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The sum of digits function

Let ¢ € N with ¢ > 2. All n € N can be written uniquely in basis ¢:

n= Z nqu where n;, € {0,...,q — 1}.
k=0

The sum of digits function is defined by:

s(n) = ) ng.

k=0

The sum of digits function has many aspects that have been studied, for instance ergodicity, finite
automata, dynamical systems, number theory.

Mahler introduced this function in the context of harmonic analysis:

Theorem A (Mahler, 1927) For ¢ = 2, the sequence

(; S (—1)5() (_1)8(n+k)>
N>1

n<N

converges for all k € N and its limit is different from zero for infinitely many k's.



Gelfond's paper
The origin of our work is the following result of Gelfond:

Theorem B (Gelfond, 1968) Let m > 2, (m,q — 1) = 1. Then there exists A < 1 such
that for all d € N*, a, r € 7Z,

_ N A
n;N 1_md+O(N ).

n=r mod d
s(n)=a mod m

In the same paper Gelfond pose the following two problems:

Problem A (Gelfond, 1968)

1. Evaluate the number of prime numbers p < x such that sS(p) = a mod m.

2. Evaluate the number of integers n < x such that sS(P(n)) = a mod m, where P is a
suitable polynomial [for example P(n) = n?].



Digits and primes - Historical background

Until recently, very little was known concerning the digits of prime numbers. We can mention a
result of Sierpinski (1959), recently generalized by Wolke (2005) and then by Harman (2006), on
prime numbers with some prescribed digits. Concerning Gelfond's question, no progress was made
in its original form. Let us mention the two following variants:

Theorem C (Fouvry—Mauduit, 1996) For m > 2 with (m,q — 1) = 1, there exists
C(q, m) > O such that for alla € 7Z and x > O,

C
Z 1> (g, m) Z 1.
nea loglog x n<a

n=—p or n=—pip2 n=—p or n=—pip2
s(n)=a mod m

Theorem D (Dartyge—Tenenbaum, 2005) For m > 2 with (m,q— 1) = 1l andr > 2,
there exists C'(q, m,r) > O such that for all a € 7Z and x > 0,

C Y Y
> o1z (. m) > o1
n<a log log x log log log x nea
n=pi...pr n=pi...pr

s(n)=a mod m



Digits and primes - Results
Theorem 1 fora € R such that (g—1)a € R\Z, there exists C'(q, ) > 0 and o4(a) > O,

< O(q,a) xt=oale)

> e(as(p))

PT

where e(t) = exp(2int).

Corollary 1 The sequence (cvS(pn))yn>1 is equidistributed modulo 1 if and only if o € R\ Q
(here (pn)yp>1 denotes the sequence of prime numbers).

Corollary 2 For m > 2 such that (m,q— 1) =1 and a € Z,

> 1~%Zl (x — +00).

psz p<sw
s(p)=a mod m



Sum over prime numbers

We want to estimate a sum of the form

> g(p)

PKT

where the function g detects the property under consideration. A classical process (Vinogradov,
Vaughan, Heath-Brown) remains (using some more technical details), for some 0 < 31 < 1/3
and 1/2 < 85 < 1, to estimate uniformly the sums

Spi= )

mn~ N

for M < 2Pt (type I)

> g(mn)

n~N

where M'N = x (which implies that the “easy” sum over n is long) and for all complex numbers

am, bn with |am| < 1, |bp| < 1 the sums

Srri= > > ambng(mn) for P < M < P2 (type II),
m~M n~N

(which implies that both sums have a significant length).



Sums of type |

For the sums of type | we might expect that the knowledge of the function g permits to get a

satisfactory estimate of the sum

> g(mn).

n~N

Indeed in our case where g(n) = e(as(n)) we were able to adapt successfully arguments from
Fouvry and Mauduit (1996).



Sums of type |l - Smoothing the sums

By Cauchy-Schwarz inequality:
2
SrrlP <M S | Y by e(as(mn))
m~M |n~N
Here, expanding the square and exchanging the summations, we would get a smooth sum over m,
but also two free variables n1 and no. However, we can get a useful control by using van der

Corput’s inequality: for z1,...,2z7 € C and R € N* we have
> L+R-1 I
- T L
2. A S 2 < - g) D E4r7
1<U<L 7| <R 1<U<L
1<l+4r<L

The interest of this inequality is that now we have n1 = n 4 r and no = n so that the size of
n1 — no = r is under control.

Now in fact we can take M = ¢g#, N = ¢¥ and R = qf where u, v and p are integers such
that p/(u + v) is “very small”. It remains to estimate non trivially

> b+ bn > e(as(m(n4+r1r)) —as(mn)).

g’ l<n<q¥ gt~ l<m< gt



Sums of type Il - Truncated sum of digits function

We want to take advantage of the fact that in the difference sS(m(n—+1r)) —s(mn), the product
mr is much smaller that mn. In the example:

p+v
mn = 35116790780999806546523475473462336857643565,

mr = 396576345354568797095646467570,
ptp
we see that in the sum mn—4mr the digits after index .- p may change only by carry propagation.

Proving that the number of pairs (m, n) for which the carry propagation exceeds

A= pu—+2p

is bounded by O(gHTV=P), we can ignore them and replace s(m(n + r)) — s(mn) by
sy(m(n 4+ r)) — s (mn) where S, is the truncated sum of digits function

sa(n) ==Y ny,

k<A

which is periodic of period ¢*.



Sums of type Il - Fourier analysis

The periodicity of Sy enables us to write

> e(asy(m(n+ 1)) - asy(mn))

gt~ l<m< gt

= > > elasy(u)—as\(v)) >

0<u<g? 0<v<g? g L<m<gh

m(n+r)=u mod ¢

mn=v mod q>‘

The orthogonality formula

1 5 e<h€>_{1 if =0 mod ¢*,
5 ) = - by
q O<heq q O if £ 0 mod q*,

leads us to introduce the discrete Fourier transform of u — e(a sy (u)):

) =q¢* Y e (Oé sx(u) — %) ,

O<u<q>‘
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Sums of type |l - Exponential sums

Summing over n and taking absolute values we must show that the quantity

> Y B ERER X 3 e(hm(n‘l'T)\)-l—kmn)

0<h<g* 0<k<g> g~ l<n<g” |gt~1<m< gt d

is estimated by O(gttv—r).

Here we observe that the summations over m (geometric sum !) and n can be handled by classical
arguments from analytic number theory, while we hope that the digital structure hidden in F'y will

produce a huge saving.

For instance for ¢ = 2 we have

A h
Ex(h)| = ]] ‘COSW (a— 5)|
i=1

11



Heuristic end of the proof

On average, for fixed (h, k), the geometric sum over m is small so that the sum over n should
be O(q’/"—g). Hence after many technical steps to handle the exceptions, we will need to get the

crucial upper bound
> ()| =0 (q"*)  with g < 1/2,
0<h<qg?

which means that we need an upper bound sharper than the square root of the trivial estimate.

Indeed suppose this has been done, then we get

NSNS = 0(gPer e,

h k n m
and since A = u + 2p, we have

2ngAt+v+e<pu+v—p

for u, v large enough.
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Digits and squares - Historical background

Until recently, very little was known concerning the digits of squares. We can mention a result of
Davenport and Erd6s (1952), later improved by Peter (2002).

Theorem E (Consequence of Davenport-Erdos, 1952)

Y sq(n®) ~ (- 1)@

nlx

log x
log ¢

(z — 400).

Erdos considered that passing from such a mean result to a local result like the question of Gelfond
“hopelessly difficult”

Concerning Gelfond's question, Dartyge and Tenenbaum (2005) obtained a positive density:

Theorem F (Dartyge-Tenenbaum, 2005) For m > 2 such that (m,q — 1) = 1, there
exists C'(q,m) > 0 and xg(q,m) > 1 such that for all a € 7 and x > xq(q, m), we have

> 1>C(q,m) .
n{x
s(n?)=a mod m
13



Digits and squares - Results
Theorem 2 Fora € R such that (¢—1)a € R\Z, there exists C(q, ) > 0 and o¢(a) > O,

< C(q, ) pl=oa(a)

> e(as(n?))

n<x

Corollary 3 The sequence (« S(nz))n>1 is equidistributed modulo 1 if and only if o € R\ Q.

Corollary 4 For m > 2 such that (m,q— 1) =1 and a € Z,

> 1~ = (x — +00).
n<x m
s(n?)=a mod m
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Truncated sum of digits function

By van der Corput’s inequality
2

<grP Ny
7| <gP

3N e(as((n4+1)?) —as(n?))]|.

n~qY

> e(as(n?®))

n~qY

We want to take advantage of the fact that in the difference s((n + 7)2) — s(n?), the term
2nr + 72 is much smaller that n2. In the example:

2v
n? =9075461073765584733800825634333185366925758 146624,

Dnr 4+ r2 = 392622225442215253180729708185,
v+p+1

we see that in the sum n2 + 2nr + 72 the digits after index v 4 p+ 1 may change only by carry
propagation. The number of integers n for which the carry propagation exceeds A (= v+2p+1
is bounded by O(g” "), we can ignore them and replace the difference s((n+r)2) —s(n?) by

s\((n 4+ 1)2) — sy(n?) where s) is the truncated sum of digits function Sy (n) := > ny,
k<A

which is periodic of period ¢*. s



Heuristic considerations

It remains to estimate
2 2
Z e(as((n+1)°) —asy(n“)).
n~q¥?
The natural approach as for the primes would be to introduce again the discrete Fourier transform

F'y and show the estimate

= 0(¢"™").

(h(n +r)2 + kn2>
e qA

> Y RMmEER]] Y

0<h<g? 0<k<g? g~ l<n<q”

Rememberthat > |F)\(h)| = O(q"%) and the quadratic Gauss sum is usually O(\ ¢/2).
0<h<g?
From 214 + % < 1 we realize that we need 14 < 1/4, which is not true for g small.

Conclusion: this method would give at most a partial result.
16



Variant of van der Corput

Lemma 1l Forzqy,...,z; € C andintegersk > 1, S > 1 we have

L+ (S—1)k o
< (S ) > (1—%> > ZetskEr

|s|<S 1<l<L
1<l+sk<L

2
>

1<4<LL

We apply this inequality with S = ¢2° and k = ¢* with u = v — 2p — 1. It remains to
estimate non trivially

S efa(sy((n+r+ 50" —sy((n+1)2) = s\ ((n + 5¢")?) +5,(n?))) .
n~qY
When we add sg* the digits of index below p are not modified. Hence we may replace sy (n) by

sua(n) = sy(n) —su(m) = 3 m

P<J <A

In conclusion we have eliminated all the digits except a small interval of them: those between

u=v—2p—land A =v+2p+ 1. -



Fourier analysis

We introduce the discrete Fourier transform of u — e(as,, y(u)):

Foa(h)y=q¢* Y e <a Sua(u) — Z—?Q :

o0<u<g?

We need to estimate

> Fy \(h1) Fyu\(—h2) Fy A (h3) Fy A(—ha)| G(h1,h2,h3, ha)
0<h1,h2,h3,ha<g

where G(h1, ho, h3, ha) is the quadratic Gauss sum

G(h’17 h27 h37 h4) —

T e (hl(n +r 4 5¢")% 4+ ha(n 4 1)% 4 ha(n + sq)? + hgn?

o
nel(v,s,un)

|
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Heuristic end of the proof

X
On average, for fixed (h1, ho, h3, ha), the quadratic Gauss sum should be O(Ag2). Considering

the crude estimate

> |[Fua(®)| =0 ¢ ") = O(ug™)
0<h<qg?

we observe that

Y 2p+1
§+4p:’/+ 2”"' +4p<v—2p

for p small enough, so there is some hope.

However, big technical problems occur from degenerate cases (e.g. h1 + ho + hz + hg = 0)

for which the quadratic Gauss sum are huge, but we have an additional condition.
The divisor of g also play a role.

Fortunately we could handle all these technical problems, and prove the result.
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