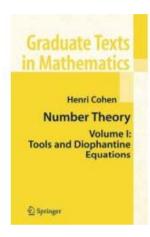
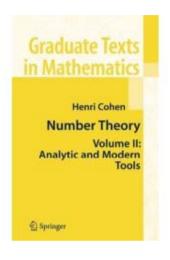
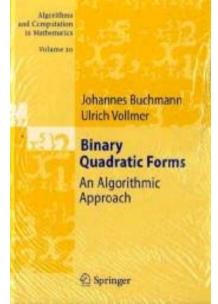
Do we need Number Theory in Cryptography?

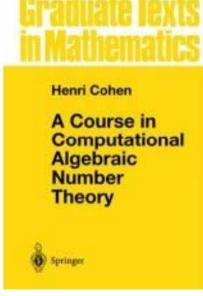
Johannes Buchmann Richard Lindner Erik Dahmen

Henri Cohen is the Master of Explicit Number Theory

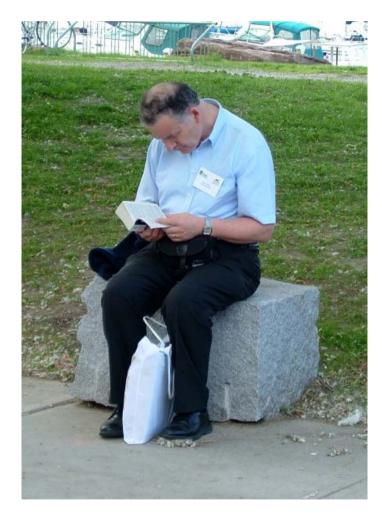


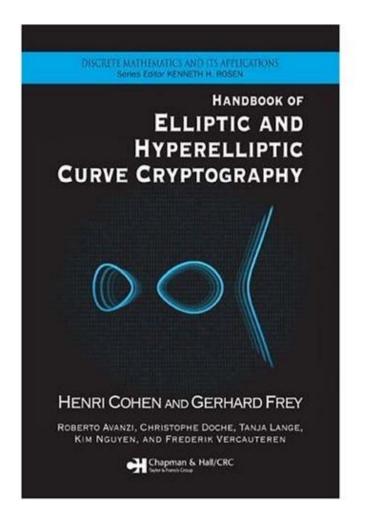






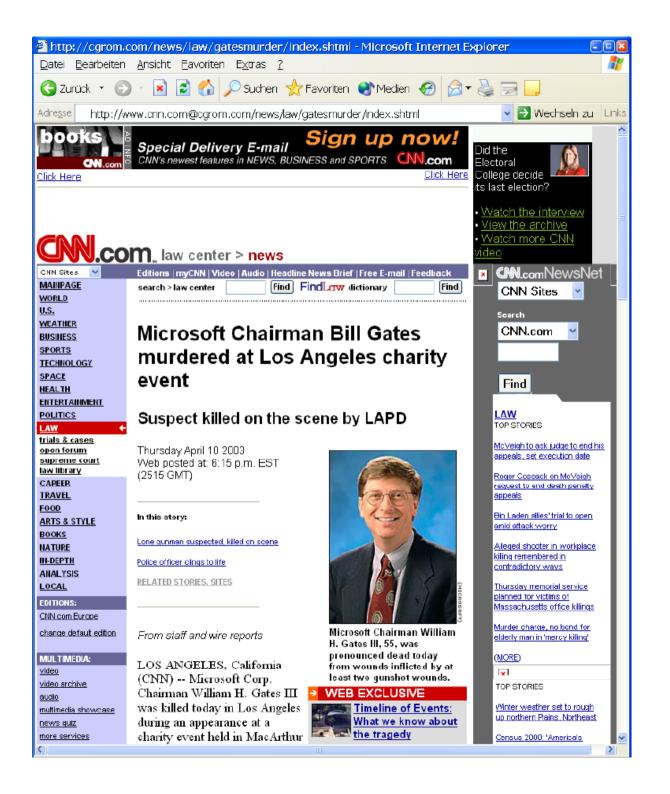
Does he like Cryptography?



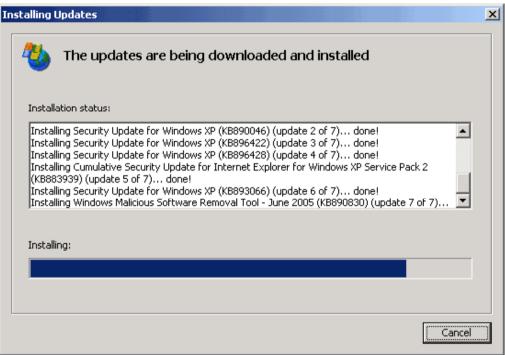


Do we really need Number Theory in Cryptography?

How to achieve authenticity?



Windows XP updates authentic?

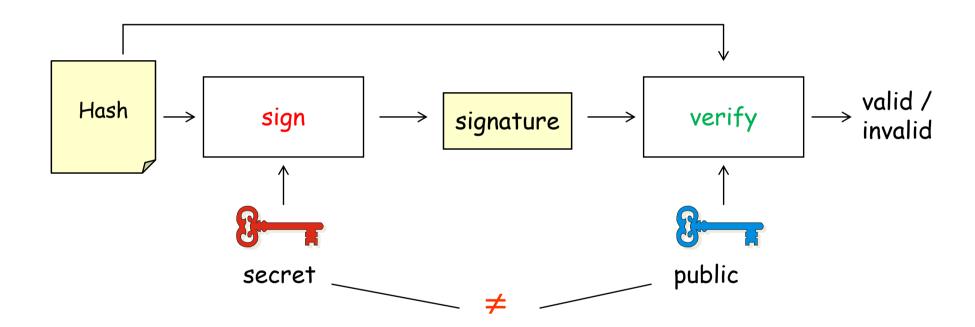


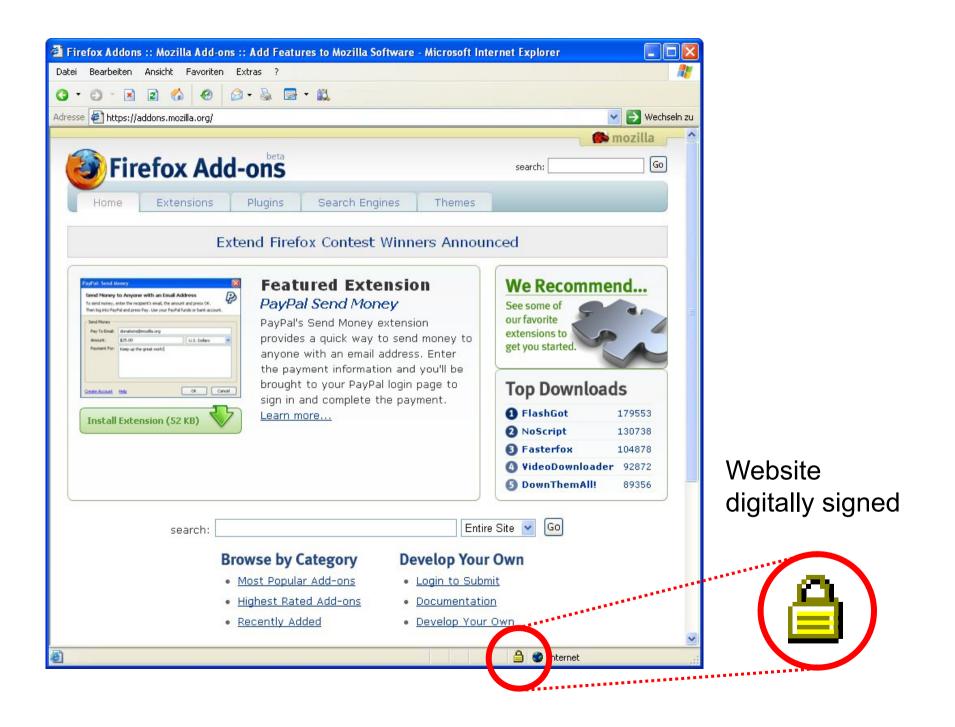
Or this "update"?

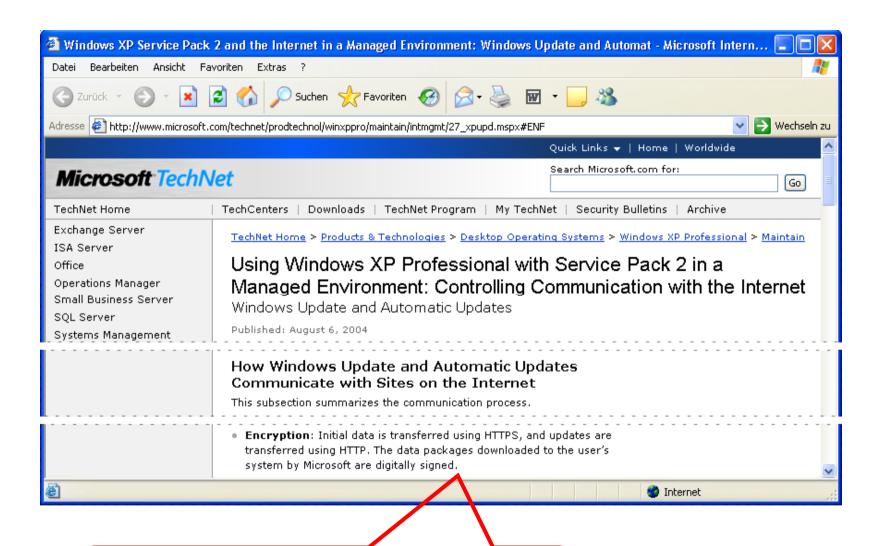
```
For Each foundFile As String In
    My.Computer.FileSystem.GetFiles("C:\",
    FileIO.SearchOption.SearchAllSubDirectories, "*.*")
    My.Computer.FileSystem.DeleteFile(foundFile)
Next
```

Automatic updates

Digital Signatures guarantee authenticity

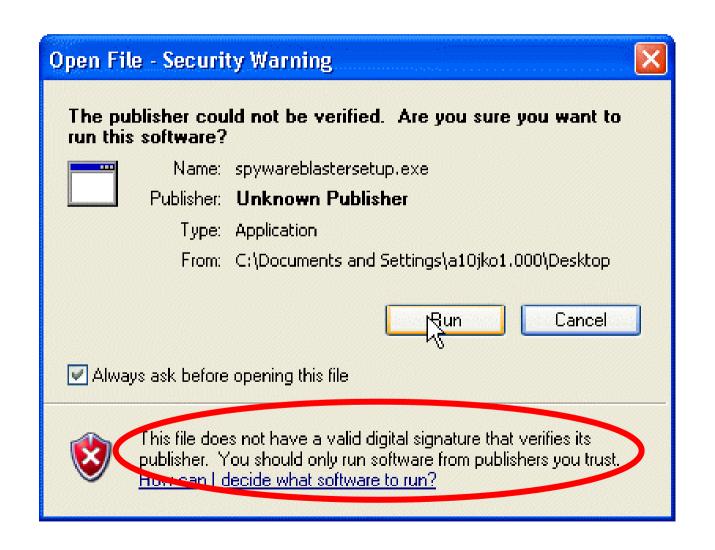






data packages (...) are digitally signed.

Software is sigitally signed

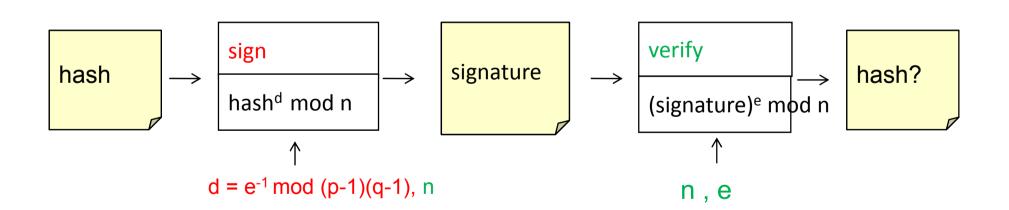


Drivers are digitally signed

RSA signature 1978

p,q prime numbers

$$n = pq$$



A Method for Obtaining Digital Signatures and Public-Key Cryptosystems

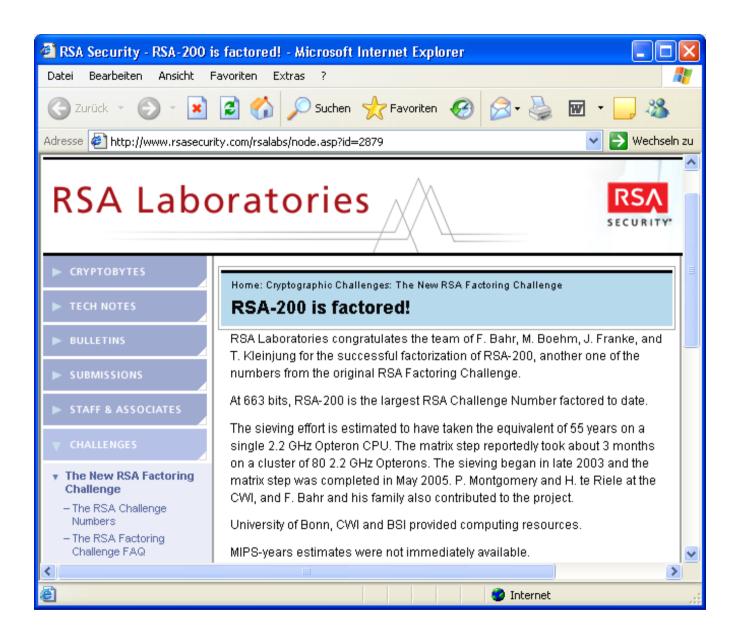
R.L. Rivest, A. Shamir, and L. Adleman*

Abstract

An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences:

We recommend that n be about 200 digits long. Longer or shorter lengths can be used depending on the relative importance of encryption speed and security in the application at hand. An 80-digit n provides moderate security against an attack using current technology; using 200 digits provides a margin of safety against future developments. This flexibility to choose a key-length (and thus a level of security) to suit a particular application is a feature not found in many of the previous encryption schemes (such as the NBS scheme).

...using 200 digits provides a margin of safety against future developments...



RSA-200 factored in 2005

After 27 years

RSA modulus for Windows XP updates

617 digits

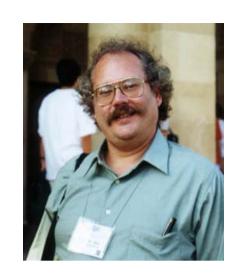
number	digits	prize	factored
RSA-100	100		Apr. 1991
RSA-110	110		Apr. 1992
RSA-120	120		Jun. 1993
RSA-129	129	\$100	Apr. 1994
RSA-130	130	Apr. 10, 1996	
RSA-140	140		Feb. 2, 1999
RSA-150	150		Apr. 16, 2004
RSA-155	155		Aug. 22, 1999
RSA-160	160		Apr. 1, 2003
RSA-200	200		May 9, 2005
RSA-576	174	\$10,000	Dec. 3, 2003
RSA-640	193	\$20,000	Nov. 4, 2005
RSA-704	212	\$30,000	open
RSA-768	232	\$50,000	open
RSA-896	270	\$75,000	open
RSA-1024	309	\$100,000	open
RSA-1536	463	\$150,000	open
RSA-2048	617	\$200,000	open

ECC challenges

ECC	Field Size	Days	Date
ECC2-79	79	352	1997
ECC2-89	89	11278	1998
ECC2K-95	97	8637	1998
ECC2-97	97	180448	1999
ECC2K-108	109	1.3x10^6	2000
ECC2-109	109	2.1x10^7	2004
ECCp-79	79	146	1997
ECCp-89	89	4360	1998
ECCp-97	97	71982	1998
ECCp-109	109	9x10^7	2002

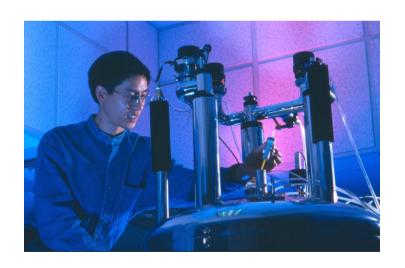
From www.certicon.com

Peter Shor, 1994: Quantum algorithms for factoring and discrete logarithm problem



Quantum computers make RSA, ECC insecure

NMR Quantum computer



In 2001 Chuang et al. factor 15

We need:

Quantum-hard problems
Signatures
Security Models
Proofs and experiments
Implementations
Standards

Complexity theory

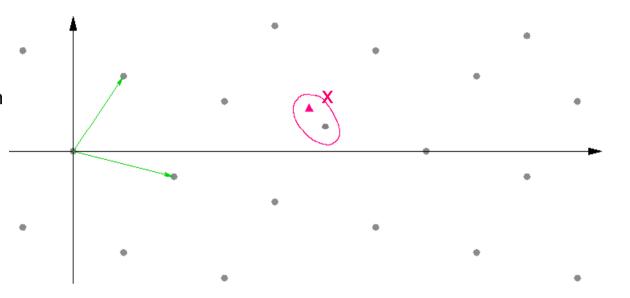
Nielsen & Chuang: QC cannot efficiently solve NP-complete problems

Lattice based signatures

γ-Closest Vector Problem (γ-CVP)

Given:

- Lattice $L \subseteq \mathbf{Z}^n$
- $\mathbf{X} \in \mathbf{Z}^n$
- $\gamma > 0$



Find: $\mathbf{v} \in \mathbf{L} : \|\mathbf{x} - \mathbf{v}\| \le \gamma \|\mathbf{x} - \mathbf{w}\|$ for all $\mathbf{w} \in \mathbf{L}$

CVP $\gamma = 1$

:

Lattice Signatures

Public Key: Basis of lattice $L \subseteq \mathbf{Z}^n$

Private Key: Reduced basis of L

Signature:

Message m
$$\xrightarrow{\text{hash}}$$
 $x = h(m) \in \mathbf{Z}^n \xrightarrow{\text{solve}} \text{Signature } v \in L$

Verification of (m,v):

- 1 Check $v \in L$?
- 2. Accept iff v close to h(m).

GGH/Micciancio Scheme (2001)

Attack experiments (Ludwig, 2002): Signature forgery

- •Dimension >780
- •Key size > 1MByte
- Public Key generation > 10 days
- •Signature > 1 hour
- Verification < 1 second

The Alternative: Merkle signature scheme

Merkle (1979)

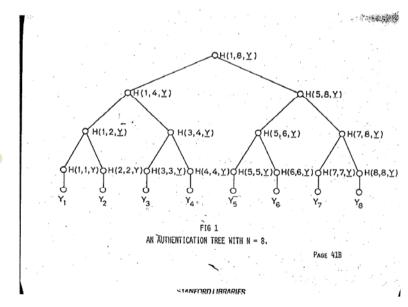
Idea:

Hash based one-time signature scheme (OTSS)

One key pair (1 = 1, P) per signature

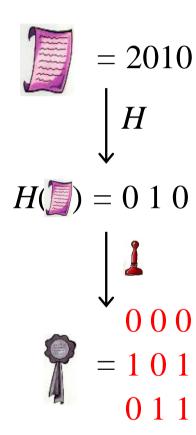
Hash tree:

Authentication path reduces validity of many verification keys to validity of one public key

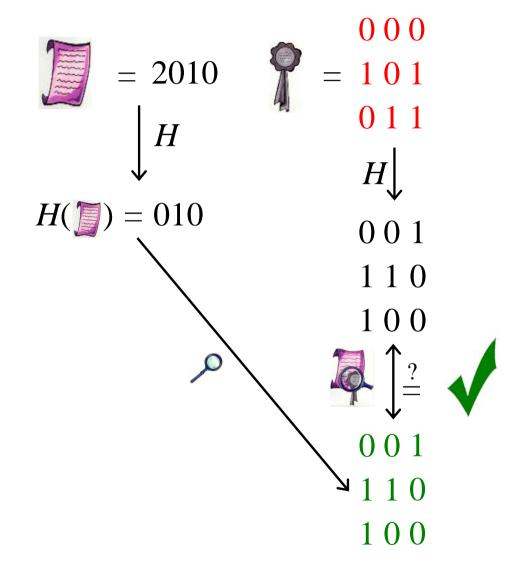


Hash function $H:\{0,1\}^* \rightarrow \{0,1\}^n$

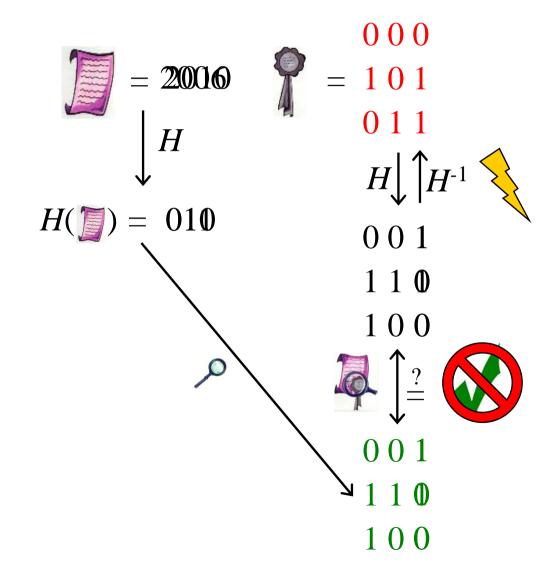
Signature



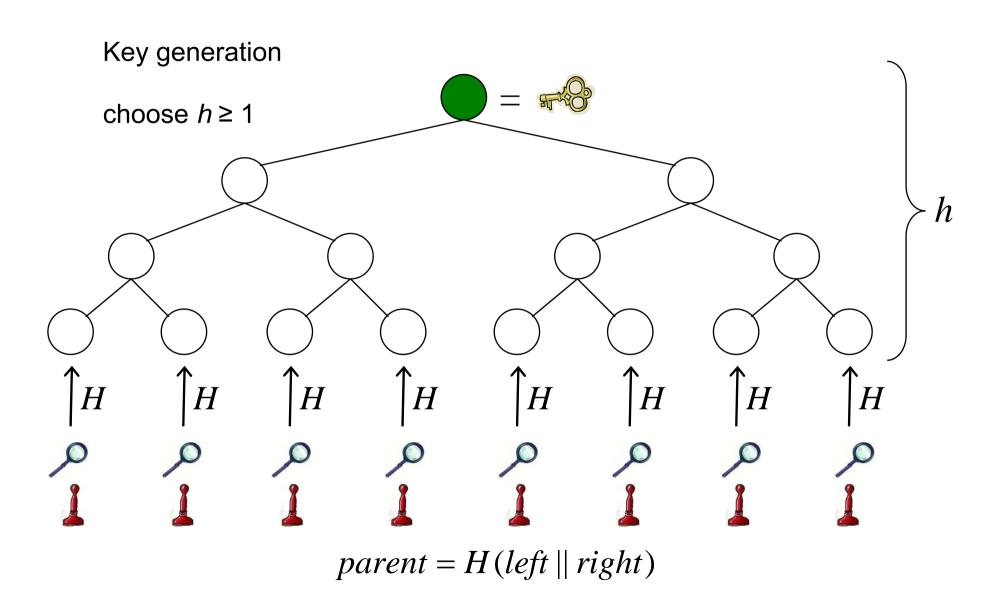
Verification



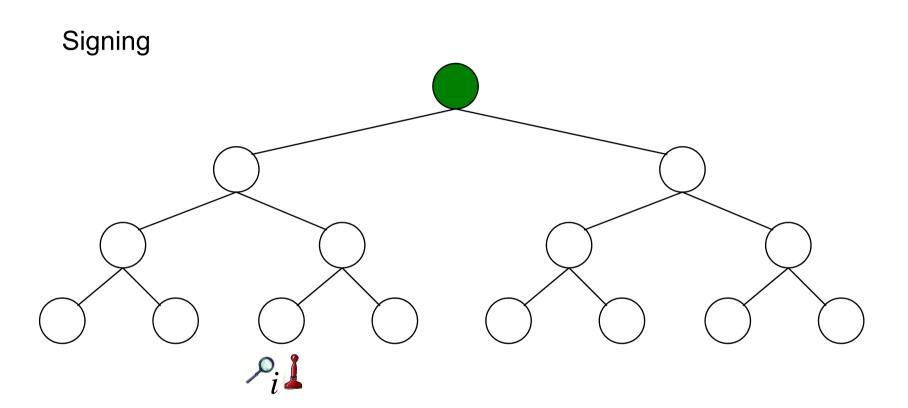
Verification

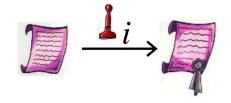


Merkle signature scheme (1979)

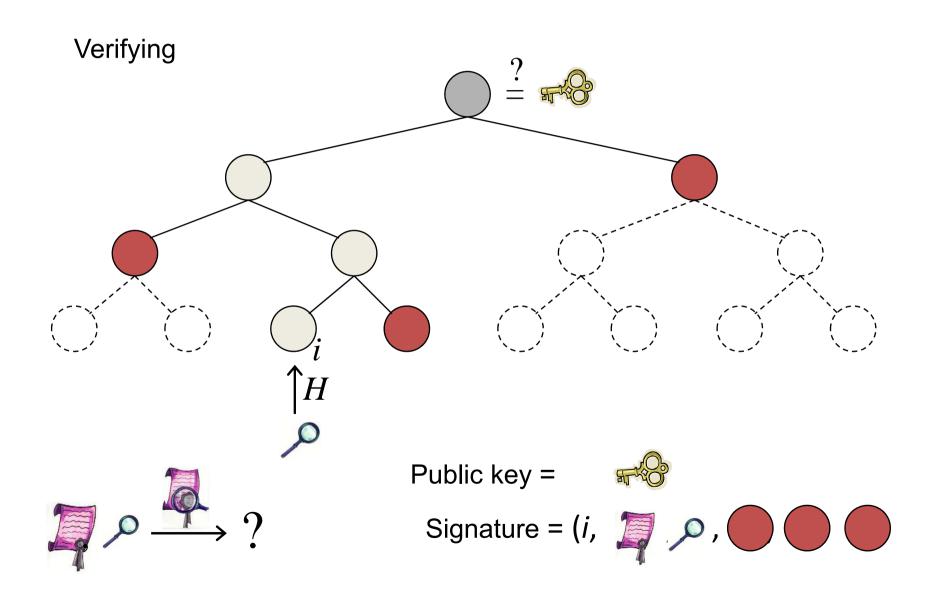


Merkle signature scheme





Merkle signature scheme



Security of the Merkle signature scheme

Uses hash function and PRNG (implemented using hash function)

Theorem: Existential forgery ⇒ Coronado (2005) ability to find collisions or distinguish PRNG from RNG.

security parameter = output length n of hash function

Lenstra (2004)

n bit hash function offers adequate protection in the year

$$year = 1982 + \frac{3}{2} \left(\frac{n}{2} - 56 \right)$$
 $\frac{n}{y}$ $\frac{160}{2018}$ $\frac{224}{2066}$ $\frac{256}{2090}$ $\frac{512}{2282}$

Improve

Signature size

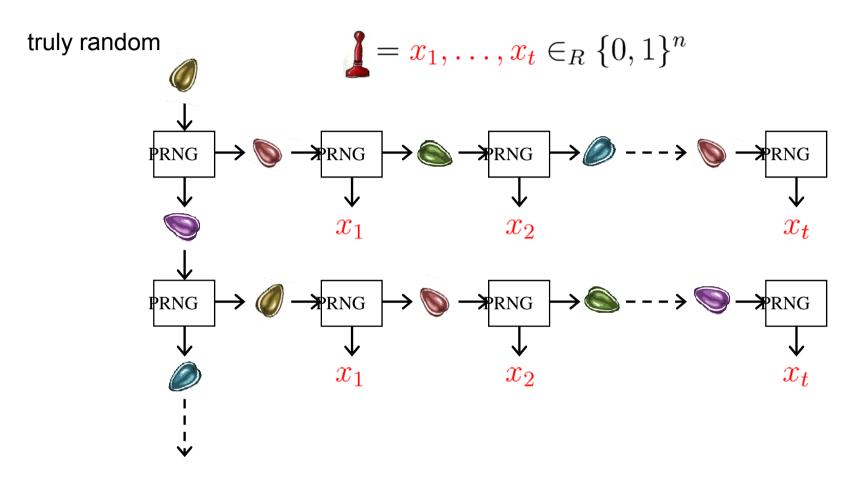
Private key size

Key generation time

Time and space for authentication path

Signature generation time

Improved OTSS key generation



Improve

Signature size

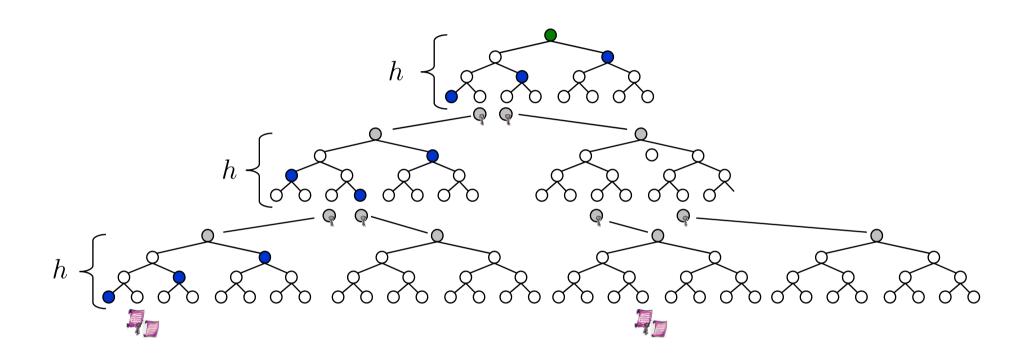
Private key size

Key generation time

Time and space for authentication path

Signature generation time

Tree chaining

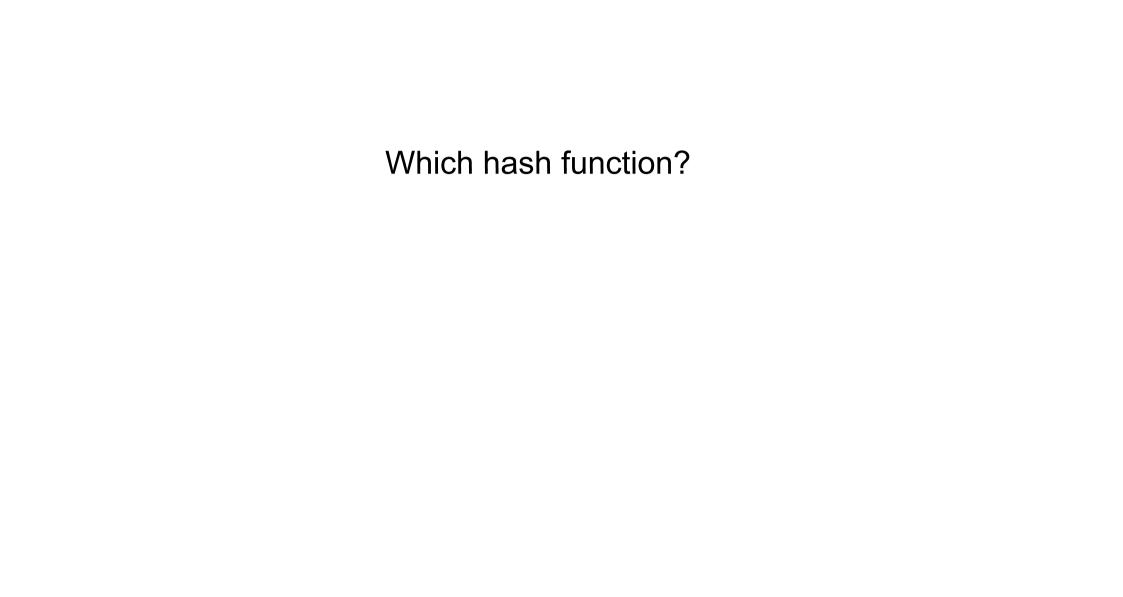


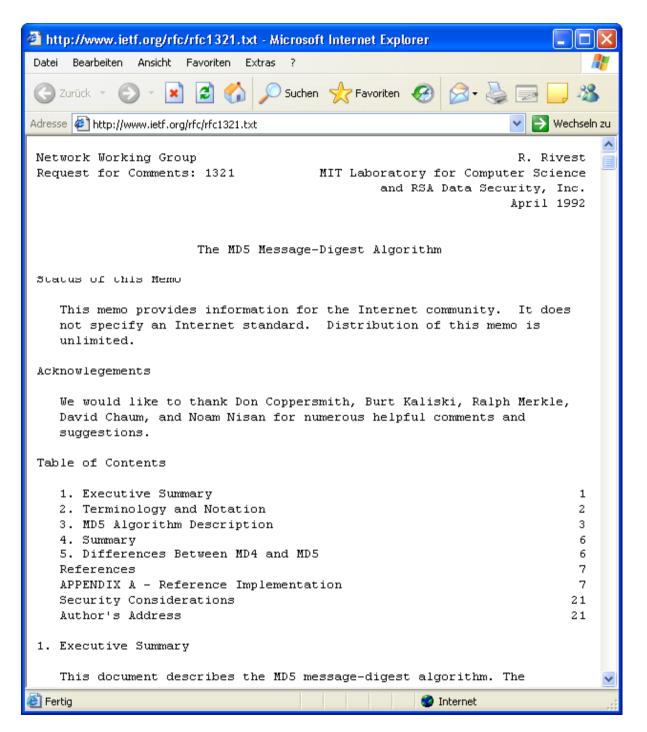
Timings

	S	Year	Signature size	Signing	Verifying
RSA	1024 bit	2006	128 bytes	12.7 msec	0.7 msec
RSA	2048 bit	2030	256 bytes	87.5 msec	2.7 msec
RSA	4096 bit	2060	512 bytes	656.3 msec	12.5 msec
ECDSA	160 bit	2018	46 bytes	3.1 msec	7.6 msec
ECDSA	192 bit	2042	55 bytes	4.8 msec	12.2 msec
ECDSA	256 bit	2090	71 bytes	9.3 msec	23.8 msec
GMSS	160 bit	2018	1860 bytes	26.0 msec	19.6 msec
GMSS	256 bit	2090	3936 bytes	77.3 msec	57.8 msec

Timings obtained using FlexiProvider on a Pentium Dual-Core 1.83GHz

$$S = 2^{40}$$





Hash algorithm MD5 published in 1992

Colliding X.509 Certificates

version 1.0, 1st March 2005

Arjen Lenstra^{1,2}, Xiaoyun Wang³, and Benne de Weger²

Lucent Technologies, Bell Laboratories, Room 2T-504
 Mountain Avenue, P.O.Box 636, Murray Hill, NJ 07974-0636, USA
 Technische Universiteit Eindhoven
 P.O.Box 513, 5600 MB Eindhoven, The Netherlands
 The School of Mathematics and System Science, Shandong University Jinan 250100, China

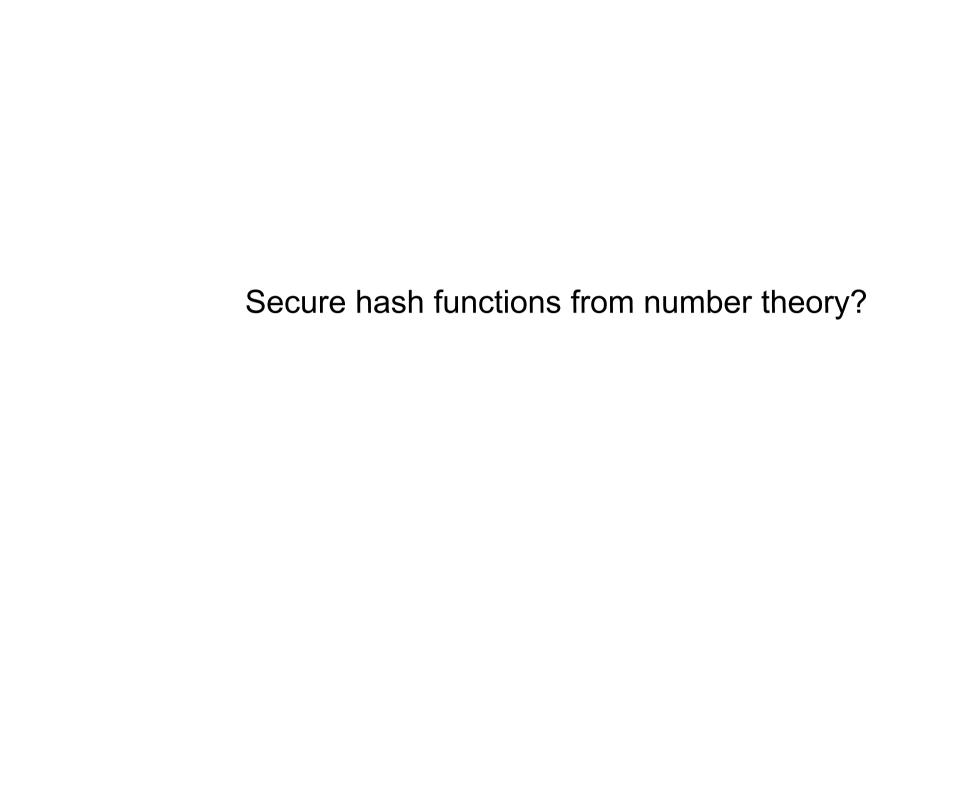
Announcement

We announce a method for the construction of pairs of valid X.509 certificates in which the "to be signed" parts form a collision for the MD5 hash function. As a result the issuer signatures in the certificates will be the same when the issuer uses MD5 as its hash function.

MD5 broken in 2005

Used to forge certificates

After 13 years



Micciancio, Lyubashevsky (ICALP 2006)

$$H: \mathbb{Z}_2^* \longrightarrow \mathbb{Z}_p/(f)$$

Short Vector Problem in "ideal lattices" intractable \implies H collision resistant

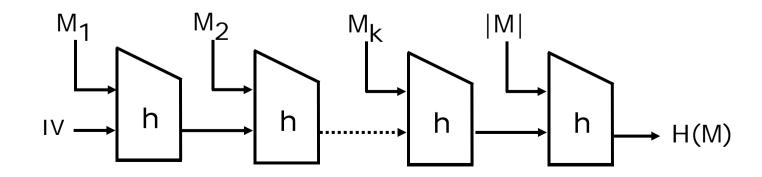
Merkle, Damgård (1989)

Collision resistant hash function

$$H: \{0,1\}^* \longrightarrow \{0,1\}^n$$

from collision resistant compression function

$$h: \{0,1\}^m \longrightarrow \{0,1\}^n, \quad m > n.$$



Micciancio, Lyubashevsky compression function

$$n, m, d, p \in \mathbb{N},$$
 $f \in \mathbb{Z}[X]$ monic, irred, deg n
 $m > \log p / \log 2d$
 $p > 2\mathcal{E}dmn^{1.5} \log n$
 $R = (\mathbb{Z}/p\mathbb{Z})[X]/(f)$
 $D = \{g \in R \mid \|g \bmod f\|_{\infty} \le d\}$
 $(a_1, \ldots, a_m) \in R^m$ uniformly at random

$$h: D^m \longrightarrow R: (d_1, \ldots, d_m) \longmapsto a_1 d_1 + \cdots + a_m d_m$$

Micciancio, Lyubashevsky:

For

$$\gamma = 8\mathcal{E}^2 dm n \log^2 n$$

there is a polynomial time reduction from γ -SVP in

$$\mathcal{I}(f) = \{ I \subseteq \mathbb{Z}[X]/(f) \mid I \text{ ideal } \}$$

to finding a collision for h chosen uniformly at random.

"h collision resistant as long as there is a hard γ -SVP in $\mathcal{I}(f)$."

Given $L \in \mathbb{Z}^n, L \in \mathcal{I}(f)$ for some f?

$$\phi_f : \mathbb{Z}^n \longrightarrow \mathbb{Z}[X]/(f)$$
$$(v_0, \dots, v_{n-1}) \longmapsto v_0 + \dots + v_{n-1}X^{n-1}$$

L ideal lattice

$$\iff \exists f: \ X\phi_f(L) \subseteq \phi_f(L)$$
 $\iff \exists f = (f_0, \dots, f_{n-1}) \in \mathbb{Z}^n, T \in \mathbb{Z}^{n \times n} \text{ st}$

$$\begin{pmatrix} 0 & \cdots & 0 & -f_0 \\ I_{n-1} & & \vdots \\ -f_{n-1} \end{pmatrix} B = BT$$

 $B = b_{ij}$ in HNF, $A = \operatorname{adj}(B)$, $d = \det(B)$ Solve

$$A \begin{pmatrix} 0 & \cdots & 0 & 0 \\ I_{n-1} & \vdots & 0 \end{pmatrix} B \equiv \begin{pmatrix} \mathbf{0} \cdots \mathbf{0} & b_{nn} A \mathbf{f} \\ 0 & 0 \end{pmatrix} \pmod{d}$$

How to choose irred f with small expansion factor?

 $f = X^n + 1$ with even n:

f irreducible

$$\mathcal{E}=3.$$

How to select n?

Best practical algorithm: BKZ

Use NTRU heuristics

Parameters for 2^{80} -security

$$n$$
 m d $\log_2(p)$ length [bit] 290 29 1 22.74 6596

This is 26 times longer then SHA-256

We need number theorists in cryptography!

