Institut de
athématiques de
Bordeaux

The Distributed Debugging Tool (DDT)

13 février 2015

Khodor KHADRA, Ingénieur de Recherche Calcul Scientifique

mailto:Khodor.Khadra@math.u-bordeaux.fr

Frequent errors
when executing a program

® A program crash

® Frequently a signal : segmentation fault, stack overflow, floating point
exception, illegal instruction, ...

@ Variety of causes : accessing memory out of range, infinite recursion,
division by zero, overwritten stack, ...

@ |ncorrect results

® Many causes — no magic solutions : original dataset error, communication
or synchronization problem, badlogic, beyond bound memory access or
unexpected access, ...

@ |ntuition and brainpower required

@ A deadlock or no progress

@ Application fails to terminate: infinite loops, deadlock (message
ordering/matching issue, disagreement on collective MPI calls), ...

2

Why using a debugging tool ?

® Printing variables inside the source code until the errors are detected costs a
lot ;

@ Using a debugging software allows :
® To visualize the variables during execution

* The knowledge of all the subprograms on which lines there is a problem

® The use of breakpoints between specific lines to determine the region
where there is a problem

@ Consequently to detect and correct the errors more easily

Compiling a code before debugging

» As always, when compiling the program that you wish to
debug, you must add the debug flag to your compile
command. For the most compilers this is -g.

° |t is also advisable to turn off compiler optimizations as these
can make debugging appear strange and unpredictable.

» NB : before executing the program, one can increase the size
of the stack in order to analyze the segmentation errors :
ulimit -s unlimited

Previous steps before using DDT

@ Connecting to PLAFRIM:

ssh -X mygale
gsub -IX -qgclustername -Inodes=2:ppn=8 -lwalltime=08:00:00

(if you do not use the -q option, you work on the nodes called fourmi)

@ |oading the compiler and MPI libraries:

module add meta/intel-impi

@ Compiling the source code:

mpif90 -g -o exec file.f90

mpicc -g -0 exec file.c

@ Executing the program:
Jexec (sequential)
mpirun -np number_of processes ./exec (parallel)

One notices that there is a problem while executing

Configuration

DDT Configuration Wizard (sur mirabelle01.2)

? DDT has a _Con_flgurat!on Welcome to the DDT Configuration Wizard
leard to help Slmpllfy Settlng This wizard will take you through the steps required to

up DDT and choosing the it B0y =i
correct options to start your o B
programs. The first time you
run DDT after installing it you
will see that wizard

" Import an existing configuration file

@ Then click on Next and follow
the simple instructions

Configuration

e After the welcome page you will see
the MPI Implementation page.

@ DDT will attempt to auto-detect and
highlight your MPI implementation in
the list, if this is not successful, select
your MP| implementation manually.

@ Once you have chosen or accepted
an MPI Implementation, click on Next.

DDT Configuration Wizard (sur mirabelle01.2)

MPI/UPC Implementation

Flease select your MPI/UPC imple me ntation from the box below (or select "Mone® if
you do not wish to use MP|ar UPC with DOT).

If you do not know which MPIUPC imple mentation you are using select the "Generic*
option, which should work for most imple me ntations.

Iintel-mpi j

Cancel |

Configuration

@ The Job Scheduling page asks if Job Scheduling

yOU Want tO Su bmit yOU r jObS Do you want to configure DDT to submit jobs I.IJSir'Ig aljob scheduleror gqueue?
US|ng a JOb SCheduler Or queue (Loadleveler, Portable Batch System, Sun Grid Engine, ete.)

" Configure submission of jobs through a job scheduler
" Skip this step

See section 2.3 Integrating DOT With Queuing Systems of the user guide for details.

@ |f you are using a job scheduler
such as LoadLeveler, Portable
Batch System or Sun Grid Engine
select the Submit through a job
scheduler option, otherwise skip
this step.

< Back Mext = Cancel

Configuration

@ Side Wide Configuration Site Wide Configuration

Do you want to see instructions for creating a site wide configuration for all users?

" See instructions for site wide configuration

@ You can skip this step.

< Back MNext = Cancel

10

Configuration

» The final congratulatory page Congratulations

ContalnS IlnkS to Other Optlonal You are now ready to start debugging with DDT!

Optienal Configuration

cc_)nfiguration settings. You can Setun Fomote Altachine
click on one of the hyperlinks to Launch Jobs Femotely
open the relevant options page or e
help file.

@ Click on Finish to save these
settings to the configuration file

< Back Finish Cancel

11

Recomendations of how working with

STEP 1:

Debugging without MPI, in a
sequential mode, as much as you
can all the errors which are not
provided by MPI instructions.

@ On your xterm:

Jexec
Notice the kind of error

@ Open DDT without MPI. DDT
perfoms its debugging from the
“program main” until the “end
program main’

@ Correct in the source code, re-
compile and re-execute

DDT

STEP 2:

Debugging with MPI, in a parallel mode, by
choosing the number of processes.

On your xterm:

mpirun -np number_of processes ./exec
Notice the kind of error

Open DDT with MPI. DDT perfoms its
debugging between the MPI INITialization
instructions and the MPI_FINALIZE
instruction.

Correct in the source code, re-compile and
re-execute
12

Starting DDT

@ Once DDT has started it will display the Welcome Screen.

Session Control Search View Help

| = VO ROELEEIEE ! O-)

JJCurlentGluup:l vIFn:uc:usanc:urmnt: {* Group Process) Thread ||_ Step Threads Together |

Create Group
ProjectFiles & X Locals CurrentLine(s) | Current Stack |
Search (Ctrl+K) Current Line(s) & X
= ProjectFiles |
[& Source Tree
5 Teader':i.'es_lj DDT - Welcome (sur bonobo004)
j - What would you like to da?

Inpu... | Bre. .. | Wat... g X
Stacks i Bunand Debug a Program !

Frocesses Function

Manually Launch a Pragram

Attach to & Running Program

Open Core Files

Restore a Checkpoint

DDT __.

13

BNy a1=2d1E6210 5

Running and debugging a program

» The Welcome Screen allows you to choose what
kind of debugging you want to do. You can:

 run a program from DDT and debug it

» debug a program you launch manually (e.g. on the command line)
« attach to an already running program

 open core files generated by a program that crashed

* restore a checkpoint of a program and continue debugging

14

Running and debugging a program

DDT - Run (sur mirabelle012)

@ |If you click the Run and Debug a
Program button on the Welcome
Screen you will see that window

@ |n the Application field, you write
the path to your binary
executable file

@ |If you click on MPI, you enter the
number of processes that you
wish to run and you click on
button Run.

Application:

Details &
Applicat I j El
Arguments I j
Input File: I j El
Warking Directory: I j EI
™ mpi Details
I~ OpenMP Details
IC cuba Details
[T Memory Debugging Dietails...
Envirenment Variables: none Details -
Plugins: none Details -

Running and debugging a program

@ This is the screen you see when for example you load DDT with MPIl. When an MPI
initialization instruction is highlighted, go on while pressing on the green upleft arrow.

Allinea DDT vw3.1-21691 (sur bonoboOO4)

Session Control Search Miew Help

|elw -8 a = RREIETEIER ! AA-D~

JJGurrer‘ltGrcup:IHll vIFocusoncurrer'lt: * Group { Procgess { Thread ||- Step Threads Together

[o 1=][=]

Create Group

Project Files & = |7F chaienries) Locals ~ Currentline(s) | Current Stack |
'_'; - ||._. N ":l '.r "-"' EIH“\HC‘.!—QL‘J:J—.’ r LJ.J.L-?J.J.L- I.J.J.Ju_l_.: - = LUJ.JJ_J.HI._J]._J. .

|"""—'"h Ctrl+K . 270 integer i1 sime, buf_si=ze, err, & =1|Current Line(s) e
_ : : 371 dims{(2)=(/0,0/), & i

= Froject Files 372 periods(2)=(/1,1/), & "fl'arlable MName IVaIue

+ Saource Tree 373 coord=s(2) g---ccﬂfigMF'l (rank=-16&
+ Header Files ,4 1y e E---::c.'nr'|figf'."|F'I“":I-_‘r::-lr'lha — -16792

= Source Files 3G Ease init

il chaleur.fao 3T CALL MFI_THIT (err) f
278 CALL MPI OCOMM EBANE (MPI_ COMM WOBRLD, configlll
T CALL MFI_COMHM_SIZE (MET_CoMM_WMoRLD, =size, e

A8 [& cAartesian communicator - 4I I LI
_*I—I _'I ol [* [Type: none selected
InputOut. .. I Breakpoi... I Watchpo... Stacks | Tracepoi... I Tracepoint Out. .. I Evaluats g >
Stacks & X || Expression I‘U’alue I
Processes IThreads IFuncticn I
4 |] o |] -E-async_thread (ofa_utility.c:B36)
4 |] 4 [Iiheatexample (chaleurfa0:533)

B h=atm pisetup (chaleur.f20:378)

Ready G

16

Some basic functionalities of DDT

» Using the Source Code Viewer, locate the position in your code that you want to place
breakpoints at specific lines to make a break in your program, and print variables at
this stage;

@ Using tracepoints which allow to see what lines of code your program is executing —
and the variables without stopping it.

@ When right clicking on an array variable in the Source Code Viewer, one can have
many informations by viewing the data array variable and across processors.

 When clicking on « Stacks », one can see all the different calls of subprograms where
the errors occur

17

Floating Point Exception

s |dentify the line of the arithmetic exception (integer divide by zero)

Allinea DDT (sur fourmit18) p o
& Process 0:

Thread 1 stopped in heatmpisetup (chaleurf90:386)
with signal SIGFPE (Arithmetic exce ption).
Reason/Origin: integer divide by zerc

Your program will probably be terminated if you

continue.
You can use the stack controls to see what the proce ss

was doing at the time.

¥ Always show this window for signals

..................................

= Continue | || || Pause |

18

Segmentation Fault

@ |dentify the line where the variable is not allocated or is out of memory acces

Allinea DDT {sur frourmiOl18)

& Process O:

Thread 1 stopped in heattotalenergy (chaleur.f20:348)
with signal SIGSEGV (Segmentation fault).
Reason/Origin: addre ss not mapped to object (atte mpt
to access invalid address)

Your program will probably be terminated if you

continue.
You can use the stack controls to see what the process

was doing at the time.

v Always show this window for signals

= Continue

19

Arithmetic Error (Not A Number)

@ NaN (Not a Number), is a numeric data type value representing an
undefined or unrepresentable value.

@ Notice that if you run the program, it will end without being interrupted
though it provides NaN values.

@ To solve this kind of problem, it is important to know how your program
works in order to :

@ |dentify the variables (arrays) where the NaN occur;

* |dentify the regions between which lines the values the variables
increase abnormally;

@ Use breakpoints and conditional breakpoints on the lines where you
suspect the problem occurs;

@ Detect and correct the error.

@ Advice: you can use Multi-Dimensional Array (MDA) Viewer to print easily
the values of an array

20

Breakpoints

@ The use of breakpoints on specific lines in the source code allows to execute the
program until that line, to print the variables at this stage and across processes.

@ Using the Source Code Viewer to add a breakpoint

@ first locate the position in your code that you want to place a breakpoint at

@ every breakpoint is listed under the breakpoints tab towards the bottom of
DDT's window.

@ Conditional Breakpoints

@ Select the breakpoints tab to view all the breakpoints in your program. You may
add a condition to any of them by clicking on the condition cell in the breakpoint
table and entering an expression that evaluates to true or false.

@ The expression should be in the same language as your program.

@ Each time a process (in the group the breakpoint is set for) passes this
breakpoint it will evaluate the condition and break only if it returns true.

@ Deleting a Breakpoint

@ Breakpoints are deleted by either right-clicking on the breakpoint in the
breakpoints panel, or by rightclicking at the file/line of the breakpoint. 21

Session Control

Breakpoints

Allinea DDT w3, 1-216971 (sur fourmiO18)

Search View Help

[e[v O3 RO E] ! O-D-

”Focus oncurrent: % Process " Thread ||_ Step Threads Together |

“roject Files

&)

Search (Ctri+k)

& Project Files
+ Source Tree

+ Header Files

+ 79 Source Files

O

g X | F chaleurfao] | Locals Current Line(s) | Current Stack
£ 182 mymax = 0.0c0 | |current Line(s) g X
153
184 calculate the time step: read from theta, rite new timestsep Variable Name |Va|UE -
L85 Cnly calculate on a processses sub-grid
LE& do y=mympifstart_y,mympigstart_y + mympifnum_cells_y -1 1 dt 0.050004
L& do z=mympi%start_x,mympi%start_x + mympi%num_cells_x -1 i~ dtheta -53.5839
188 - d |
159 dtheta = (grid%thetai(xz-1,y) + gridithetaix+l,y) - 2*gridit d
1S90 + | gridi¥thetal(x,v-1) + gridithetal(x,v+1) - 2vgrid%L ¥ 1
ngl gridfthetancwi(x,v) = gridithetai(x,v) + gridfk * dtheta * dt +-grid [theta
: grid¥thetansw(x,v) = grid%theta(xz,y) + gridik * dtheta * dt é'"grid%k 1
194 mymax = max(abs(dtheta), mymax) save max theta for the a: i--grid%theta -
195 - ‘I I b
1 s el e
j 1 | » [Type: real(kind=8) (0:21,0:21)

InputOutput Breakpoints | Watchpoints Stacks | Tracepoints | Trace point Cutput Evaluats g X
Jreakpoints & X || Expression |Va|ue |
Threads File Line Function

|

chaleurfao

chaleurfag 191

Condition /| Start After Trigger Every Stop

gridsthetalx y).GT.2

grid¥sthetanew(x,y).GT.2 0 1

Ready .

22

Tracepoints

® Tracepoints allow you to see what lines of code your program is executing — and the
variables — without stopping it. Whenever a thread reaches a tracepoint it will print the
file and line number of the tracepoint to the Input/Output view. You can also capture the
value of any number of variables or expressions at that point.

@ Setting a tracepoint

@ Tracepoints are added by either right-clicking on a line in the Source Code Viewer
and selecting the Add Tracepoint menu item. In that case, a number of variables
based on the current line of code will be captures by default.

® Tracepoint Output

@ The output from the tracepoints can be found in the Tracepoint Output view.

InputiOutput I Breakpoints I Watchpoints I Stacks I Tracepoints Trace point Output |

Trace point Output g X
Tracepoint Processes Values logged el
chaleurf@0:551 |8, ranks 0-7 mygrid: <non-scalar= mympi: <nonsecalar> dt —— 5.0e-02 dthetamax: —— 100
- chaleurf80:551 |8, ranks 0-7 mygrid: <non-scalar> mympi. <nen-scalar> dt —— 5.0e-02 dthetamax: —— 2.1e400
- chaleurf@0:551 |8, ranks 0-7 mygrid: <nen-scalar= mympi: <nen-scalar= dt —— 5.0e-02 dthetamax: —— 1.6e+400
| chaleurf80:551 |8, ranks 0-7 mygrid: <non-scalar> mympi. <nen-scalar= dt —— 5.0e-02 dthetamax: —— 1.2e+400
- chaleurf20:551 |8, ranks O-7 mygrid: <non-scalar> mympi. <non-scalar> dt —— 5.0e-02 dthetamax: —— 9.4e-01
- chaleurf@0:551 |8, ranks 0-7 mygrid: <non-scalar> mympi. <non-scalar= dt —— 5.0e-02 dthetamax: —— 7.6e-01
- chaleur.f20:551 |8, ranks O-7 mygrid: e<non-scalar> mympi: <non-scalar> dt —— 5.0e-02 dthetamax: —— 6.6e-01 _I)3

Only show lines containing:

Multi-Dimensional Array Viewer (MDA)

@ To open MDA, right-click on a variable
in the Source Code or open it directly
by selecting the Multi-Dimensional
Array Viewer menu item from the

Array Expression: | grid¥sthetanew($i, §]) j

Distributed Array Dimensions: ﬁone 3 How do | view distributed arrays?

— Range of §i —Range of §j ¥ Align Stack Frames
VleW menu. From: Iﬁ From: Iﬁ [T Auto-update
. . To: I 20 3: To: I 20 3: Evaluate
@ The A.rray E).(p.reSSIOn IS an Display: IHows v| Display: ICO|LIITII'IS vI Carncel
expression Contalnlng a number of

subscript metavariables that are
substituted with the subscripts of the
array. For example, the expression

[~ Cnly show if: I See Examples

DataTable | Staistics |

- Goto @Visualiz& [+ Export Full Window

myArray($i, $j) has 2 metavariables, j 4]
. . . E E 10 11
$i and §j. The metavariables are | [x o 10a111s6z40007a8] 22882
unrelated to the Variables in your 2 | o 754.53891315460942| 33.408178636903529 -24.139877488544109| -20.495
3 pas| 25.540173953300332| -18.230000519478722| -39.587735806320303 -25.566
program' 4 22| 66:806724048943167| -63.31584634783551 -52.497906349783371| -18.050—
i 5 boa 113.92| -113.43018711111345| -72.240191643778672 -10.727
YOU deﬂne the range Of eaCh 6 71 150.31512911012211| -144.09167781898105 -120.50932832879369 -43.121
metavariable. The Array EXpreSSion iS 7 [pos| 139.05205819019071| -103.19360991983173| -223,16860973942548| -147 99
. . . 8 | o 0| 53453085819045646 -403.86936462056877 -353.69
evaluated for each combination of $i , _— ; 535 2045559255027 25012
$j , etc. and the results are shown in e " | " " _H
the Data Table (Click on Evaluate).
Cloze

You may want the Data Table to only
show elements that fit a certain
criteria (Onlv show if).

Deadlock

@ A deadlock is a situation wherein two or more competing actions are each waiting
for the other to finish, and thus neither ever does.

@ |[n an operating system, a deadlock is a situation which occurs when a process
enters a waiting state because a resource requested by it is being held by another
waiting process, which in turn is waiting for another resource. If a process is unable
to change its state indefinitely because the resources requested by it are being used
by other waiting process, then the system is said to be in a deadlock.

@ Deadlock is a common problem in multiprocessing systems, parallel computing and
distributed systems, where software and hardware locks are used to handle shared
resources and implement process synchronization.

@ Frequent Deadlock situation occurs when using blocking point-to-point MPI routines:
a process executes a receive routine and there is no corresponding call to a send
routine.

25

Message Queues

@ One can use DDT to detect common errors such as deadlock, where all processes
are waiting for each other, or for detecting when messages are present that are

unexpected, which can correspond to two processes disagreeing about the state of
progress through a program.

@ DDT's Message Queue debugging feature shows the status of the internal message
buffers of MPI, for example showing the messages that have been sent by a
process but not yet received by the target.

@ Open the Message Queues window from the View menu.

26

Message Queues

@ There are three different types of message queues about which there is information.
Different colours are used to display messages from each type of queue.

@ Send Queue : Calls to MPI send functions that have not yet completed.
@ Receive Queue : Calls to MPI receive functions that have not yet completed.

@ Unexpected Message Queue : Represents messages received by the system but the
corresponding receive function call has not yet been made.

@ Messages in the Send queue are represented by a red arrow, pointing from the sender to
the recipient. The line is solid on the sender side, but dashed on the received side (to
represent a message that has been Sent but not yet been Received).

@ Messages in the Receive queue are represented by a green arrow, pointing from the
sender to the recipient. The line is dashed on the sender side, but solid on the recipient
side (to represent the recipient being ready to receive a message that has not yet been
sent).

@ Messages in the Unexpected queue are represented by a dashed blue arrow, pointing
from sender of the unexpected message to the recipient.

27

Message Queues

Allinea DDT - Message Queues (sur fourmil52)

@ |If you see a loop in the graph, it
can be because of deadlock —
every process waiting to
receive from the preceding
process in the loop.

—Selectqueues to show
v Send

v Beceive

¥ Unexpected

) —Ranks
{* Show local ranks
)
@ @ {" Show global ranks
— Select communicator
MPI_COMM_WORLD
6 MPI_COMM_SELF
—unnamed--
U pdate
¥ :Show queues in table
Text Communicator CQueue Pointzr Fram (local) Fram (global) To (local) T
1 --unnamed-- Receive 0x0 1 3
2 --unnamed-- Receive 0x0 0 2
3 --unnamed-- Receive 0x0 3 1
4 --unnamed-- Receive 0x0 2 0 -1
1 | |

Memory Management

@ The good and optimal memory management in a program is essential.

@ Good reactions to handle with :

Check the memory that your program requires during execution.

Check that you do not deallocate arrays before allocating them, or that you do
not compute with arrays after deallocating them.

Check that you systematically deallocate arrays once u have allocated them,
and finished to compute with, despite it may not cause a damage or errors
during the execution.

Check that if X Gb are allocated in your arrays at the beginning of the program,
X Gb are deallocated at the end.

Check the memory usage on each process

Check for example in an iterative method, at each step, that the memory is not
Increasing.

29

Memory debugging

@ Allinea DDT has a powerful parallel memory debugging capability. This feature
intercepts calls to the system memory allocation library, recording memory usage
and monitoring correct usage of the library by performing heap and bounds
checking.

@ Typical problems that can be resolved by using Allinea DDT with memory debugging
enabled include:

@ Memory exhaustion due to memory leaks can be prevented by examining the
Current Memory Usage display which groups and quantifies memory according
to the location at which blocks have been allocated.

@ Persistent but random crashes caused by access to memory beyond the
bounds of an allocation block — can be resolved by using the Guard Pages
feature

@ Crashing due to deallocation of the same memory block twice and other forms
deallocation of an invalid pointers — for example deallocating a pointer that is
not at the start of an allocation.

30

Memory Debugging

Memory Debugging Options (sur fourmi052)

Enabling Memory Debugging from the Run
window : click on the Memory Debugging
checkbox.

@ The two most significant options are:

@ Preload the memory debugging library

@ The box showing C/Fortran, No
Threads in the screen shot — click here
and select the option that best matches
your program, be it C/Fortran, C++,
Single-Threaded, Multi-Threaded.

@ The Heap Debugging section allows you to
turn on/off specific memory debugging
features.

@ Minimal will catch trivial memory errors
such as deallocating memory twice.

@ You can turn on Heap Overflow/Underflow
Detection to detect out of bounds heap
access.

IFEErelcad the memary debugging Iibrar}r:é Language: IC.-'Fc:r‘tr'an: threads j

Note: Preloading only works for programs linked against shared libraries. If your
program is statically linked, you must relink it against the dmalloe library manually.

—Heap Debugging

i~ High (adds checking for arguments to common functions)

& Minimal (fewesttests, picks up invalid pointers passed to memory functions)
" Runtime (fast, basic tests including fence-post checking, null handling)
" Low (adds minimal heap checking, ove rwriting of allocatedfreed space)

" Medium (adds full heap checking, always relocates block on realloc)

" Custom: I

—Heap Cve flow/U nde rflow Detection

[T Add guard pages to detect out of bounds heap access

Guard pages: I 1 3: Add guard pages: Iﬁ.f'ter I

— Advanced
[T Specify heap-check interval: | 100

¥ Store stack backtrace s for memory allocations

[T Cnlyenable for these processes:

[o-3 100% SelectAll| %2 |

x0.5 | 1% I

Cancel

31

Memory Debugging

Current Memory Usage

@ Memory |eakS Ca n be a Memory Usage for "All* group (18: 25: 31} (sur fourmi018)
significant problem for software s i = e
deve|0perS Graphical View | Table View |
If your application's memory oS 3 S Vot o<1
usage grows faster than =

expected or continues to grow
through its execution then it is
possible that memory is being
allocated which is not being
returned when it is no longer
required.

Legend

Ranko
Rank 1
Rankz2
Rank3

| Legend
| || albcate_vbuf_region {ofa_vbuf.c)

i rc_create_cache (i ric_cache.c)
- I _ofortran_store_axa_path

i mie4_aloc_qp_buf (gp.e)
mi_alloc_context (mbd.c)
Cther alocations (bytes)

Allocation Details

@ At any point in your program
when there is a breakpoint you
can go to View — Current

Memory Usage and DDT Wi” Rank0 Rank 1 Rankz2 Rank3
then display the currently Show e op [5 =] ecatons
allocated memory in your [T | s =1

program for the currently
selected process group. 32

Memory Debugging

Memory Statistics for "Al" group (18:26:12) (sur fourmi018)

Memory Statistics

@ The Memory Statistics view (View — gestitotens [¢ =] proseses
Overall Memory Stats) shows a total = eesves | asever |
of memory usage across the ruse: | wacas | owen|
processes in an application.

Total bytes albcated freed
18,000,000 —

@ This window displays the total
amount of memory allocated/freed]
since the program began in the left- ~ wmos
hand pane. This can help show if mw]
your application is unbalanced, if
particular processes are allocating or _ o
failing to free memory and so on. i

6,000,000

16,000,000

10,000,000

@ |t also shows the total number of
calls to allocate/free functions by
process. At the end of program
execution you can usually expect the ! i e - _ e
total number of calls per process to
be similar, and memory allocation
calls should always be greater than [_oe |
deallocation calls - anything else
indicates serious problems. 33

4,000,000

2,000,000

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33

