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Joël RIVAT

work in collaboration with

Christian MAUDUIT
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The sum of digits function

Let q ∈ N with q > 2. All n ∈ N can be written uniquely in basis q:

n =
∑
k>0

nkq
k where nk ∈ {0, . . . , q − 1}.

The sum of digits function is defined by:

s(n) =
∑
k>0

nk.

The sum of digits function has many aspects that have been studied, for instance ergodicity, finite
automata, dynamical systems, number theory.

Mahler introduced this function in the context of harmonic analysis:

Theorem A (Mahler, 1927) For q = 2, the sequence 1

N

∑
n<N

(−1)s(n) (−1)s(n+k)


N>1

converges for all k ∈ N and its limit is different from zero for infinitely many k’s.
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Gelfond’s paper

The origin of our work is the following result of Gelfond:

Theorem B (Gelfond, 1968) Let m > 2, (m, q − 1) = 1. Then there exists λ < 1 such
that for all d ∈ N∗, a, r ∈ Z, ∑

n<N
n≡r mod d

s(n)≡a mod m

1 =
N

md
+O(Nλ).

In the same paper Gelfond pose the following two problems:

Problem A (Gelfond, 1968)

1. Evaluate the number of prime numbers p 6 x such that s(p) ≡ a mod m.

2. Evaluate the number of integers n 6 x such that s(P (n)) ≡ a mod m, where P is a
suitable polynomial [for example P (n) = n2].
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Digits and primes - Historical background

Until recently, very little was known concerning the digits of prime numbers. We can mention a
result of Sierpiński (1959), recently generalized by Wolke (2005) and then by Harman (2006), on
prime numbers with some prescribed digits. Concerning Gelfond’s question, no progress was made
in its original form. Let us mention the two following variants:

Theorem C (Fouvry–Mauduit, 1996) For m > 2 with (m, q − 1) = 1, there exists
C(q,m) > 0 such that for all a ∈ Z and x > 0,∑

n6x
n=p or n=p1p2
s(n)≡a mod m

1 >
C(q,m)

log logx

∑
n6x

n=p or n=p1p2

1.

Theorem D (Dartyge–Tenenbaum, 2005) For m > 2 with (m, q − 1) = 1 and r > 2,
there exists C(q,m, r) > 0 such that for all a ∈ Z and x > 0,∑

n6x
n=p1...pr

s(n)≡a mod m

1 >
C(q,m, r)

log logx log log logx

∑
n6x

n=p1...pr

1.
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Digits and primes - Results

Theorem 1 For α ∈ R such that (q−1)α ∈ R\Z, there existsC(q, α) > 0 and σq(α) > 0,∣∣∣∣∣∣
∑
p6x

e(α s(p))

∣∣∣∣∣∣ 6 C(q, α) x1−σq(α)

where e(t) = exp(2iπt).

Corollary 1 The sequence (α s(pn))n>1 is equidistributed modulo 1 if and only if α ∈ R \Q
(here (pn)n>1 denotes the sequence of prime numbers).

Corollary 2 For m > 2 such that (m, q − 1) = 1 and a ∈ Z,∑
p6x

s(p)≡a mod m

1 ∼
1

m

∑
p6x

1 (x→ +∞).
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Sum over prime numbers

We want to estimate a sum of the form ∑
p6x

g(p)

where the function g detects the property under consideration. A classical process (Vinogradov,

Vaughan, Heath-Brown) remains (using some more technical details), for some 0 < β1 < 1/3

and 1/2 < β2 < 1, to estimate uniformly the sums

SI :=
∑
m∼M

∣∣∣∣∣∣
∑
n∼N

g(mn)

∣∣∣∣∣∣ for M 6 xβ1 (type I)

where MN = x (which implies that the“easy” sum over n is long) and for all complex numbers

am, bn with |am| 6 1, |bn| 6 1 the sums

SII :=
∑
m∼M

∑
n∼N

ambn g(mn) for xβ1 < M 6 xβ2 (type II),

(which implies that both sums have a significant length).
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Sums of type I

For the sums of type I we might expect that the knowledge of the function g permits to get a

satisfactory estimate of the sum ∑
n∼N

g(mn).

Indeed in our case where g(n) = e(α s(n)) we were able to adapt successfully arguments from

Fouvry and Mauduit (1996).
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Sums of type II - Smoothing the sums

By Cauchy-Schwarz inequality:

|SII |2 6 M
∑
m∼M

∣∣∣∣∣∣
∑
n∼N

bn e(α s(mn))

∣∣∣∣∣∣
2

.

Here, expanding the square and exchanging the summations, we would get a smooth sum over m,
but also two free variables n1 and n2. However, we can get a useful control by using van der
Corput’s inequality: for z1, . . . , zL ∈ C and R ∈ N∗ we have∣∣∣∣∣∣

∑
16`6L

z`

∣∣∣∣∣∣
2

6
L+R− 1

R

∑
|r|<R

(
1−
|r|
R

) ∑
16`6L

16`+r6L

z`+rz`.

The interest of this inequality is that now we have n1 = n+ r and n2 = n so that the size of
n1 − n2 = r is under control.

Now in fact we can take M = qµ, N = qν and R = qρ where µ, ν and ρ are integers such
that ρ/(µ+ ν) is “very small”. It remains to estimate non trivially∑

qν−1<n6qν
bn+r bn

∑
qµ−1<m6qµ

e(α s(m(n+ r))− α s(mn)).
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Sums of type II - Truncated sum of digits function

We want to take advantage of the fact that in the difference s(m(n+r))−s(mn), the product

mr is much smaller that mn. In the example:

mn =
µ+ν︷ ︸︸ ︷

35116790780999806546523475473462336857643565,

mr = 396576345354568797095646467570︸ ︷︷ ︸
µ+ρ

,

we see that in the summn+mr the digits after index µ+ρmay change only by carry propagation.

Proving that the number of pairs (m,n) for which the carry propagation exceeds

λ := µ+ 2ρ

is bounded by O(qµ+ν−ρ), we can ignore them and replace s(m(n + r)) − s(mn) by

sλ(m(n+ r))− sλ(mn) where sλ is the truncated sum of digits function

sλ(n) :=
∑
k<λ

nk,

which is periodic of period qλ.
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Sums of type II - Fourier analysis

The periodicity of sλ enables us to write∑
qµ−1<m6qµ

e(α sλ(m(n+ r))− α sλ(mn))

=
∑

06u<qλ

∑
06v<qλ

e(α sλ(u)− α sλ(v))
∑

qµ−1<m6qµ

m(n+r)≡u mod qλ

mn≡v mod qλ

1.

The orthogonality formula

1

qλ

∑
06h<qλ

e

(
h`

qλ

)
=

{
1 if ` ≡ 0 mod qλ,
0 if ` 6≡ 0 mod qλ,

leads us to introduce the discrete Fourier transform of u 7→ e(α sλ(u)):

Fλ(h) = q−λ
∑

06u<qλ
e

(
α sλ(u)−

hu

qλ

)
,
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Sums of type II - Exponential sums

Summing over n and taking absolute values we must show that the quantity

∑
06h<qλ

∑
06k<qλ

∣∣∣Fλ(h) Fλ(−k)∣∣∣ ∑
qν−1<n6qν

∣∣∣∣∣∣∣
∑

qµ−1<m6qµ
e

(
hm(n+ r) + kmn

qλ

)∣∣∣∣∣∣∣
is estimated by O(qµ+ν−ρ).

Here we observe that the summations over m (geometric sum !) and n can be handled by classical

arguments from analytic number theory, while we hope that the digital structure hidden in Fλ will

produce a huge saving.

For instance for q = 2 we have

|Fλ(h)| =
λ∏
i=1

∣∣∣∣cosπ
(
α−

h

2i

)∣∣∣∣ .
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Heuristic end of the proof

On average, for fixed (h, k), the geometric sum over m is small so that the sum over n should

be O(qν+ε). Hence after many technical steps to handle the exceptions, we will need to get the

crucial upper bound ∑
06h<qλ

|Fλ(h)| = O
(
qηqλ

)
with ηq < 1/2,

which means that we need an upper bound sharper than the square root of the trivial estimate.

Indeed suppose this has been done, then we get∑
h

∑
k

∑
n

∑
m
· · · = O(q2ηqλ+ν+ε),

and since λ = µ+ 2ρ, we have

2ηqλ+ ν + ε 6 µ+ ν − ρ

for µ, ν large enough.

12



Digits and squares - Historical background

Until recently, very little was known concerning the digits of squares. We can mention a result of
Davenport and Erdős (1952), later improved by Peter (2002).

Theorem E (Consequence of Davenport-Erdős, 1952)∑
n6x

sq(n
2) ∼ (q − 1) x

logx

log q
(x→ +∞).

Erdős considered that passing from such a mean result to a local result like the question of Gelfond
“hopelessly difficult”.

Concerning Gelfond’s question, Dartyge and Tenenbaum (2005) obtained a positive density:

Theorem F (Dartyge-Tenenbaum, 2005) For m > 2 such that (m, q − 1) = 1, there
exists C(q,m) > 0 and x0(q,m) > 1 such that for all a ∈ Z and x > x0(q,m), we have∑

n6x
s(n2)≡a mod m

1 > C(q,m) x.
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Digits and squares - Results

Theorem 2 For α ∈ R such that (q−1)α ∈ R\Z, there existsC(q, α) > 0 and σq(α) > 0,∣∣∣∣∣∣
∑
n6x

e(α s(n2))

∣∣∣∣∣∣ 6 C(q, α) x1−σq(α).

Corollary 3 The sequence (α s(n2))n>1 is equidistributed modulo 1 if and only if α ∈ R\Q.

Corollary 4 For m > 2 such that (m, q − 1) = 1 and a ∈ Z,∑
n6x

s(n2)≡a mod m

1 ∼
x

m
(x→ +∞).
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Truncated sum of digits function

By van der Corput’s inequality∣∣∣∣∣∣
∑
n∼qν

e(α s(n2))

∣∣∣∣∣∣
2

6 qν−ρ
∑
|r|<qρ

∣∣∣∣∣∣
∑
n∼qν

e(α s((n+ r)2)− α s(n2))

∣∣∣∣∣∣ .

We want to take advantage of the fact that in the difference s((n+ r)2) − s(n2), the term

2nr+ r2 is much smaller that n2. In the example:

n2 =
2ν︷ ︸︸ ︷

975461073765584733800825634333185366925758146624,

2nr+ r2 = 392622225442215253180729708185︸ ︷︷ ︸
ν+ρ+1

,

we see that in the sum n2+2nr+r2 the digits after index ν+ρ+1 may change only by carry

propagation. The number of integers n for which the carry propagation exceeds λ := ν+2ρ+1
is bounded by O(qν−ρ), we can ignore them and replace the difference s((n+r)2)−s(n2) by

sλ((n+ r)2)− sλ(n
2) where sλ is the truncated sum of digits function sλ(n) :=

∑
k<λ

nk,

which is periodic of period qλ.
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Heuristic considerations

It remains to estimate ∑
n∼qν

e(α sλ((n+ r)2)− α sλ(n
2)).

The natural approach as for the primes would be to introduce again the discrete Fourier transform

Fλ and show the estimate

∑
06h<qλ

∑
06k<qλ

∣∣∣Fλ(h) Fλ(−k)∣∣∣
∣∣∣∣∣∣∣

∑
qν−1<n6qν

e

(
h(n+ r)2 + kn2

qλ

)∣∣∣∣∣∣∣ = O(qν−ρ).

Remember that
∑

06h<qλ
|Fλ(h)| = O(qηqλ) and the quadratic Gauss sum is usuallyO(λ qλ/2).

From 2ηq + 1
2 < 1 we realize that we need ηq < 1/4, which is not true for q small.

Conclusion: this method would give at most a partial result.
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Variant of van der Corput

Lemma 1 For z1, . . . , zL ∈ C and integers k > 1, S > 1 we have∣∣∣∣∣∣
∑

16`6L
z`

∣∣∣∣∣∣
2

6
L+ (S − 1)k

S

∑
|s|<S

(
1−
|s|
S

) ∑
16`6L

16`+sk6L

z`+skz`.

We apply this inequality with S = q2ρ and k = qµ with µ = ν − 2ρ − 1. It remains to

estimate non trivially∑
n∼qν

e
(
α
(
sλ((n+ r+ sqµ)2)− sλ((n+ r)2)− sλ((n+ sqµ)2) + sλ(n

2)
))
.

When we add sqµ the digits of index below µ are not modified. Hence we may replace sλ(n) by

sµ,λ(n) = sλ(n)− sµ(n) =
∑

µ6j<λ
nj

In conclusion we have eliminated all the digits except a small interval of them: those between

µ = ν − 2ρ− 1 and λ = ν + 2ρ+ 1.
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Fourier analysis

We introduce the discrete Fourier transform of u 7→ e(α sµ,λ(u)):

Fµ,λ(h) = q−λ
∑

06u<qλ
e

(
α sµ,λ(u)−

hu

qλ

)
.

We need to estimate∑
06h1,h2,h3,h4<qλ

∣∣∣Fµ,λ(h1)Fµ,λ(−h2)Fµ,λ(h3)Fµ,λ(−h4)
∣∣∣ G(h1, h2, h3, h4)

where G(h1, h2, h3, h4) is the quadratic Gauss sum

G(h1, h2, h3, h4) =∑
n∈I(ν,s,µ)

e

(
h1(n+ r+ sqµ)2 + h2(n+ r)2 + h3(n+ sqµ)2 + h4n

2

qλ

)
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Heuristic end of the proof

On average, for fixed (h1, h2, h3, h4), the quadratic Gauss sum should be O(λq
λ
2). Considering

the crude estimate ∑
06h<qλ

∣∣∣Fµ,λ(h)∣∣∣ = O(µ qλ−µ) = O(µq4ρ)

we observe that

λ

2
+ 4ρ =

ν + 2ρ+ 1

2
+ 4ρ < ν − 2ρ

for ρ small enough, so there is some hope.

However, big technical problems occur from degenerate cases (e.g. h1 + h2 + h3 + h4 = 0)

for which the quadratic Gauss sum are huge, but we have an additional condition.

The divisor of q also play a rôle.

Fortunately we could handle all these technical problems, and prove the result.
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