

The Distributed Debugging Tool (DDT)

13 février 2015

Khodor KHADRA, Ingénieur de Recherche Calcul Scientifique

mailto:Khodor.Khadra@math.u-bordeaux.fr

 2

Frequent errors
when executing a program

A program crash

Frequently a signal : segmentation fault, stack overflow, floating point
exception, illegal instruction, …

Variety of causes : accessing memory out of range, infinite recursion,
division by zero, overwritten stack, …

Incorrect results

Many causes – no magic solutions : original dataset error, communication
or synchronization problem, badlogic, beyond bound memory access or
unexpected access, …

Intuition and brainpower required

A deadlock or no progress

Application fails to terminate : infinite loops, deadlock (message
ordering/matching issue, disagreement on collective MPI calls), …

 3

Why using a debugging tool ?
Printing variables inside the source code until the errors are detected costs a
lot ;

Using a debugging software allows :
To visualize the variables during execution

The knowledge of all the subprograms on which lines there is a problem

The use of breakpoints between specific lines to determine the region
where there is a problem

Consequently to detect and correct the errors more easily

 4

Compiling a code before debugging

As always, when compiling the program that you wish to
debug, you must add the debug flag to your compile
command. For the most compilers this is -g.

It is also advisable to turn off compiler optimizations as these
can make debugging appear strange and unpredictable.

NB : before executing the program, one can increase the size
of the stack in order to analyze the segmentation errors :
ulimit -s unlimited

 5

Previous steps before using DDT
 Connecting to PLAFRIM:

ssh -X mygale

qsub -IX -qclustername -lnodes=2:ppn=8 -lwalltime=08:00:00

(if you do not use the -q option, you work on the nodes called fourmi)

 Loading the compiler and MPI libraries:

module add meta/intel-impi

 Compiling the source code:

mpif90 -g -o exec file.f90

mpicc -g -o exec file.c

 Executing the program:

./exec (sequential)

mpirun -np number_of_processes ./exec (parallel)

One notices that there is a problem while executing

 7

Configuration

DDT has a Configuration
Wizard to help simplify setting
up DDT and choosing the
correct options to start your
programs. The first time you
run DDT after installing it you
will see that wizard

Then click on Next and follow
the simple instructions

 8

Configuration

After the welcome page you will see
the MPI Implementation page.

DDT will attempt to auto-detect and
highlight your MPI implementation in
the list, if this is not successful, select
your MPI implementation manually.

Once you have chosen or accepted
an MPI Implementation, click on Next.

 9

Configuration

The Job Scheduling page asks if
you want to submit your jobs
using a job scheduler or queue.

If you are using a job scheduler
such as LoadLeveler, Portable
Batch System or Sun Grid Engine
select the Submit through a job
scheduler option, otherwise skip
this step.

 10

Configuration

Side Wide Configuration

You can skip this step.

 11

Configuration

The final congratulatory page
contains links to other optional
configuration settings. You can
click on one of the hyperlinks to
open the relevant options page or
help file.

Click on Finish to save these
settings to the configuration file

 12

Recomendations of how working with
DDT

STEP 1 :

Debugging without MPI, in a
sequential mode, as much as you
can all the errors which are not
provided by MPI instructions.

On your xterm:

./exec
Notice the kind of error

Open DDT without MPI. DDT
perfoms its debugging from the
“program main” until the “end
program main”

Correct in the source code, re-
compile and re-execute

STEP 2 :

Debugging with MPI, in a parallel mode, by
choosing the number of processes.

On your xterm:

mpirun -np number_of_processes ./exec
Notice the kind of error

Open DDT with MPI. DDT perfoms its
debugging between the MPI INITialization
instructions and the MPI_FINALIZE
instruction.

Correct in the source code, re-compile and
re-execute

 13

Starting DDT
Once DDT has started it will display the Welcome Screen.

 14

Running and debugging a program

The Welcome Screen allows you to choose what
kind of debugging you want to do. You can:

• run a program from DDT and debug it

• debug a program you launch manually (e.g. on the command line)

• attach to an already running program

• open core files generated by a program that crashed

• restore a checkpoint of a program and continue debugging

 15

Running and debugging a program

If you click the Run and Debug a
Program button on the Welcome
Screen you will see that window

In the Application field, you write
the path to your binary
executable file

If you click on MPI, you enter the
number of processes that you
wish to run and you click on
button Run.

 16

Running and debugging a program
This is the screen you see when for example you load DDT with MPI. When an MPI
initialization instruction is highlighted, go on while pressing on the green upleft arrow.

 17

Some basic functionalities of DDT

Using the Source Code Viewer, locate the position in your code that you want to place
breakpoints at specific lines to make a break in your program, and print variables at
this stage;

Using tracepoints which allow to see what lines of code your program is executing –
and the variables without stopping it.

When right clicking on an array variable in the Source Code Viewer, one can have
many informations by viewing the data array variable and across processors.

When clicking on « Stacks », one can see all the different calls of subprograms where
the errors occur

 18

Floating Point Exception

Identify the line of the arithmetic exception (integer divide by zero)

 19

Segmentation Fault

Identify the line where the variable is not allocated or is out of memory acces

 20

Arithmetic Error (Not A Number)
NaN (Not a Number), is a numeric data type value representing an
undefined or unrepresentable value.

Notice that if you run the program, it will end without being interrupted
though it provides NaN values.

To solve this kind of problem, it is important to know how your program
works in order to :

Identify the variables (arrays) where the NaN occur;

Identify the regions between which lines the values the variables
increase abnormally;

Use breakpoints and conditional breakpoints on the lines where you
suspect the problem occurs;

Detect and correct the error.

Advice: you can use Multi-Dimensional Array (MDA) Viewer to print easily
the values of an array

 21

Breakpoints
The use of breakpoints on specific lines in the source code allows to execute the
program until that line, to print the variables at this stage and across processes.

Using the Source Code Viewer to add a breakpoint

first locate the position in your code that you want to place a breakpoint at

every breakpoint is listed under the breakpoints tab towards the bottom of
DDT's window.

Conditional Breakpoints

Select the breakpoints tab to view all the breakpoints in your program. You may
add a condition to any of them by clicking on the condition cell in the breakpoint
table and entering an expression that evaluates to true or false.

The expression should be in the same language as your program.

Each time a process (in the group the breakpoint is set for) passes this
breakpoint it will evaluate the condition and break only if it returns true.

Deleting a Breakpoint

Breakpoints are deleted by either right-clicking on the breakpoint in the
breakpoints panel, or by rightclicking at the file/line of the breakpoint.

 22

Breakpoints

 23

Tracepoints
Tracepoints allow you to see what lines of code your program is executing – and the
variables – without stopping it. Whenever a thread reaches a tracepoint it will print the
file and line number of the tracepoint to the Input/Output view. You can also capture the
value of any number of variables or expressions at that point.

Setting a tracepoint

Tracepoints are added by either right-clicking on a line in the Source Code Viewer
and selecting the Add Tracepoint menu item. In that case, a number of variables
based on the current line of code will be captures by default.

Tracepoint Output

The output from the tracepoints can be found in the Tracepoint Output view.

 24

Multi-Dimensional Array Viewer (MDA)
To open MDA, right-click on a variable
in the Source Code or open it directly
by selecting the Multi-Dimensional
Array Viewer menu item from the
View menu.

The Array Expression is an
expression containing a number of
subscript metavariables that are
substituted with the subscripts of the
array. For example, the expression
myArray($i, $j) has 2 metavariables,
$i and $j. The metavariables are
unrelated to the variables in your
program.

You define the range of each
metavariable. The Array Expression is
evaluated for each combination of $i ,
$j , etc. and the results are shown in
the Data Table (Click on Evaluate).
You may want the Data Table to only
show elements that fit a certain
criteria (Only show if).

 25

Deadlock
A deadlock is a situation wherein two or more competing actions are each waiting
for the other to finish, and thus neither ever does.

In an operating system, a deadlock is a situation which occurs when a process
enters a waiting state because a resource requested by it is being held by another
waiting process, which in turn is waiting for another resource. If a process is unable
to change its state indefinitely because the resources requested by it are being used
by other waiting process, then the system is said to be in a deadlock.

Deadlock is a common problem in multiprocessing systems, parallel computing and
distributed systems, where software and hardware locks are used to handle shared
resources and implement process synchronization.

Frequent Deadlock situation occurs when using blocking point-to-point MPI routines:
a process executes a receive routine and there is no corresponding call to a send
routine.

 26

Message Queues

One can use DDT to detect common errors such as deadlock, where all processes
are waiting for each other, or for detecting when messages are present that are
unexpected, which can correspond to two processes disagreeing about the state of
progress through a program.

DDT's Message Queue debugging feature shows the status of the internal message
buffers of MPI, for example showing the messages that have been sent by a
process but not yet received by the target.

Open the Message Queues window from the View menu.

 27

Message Queues

There are three different types of message queues about which there is information.
Different colours are used to display messages from each type of queue.

Send Queue : Calls to MPI send functions that have not yet completed.

Receive Queue : Calls to MPI receive functions that have not yet completed.

Unexpected Message Queue : Represents messages received by the system but the
corresponding receive function call has not yet been made.

Messages in the Send queue are represented by a red arrow, pointing from the sender to
the recipient. The line is solid on the sender side, but dashed on the received side (to
represent a message that has been Sent but not yet been Received).

Messages in the Receive queue are represented by a green arrow, pointing from the
sender to the recipient. The line is dashed on the sender side, but solid on the recipient
side (to represent the recipient being ready to receive a message that has not yet been
sent).

Messages in the Unexpected queue are represented by a dashed blue arrow, pointing
from sender of the unexpected message to the recipient.

 28

Message Queues

If you see a loop in the graph, it
can be because of deadlock –
every process waiting to
receive from the preceding
process in the loop.

 29

Memory Management

The good and optimal memory management in a program is essential.

Good reactions to handle with :

Check the memory that your program requires during execution.

Check that you do not deallocate arrays before allocating them, or that you do
not compute with arrays after deallocating them.

Check that you systematically deallocate arrays once u have allocated them,
and finished to compute with, despite it may not cause a damage or errors
during the execution.

Check that if X Gb are allocated in your arrays at the beginning of the program,
X Gb are deallocated at the end.

Check the memory usage on each process

● Check for example in an iterative method, at each step, that the memory is not
increasing.

 30

Memory debugging

Allinea DDT has a powerful parallel memory debugging capability. This feature
intercepts calls to the system memory allocation library, recording memory usage
and monitoring correct usage of the library by performing heap and bounds
checking.

Typical problems that can be resolved by using Allinea DDT with memory debugging
enabled include:

Memory exhaustion due to memory leaks can be prevented by examining the
Current Memory Usage display which groups and quantifies memory according
to the location at which blocks have been allocated.

Persistent but random crashes caused by access to memory beyond the
bounds of an allocation block – can be resolved by using the Guard Pages
feature

Crashing due to deallocation of the same memory block twice and other forms
deallocation of an invalid pointers – for example deallocating a pointer that is
not at the start of an allocation.

 31

Memory Debugging
Enabling Memory Debugging from the Run
window : click on the Memory Debugging
checkbox.

The two most significant options are:

Preload the memory debugging library

The box showing C/Fortran, No
Threads in the screen shot – click here
and select the option that best matches
your program, be it C/Fortran, C++,
Single-Threaded, Multi-Threaded.

The Heap Debugging section allows you to
turn on/off specific memory debugging
features.

Minimal will catch trivial memory errors
such as deallocating memory twice.

You can turn on Heap Overflow/Underflow
Detection to detect out of bounds heap
access.

 32

Memory Debugging
Current Memory Usage

Memory leaks can be a
significant problem for software
developers.
If your application's memory
usage grows faster than
expected or continues to grow
through its execution then it is
possible that memory is being
allocated which is not being
returned when it is no longer
required.

At any point in your program
when there is a breakpoint you
can go to View → Current
Memory Usage and DDT will
then display the currently
allocated memory in your
program for the currently
selected process group.

 33

Memory Debugging
Memory Statistics

The Memory Statistics view (View →
Overall Memory Stats) shows a total
of memory usage across the
processes in an application.

This window displays the total
amount of memory allocated/freed
since the program began in the left-
hand pane. This can help show if
your application is unbalanced, if
particular processes are allocating or
failing to free memory and so on.

It also shows the total number of
calls to allocate/free functions by
process. At the end of program
execution you can usually expect the
total number of calls per process to
be similar, and memory allocation
calls should always be greater than
deallocation calls - anything else
indicates serious problems.

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33

