
4 Establish a new POD model using the new snapshots and continue the

optimization process
5 Return back to 2 if the optimality conditions are not reached
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Results:
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Results:

Figure: Evolution of the cost function and gradient in 4DVAR experiment. (a) cost
function; (b) gradient as a function of the number of minimization iterations.
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Results:

Figure: Evolution of the cost function and gradient in the POD 4D-Var
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Results:

Figure: Evolution of the cost function and gradient in adaptive POD 4D-Var
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Results:

Figure: RMSE of the results compared to the true state for upper layer thickness
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Results:

Figure: Errors between the true state and the numerical approximations for upper
layer thickness at the initial time
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Results:

Figure: Upper layer thickness Feb.,May,Aug.and Nov. in case of 5,20,30 snapshots
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Results:

(a) (b)

(c) (d)

Figure: Figure 4 Upper layer thickness in February, May, August and November in
case of 5 snapshots, 20 snapshots, 30 snapshots, energy capture 95%, the full model
approximation and the reduced order approximation. Black isoline: full order
approximation, red isoline: 5 snapshots, green isoline: 20 snapshots, blue isoline: 30
snapshots.
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Summary of ICOM

• Developing a new (open source, community) modeling framework
using a range of powerful and novel numerical methods

• Wide range of applicability from process/laboratory scales to
regional/global

• Build upon a fluids code used for atmosphere/ocean modeling, coastal
engineering, impact cratering, engineering fluids, multiphase flows,
computational biology etc.
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Summary of ICOM-continued

• Take advantage of cross-fertilization of computational techniques
between disciplines

• The target problems have in common complex geometries and typically
multi-scale and anisotropic solution structures

• which makes unstructured meshes and dynamic mesh adaptivity a
natural choice with which to tackle these problems
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Summary of ICOM-continued

• Take advantage of cross-fertilization of computational techniques
between disciplines

• The target problems have in common complex geometries and typically
multi-scale and anisotropic solution structures

• which makes unstructured meshes and dynamic mesh adaptivity a
natural choice with which to tackle these problems
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Motivation for a new ocean model utilizing unstructured and adaptive mesh
methods

• Need to resolve a wide range of spatial and temporal scales

• Model internal waves, boundary currents, eddies, overflows, convection
events etc., accurately and efficiently within a global and coupled
context

• Need for accurate and efficient representation of highly complex
domains
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Motivation for a new ocean model utilizing unstructured and adaptive mesh
methods-continued:

• Ability to model interaction of flow with small scale topography, shelf
seas, coastal regions, islands, estuaries, harbors,etc.

• Exploit anisotropy prevalent in this application area and attempt to take
advantage of recent developments in CFD, numerical analysis, etc.

• Health in the genetic diversity of models and modeling approaches used
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Motivation for a new ocean model utilizing unstructured and adaptive mesh
methods-continued:

• Ability to model interaction of flow with small scale topography, shelf
seas, coastal regions, islands, estuaries, harbors,etc.

• Exploit anisotropy prevalent in this application area and attempt to take
advantage of recent developments in CFD, numerical analysis, etc.
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A quick overview of the numerical technology:

• Start with Fluidity:an open source control volume finite element solver
for 3D compressible multi-phase fluids. Has been developed by AMCG
for more than a decade and is the basis for a range of multi-physics
multi-scale applications

• Add an adaptivity library which performs topological operations on the
mesh, and mesh movement, to optimize the size and shape of elements
in response to error measures

• Working robustly and efficiently in parallel
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A quick overview of the numerical technology-continued

• Refer to the models oceanographic form as ICOM: note it is obviously
non-hydrostatic

• Also building an adjoint to the model for data assimilation, sensitivity
studies and goal-based error estimation

• Make use of open source solutions for solvers, preconditioners, I/O,
visualization, etc
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A quick overview of the numerical technology-continued

• A finite element discretization of the Boussinesq equations in 3-D

• Use of a non-hydrostatic solver to model dense water formation and
flow over steep topography;

• Accurate and robust representation of hydrostatic and geostrophic
balance;

• Inclusion of barotropic and baroclinic modes;

• Anisotropic unstructured meshes in the vertical as well as the horizontal
to capture the details of local flow in all three directions.
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A quick overview of the numerical technology-continued

• The second-order Crank-Nicolson scheme

• A semi-implicit projection method for pressure, ensuring the flow
remains divergence-free while decoupling the computations for the
momentum and continuity equations

• A fourth-order pressure filter is employed to aid stability

• Standard Petrov-Galerkin weightings are also used to improve
numerical stability in the presence of advection dominated flows.
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Reduced order governing equations:

• The 3-D non-hydrostatic Boussinesq equations:

∇ · u = 0,

∂u
∂t

+ u · ∇u + f k× u = −∇p− ρgk +∇ · τ
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Reduced order governing equations-continued:

• The variables can be expressed as an expansion of the POD basis
functions for u, v,w, p

u(t, x, y, z) = ū +

Mu∑
m=1

αm,u(t)Φm,u(x, y, z),

v(t, x, y, z) = v̄ +

Mv∑
m=1

αm,v(t)Φm,v(x, y, z),

w(t, x, y, z) = w̄ +

Mw∑
m=1

αm,w(t)Φm,w(x, y, z),

p(t, x, y, z) = p̄ +

Mp∑
m=1

αm,p(t)Φm,p(x, y, z)
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Geostrophic pressure:

• The pressure is divided into two parts: p = png + pg. The geostrophic
pressure has to satisfy the geostrophic balance:

−∇pg = f k∇u

• Taking the divergence of the above equation, an elliptic equation for
geostrophic pressure is obtained

−∇2pg =
∂(−fv)
∂x

+
∂(fu)

∂y
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Geostrophic pressure-continued:

• To accurately represent geostrophic pressure its basis functions are split
into two sets: Φpgu and Φpgv which are associated with the u- and
v-velocity components. The geostrophic pressure can be obtained from
a quadratic finite element representation while linear finite element
representations are used for the velocity components
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Geostrophic pressure-continued:

• Furthermore the geostrophic pressure can be represented by a
summation of the two sets of geostrophic basis functions, which are
calculated by solving the following elliptic equations using a conjugate
gradient iterative method:

−∇2Φpgu,m =
∂(f Φm,u)

∂y

−∇2Φpgv,m =
∂(−f Φm,v)

∂x
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Geostrophic pressure-continued:

• The geostrophic pressure can therefore be expressed as:

pg = p̄g +
M∑

m=1

αm,uΦm,u +
M∑

m=1

αm,vΦm,v

• In addition the average geostrophic pressure is calculated from:

−∇2p̄g =
∂(−f v̄)
∂x

+
∂(f ū)

∂y
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Geostrophic pressure-continued:
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Adaptive meshes in POD reduced order forward and adjoint models

Challenges:
• The snapshots can be different length at different time levels
• The POD mesh of the forward model can diff from the POD mesh of

the adjoint model

Solution:
• To overcome these difficulties, a standard reference fixed mesh is

adopted for the reduced model. The solutions from the original full
model are interpolated from their own mesh onto the same reference
fixed mesh at each time level, and then stored in the snapshots

• A goal-based error measurement approach is employed to find an
optimal mesh for both reduced forward and adjoint models

I.M. Navon



Adaptive meshes in POD reduced order forward and adjoint models

Challenges:
• The snapshots can be different length at different time levels
• The POD mesh of the forward model can diff from the POD mesh of

the adjoint model

Solution:
• To overcome these difficulties, a standard reference fixed mesh is

adopted for the reduced model. The solutions from the original full
model are interpolated from their own mesh onto the same reference
fixed mesh at each time level, and then stored in the snapshots

• A goal-based error measurement approach is employed to find an
optimal mesh for both reduced forward and adjoint models

I.M. Navon



Adaptive meshes in POD reduced order forward and adjoint models

Challenges:
• The snapshots can be different length at different time levels
• The POD mesh of the forward model can diff from the POD mesh of

the adjoint model

Solution:
• To overcome these difficulties, a standard reference fixed mesh is

adopted for the reduced model. The solutions from the original full
model are interpolated from their own mesh onto the same reference
fixed mesh at each time level, and then stored in the snapshots

• A goal-based error measurement approach is employed to find an
optimal mesh for both reduced forward and adjoint models

I.M. Navon



Adaptive meshes in POD reduced order forward and adjoint models

Challenges:
• The snapshots can be different length at different time levels
• The POD mesh of the forward model can diff from the POD mesh of

the adjoint model

Solution:
• To overcome these difficulties, a standard reference fixed mesh is

adopted for the reduced model. The solutions from the original full
model are interpolated from their own mesh onto the same reference
fixed mesh at each time level, and then stored in the snapshots

• A goal-based error measurement approach is employed to find an
optimal mesh for both reduced forward and adjoint models

I.M. Navon



Goal-based approach to choose an optimal mesh for both POD reduced order
forward and adjoint models

• A function (defined below as the model reduction errors or the solution
u which is of interest, say, in the ’target’ regions) is used to (1)
determine an optimal for both reduced forward and adjoint models.
Suppose that the functional whose accuracy is to be optimized is
represented as = ≡ = (ψ), and

= (ψ) =

∫
Ω

f (ψ) dV

• In addition, the above functional can be also used to optimize
uncertainties (inversion problem ) in models; optimize the POD bases
and thus improve the accuracy of reduced models.
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Goal-based approach to choose an optimal mesh for both POD reduced order
forward and adjoint models-continued

• The nodal Metric Tensor M̄i is obtained from the reduced forward
model

M̄i =
γ

|ε̄i|
∣∣H̄i

∣∣
where H̄i is the forward Hessian matrix at node i, ε̄i is the forward
interpolation error at node i

• The nodal Metric Tensor M̄i is obtained from the reduced forward
model

M̄∗
i =

γ

|ε̄∗i |
∣∣H̄∗

i

∣∣
where H̄∗

i is the adjoint Hessian matrix at node i, ε̄∗i is the adjoint
interpolation error at node i
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Goal-based approach to choose an optimal mesh for both POD reduced order
forward and adjoint models-continued:

• The interpolation error is related to the error contribution of the
functional

• To satisfy the goal, the minimal ellipsoid is obtained by superscribing
both ellipses and used to determine an optimal mesh

¯̄MGs
i = Gs

(
M̄i, M̄∗

i

)
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Goal-based approach to choose an optimal mesh for both POD reduced order
forward and adjoint models-continued

Figure: An optimal mesh obtained by the goal-based error measure approach
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Reduced order 4-D Var:

• The aim of 4D-Var is to determine optimal control variables (e.g.,
initial conditions). Optimal solution is obtained by minimizing the
functional =(U0):

=(U0) =
1
2
(U0−Ub)

TB−1(U0−Ub)+
1
2

Nt∑
n=1

(HUn−yn
o)

TWo(HUn−yn
o)

• The functional in reduced space:

=(α(0)) =
1
2

  
Ū +

MX
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αm(0)Φm(x)

!
− Ub

!T
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Ū +

MX
m=1

αm(0)Φm(x)

!
− Ub

!

+
1
2

NtX
n=1

 
H
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Adaptive POD in 4-D Var-continued:

• The POD model is based on the solution of the original model for
specified control variables (e.g., initial and boundary conditions, etc). It
is therefore necessary to reconstruct the POD model when the resulting
control variables from the latest optimization iteration are significantly
different from the ones upon which the POD model is based.

• The reduced basis is recalculated using a refreshed set of snapshots
based on the latest results obtained from the full forward model using a
restart criterion of the adaptive POD procedure based on convergence
of the minimization process. One can also consider the Trust Region
Method for restart criterion.
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Adaptive POD procedure:

1. Set the POD iteration level it = 1 and the initial guess controls cit;

2. Set up the snapshots Uit from the solution of the full forward model with the controls cit;

3. Calculate the POD bases (the number of POD bases is chosen to capture a prescribed
energy level);

4. Project the controls cit on the reduced space αit,jt (jt = 1);

5. Optimize the initial controls αit,jt (note: the optimization procedure is carried out
completely on the reduced space. The Polak-Ribiere nonlinear conjugate gradient (CG)
technique is employed here and jt is the Nonlinear CG iteration level );
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Adaptive POD procedure-continued

6.

• check the value of the functional. If |=jt| < ε (where, ε is the tolerance for
the optimization), then go to step 7;

• if |=jt| > ε and |=jt −=jt−1| > 10−3 (where, jt − 1 and jt are the
consecutive optimization iteration levels), then set jt = jt + 1 and go back
step 5;

• if |=jt| > ε and |=jt −=jt−1| < 10−3, then update the POD bases:
i. find the new controls cit+1 by projecting the optimization controls αit,j onto

the original flow domain, and
ii. set it = it + 1 and go back step 2;

7. The adaptive POD optimization procedure is completed.
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Case 1: flow past a cylinder (Re = 100)

Figure: Case 1: comparison of velocity field between the full and reduced models
(Re = 100) (left panel: the full model; right panel: the reduced model; top panel: at
the initial time level t = 8; middle panel: at the time level t = 10; bottom panel: at
the time level t = 12). 20 snapshots and 10 basis functions are chosen for u, v, w and
p, for which 95 percent of energy is captured.
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Case 2: Gyre (Re = 250)

Energy (%) captured Energy (%) captured
(41 snapshots) (81 snapshots)
77.373 (for u, 10 bases) 88.614 (for u, 20 bases)
76.003 (for v, 10 bases) 89.723 (for v, 20 bases)
81.103 (for p, 10 bases) 92.880 (for p, 20 bases)
91.448 (for u, 20 bases) 97.025 (for u, 40 bases)
91.693 (for v, 20 bases) 97.738 (for v, 40 bases)
94.343 (for p, 20 bases) 98.614 (for p, 40 bases)
97.386 (for u, 30 bases) 99.458 (for u, 60 bases)
97.624 (for v, 30 bases) 99.600 (for v, 60 bases)
98.584 (for p, 30 bases) 99.766 (for p, 60 bases)

Table 1: Energy percentage captured by the POD bases for velocity
components, u, v and pressure p.
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Case 2: Gyre (Re = 250)-computer efficiency

number of POD bases CPU time (hrs) CPU (hrs)
(41 snapshots) (81 snapshots)

10 bases for 41 snapshots 0.77 (reduced by 97% 1.4 (reduced by 95%
20 bases for 81 snapshots of CPU time compared

to the full model)
of CPU time for the full
model)

20 bases for 41 snapshots 1.30 (reduced by 95% 2.47 (reduced by 92%
40 bases for 81 snapshots of CPU time compared

to the full model)
of CPU time for the full
model)

30 bases for 41 snapshots 2.00 (reduced by 93% 11.0 (reduced by 63%
60 bases for 81 snapshots of CPU time compared

to the full model)
of CPU time for the full
model)

Table 2: a list of CPU times required for running the reduced model and the reduced
percent of CPU compared with that (30 hrs) required for running the full model.Note

the actual CPU time required to running the reduced model during the simulation
period is less than 1 minute after the POD bases and the time-independent

sub-matrices (section 4.3) are calculated.
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Case 2: Gyre (Re = 250)-Correlation
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Figure: Case 2: Correlation at time levels(left panel: 41 snapshots; right panel: 81
snapshots)
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Case 2: Gyre (Re = 250)-error analysis
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Figure: Case 2: RMS at time levels(left panel: 41 snapshots; right panel: 81
snapshots)
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Description of Case 2: Gyre -Inversion of initial conditions

• The POD reduced adjoint model is tested in a computational domain,
1000 km by 1000 km with a depth of H = 500 m

• The wind forcing on the free surface is given

τy = τ0cos(πy/L), τx = 0.0

where τx and τy are the wind stresses on the free surface along the x and
y directions respectively, and L = 1000 km. A maximum zonal wind
stress of τ0 = 0.1 Nm−1 is applied in the latitude (y) direction
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Description of Case 2: Gyre-Inversion of initial conditions-continued

• The Coriolis terms are taken into account with the beta-plane
approximation (f = βy) where β = 1.8× 10−11 and the reference
density ρ0 = 1000 kgm−1

• The pseudo-observational data is taken on days 125, 150 and 175 over
the computational domain
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Inversion results

(a) (b)

(c) (d)

(e) (f)

Figure: Comparison between the true velocity field and that from the POD reduced
model (driven by the optimised initial conditions) at the time levels: (a) (b)
t = 125 days; (c) (d) t = 150 days; (e) (f) t = 175 days. Left panel: the true velocity
field; right panel: the optimised velocity field)
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Conclusions :

• Model reduction is proving to be an essential component for real time
4D-Var data assimilation

• While POD is both useful and popular reduction technique for large
scale geophysical models its lack of rigorous guarantees requires
further research.

• Goal-oriented or dual weighting formulation in which reduced model is
chosen to optimally represent a particular output functional (DAS) is
found to improve selection of appropriate set of POD snapshots.
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Conclusions: continued

• Full model reduction with adaptive 4D-Var applied to simple ocean
model verified well against full model 4D-Var

• Application of POD to global 3D adaptive global Imperial College
Ocean Model finite element model (based on goal-oriented mesh
adaptivity) yielded encouraging results.

I.M. Navon



Conclusions: continued

• Full model reduction with adaptive 4D-Var applied to simple ocean
model verified well against full model 4D-Var

• Application of POD to global 3D adaptive global Imperial College
Ocean Model finite element model (based on goal-oriented mesh
adaptivity) yielded encouraging results.

I.M. Navon



Future Efforts:

• Future efforts directed towards full model reduction of 4D-Var in
operational atmospheric science models (spectral or finite volume
discretization) to be benchmarked against incremental 4D-Var.

• Idealized 4D-Var observation sensitivity experiments indicate that the
reduced-order approach is able to properly identify data sets and
observation locations of largest forecast sensitivity while providing
significant computational savings
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