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Galerkin projection

• Dynamics evolve on a high-dimensional space (or infinite-dim’l)

• Project dynamics onto a low-dimensional subspace S

• Define dynamics on the subspace by

• Two choices:

• choice of subspace

• choice of inner product
(equivalently, choice of the nullspace for a non-orthogonal projection)
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S

f(r)

PSf(r)
r

ker P̃S

P̃Sf(r)

is a projectionPS : V → Sṙ = PSf(r)

r ∈ S ⊂ V

x ∈ Vẋ = f(x)



Energy-based inner products

• Reduced-order models can behave unpredictably

• Can even change stability type of equilibria
     [Rempfer, Thoret. CFD 2000]

• Simple example: consider the system:

• Sink at the origin

• Projection onto x1 axis is

• Can at least fix this simple problem by changing the inner product 
used for the projection

• Cute result: If an orthogonal projection is used with an “energy-
based” inner product, this will ensure stability of the origin

• Note: does not guarantee stability preserved for other 
equilibrium points, periodic orbits, etc.
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d

dt

(
x1

x2

)
=

(
1 −1
3 −2

) (
x1

x2

)

ẋ1 = x1 unstable

[Rowley, T Colonius, RM Murray, Phys D 2004]



Energy-based inner products

• Consider a system with a stable equilibrium point at the origin:

• Consider an inner product whose induced norm is a Liapunov 
function (“energy-based”):

• Reduced-order dynamics given by orthogonal projection

• Then V is a Liapunov function for the reduced-order system:

• So: if an energy-based inner product is used, the origin is stable for 
the reduced-order system, regardless of the subspace used for the 
projection
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ẋ = f(x) f(0) = 0 x ∈ Rn

〈x, y〉 = xT Qy, Q > 0
V (x) = xT Qx is a Liapunov function
V̇ (x) = 2xT f(x) ≤ 0, ∀x ∈ U

r = Px

ṙ = Pf(r)
P 2 = P

〈x, Py〉 = 〈Px, y〉 QP = PT Q

V̇ (r) = 2rT QPf(r) = 2rT PT Qf(r) = 2(Pr)T Qf(r)

= 2rT Qf(r) ≤ 0
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Are POD modes optimal?

• POD modes are not optimal for Galerkin projection

• POD determines a subspace that optimally captures the energy in 
a given dataset

• These modes are usually not optimal for Galerkin projection

• Low-energy modes can play an important role in the dynamics
[Aubry, Holmes, Lumley, 1988; Smith 2002 PhD thesis, Princeton]

• Can often do better with balanced truncation [Moore 1981]
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Balanced truncation

• Why doesn’t everybody use this?

• Valid for stable, linear systems

• Extensions for unstable systems [Jonckheere & Silverman 1983, Zhou 
2001]

• Extensions for nonlinear systems [Scherpen 1993, Lall, Marsden, 
Glavaski 1999]

• Computationally expensive for large systems

• n3 computational time: n > 105 for typical fluids simulations

• Improvements for large systems

• POD is tractable for large systems.  Can we extend, e.g., the 
method of snapshots, to compute balancing transformations?

• Based on earlier snapshot-based methods:
   Lall, Marsden, & Glavaski, 1999
    Willcox & Peraire, 2001
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Overview of balanced truncation
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What are you interested in 
capturing?!

States that have large influence!
on the output!

States easily excited!
by an input!

EX

EY

EX = EY



• Construct Gramians from impulse response data

• Not solving Liapunov equations

• For a single input: compute impulse-state response:

solution

• The controllability Gramian is then

• Discretize in time, collect snapshots into a matrix:

• Then

• For observability Gramian, same procedure, but use adjoint 
equations

• For multiple inputs/outputs, same procedure, but do one impulse-
response for each input/output

Empirical Gramians
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x(t) = eAtB

ẋ = Ax, x(0) = B

Wc ≈ XXT

X =




| |

x(t1) · · · x(tm)
| |





Wc =
∫ ∞

0
x(t)x(t)T dt

[Lall et al, 1999]

ż = A∗z z(0) = C∗



Method of snapshots

• POD: method of snapshots vs. direct method

• method of snapshots more efficient when m < n.

• Balanced truncation: method of snapshots

• Empirical Gramians represented as

• Find a balancing transformation with an SVD of
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X =




| |

x1 · · · xm

| |




n× nXXT ϕ = λϕ

POD modes (direct method):

ϕ = Xc

XT Xc = λc

POD modes (method of snapshots):

m×m

[Sirovich, Q Appl Math 1987]

Y T X

Wc = XXT

Wo = Y Y T

n× n

my ×mx

[Rowley, Int. J Bif Chaos, 2005]



Computing modes

• Snapshot matrices

• Compute SVD

• Obtain bi-orthogonal set of modes:
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X =




| |

x(t1) · · · x(tm)
| |



 Y =




| |

z(t1) · · · z(tl)
| |





Ψr =




| |

ψ1 · · · ψr

| |



Φr =




| |

ϕ1 · · · ϕr

| |





Y ∗X = UΣV ∗

Ψ = Y UrΣ−1/2
r

Linearized snapshots Adjoint snapshots

Direct modes
linear combinations of

direct snapshots

Adjoint modes
linear combinations of

adjoint snapshots

Φ = XVrΣ−1/2
r

Ψ∗
rΦr = Ir



Reduced-order models

• Original equations

• Form reduced-order model

• Do not need to transform entire state: just take first r modes

• Extensions to nonlinear systems straightforward

• For instance, compute modes for linearized system, project 
nonlinear dynamics
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ẋ = Ax + Bu

y = Cx + Du

ẋ = f(x)
x(t) =

r∑

j=1

aj(t)ϕj

ȧj(t) = 〈ψj , f(x)〉

ȧ = Ψ∗
rAΦra + Ψ∗

rBu

y = CΦra + Du



Large numbers of outputs

• Often, we are interested in modeling the full state

• If dimension is large, project output onto POD modes

• POD gives optimally-close output-projected system (in 2-norm)
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ẋ = Ax + Bu

y = x
Full stateu

Original system, full dynamics

POD coefficientsu ẋ = Ax + Bu

y = Cx

Output-projected system, full dynamics

Output
projection

ȧ = ΨT AΦa + ΨT Bu

y = CΦa

POD coefficientsu

Reduced-order model

Balanced
truncation



Approximate balanced truncation for large systems

• Method of snapshots enables one to compute approximate 
balanced truncations with cost similar to POD

• One simulation for each control input, one adjoint simulation 
for each output

• One SVD, (# direct snapshots) x (# adjoint snapshots)

• If number of outputs is large, method for projection onto 
smaller-rank output

• Balanced truncation is just POD with respect to an inner product 
defined by the observability Gramian Y:

• Observability Gramian is always a Liapunov function => preserves 
stability!

• Obtain set of bi-orthogonal modes:
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〈x1, x2〉Y = xT
1 Y x2

{ϕ1, . . . ,ϕn}

{ψ1, . . . ,ψn}

〈ψi, ϕj〉 = δij

ẋ = f(x)

x(t) =
∑

j

aj(t)ϕj

ȧj(t) = 〈ψj , f(x)〉

direct modes:
adjoint modes:
bi-orthogonal:

Galerkin:
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Application: Linearized Channel Flow

flow
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• Plane channel flow with periodic boundary conditions

• Goal: delay transition to turbulence using feedback control 

• Goal: improved understanding of transition mechanisms

• Focus: low-dimensional models of transition

• Linear development of small perturbations

• Transition not predicted correctly by linear stability analysis

• Non-normality of the governing operator results in large transient 
growth of exponentially stable perturbations

• Large linear system with complex dynamic behavior
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Previous work:
Trefethen et al [Science, 1993]
Farrell & Ioannou [96,96,01]
Schmid & Henningson [01]
Bamieh & Jovanovic [01,03]
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Governing Equations

• Navier-Stokes equations linearized about a laminar profile

• Perturbation dynamics fully described by wall-normal velocity v 
and wall-normal vorticity η

• Clamped boundary conditions 

 Orr-Sommerfeld/Squire system Adjoint system
∂

∂t

[
−∆ 0
0 I

] [
v
η

]
=

[
LOS 0
−U ′∂z LSQ

] [
v
η

]
∂

∂t

[
−∆ 0
0 I

] [
v
η

]
=

[
L∗

OS U ′∂z

0 L∗
SQ

] [
v
η

]

LOS = U∂x∆− U ′′∂x −
1

Re
∆2

LSQ = −U∂x +
1

Re
∆

L∗
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Single-wavenumber perturbation - optimal

• Perturbations of the form

• System can be analyzed in 1-D so that full balanced truncation is tractable, 
allowing comparison with the BPOD approximation and POD

• Well-studied cases (Farrell, Henningson, Reddy, Schmid, Jovanovic, Bamieh)

• Case presented here α=1, β=1 and exhibits rich dynamics
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Modes and HSV - how good is BPOD?

Both HSVs and balancing modes computed accurately up 
to approximately the rank of OP
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8-mode BPOD

4-mode BPOD

8-mode POD

4-mode POD

Single wavenumber - impulse response

• Low-order POD models completely fail to capture energy 
growth

• BPOD model performance matches exact BT 
approximately up to the desired level of accuracy, 
determined by the output projection

Kinetic energy growth

First two outputs
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 Single wavenumber - frequency response
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POD2
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BPOD6
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• For a single wavenumber, frequency response can be computed exactly 

• BPOD captures the resonant peak even at low order

• POD slowly catches up, but has spurious peaks due to eigenvalues near the 
imaginary axis

spurious peaks 
in POD model
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• Infinity norms of models also match those of exact BT up to approximately the rank 
of the output projection

• Again, POD ‘catches up’ only at a high rank

Single wavenumber - infinity norms

σr+1 ≤ ‖G−Gr‖∞ ≤ 2Σn
j=r+1σjInfinity error norm bounds
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BPOD OP4
BPOD OP8
POD
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Localized actuator

• Periodic array of localized actuators in 
center of channel

• Large system (32x65x32), 133,120 states, 
exact BT intractable

• Impulse response snapshots obtained via 
linearized DNS, Re=2000

• Complex initial transient which develops 
into a streamwise-constant structure
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Localized actuator - POD model performance
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• Some low-energy POD modes are very important for the system 
dynamics - can’t naively use just the most energetic ones

• Pairs of modes corresponding to traveling structures not important 
for capturing energy growth

• For many POD low-order models, the output can have spurious 
oscillations due to the mode pairs
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Localized actuator - BPOD impulse response

• Three-mode BPOD model excellent at capturing the energy growth

• Rank 8 BPOD model sufficient to correctly capture the dynamics of the first 
five POD modes, compared to at least 23 POD modes 

• Inclusion of some POD modes significantly deteriorates performance (splitting 
of the pairs of oscillating modes)
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Localized actuator - modes

Balancing modes and POD modes look 
similar but the adjoint modes are in 
general quite different => different 

dynamics of models

POD mode 1

POD mode 4

BPOD mode 1 adjoint BPOD mode 1

BPOD and adjoint BPOD modes from OP5

POD BPOD
ȧj(t) = 〈ψj , f(x)〉ȧj(t) = 〈φj , f(x)〉

BPOD mode 4 adjoint BPOD mode 4
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Localized actuator - frequency response

• BPOD 10-mode OP 50-mode model taken as ‘full system’

• POD poorly captures low-pass behavior,  spurious peaks

• Need pairs of BPOD modes to capture peaks 
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Closed-loop control - localized actuator
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Re = 5000, BPOD 3!mode, modes from Re = 2000

 

 

full simulation

open loop

closed loop

C.L. full system
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full simulation
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full simulation
open loop
closed loop
C.L. full system

• Using the localized actuator to control a 
disturbance in channel center

• Standard LQR controller

• Using control gains from a 3-mode BPOD model 
reduces energy growth by a factor of 5 

• BPOD works well in closed-loop at off-design 
condition (Re=5000 with modes from Re=2000)
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Nonlinear Evolution of the Localized Perturbation

• The spatial Fourier transform of the x,z 
plane at y=0 illustrates the perturbation 
evolution

• In the linear case the wavenumbers 
decay independently after the large 
transient growth

• Elam = 0.2667 is the energy density of 
the mean laminar flow

• Transition for very small values of initial 
energy E0

• The so-called β-cascade [Henningson et al, 
1993] is observed in the nonlinear 
evolution - higher spanwise 
wavenumbers are introduced rapidly

nonlinear evolution at E0/Elam = 3.323 x 10-4 

linear evolution of wall-normal velocity
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Delaying Transition Using Feedback Control

• Try to increase the transition threshold of a localized perturbation (after Reddy et al)

• The threshold is defined as the energy density of the initial perturbation above which the 
flow transitions to turbulence

• Threshold found to be at E0 = 1.614 x 10-4 of the mean flow energy of the laminar profile, 
Elam = 0.2667
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Closed-Loop Control

• Explanation: the BPOD modes do not have components at high β, and are not able to 
suppress high betas once they arise, but the ‘aggressive’ controller suppresses low β 
wavenumbers so that the higher β’s emerge at very low amplitudes and decay linearly

• Transition threshold increased by a factor of 17 for R=0.01 

• Work in progress: see how projection of full N-S equations onto linear BPOD modes will 
model the perturbation evolution, and possibly design a nonlinear controller 

• The feedback gains computed using LQR for the linear system are used in a full 
nonlinear simulation with E0/Elam = 3.323 x 10-4

• An ‘aggressive’ controller (R=0.1 in LQR) manages to suppress the disturbance
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Motivation leading 
edge vortex

 Leading edge vortices sometime provide 
high lift

 MURI goal: Stabilize these LEVs using 
feedback control

 High transient lift in pitching airfoils due to 
dynamic stall vortex

Pitching airfoil



Dynamical behavior

CL at steady state

 With increasing AoA, flow undergoes a Hopf bifurcation
 Reduced order models to stabilize unstable steady states at high 

AoAs

 Are there high-lift unstable steady states in low aspect ratio 
airfoils?



 A fast null-space based immersed boundary scheme for numerical simulations 
(T. Colonius and K. Taira, CMAME, 2007)

 

Steady state analysis 
 Compute steady states using a wrapper around the DNS

 Solve for zeroes of g(u) using Newton-GMRES

Model problem Actuator: localized 
body force

Re = 100
AoA = 25 or 35

DNS

Barkley and Tuckerman,’99, Kelley, Kevrekidis, and Qiao,’02, Ahuja et al., ‘07



Unstable steady state, AoA = 35 

 Steady, unstable

Unsteady, max lift

Unsteady, min lift

 Steady state lift close to the min. lift of the 
unsteady case

 No leading edge vortex 
 Trailing edge vortex causes reduced lift



Linear stability analysis
 Find the basis spanning the unstable eigenspace of the 

linearized and adjoint flows
 Run the linear simulations with a zero initial condition + 

10-8  random noise

Right eigen-space Left eigen-space



Reduced-order models for unstable systems

Unstable 
eigenvector

Stable subspace

 Decouple stable and unstable subspaces
 Obtain balancing transformation for the stable subspace

 Snapshot based procedure: project out the unstable component at each 
time step

Balanced truncation for unstable systems, Zhou et al., ’99



Model reduction: unstable system

Linearized NS eqns,  105

Reduced order model,  10-50 eqns.

u

u

ys = proj. of xs onto   
       POD modes
xu = unstable state



Impulse response: stable subspace

Vorticity contours: 
Positive in red and 
negative in blue

 Project out the unstable component from the initial condition

− =



Adjoint impulse response

 Four POD modes capture 95% energy
 Adjoint solves with these POD modes as 

initial conditions

Mode 1

Mode 2
u

Projection 
onto POD 
modes



Balancing modes: stable subspace

POD 
modes

Mode 1 Mode 2

Balancing
modes

Adjoint
modes

B
i-o

rt
ho

go
na

l



Model results: controlled case

x
DNS

10-mode

 Control based on a 10-
mode model

 Gain K using LQR

u

a

with control

without control

a = ΨT x



Control in full nonlinear system: 
close to steady state

Results of an 8-mode model

DNS

8-mode

time

Control ON

xu1

ys1



Feedback stabilization at AoA=25

No control

time

CL

 Full state feedback
 Large domain of attraction even 

in the full NL system
 Controller suppresses the vortex 

shedding

Control on



Observer design: velocity sensors
 3 velocity sensors
 Compare projections onto 4 and 20 POD modes
 L2-norm looks similar, but the velocities at sensor locations are poorly 

captured by 4 POD modes

DNS

4-mode proj.

20-mode proj.



Observer based control
 Observer gain obtained using LQG
 Compensator stabilizes the steady state, but there is residual 

noise due to the errors in modeling the system and the 
measurements

DNS

observer



Outline

• Approximate balanced truncation using POD

• Importance of inner product for Galerkin projection

• Balanced truncation

• Method of snapshots

• Applications

• Linearized channel flow

• Separating flow past an airfoil

• Dynamically scaling POD modes

• Free shear layer

• Scaled basis functions

• Template fitting

• Equations for the shear layer thickness

50
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• Evolution history of thickness for temporal shear 
layer (spatially periodic):

• Model initial linear growth, saturation, pairing, and 
eventual viscous diffusion

Modeling free shear layers

51

linear growth

saturation
pairing

saturation

viscous diffusion

Time



Methodology

• Scale POD modes dynamically in y direction to account 
for shear layer spreading

• Scaling invariants: 

• divergence of velocity field

• inner product

• Key idea: template fitting

• Main result: an equation for the shear layer spreading rate:

• as usual, also get equations for time coefficients of POD modes
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Scaling basis functions

• Write solution in scaled reference frame

• Choose                             : 

• Expand scaled variable    in terms of POD modes

• Advantage of the scaling: capture similar-looking 
structures as shear layer spreads

• Advantage of divergence-invariant mapping: auto-
satisfy continuity equation; simplify pressure term

q(x, y, t) = G(g)q̃(x, g(t)y, t)

q = (u, v)

G(g) =
[

1 0
0 1/g

]
div q = div q̃

q̃

q̃(x, y, t) = u0(y) +
n∑

j=1

aj(t)ϕj(x, y)
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• How do we choose the scaling g(t)?

• Choose g(t) so that              lines up best with a 
preselected template (here, the base flow):

• This means the scaled solution              satisfies

• Geometrically, the set of all “properly scaled” functions    is 
an affine space through     and orthogonal to

• This enables one to write dynamics for how the thickness 
g(t) evolves 

Template fitting

q̃(x, y, t)

d

ds

∣∣∣∣
s=0

‖q̃(x, y, t)− u0(x, h(s)y)‖2 = 0

q̃(x, y, t)
〈

y
∂u0

∂y
, q̃− u0

〉
= 0

q̃
u0 y∂yu0

ġ

g
=

〈
f1

g (ũ), y∂yu0

〉

〈y∂yũ, y∂yu0〉
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for any curve h(s) > 0 with h(0) = 1



Equation for evolution of the thickness

• How does g(t) evolve in time?

• We have a constraint (              lines up best with template     ):

• Differentiate:

• Use equations of motion

• This gives an equation for g:

ġ

g
=

〈
f1

g (ũ), y∂yu0

〉

〈y∂yũ, y∂yu0〉

〈
y
∂u0

∂y
, q̃− u0

〉
= 0

〈
y
∂u0

∂y
,
∂q̃
∂t

〉
= 0

∂q̃
∂t

= fg(q̃)− ġ

g
y
∂q̃
∂y
−G(1/g)Ġ(g, ġ)q̃(x, y, t)
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Galerkin equations for the shear layer

• Equation for the POD mode coefficients:

• retain only modes k=1, n=1 and 2:

• Equation for the scaling g:

• Retaining modes k=1 and 2, n=1 and 2 also 
tractable, but messy

• Use inner product that is preserved under scaling:

ȧ1,2 =
g2c21g + c21

g2n2g + n2
a1,1 +

g2c22g + c22

g2n2g + n2
a1,2 +

1
Re

[
−(

2π

L
)2 +

g2d2g + d2

g2n2g + n2
g2

]
a1,2

+
g2e2g + e2

g2n2g + n2

ġ

g
a1,2,

ȧ1,1 =
g2c11g + c11

g2n1g + n1
a1,1 +

g2c12g + c12

g2n1g + n1
a1,2 +

1
Re

[
−(

2π

L
)2 +

g2d1g + d1

g2n1g + n1
g2

]
a1,1

+
g2e1g + e1

g2n1g + n1

ġ

g
a1,1,

ġ =
c01

n0
a1,1a

∗
1,1g +

c02

n0
a1,2a

∗
1,2g +

c03

n0
a1,1a

∗
1,2g +

c04

n0
a1,2a

∗
1,1g +

1
Re

d0

n0
g3

〈q̃1, q̃2〉g =
∫

Ω
(
1
g
ũ1ũ2 +

1
g3

ṽ1ṽ2)dxdy
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Results

u0 = Ucerfc(η), η =
−y

2g

√
Re
t0

• Base flow with small perturbation

• Base flow: 

• Perturbation is along the unstable eigenfunction of the linearized 
problem

• Consider three separate cases

• No perturbation: viscous growth

• Initial perturbation with k=1: vortex roll-up

• Initial perturbation with k=2:

• vortex roll-up

• pairing

• k=1 mode arises through pairing
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Model results: k=0

• Only one equation left for g:

• Recovers exact theoretical growth rate for Stokes 
problem:

ġ =
1

Re
d0

n0
g3 =⇒ =⇒

0 1000 2000 3000 4000 50001

2

3

4

5

6

δg

δg0
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Movie of DNS

• Initial condition with k=1 (Re = 200)

0 1000 2000 3000 4000 5000

2

3

4

5

6

7

Time

δω

δω0

Growth

Saturation

Viscous
diffusion
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Movie of DNS

• Initial condition with k=2 (Re = 200)

0 1000 2000 3000 4000 50001

2

3

4

5

6

7

Time

δω

δω0

Growth
Saturation

Pairing & growth

Saturation

Viscous 
diffusion
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POD modes

• Energy contained in modes (k=1 initial condition)

• Zero mode contains very little energy - scaling was effective at 
removing the mean spreading

(k,n) lambda Energy (%)

(1,1) 130.3 91.0

(1, 2) 6.8 4.8

(2, 1) 4.5 3.1

all k=0 0.4
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POD modes

• Initial condition with k=1
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POD modes

• Energy contained in modes (k=2 initial condition)

• Scaling still effective at removing the mean spreading (zero mode 
has small energy)

(k,n) lambda Energy (%)
(1,1) 27.5 40.1
(2,1) 37.9 55.2
(1,2) 0.9 1.3
(2,2) 1.6 2.3

all k=0 0.6
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• Initial condition with k=2
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• Initial condition with k=2
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DNS v.s. Model

• Comparison of simulation and model results
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• Thickness and amplitude of 
POD modes for k=1 initial 
condition: projection of full 
simulation

Model results: k=1
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• Thickness and amplitude of 
POD modes for k=1 initial 
condition: low-dimensional 
model
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Phase shift phenomenon: Modes 1 and 2 are out of 
phase during linear growth, in phase after saturation



• Phase delay between the 
first 2 POD modes: 
projection of full simulation

Model results: k=1

• Phase delay between the 
first 2 Pod modes: low-
dimensional model
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• Thickness and amplitude of 
POD modes for k=2 initial 
condition: projection of full 
simulation

Model results: k=2

δω

δω0

Re(a11)

• Thickness and amplitude of 
POD modes for k=2 initial 
condition: low-dimensional 
model
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• Phase delay between the 
first 2 POD modes: 
projection of full simulation

Model results: k=2

• Phase delay between the 
first 2 Pod modes: low-
dimensional model
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Summary

• Approximate balanced truncation

• Approximates exact balanced truncation to as high accuracy as 
desired, using snapshots from linearized and adjoint simulations

• Computational cost similar to POD, once snapshots computed

• For a given number of modes, transients and frequency response 
much more accurately captured than POD models of same order

• Extension of basic approach to model unstable linear systems

• Feedback controllers designed from these models perform well, 
even on full-order, nonlinear systems

• Extensions to (weakly) nonlinear systems straightforward

• Dynamically scaled POD modes

• For systems with self-similar behavior, dynamic scaling decreases 
number of modes required

• Temporal shear layer dynamics modeled with 4 complex modes, 
including linear growth, saturation, pairing, and viscous diffusion
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Outlook

• Outstanding challenges

• Combining ideas from balanced truncation with results from 
experimental data, where adjoints are not available 

• Systematic approach for highly nonlinear systems (far from 
equilibrium)

• Reduced-order models for messy, turbulent flows.  Low-
dimensional models are, strictly speaking, not possible, but one is 
not interested in all of the details

• New control synthesis tools needed for these classes of nonlinear 
systems?
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