Reduced-order models for fluids,
using balanced truncation and
dynamically scaling modes

Clancy Rowley

| April 2008
IMB — INRIA Bordeaux
Bordeaux, France

Mechanical
and Aerospace
Engineering

PRINCETON




Acknowledgements

¢ Acknowledgments

® Students

Milos llak
(channel flow)

Sunil Ahuja

® Postdoc
® Mingjun Wei (NMSU)
(free shear flow)
® Collaborators

® Yannis Kevrekidis (Princeton)
® Dave Williams (lIT)
® Tim Colonius, Sam Taira (Caltech)
® Gilead Tadmor (Northeastern)
® Funding from NSF and AFOSR




Approximate balanced truncation using POD

Importance of inner product for Galerkin projection
Balanced truncation

Method of snapshots

Applications

Linearized channel flow
Separating flow past an airfoil

Dynamically scaling POD modes

Free shear layer
Scaled basis functions

Template fitting
Equations for the shear layer thickness




Dynamics evolve on a high-dimensional space (or infinite-dim’l)
Project dynamics onto a low-dimensional subspace S

ker]SS
t=f(x) ax€V ‘/f,i(r)
- /
reScVv T‘L]g&f (r)

S

Define dynamics on the subspace by

7 = Pgf(r) Ps :V — S is a projection

Two choices:
choice of subspace

choice of inner product
(equivalently, choice of the nullspace for a non-orthogonal projection)




Reduced-order models can behave unpredictably

Can even change stability type of equilibria
[Rempfer, Thoret. CFD 2000] °

Simple example: consider the system:

i(0)-62C) S,
dt \ x2 3 —2/) \xs M

Sink at the origin

Projection onto xi axis is

Ci?l = I
Can at least fix this simple problem by changing the inner product
used for the projection

Cute result: If an orthogonal projection is used with an “energy-
based” inner product, this will ensure stability of the origin

Note: does not guarantee stability preserved for other
equilibrium points, periodic orbits, etc.

[Rowley, T Colonius, RM Murray, Phys D 2004]




Consider a system with a stable equilibrium point at the origin:
T = f(x) f(0)=0 r € R"
Consider an inner product whose induced norm is a Liapunov
function (“energy-based”):
V(z) = 27’ Qx is a Liapunov function
T
— 0 :
., y) = o Qy. ©> V(z) =22 f(z) <0, Ve e U

Reduced-order dynamics given by orthogonal projection
r = Px pP:2—p
= Pf(r) (z, Py) = (Pz,y) QP=P'Q

ThenV is a Liapunov function for the reduced-order system:
V(r)=2r"QPf(r) = 20" PTQf (r) = 2(Pr)" Q[ ()

=2r'Qf(r) <0
So: if an energy-based inner product is used, the origin is stable for
the reduced-order system, regardless of the subspace used for the

projection
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POD modes are not optimal for Galerkin projection
POD determines a subspace that optimally captures the energy in
a given dataset
These modes are usually not optimal for Galerkin projection

Low-energy modes can play an important role in the dynamics
[Aubry, Holmes, Lumley, 1988; Smith 2002 PhD thesis, Princeton]

Can often do better with balanced truncation [Moore 1981]
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Why doesn’t everybody use this!?

Valid for stable, linear systems

Extensions for unstable systems [Jonckheere & Silverman 1983, Zhou
20017

Extensions for nonlinear systems [Scherpen 1993, Lall, Marsden,
Glavaski 1999]

Computationally expensive for large systems
n3 computational time: n > 105 for typical fluids simulations

Improvements for large systems

POD is tractable for large systems. Can we extend, e.g., the
method of snapshots, to compute balancing transformations?

Based on earlier snapshot-based methods:

Lall, Marsden, & Glavaski, 1999
Willcox & Peraire, 2001




Overview of balanced truncation

e Start with a stable, linear input-output system

What are you interested in T = Az + Bu

iy~ _ oy
e Compute controllability and observability Gramians
m * w *
X = / eM'BB*ettdt Y = / e tC*Cet dt
0 0
AX +XA*+ BB =0 AY+YA+C*C =0

Ex

States easily excited States that have large influence
by an input on the output

e Find a transformation 7' that simultaneously diagonalizes X and Y
01

z=Tz, T X(T)=TYT=%-=

On

e Change coordinates, and truncate states that are least controllable/observable




Construct Gramians from impulse response data

Not solving Liapunov equations
For a single input: compute impulse-state response:

T = Az, z(0) =B

solution
z(t) = e'B

The controllability Gramian is then W, = / r(t)x(t)! dt
0

Discretize in time, collect snapshots into a matrix:

X =

| |
“(h) x(tm>]

Then We~ XX"
For observability Gramian, same procedure, but use adjoint
equations = A*z z(0)=C"

For multiple inputs/outputs, same procedure, but do one impulse-
response for each input/output [Lall et al, 1999]




POD: method of snapshots vs. direct method

| | POD modes (direct method):
X — X1 o o T
| | XXy = nxn
POD modes (method of snapshots):
[Sirovich, Q Appl Math 1987] p = Xc

XTXe= )\ m X m

method of snapshots more efficient when m < n.

Balanced truncation: method of snapshots

Empirical Gramians represented as We = xXx* nxmn
W,=YY"

Find a balancing transformation with an SVD of Y’ X My X my

[Rowley, Int. ] Bif Chaos, 2005]




Snapshot matrices

| |
X =

z(ty) - x(tm)

Linearized snapshots

Compute SVD

| |

(I)r — |:§01 to Pr
| |
Direct modes

linear combinations
direct snapshots

=XV, 2 1?2

Adjoint snapshots

Y*X =UXV"

Obtain bi-orthogonal set of modes:

|

of

| |
v, = |:¢1 T %]
| |

Adjoint modes
linear combinations of
adjoint snapshots

U =YU,2;1/?




Original equations
= Ax + Bu

y=Cx+ Du

Form reduced-order model

Do not need to transform entire state: just take first r modes

a =V Ad.a+ UV Bu
y=Cd,.a+ Du

Extensions to nonlinear systems straightforward

For instance, compute modes for linearized system, project

nonlinear dynamics .

z(t) =) a;t)y;

g=1

a;(t) = (5, [(2))




Often, we are interested in modeling the full state

If dimension is large, project output onto POD modes
POD gives optimally-close output-projected system (in 2-norm)

u &= Az + Bu Full state
> >
o Output
Original system, full dynamics projection
u i = Ax + Bu POD coefficients
< >
y=Cx
Output-projected system, full dynamics Balancgd
truncation
u , 7 - POD coefficients
a=V" Ada+ V" Bu
< >
y = CPa

Reduced-order model I5




Method of snapshots enables one to compute approximate
balanced truncations with cost similar to POD

One simulation for each control input, one adjoint simulation
for each output

One SVD, (# direct snapshots) x (# adjoint snapshots)

If number of outputs is large, method for projection onto
smaller-rank output

Balanced truncation is just POD with respect to an inner product
defined by the observability GramianY:

T
(x1,T2)y = 7 Yo
Observability Gramian is always a Liapunov function => preserves

stability!
Obtain set of bi-orthogonal modes: Galerkin:
direct modes: {¢1,...,¢n} z = f(x)
adjoint modes:  {¢1,...,¢n} x(t) = Z%‘ (t)e;
bi-orthogonal:  (¢s,¢;) = d;; a;(t) = @Zj, f(@))

%

q&(’
ol
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Application: Linearized Channel Flow

® Plane channel flow with periodic boundary conditions
e (Goal: delay transition to turbulence using feedback control

. . PR . y’V
e Goal: improved understanding of transition mechanisms
® Focus: low-dimensional models of transition o

® Linear development of small perturbations
e Transition not predicted correctly by linear stability analysis

e Non-normality of the governing operator results in large transient H =
growth of exponentially stable perturbations
e Large linear system with complex dynamic behavior 7 \J

30

25r

n
o

KE growth
o

10} Previous work:

Trefethen et al [Science, 1993]
Farrell & loannou [96,96,01]
. . Schmid & Henningson [01]

i 100 Bamieh & Jovanovic [01,03]

C.W. Rowley




Governing Equations

® Navier-Stokes equations linearized about a laminar profile

® Perturbation dynamics fully described by wall-normal velocity v

and wall-normal vorticity n

® Clamped boundary conditions

v

\

Orr-Sommerfeld/Squire system
s, [—A O] ’U]
n

ol 0 I
Los =Ud,A-U"0, — iAQ
Re

Los 0
—U’@Z LSQ

—A

Lso =-U0,
5Q + Re

|

v
Ui

|

Adjoint system

[—A 0 [’U | LHs U’@Z] [v]
0 I |n 0 so | |
Lys = —Ud,A —2U'0,0, — éAz
Vo=t La

!

actuation

disturbances

:I'::A:I:—I—@ul-l- 2

® System in standard state-space form with actuation and disturbances

C.W. Rowley




Single-wavenumber perturbation - optimal

® Perturbations of the form
q=q(y .
® System can be analyzed in 1-D so that full balanced truncation is tractable,
allowing comparison with the BPOD approximation and POD

)eiax+iﬁz+)\t g = [U]

® \\Well-studied cases (Farrell, Henningson, Reddy, Schmid, Jovanovic, Bamieh)

® (Case presented here 0=1, ,3=1 and exhibits rich dynamics

30

. . . POD eigenvalues
streamwise velocity u 4 '

Re(u)

98.3%

N
&)

N
o

KE growth
o

101

0 20 40 60 80 100 0 5 10 15 20
time

C.W. Rowley




Modes and HSV - how good is BPOD?

Hankel singular values balancing mode 6
103 . . . . 08 . - :
_A_OP4 —o—full BT
| 0.6 B3 —— 4-mode OP|
-=*-0P8 | p & —4— 8-mode OP LV"‘\
—e—full BT}
102:'
10*
—&— OP4
—— OP8 L . .
, —oe— full BT . 1
1 balancing mode 10
10 :_1007 ' ' —TY=
—*— 4-mode OP| |
—— 8-mode OP
107
1040 5 15 15 20
0
10 ' '
0 2 4
. -0.6
Both HSVs and balancing modes computed accurately up 9y | | |
to approximately the rank of OP - -05 0 05 1

C.W. Rowley




Single wavenumber - impulse response

Kinetic energy growth ® [ow-order POD models completely fail to capture energy

growth

30

A 8-mode BPOD

® BPOD model performance matches exact BT

approximately up to the desired level of accuracy,
determined by the output projection

KE growth

Error 2—-norms, Re=1000, a=1,p=1

- S S 10’ . . :
S S S 2 [0 2
i 0
Gz = [y llg(®)[dt
time 100 | a8 __ i
a8 - BPOD, OP4
10—1 | - —-—--- =R N 4
R —_ _____________'."4“./\ A A A A A
10 ¢ full dynamics : 3
projected onto:
_3 4 POD modes
10°¢ 8 POD modes
107
exact BT
‘ ‘ ‘ ‘ 1 0 5 1I0 1l5 20
0 20 40 60 80 100 rank r

C.W. Rowley




Single wavenumber - frequency response

For a single wavenumber, frequency response can be computed exactly

BPOD captures the resonant peak even at low order

POD slowly catches up, but has spurious peaks due to eigenvalues near the
imaginary axis

o full
O BPOD6
o POD6

spurious peaks
in POD model

C.W. Rowley




Single wavenumber - infinity norms

n

Infinity error norm bounds 0r+1 < HG — Gr”oo < 223:7~+1ij

6

10 -
- © —full BT lower bound
— 8 —full BT upper bound
— » —full BT inf-norm
4 - 8 - BPOD OP4
10 - 8 - BPOD OP8
&
U =
Q\ ~
Ng— X
102 B = G\ N 7
1
il
0
10 Q \\x- - ~ 7]
N
®~9
-2
10 :
0 5 10 15

® Infinity norms of models also match those of exact BT up to approximately the rank
of the output projection

® Again, POD ‘catches up’ only at a high rank

C.W. Rowley




Localized actuator

Periodic array of localized actuators in
center of channel

Large system (32x65x32), 133,120 states,

exact BT intractable

Impulse response snapshots obtained via

linearized DNS, Re=2000

Complex initial transient which develops
into a streamwise-constant structure

POD eigenvalues

OP5, 99.72%
OP10, 99.9%

KE growth

N
(=}

—_
(&)}
T

101

<0

X

0 200 400

600 800 1000
time

1200

C.W. Rowley




Localized actuator - POD model performance

POD modes 4-5
Standard POD T

aN

POD modes 1-3

30
25}
i {
€ 20 S~ I W
o P =
§ 15 B L g ‘“»-ALE//,/ 7
101 POD mode 10
. AT

0 500 1000 1500 2000 2500

time

® Some low-energy POD modes are very important for the system
dynamics - can’t naively use just the most energetic ones

® Pairs of modes corresponding to traveling structures not important
for capturing energy growth

® For many POD low-order models, the output can have spurious
oscillations due to the mode pairs

C.W. Rowley




Localized actuator - BPOD impulse response

BPOD models energy growth Error 2-norms
35 - : e : : 10° o= . .
R N —o— BPOD OP5
30r ] —a— POD
- - -0P5
05| 7 - A - BPOD OP10
L :N 10_1 ] =
E 201 o BPOD rank2 g RARCOSCO0CO0COBSHOPODRE0CO00000000000008085d
=y © BPOD rank3 = A
% 1 x BPOD rank12 &
o POD rank3 & 2
10} + full 1 i
rank 8 rank 23 :
: . . : - | | | |
0 50 100 150ﬁmezoo 250 300 350 0", m 2 2 " =

rank r

® Three-mode BPOD model excellent at capturing the energy growth

® Rank 8 BPOD model sufficient to correctly capture the dynamics of the first
five POD modes, compared to at least 23 POD modes

® Inclusion of some POD modes significantly deteriorates performance (splitting
of the pairs of oscillating modes)

C.W. Rowley




Localized actuator - modes

POD mode 1 BPOD mode 1 adjoint BPOD mode 1

BPOD and adjoint BPOD modes from OP5

Balancing modes and POD modes look POD BPOD

similar but the adjoint modes are in . _ , . _ ,
general quite different => different a; (t) o <¢3’ f(:C)> aj; (t) _ <¢J7 f(x»

dynamics of models

C.W. Rowley




Localized actuator - frequency response

POD singular value Bode plot BPOD singular value Bode plot
100 : : 80 . . .
spurious peaks —— BPOD3
i «—— in POD models 6of ——BPOD4
60 F : —— BPOD6
w0l / _ 40r —BPOD10
S ——BPOD50
o0l é 20t
S
I POD3 5 7
20t | ——POD 1-5 g
40+ POD1_3,1O
sol —POD1-3,10,17 —40
~||——POD1-17 .
-80r ——BPOD50
-100 : : -80 : : : :
10°° 107 107 10° 10° 107° 107 107 10° 10°
Frequency (rad/sec) Frequency (rad/sec)

® BPOD 10-mode OP 50-mode model taken as ‘full system’
® POD poorly captures low-pass behavior, spurious peaks

® Need pairs of BPOD modes to capture peaks

C.W. Rowley




Closed-loop control - localized actuator

Re = 2000, POD 3-mode Re = 2000, BPOD 3-mode
351 35~
— full simulation —— full simulation
30} ——open loop 30! ——open loop
—closed loop —— closed loop
—C.L. full system ——C.L. full system
25+ 25
<
< 201 = 20}
o o
o (o]
W15 W15

—_

o
T
-
o

[¢)]
)]

00 260 400 660 800 1000 szo 00 260 460 660 800 1 060 1 260
time time
Re = 5000, BPOD 3-mode, modes from Re = 2000
® Using the localized actuator to control a %01 —full simulation
. . — |
disturbance in channel center 250/ — closed loop
—C.L. full system
® Standard LQR controller 200}

® Using control gains from a 3-mode BPOD model
reduces energy growth by a factor of 5

KE growth
o
o

—_
o
o
T
IS

® BPOD works well in closed-loop at off-design sol : \
condition (Re=5000 with modes from Re=2000) P
O0 200 460 660 860 1 0‘00 1 éOO

time

C.W. Rowley




Nonlinear Evolution of the Localized Perturbation

linear evolution of wall-normal velocity

(g
NN

-0.1 0 01 0

nonlinear evolution at E¢/Ejam = 3.323 x 104

The spatial Fourier transform of the x,z
plane at y=0 illustrates the perturbation
evolution

In the linear case the wavenumbers
decay independently after the large
transient growth

Eiam = 0.2667 is the energy density of
the mean laminar flow

Transition for very small values of initial
energy Eo

The so-called B-cascade [Henningson et al,
1993] is observed in the nonlinear
evolution - higher spanwise
wavenumbers are introduced rapidly

C.W. Rowley




Delaying Transition Using Feedback Control

® Try to increase the transition threshold of a localized perturbation (after Reddy et al)

® The threshold is defined as the energy density of the initial perturbation above which the
flow transitions to turbulence

® Threshold found to be at Eo = 1.614 x 104 of the mean flow energy of the laminar profile,

Elam = 02667
Perturbation energy
0.02 . .
0.015¢
____E/E 8.307e-05
0 lam
___E./E 1.600e-04
0 lam
0.01F ___EJ/E__ 1.628e-04]]
0 lam
___E/E 3.323e-04
0 lam
0.005¢
O 1 I B — L 1
0 200 400 600 800 1000 1200
time
C.W. Rowley




Closed-Loop Control

® The feedback gains computed using LQR for the linear system are used in a full
nonlinear simulation with Eo/Ejam = 3.323 x 10

® An ‘aggressive’ controller (R=0.1 in LQR) manages to suppress the disturbance

-0.05

® Explanation: the BPOD modes do not have components at high B, and are not able to
suppress high betas once they arise, but the ‘aggressive’ controller suppresses low 3
wavenumbers so that the higher 8’s emerge at very low amplitudes and decay linearly

® Transition threshold increased by a factor of 17 for R=0.01

® \Work in progress: see how projection of full N-S equations onto linear BPOD modes will
model the perturbation evolution, and possibly design a nonlinear controller

C.W. Rowley
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Motivation

Leading edge vortices sometime provide
high lift

MURI goal: Stabilize these LEV's using
feedback control

High transient lift in pitching airfoils due to
dynamic stall vortex

leading
—— “gdge vortex

PitCh i n g ai rfOi I ""*\4 M »_l,(’,\v.:. M \."v,

—> - 0 y
Cr, /7 static, no forcing
-1 iy static, 10psi 25Hz
Sl 4 pr = 40 deg/s, no forcing

i

Lift, [N]

> 3
O -40 -20 0 20 40
o, [degrees]




Dynamical behavior

= With increasing AoA, flow undergoes a Hopf bifurcation

= Reduced order models to stabilize unstable steady states at high
AoAs

C, at steady state

s Hopf bifurcation?

.
.

I‘..
(

CL
02k A ................... .................... Unsteady ............. Tady'
= : : : ; (Unstable)
- 0
(85 0 5 10 15 20 25 30

Angle of attack «

= Are there high-lift unstable steady states in low aspect ratio
airfoils?




MOdel prOblem Actuator: localized
body force

Re =100

AoA =25 or 35

—_—

—_—

-1 0 1
= Afast null-space based immersed boundary scheme for numerical simulations

(T. Colonius and K. Taira, CMAME, 2007)

Steady state analysis

= Compute steady states using a wrapper around the DNS

Y
—— ®p(u*ip)

Define: g(u) = u’ — u

= Solve for zeroes of g(u) using Newton-GMRES
Barkley and Tuckerman,’99, Kelley, Kevrekidis, and Qiao,’ 02, Ahuja et al., ‘07




Unstable steady state, AoA = 35

= Steady state lift close to the min. lift of the
unsteady case

“ No leading edge vortex
= Trailing edge vortex causes reduced lift

1.05} ' ' '
Steady, unstable /
]
1t

0.9 — T
6700 ﬁ? 6900 7000

0.95¢

0.9 ” \ “W‘WM

o/ 1000 2000 3000 4000 5000

Unsteady, max lift




Linear stability analysis

= Find the basis spanning the unstable eigenspace of the
linearized and adjoint flows

= Run the linear simulations with a zero initial condition +
108 random noise

Right eigen-space




Reduced-order models for unstable systems

Decouple stable and unstable subspaces
Obtain balancing transformation for the stable subspace

a()=(6 )G+ ()

Snapshot based procedure: project out the unstable component at each
time step

Unstable
eigenvector

L

Stable subspace

Balanced truncation for unstable systems, Zhou et al., ’99




‘ Model reduction: unstable system

Linearized NS eqgns, 10°

V< = proj. of x, onto

d [z, A, 0 T B, 0z,
R O [ oA =

X, = unstable state

xs = Pag
Ulep =1

Reduced order model, 10-50 eqns.

d (a,\ _ (YVTAD O Qs viB, Ys
Ly




Impulse response: stable subspace

= Project out the unstable component from the initial condition

N —_ o - N

Vorticity contours:
Positive in red and
negative in blue -1




Adjoint impulse response

_________________________________________________________

, Projection
u ——> miﬁm_l—Bu >yz@1'x >onto POD
J= modes

= Four POD modes capture 95% energy

= Adjoint solves with these POD modes as
initial conditions




Balancing modes: stable subspace
Mode 1

POD
modes

-

Balancing *
modes ’

Bi-orthogonal
/\

Adjoint
modes




Model results: controlled case

e velocit
\ -—y> a=UTyg

RRRE

= Control based on a 10-
mode model

= Gain K using LQR

0 5 10 15 20 25 30 35 40 45 50

DNS —O—
10-mode —X—

10 20 30 40 50 60 70




Control 1n full nonlinear system:
close to steady state

Results of an 8-mode model

: : . A . : : : | DNS
200 -100 0 100 200 300 400 50 60 700
Control ON 0 8-mode

'9500 -100 0 100 200 300 400 500 600 700

time




Feedback stabilization at AoA=25

= Full state feedback

= Large domain of attraction even

in the full NL system

= Controller suppresses the vortex

shedding

No control

1.05¢

c, |

0.95¢

1

0.9

6700 6800 6900 7000 L

—l

0.9t

0

1000 2000 3000 4000 5000

time

|

Control on




Observer design: velocity sensors

3 velocity sensors
Compare projections onto 4 and 20 POD modes

L2-norm looks similar, but the velocities at sensor locations are poorly
captured by 4 POD modes x10°

3
2
1
0

U

BT A

0.2

0 2000 , 8000 4000

0.15 » e

2

ful? o | /
0.05 ; )
. i 0 \ % * 1
% 1000 2000 3000 4000 »
t
2 % 1000 2000 , 3000 4000
-1 0 t

DNS —

4-mode proj. ...

0 1000 2obot 3000 4000

20_mode proj. .............




Observer based control
Observer gain obtained using LQG

Compensator stabilizes the steady state, but there is residual
noise due to the errors in modeling the system and the

measurements

0.06+
0.04}
0.02¢
Lul o
-0.02}
~0.04

0 1000 2000 3000 4000 5000 6000 7000
t

0.2r

o

Ls1
-0.2}

0 1000 2000 3000 4000 5000 6000 7000

t
DNS —

observer

T T T T T T T

0 1000 2000 3000 4000 5000 6000 7000
t

x10~°

0 1000 2000 3000 4000 5000 6000 7000
t
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Evolution history of thickness for temporal shear
layer (spatially periodic):

Time
Model initial linear growth, saturation, pairing, and
eventual viscous diffusion

51




Scale POD modes dynamically in y direction to account
for shear layer spreading

Scaling invariants:

divergence of velocity field
inner product

Key idea: template fitting

Main result: an equation for the shear layer spreading rate:

as usual, also get equations for time coefficients of POD modes

52




Write solution in scaled reference frame
q= (u,v)
a(z,y,t) = G(g)a(z, g(t)y, 1)

Choose G(g) = [1 O] div q = div q

0 1/g
Expand scaled variable g in terms of POD modes

(l(xaya _u0 —|—Zaj Spj £Z y
Advantage of the scallng. capture similar-looking
structures as shear layer spreads

Advantage of divergence-invariant mapping: auto-
satisfy continuity equation; simplify pressure term

53




How do we choose the scaling g(t)?

Choose g(t) so that q(z,y, t) lines up best with a
preselected template (here, the base flow):

‘ ||(i($7 yvt) - uo(l’, h(S)y)H2 =0

% s=0
for any curve h(s) > 0 with 7(0) = 1

This means the scaled solution q(z, y, t) satisfies

%~—u =0
yay7q 0 -

Geometrically, the set of all “properly scaled” functions q is
an affine space through up and orthogonal to yd,uy

This enables one to write dynamics for how the thickness
g(t) evolves i ) <fgl (@), yﬁyuo>
g (yOy i, yOyuo)

54




How does g(t) evolve in time?

We have a constraint (q(z,y,t) lines up best with template up):

% q—ug ) =0

8u0 8(1
Y =0
oy Ot
Use equations of motion

= 1@ - Ly~ GG, 9w

This gives an equation for g:

<fgl (ﬂ), yﬁyuo>
<y8ya7 yayu0>

Differentiate:

g
g

55




Equation for the POD mode coefficients:

retain only modes k=1, n=1 and 2:

2 2 2
. Cl1q + C C12q + C 1 21 dig +d
Q11 = g-Ciig 11@1’1 I g~Ci2g 12@ [_( )2 1 g dig 1 92:| a1

g*nig + g*nig +nq 127 Re L g*ni1g + 11
2 .
€1g T+ €
g°nig+nig
2 2 2
. g-ca1g + C21 g~Ca2g + C22 1 2T o gidog +da
(19 = a1+ a — | —(= L
1,2 g*nag + no L1 g*nag + N2 27 Re ( L ) g*nag + ngg 12
gesg + €3 g
+ 2 g — 1,27
. . g°nog + N2 g
Equation for the scaling g:
. Co1 . C02 . o3 . Co4 . 1 dy 4
= —ai110a -+ —ai1.2a -+ —al1.1a —+ —a1.2a + ——
9 o b 1,19 g b 1,29 g L 1,29 ng b 1,19 Re nog

Retaining modes k=1 and 2, n=1 and 2 also
tractable, but messy

Use inner product that is preserved under scaling:

1 1
(a1, 92) z/(—’af&z + —0102)dxdy
g Q9 g’
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Base flow with small perturbation
~ —y /Re
Base flow: ug = Ucerfe(n), 1= 29\ 1

Perturbation is along the unstable eigenfunction of the linearized
problem

Consider three separate cases

No perturbation: viscous growth
Initial perturbation with k=1: vortex roll-up
Initial perturbation with k=2:

vortex roll-up

pairing

k=1 mode arises through pairing
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Only one equation left for g:

1 do 5 g° to
= — — f = — — ) = _

g

Recovers exact theoretical growth rate for Stokes
problem:

(A RN NN AN NN NN N TN TN N B
1%. 1000 2000 3000

Time

[ B |
4000

L
5000
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Movie of DNS

¢ Initial condition with k=1 (Re = 200)

k = 1 simulation
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Movie of DNS
¢ Initial condition with k=2 (Re = 200)

k = 2 simulation
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Energy contained in modes (k=1 initial condition)

(k,n) lambda | Energy (%)
(I,1) 130.3 91.0
(1,2) 6.8 4.8

(2, 1) 4.5 3.1
all k=0 0.4

Zero mode contains very little energy - scaling was effective at
removing the mean spreading
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Initial condition with k=1
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Energy contained in modes (k=2 initial condition)

(k,n) lambda | Energy (%)
(I,1) 27.5 40. |
(2,1) 37.9 55.2
(1,2) 0.9 1.3
(2,2) 1.6 2.3

all k=0 0.6

Scaling still effective at removing the mean spreading (zero mode
has small energy)
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Initial condition with k=2
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DNS v.s. Model

® Comparison of simulation and model results

k=1, 2; n=1, 2 model




Model results: k=1

® Thickness and amplitude of
POD modes for k=1 initial

® Thickness and amplitude of

POD modes for k=1 initial
condition: projection of full condition: low-dimensional
simulation model
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Phase shift phenomenon: Modes | and 2 are out of
phase during linear growth, in phase after saturation
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Phase delay between the Phase delay between the
first 2 Pod modes: low-

first 2 POD modes:
projection of full simulation dimensional model
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Model results: k=2

Thickness and amplitude of ® Thickness and amplitude of
POD modes for k=2 initial POD modes for k=2 initial
condition: projection of full condition: low-dimensional
simulation model
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Phase delay between the Phase delay between the
first 2 POD modes: first 2 Pod modes: low-

projection of full simulation dimensional model
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Approximate balanced truncation

Approximates exact balanced truncation to as high accuracy as
desired, using snapshots from linearized and adjoint simulations

Computational cost similar to POD, once snapshots computed

For a given number of modes, transients and frequency response
much more accurately captured than POD models of same order

Extension of basic approach to model unstable linear systems

Feedback controllers designed from these models perform well,
even on full-order; nonlinear systems

Extensions to (weakly) nonlinear systems straightforward
Dynamically scaled POD modes

For systems with self-similar behavior, dynamic scaling decreases
number of modes required

Temporal shear layer dynamics modeled with 4 complex modes,
including linear growth, saturation, pairing, and viscous diffusion
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Outstanding challenges

Combining ideas from balanced truncation with results from
experimental data, where adjoints are not available

Systematic approach for highly nonlinear systems (far from
equilibrium)
Reduced-order models for messy, turbulent flows. Low-

dimensional models are, strictly speaking, not possible, but one is
not interested in all of the details

New control synthesis tools needed for these classes of nonlinear
systems!?
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