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Introduction

 Research motivation: Numerical solution of direct and inverse 
problem of contaminant dispersion

 Need proper initial and boundary conditions
 Need 3D velocity field

 Research constraint: Sparse velocity data is available
 Research objective: Develop methods to predict entire 3D velocity 

fields from sparse data
 Models that achieve this objective should be (at least)

 Dynamically consistent
 Robust to noise and outliers
 Simple



Focus

 Development of model that enables 
approximation of velocity fields at past and 
future instances in time based on velocity 
information available at present time step

 Development of sequential model that updates 
previous estimates of velocity fields when new 
information is provided 



Outline

 Proper orthogonal decomposition (POD)
 Episodic POD (Ep-POD)
 Properties of Ep-POD
 Algorithm of model based on Ep-POD
 Validation through examples

 Flow around 2D cylinder at Re=100
 9-D Lorenz model 



Proper Orthogonal Decomposition
 

POD

….



Ep-POD Model

 A super-snapshot is defined as

 Ep-POD decomposes the super-snapshot as

 If the episodic coefficients are known at any 
given episode, then the spatio-temporal 
evolution of the velocity field can be 
approximated within that episode



Episodic Pod

POD
Super snapshot

Episodic Coefficients Episodic functions



Ep-POD Properties
 Evolution of spatio-temporal basis functions is consistent 

with definition of Rempfer (1994)



Ep-POD Properties
 Formulation directly leads to a vector-autoregressive 

(VAR) model for POD coefficients.

 Models derived from Ep-POD rely on the principle of 
overlapping snapshots.
 If there are N snapshots within an episode then there are (N-1) 

snapshots within the episode that overlap with the previous episode and 
next episode.

 For any given episode ‘p’, there exist (2N-1) episodes that share 
snapshots with the episode ‘p’.



Algorithm for Ep-POD based Model 
Sparse velocity information from sensors is given

Use Reduced Sensor Analysis (RSA)
    to compute the POD coefficients 

Use Ep-POD model to compute
     the episodic coefficients.

Using Episodic POD construct  
 velocity fields at past, present
        and future time steps.



Algorithms for Ep-POD based Model

Time

Past Future

Bottom-Up Model

Top-Down Model

Prediction Range

POD coefficients known at time ‘t’



Ep-POD based Model

 Bottom-up and top-down models are linear 
models given by

 Matrices in model come from principle of 
overlapping of the spatio-temporal 
eigenfunctions



Sequential Model

 If information at multiple instances within an 
episode is available, then Ep-POD based 
model can be modified to get a sequential 
model 



Sequential Model : Long-Term 
Prediction
 Model can also be used for long-term 

prediction. 
 Information between non overlapping 

episodes is passed through “bridging”.

Time



Examples

 Flow around 2D cylinder.
 Re = 100, shedding frequency = 10 Hz
 Snapshots available every 0.0001 seconds
 Snapshots/Episode = 100

 9D chaotic Lorenz model
 Snapshots available every 0.5 seconds
 Snapshots/Episode = 200
 



Example – 2D Cylinder

 Example is used to test accuracy of long-term 
prediction

 POD coefficients are predicted for 5000 
shedding cycles 

 Initial condition at some random time is 
provided 

 Results compared with solution obtained from 
quadratic system of ODEs (Galerkin model)



Example – 2D Cylinder (Galerkin 
Model)



Example – 2D Cylinder (Ep-POD 
Model)



Example 2 – 9D Lorenz Model



Example 2 – 9D Lorenz Model

 Episodic length = 200 time steps
 Example used to test sequential model and its 

robustness to outliers
 Two tests are performed:

 Ep-POD model is provided with coefficients every 40 time steps
 Ep-POD model is provided with noisy coefficients every 20 time 

steps. Noise is white noise with standard deviation of 0.2
 Evolution of the coefficients is tracked for 1200 time 

steps



Example 2 – 9D Lorenz Model (no 
noise)



Example 2 – 9D Lorenz (with noise)



REMARKS

 Ep-POD sequential model is found to be 
robust and is dynamically consistent

 Linear formulation makes implementation fast
 Models work especially well for strongly 

periodic cases
 Ep-POD model behaves similar to a linear 

Kalman filter



REMARKS
 Currently, episodic length is set equal to the 

dominant frequency in the flow
 Effect of episodic length needs to be studied
 Selection of episodic length needs to 

addressed more rigorously
 Model has been tested for very high 

dimensional models



Predicting Complex Flows
Part II: 

Radial Basis Function Approach to 
Modeling Dynamical Systems



Introduction

 Consider a time series given by

 The time series follows from a dynamical 
system given by 



Introduction

 We are interested in the modeling the 
evolution of 

 Given:
 Sample time series
 Time derivatives or pair-wise time series

 The model is derived from the concept of 
surface approximation using radial basis 
functions



RBF-Based Model

 RBF model takes the form of

 where



RBF-Based Model

 The coefficients in the RBF model are solved via a 
system of linear equations  



RBF-Based Model



RBF-Based Model

 If continuous derivatives are given, then

 If pair-wise time series is given, then



Time

Time derivatives given : 

Pair-wise time series given :

t = t i



Examples

 Three examples are considered
 3D Lorenz model
 9D Lorenz model
 Kuramoto-Sivashinsky model

 RBF models are generated for the continuous 
and discrete cases using sample time series

 Time evolution of the model variables is 
compared



Example – 3D Lorenz Model
 3D Lorenz model is given by

 200 time steps of sample time series is used to generate RBF 
model



Example – 3D Lorenz Model
(time derivatives given)



Example – 3D Lorenz Model
(Pair-wise time series given)



Example – 9D Lorenz Model

 500 time steps of sample time series used to generate RBF model.
 9D Lorenz model is given by



Example – 9D Lorenz Model
(time derivatives given)



Example – 9D Lorenz Model
(pair-wise time series given)



Example – KS Equation
 Governing equation 

 Low-dimensional form identical to Navier-Stokes equation
 Periodic boundary conditions
 Space: Fourier decomposition
 Time: Exponential time differencing with RK-4 scheme
 Initial condition



Example – KS Equation

 POD analysis is done on the solution
 75 POD modes used to construct dynamical 

system
 Each differential equation has 2925 terms
 2000 time steps of sample time series at interval 

of 1 is used
 Parameter estimation using least-squares leads 

to highly under-determined system of equations



KS Equation Solution



KS Equation (time derivatives given)



KS Equation (pair-wise time series)



KS Equation Solution



KS Equation (time derivatives given)



KS Equation Solution



KS Equation (pair-wise time series)



          QUESTIONS ….?


