IMB > Informations générales > Agendas

Evénements passés

  • Le 7 janvier 2020 à 11:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    J. Sok
    Dirac operators with magnetic links
    We investigate the zero modes for three-dimensional Dirac operators with singular magnetic fields supported on links. They can be seen as a generalization of Aharonov-Bohm solenoids, in particular they exhibit the same $2\pi$-periodicity of the fluxes carried by the field lines. The occurrence of zero modes is studied through the spectral flow of loops of such singular operators: it is generically non-zero and depends on the geometry of the field lines (not only their topology). This a joint work with Fabian Portmann and Jan Philip Solovej.
  • Le 9 janvier 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Cyrus Mostajeran Cambridge University
    Geometric Thinking in Engineering and Applied Sciences
    Geometry occupies a uniquely illustrious place in the history of science. Many critical and celebrated advances in physics and various fields of mathematics have been achieved by viewing problems through a geometric lens. Recent years have witnessed a growing interest in the application of differential geometry to problems arising in engineering. In particular, the exploitation of symmetries and geometric invariance has led to great advances in fields such as optimisation, signal processing, statistical learning, medical imaging, material science, and inertial navigation and estimation in nonlinear automatic control. In this talk, I will review several topics in the engineering and applied sciences from my own research that are shaped by geometric thinking. Examples include consensus theory and monotone dynamical systems, statistics and optimisation in nonlinear spaces, as well as topographic mechanics and material design.
  • Le 9 janvier 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Rémi Abgrall
    [Séminaire CSM]

  • Le 10 janvier 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Jean-Marc Couveignes IMB
    Décrire et compter les corps de nombres
    Il existe plusieurs façons de décrire un corps de nombres : polynôme minimal d'un élément primitif, table de multiplication d'une $\mathbf{Q}$-base, traces d'une famille d'éléments, etc. Une description synthétique des corps de nombres permet de construire et donc de compter les corps de nombres de degré donné et de discriminant borné. Des tables construites par Cohen, Diaz et Olivier et une conjecture de Linnik suggèrent que le nombre de classes d'isomorphisme de corps de nombres de degré $n$ et de discriminant inférieur ou égal à $H$ est équivalent à $c(n)H$ quand $n>1$ est fixé et $H$ tend vers l'infini. Cette estimation est prouvée pour n=3 par Davenport et Heilbronn et pour $n=4,5$ par Bhargava. Pour $n$ quelconque Schmidt a prouvé une majoration de la forme $c(n)H^{(n+2)/4}$ à l'aide du théorème de Minkowski. Sa preuve est très effective et a permis de construire des tables. Ellenberg et Venkatesh ont montré que l'exposant de H est asymptotiquement moins que sous-exponentiel en $\log (n)$. Je rappellerai ce contexte et montrerai que l'exposant est moins que $O(\log(n)^3)$.
  • Le 14 janvier 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 385
    Abdoulaye Maiga IMB
    Canonical Lift of Genus 2 Curves
    Let $\mathcal{A}/\mathbb{F}_q$ (with $q=p^n$) be an ordinary abelian variety, a classical result due to Lubin, Serre and Tate says that there exists a unique abelian variety $\tilde{\mathcal{A}}$ over $\mathbb{Z}_q$ such that the modulo $p$ reduction of $\tilde{\mathcal{A}}$ is $\mathcal{A}$ and $End(\tilde{\mathcal{A}})\cong End(\mathcal{A})$ as a ring. In 2000 T.Satoh introduced a point-counting algorithm on elliptic curves over $\mathbb{F}_q$ based on canonical lift. In fact the action of the lifted Verschiebung on the tangent space gives Frobenius eigenvalues and hence the characteristic polynomial of the ordinary elliptic curves over $\mathbb{F}_q$. We propose to extend the canonical lift algorithm introduced by T.Satoh to genus 2 curves over finite fields, using the modular polynomials in dimension 2. We first prove the Kronecker condition in dimension 2 case and then succeed to lift the endomorphism ring of $\mathcal{A}$ in dimension 2 case using a general lift algorithm of a $p$-torsion group of an ordinary abelian variety. These results provide an algorithm to compute the characteristic polynomial of a genus 2 curves in quasi-quadratic time complexity.
  • Le 14 janvier 2020 à 11:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    E. Russ
    Espaces de Hardy sur des variétés riemanniennes dont la courbure est à décroissance quadratique
    Soit $(M,g)$ une variété Riemannienne complète. On suppose que la courbure de Ricci de $M$ décroit quadratiquement et que le volume des boules de $M$ est à croissance au moins quadratique. On montre que les espaces de Hardy de $1$-formes différentielles sur $M$, coincident avec les espaces $L^p$ pour $12$ est relié à la croissance du volume des boules. L'intervalle de $p$ est optimal. Le résultat est valable notamment quand $M$ a un nombre fini de bouts euclidiens. Il s'agit d'un travail en collaboration avec Baptiste Devyver.
  • Le 16 janvier 2020 à 09:30
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Jeunes Chercheurs IOP
    Session spéciale

  • Le 16 janvier 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Masimba Nemaire\, IMB\, Université de Bordeaux et FACTAS\, INRIA Sophia-Antipolis
    Extraction of dipolar current sources in EEG.
    We wish to extract dipolar current sources in brain based on the electrical potential measured on the skull as is done in EEG. We formulate the problem for a three-layer spherical head model. We characterise silent sources(current sources that do not produce an electrical potential outside) for general source distributions and show that for dipolar sources the only silent source is the zero dipolar source. This leads to a unique extraction of dipolar current sources uniquely from the measured electrical potential. We discuss possible algorithms for the extraction these dipolar current sources. The presentation will be mainly based on the work I did for my master thesis and then I will say about what we hope to achieve during the thesis mainly generalising the sparsity to 1 purely unrectifiable supports and attempts at solving the critical point equation.
  • Le 17 janvier 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Amine Marrakchi ENS Lyon
    Transition de phase pour des groupes agissant sur des arbres
    A chaque action de groupe par isométries affines sur un espace de Hilbert, il est possible d'associer une action non-singulière sur un espace de probabilité Gaussien dont les propriétés ergodiques dépendent de façon subtile de la géométrie de l'action originale. En particulier, ces actions exhibent un fascinant phénomène de transition de phase. Dans cet exposé, j'expliquerai un modèle discrétisé et simplifié de ces actions Gaussiennes dans le cas particulier des groupes agissant sur des arbres et je donnerai une description précise de la transition de phase en la reliant à la théorie des marches aléatoires branchantes ainsi qu'à la théorie de Patterson-Sullivan. Travail en commun avec Yuki Arano et Yusuke Isono.
  • Le 17 janvier 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Stephen Lichtenbaum Brown University
    Reporté

  • Le 17 janvier 2020 à 17:00
  • Le séminaire des doctorant·es
    Salle 2
    Abdoulaye Maiga
    Canonical Lift of Genus 2 Curves
    This talk first gives a survey of the $p$-adic methods that compute the characteristic polynomials of elliptic curves over finite fields. We then present the complexities to extend those algorithms to genus 2 curves over finite fields : we propose to extend the canonical lift algorithm introduced by T.Satoh to genus 2 curves over finite fields, using the modular polynomials in dimension 2.
  • Le 21 janvier 2020 à 11:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    S. Ervedoza
    Observabilité des ondes dans un anneau pour des conditions aux bords variées.
    Dans cet exposé, je proposerai une étude des propriétés d'observabilité de l'équation des ondes dans une couronne lorsque la condition sur le cercle intérieur est une condition dynamique assez générale. En particulier, nous donnerons des conditions suffisantes sur la condition dynamique garantissant l'observabilité du modèle considéré. Pour cela, nous développerons une approche basée sur des estimées de résolvante appropriées et des techniques de multiplicateurs et de factorisation d'opérateurs. Il s'agit d'un travail effectué en collaboration avec Lucie Baudouin, Jérémi Dardé et Alberto Mercado.
  • Le 23 janvier 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Antoine Deleforge INRIA Nancy\, Loria
    Processing Sounds with a Little Help from Echoes
    When a sound wave propagates from a source through a medium and is reflected on surfaces before reaching microphones, the measured signals consist of a mixture of the direct path signal with delayed and attenuated copies of itself. This phenomenon is commonly referred to as "echoes", or "reverberation", and is generally considered as a nuisance in audio signal processing. After a gentle introduction to relevant concepts in acoustics and signal processing, this seminar will present recent works showing how acoustic echoes can be blindly estimated from audio recordings, using either non-linear inverse techniques or machine learning. We will then show how the knowledge of such echoes can in fact help some audio signal processing tasks such as the separation, enhancement or localisation of sound sources.
  • Le 23 janvier 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Luc Deléaval\, LAMA\, Université Paris-Est-Marne
    Autour du théorème maximal de Hardy-Littlewood.

  • Le 23 janvier 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Jérôme Fehrenbach
    [Séminaire CSM] Tumor growth and mechanical behavior: coupling experiments and mathematical models
    Nous présenterons des travaux d'estimation de paramètres dans différents modèles de croissance tumorale prenant en compte les aspects mécaniques. Différents modèles sont envisagés selon l'échelle de temps considérée. Dans chaque cas des mesures expérimentales permettent de calibrer les paramètres du modèle. Ces travaux ont été réalisés dans le cadre du projet MIMMOSA.
  • Le 23 janvier 2020 à 16:00
  • Leçons de Mathématiques et d'Informatique d'Aujourd'hui
    Salle de Conférences
    Frédéric Bayart\, professeur\, Université Blaise Pascal Clermont-Ferrand
    Sujet : ""Le point de vue de Bohr des séries de Dirichlet".

  • Le 24 janvier 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Hui Xiao Université Bretagne Sud
    Asymptotique précise de grande déviation pour les produits de matrices aléatoires
    Soit (g_n) une séquence indépendante et identiquement distribuée d*d matrices réelles aléatoires. Considérons le produit G_n = g_n ...g_1. Pour les matrices inversibles et les matrices positives, nous établissons des développements asymptotiques de grande déviation de type Bahadur-Rao et Petrov pour le cocycle de la norme log |G_nx|, conjointement avec la chaîne Markov X_n^x = G_nx/|G_nx|, où x est un point de départ sur l'espace projectif. De plus, nous établissons également des résultats de grands écarts de type Bahadur-Rao et Petrov pour les entrées G_n^{i,j}. En particulier, nous obtenons le principe de grands écarts avec une fonction de taux explicite, ainsi en améliorant de manière significative les bornes de grands écarts établies récemment. Pour les preuves, une question très importante consiste à établir la propriété de régularité Hölder pour la mesure stationnaire pi_s correspondant à la chaîne de Markov X_n^x sous la mesure changée, qui présente un intérêt indépendant. En tant qu'applications, nous obtenons des théorèmes de limite locaux avec grandes déviations pour le cocycle de la norme log |G_nx| et le logarithme des entrées log|G_n^{i,j}|.
  • Le 24 janvier 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Oscar Rivero Salgado Barcelone
    Exceptional zeros, p-adic L-functions and Euler systems..
    Beginning in the 80s with the celebrated work of Mazur, Tate and Teitelbaum, the study of exceptional zeros for p-adic L-functions has become a very fruitful area in number theory. One example is the recent proof of Gross' conjecture, which crucially relies on the theory of p-adic deformations of modular forms. In this talk, we give a historical survey of several applications of the theory of exceptional zeros, which incudes certain cases of the p-adic Birch and Swinnerton-Dyer conjecture and the Gross--Stark conjectures. We connect this with a recent result obtained in a joint work with V.Rotger, and which can be seen as a Gross--Stark formula for the adjoint of a weight one modular form. Finally, we take a glance to the theory of exceptional zeros from the point of view of Euler systems, exploring some tantalizing connections between the analytic and the algebraic world.
  • Le 24 janvier 2020 à 16:00
  • Le séminaire des doctorant·es
    Salle 2
    Robin Frot
    Non annulation de fonctions L en la valeur centrale
    Les fonctions L, qui sont définies comme prolongement analytique de séries de Dirichlet jouent un rôle important en théorie des nombres. On peut en effet relier divers objets (courbes elliptiques, formes automorphes, représentations galoisiennes) à travers leur fonction L. La compréhension de ces fonctions en la valeur centrale (centre de symétrie d'une équation fonctionnelle) est primordiale dans beaucoup de problèmes. Après avoir introduit la notion de fonctions L, nous verrons divers outils analytiques permettant de conclure à la non annulation de certaines d'entre elles.
  • Le 27 janvier 2020 à 09:00
  • Manifestations Scientifiques
    Salle 2
    Organisation : C. Barranger\, M. Peybernes\, R. Loubère
    Worshop Modèles, couplage et propagation de front de fusion, solidification

  • Le 27 janvier 2020 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Salle 2
    Selene Silvestri\, FICO\, London
    What Operations Research "can do" for people in need
    The increased number of people affected by natural and man-made disasters has required major efforts from humanitarian organisations. For this reason, humanitarian logistics and supply chain management has seen a significant increase in interest from the academic world. The scope of this seminar is to show what Operations Research "can do" for people in need. This will be illustrated by two problems; in the context of restoring a water supply system for remote population in Nepal, and secondly in the context of enhancing the disaster preparedness of the Caribbean countries. Another important goal is to show how the "power" of Operations Research can be put into the hands of the non-technical people in the humanitarian organisations.
  • Le 27 janvier 2020 à 16:00
  • Groupe de Travail de Théorie Algorithmique des Nombres
    Salle 2
    Xavier Caruso IMB
    Algorithme de Grover

  • Le 27 janvier 2020 à 16:00
  • Groupe de Travail de Théorie Algorithmique des Nombres
    Salle 2
    Xavier Caruso IMB
    Algorithme de Grover

  • Le 28 janvier 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 385
    Jacques Martinet IMB
    Réseaux, variétés abéliennes et courbes
    On expliquera d'abord comment la notion de *variété abélienne complexe polarisée* possède une version euclidienne dans laquelle on considère des triplets $(E,\Lambda,v)$ d'un espace euclidien $E$, d'un réseau $\Lambda$ de $E$ et d'un élément $v$ de $\mathrm{GL}(E)$ tel que $v^2=-\mathrm{Id}$ et $v(\Lambda)\subset\Lambda^*$.
  • Le 28 janvier 2020 à 11:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    D. Albritton University of Minnesota
    Weak-* stability and potential Navier-Stokes singularities
    In order to `zoom in' on a potential Navier-Stokes singularity, it is natural to consider sequences of Navier-Stokes solutions whose initial data are converging only in a weak-* sense. We identify a natural class of solutions satisfying the following stability property: weak-* convergence of the initial data in critical Besov spaces implies strong convergence of the corresponding solutions. We present applications of the weak-* stability property to problems concerning blow-up criteria in critical spaces, minimal blow-up initial data, and forward self-similar solutions. Finally, we discuss various difficulties concerning the analogous problem in BMO-1. Joint work with Tobias Barker (ENS).
  • Le 30 janvier 2020 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Salle 385
    Luc Libralesso\, doctorant\, G-SCOP\, Grenoble INP
    Tree searches for the Sequential Ordering Problem: Contradicting conventional wisdom
    The trend towards a precise, numerical, and data-intensive agriculture brings forward the need to design and combine optimization techniques to obtain decision support methodologies that are efficient, interactive, robust and adaptable. In this paper, we consider the Differential Harvest Problem (DHP) in precision viticulture. To tackle this problem, we dedicated a specific column generation approach with enumeration techniques and a constraint programming model. Therefore, a set of simulated instances (which differ in field shape, zone shape, and size) was created to perform a parametric study on our different approaches. The specific column generation approach presented in this paper is preliminary work in the development path of more sophisticated resolution methods such as robust optimization and column generation/constraint programming hybridization.
  • Le 30 janvier 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Louis Thiry DI\, ENS Ulm
    Deep Network Classification by Scattering and Homotopy Dictionary Learning
    We introduce a structured convolutional neural network which provides a simple model to analyze properties of deep representation learning and yields a higher classification accuracy than AlexNet over the ImageNet ILSVRC2012 dataset. This network is composed of a scattering transform which linearizes variabilities due to geometric transformations followed by a sparse l1 dictionary coding and a 2 hidden layer classifier. The whole pipeline is implemented in a deep convolutional network with a homotopy algorithm having an exponential convergence for the sparse l1 dictionary coding.
  • Le 30 janvier 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Andreas Hartmann\, IMB-ESPE\, université de Bordeaux
    Multiplicateurs dans les espaces modèles

  • Le 30 janvier 2020 à 17:00
  • Le séminaire des doctorant·es
    Salle 2
    Samy Labsir
    Recursive parameters estimation of a cluster of space debris by filtering on Lie groups
    This work addresses the problem of tracking a cluster of space debris sufficiently close to each other to be considered as a single extended object. State-of-the-art random-matrix methods estimate the kinematics of the object shape and centroid by assuming that its shape is elliptic and that the observations are randomly distributed within this ellipsoid. However, space debris, whose motion is driven by the gravitational force, spread out into a "banana"-like-shaped cluster. We propose a novel Lie-group based parameterization to intrinsically capture the "banana"-like shape. More precisely, we first formulate the centroid and shape tracking problem as filtering on Lie groups. Then, we derive an iterated extended Kalman filter on Lie groups to perform jointly the shape and centroid estimation of cluster.
  • Le 31 janvier 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Rémi Boutonnet IMB
    Caractères et représentations unitaires des réseaux en rang supérieur
    Un fameux théorème de Margulis affirme que les réseaux dans des groupes de Lie semi-simples de rang au moins deux n'ont pas de sous-groupe normal non-trivial. Plusieurs généralisations ont été démontrées depuis. Je vais donner une version pour les représentations unitaires qui recouvre tous ces énoncés et fait le lien avec des travaux récents sur les C*-algèbres (et la C*-simplicité). Travail en commun avec Cyril Houdayer.
  • Le 31 janvier 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Ziyang Gao IMJ-PRG
    Borner le nombre de points rationnels sur une courbe
    Mazur a conjecturé, après la démonstration de la conjecture de Mordell-Weil par Faltings, que le nombre de points rationnels sur une courbe de genre g définie sur un corps de nombres de degré d est borné par g, d et le rang de Mordell-Weil. Dans cet exposé je vais expliquer comment démontrer cette conjecture. J'insisterai sur les applications de la théorie de transcendance sur les corps de fonctions et de la théorie d'intersections atypiques dans la preuve. Il s'agit d'un travail en commun avec Vesselin Dimitrov et Philipp Habegger.
  • Le 4 février 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 385
    Aude Le Gluher LORIA
    Une approche géométrique efficace pour le calcul d'espaces de Riemann-Roch : Algorithme et Complexité
    Le calcul effectif de bases d'espaces de Riemann-Roch intervient dans de nombreux domaines pratiques, notamment pour l'arithmétique dans les jacobiennes de courbes ou dans des codes correcteurs d'erreurs algébraico-géométriques. Nous proposons une variante probabiliste de l'algorithme de Brill et Noether décrit par Goppa pour le calcul d'une base de l'espace de Riemann-Roch $L(D)$ associé à un diviseur $D$ d'une courbe projective plane nodale $C$ sur un corps parfait $k$ suffisamment grand.
  • Le 4 février 2020 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Batiment A29, Amphi E
    Jean André\, Manager de l'équipe Recherche Opérationnelle & Data Science\, AirLiquide
    Supply Chain Optimization at AirLiquide
    - AirLiquide & Chiffre clés - Nos Supply Chain - Exemples de projets d'optimisation, avec un focus sur L'Inventory Routing Problem
  • Le 4 février 2020 à 11:30
  • Séminaire de Physique Mathématique - EDP
    Salle 2
    M. Aafarani
    Sur les propriétés spectrales de l'opérateur de Schrödinger non auto-adjoint.
    Dans cet exposé, on s'intéressera à un opérateur de Schrödinger avec un potentiel à valeurs complexes qui décroit rapidement à l'infini. On supposera que ce modèle non auto-adjoint possède une valeur propre zéro et de résonances réelles positives. On entend par résonance réelle un nombre positif pour lequel l'opérateur possède une fonction propre généralisée qui n'est pas de carré intégrable. Ces valeurs réelles forment un obstacle pour l'analyse spectrale de l'opérateur de Schrödinger non auto-adjoint. On présentera d'abord des résultats sur les développements asymptotiques de la résolvante au seuil zéro et près de résonances réelles positives. Puis, on déduira l'asymptotique en temps long de la solution de l'équation de Schrödinger associée.
  • Le 5 février 2020 à 09:00
  • BLOC NOTES
    Salle 2
    Laurent Facq de la Cellule Informatique de l'IMB
    Formation SSH

  • Le 6 février 2020 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Salle 385
    Gabriel Volte\, doctorant\, LIRMM\, Université de Montpellier
    Exact method approaches for the differential harvest problem
    The trend towards a precise, numerical, and data-intensive agriculture brings forward the need to design and combine optimization techniques to obtain decision support methodologies that are efficient, interactive, robust and adaptable. In this paper, we consider the Differential Harvest Problem (DHP) in precision viticulture. To tackle this problem, we dedicated a specific column generation approach with enumeration techniques and a constraint programming model. Therefore, a set of simulated instances (which differ in field shape, zone shape, and size) was created to perform a parametric study on our different approaches. The specific column generation approach presented in this paper is preliminary work in the development path of more sophisticated resolution methods such as robust optimization and column generation/constraint programming hybridization.
  • Le 6 février 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Thomas Milcent
    [Séminaire CSM] Analytic approach for Moment-of-Fluid interface reconstruction in 3D
    Simuler numériquement de manière précise l'évolution des interfaces séparant différents milieux est un eujeu crucial dans de nombreuses applications (multi-fluides, fluide-structure, etc). La méthode MOF (moment-of-fluid) est une extension récente de la méthode VOF (volume-of-fluid) qui permet de suivre plusieurs matériaux évoluant au cours du temps. Elle utilise une reconstruction affine des interfaces par cellule basée sur f'information des fractions volumiques et les centroïdes de chaque matériau. La position de l'interface dans chaque cellule est solution d'un problème de minimisation sous contrainte de volume. Les algorithmes utilisés dans la littérature sont basés sur des calculs géométriques sur des polyèdres et ont un coût important en 3D. On propose dans cet exposé une approche complètement analytique de l'expression de la fonction à minimiser et de ses dérivées dans le cadre de cellules cubiques en 3D. Les résultats numériques montrent que l'approche proposée est bien plus rapide (plusieurs ordres de grandeurs) et aussi robuste que les approches géométriques.
  • Le 6 février 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Sylvie Monniaux\, I2M\, Aix-Marseille Université
    Unicité pour le système de Boussinesq via régularité maximale dans des espaces critiques.
    Le système de Boussinesq est un couplage entre les équations de Navier-Stokes modélisant un fluide incompressible stratifié par la température et une équation de la chaleur transportée par la vitesse du fluide. On montre l'unicité des solutions “mild” dans des espaces critiques en utilisant la méthode de la régularité maximale. C'est un travail en cours, en collaboration avec Lorenzo Brandolese (Lyon).
  • Le 6 février 2020 à 15:30
  • Le Colloquium
    Salle de Conférences
    Raphael Krikorian Cergy
    Sur la divergence des formes normales de Birkhoff.
    Un difféomorphisme du plan, réel analytique, symplectique (i.e. préservant l'aire) et admettant l'origine comme point fixe elliptique non résonnant est toujours formellement conjugué à un un système intégrable formel, sa forme normale de Birkhoff. Celle-ci est un invariant de conjugaison analytique et se révèle très utile lorsque l'on veut établir l'existence d'orbites quasi-périodiques. Siegel a démontré dans les années 50 que la conjugaison formelle qui amène le difféomorphisme à sa forme normale est en général divergente (c'est-à-dire ne définit pas une fonction analytique) . Il est alors naturel de se poser la question de la convergence ou de la divergence de le forme de Birkhoff elle-même. Plus généralement, je discuterai les implications sur la dynamique de la convergence de objet formel qu'est la forme normal de Birkhoff.
  • Le 7 février 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Florent Balacheff Barcelone
    Sur le produit des longueurs de géodésiques fermées d'une variété Riemannienne
    Le second théorème de Minkowski revient à une inégalité sur les tores plats Finsler de dimension n entre le volume et le produit des longueurs de géodésiques fermées homologiquement indépendantes. Nous présenterons une généralisation de ce résultat fondamental à une classe plus large de variétés Finsler. Cela inclut des variétés pour lesquelles le premier nombre de Betti et la dimension ne coincident plus, comme les surfaces. Il s'agit d'un travail en commun avec Steve Karam et Hugo Parlier.
  • Le 7 février 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Kęstutis Česnavičius Orsay
    The Manin constant and the modular degree
    By the modularity theorem, an elliptic curve $E$ over $\mathbf Q$ of conductor $N$ admits a surjection $\varphi$ from the modular curve $X_0(N)$. The Manin constant $c$ of such a modular parametrization of $E$ is the integer that scales the differential associated to the normalized newform on $\Gamma_0(N)$ determined by the isogeny class of $E$ to the $\varphi$-pullback of a Néron differential of $E$. For optimal $\varphi$ Manin conjectured his constant to be $1$, and we show that in general it divides $\operatorname{deg}(\varphi)$ under mild assumptions at the primes $2$ and $3$. This gives new restrictions on the primes that could divide the Manin constant. The talk is based on joint work with Michael Neururer and Abhishek Saha.
  • Le 7 février 2020 à 17:00
  • Le séminaire des doctorant·es
    Salle 2
    Gastón Vergara Hermosilla
    Some conclusions about a system modelling rigid structures floating in a viscous fluid...
    In this talk we will study a PDE based model for the vertical motion of a solid floating at the free surface of a shallow viscous fluid. We will show that the governing equations defines a well-posed linear system, and thanks to an explicit form of the transfer function we prove that system is input-output stable. In the second part of the talk, we will present some recent results about a diffusive representation and the asymptotic behaviour of an equation of Cummins type associated to the PDE model.
  • Le 10 février 2020 à 14:00
  • Groupe de Travail Analyse
    Salle 2
    Kobra Esmaeili Ardakan University Iran
    Generalized weighted composition operators from logarithmic Bloch type spaces to weighted type spaces
    In this talk, we characterize the boundedness of generalized weighted composition operators from logarithmic Bloch type spaces to $n$th weighted type spaces of holomorphic functions on the open unit disc and then we provide an estimation for the essential norm of these operators.
  • Le 11 février 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 385
    Raphael Rieu-Helft Université Paris-Sud
    How to Get an Efficient yet Verified Arbitrary-Precision Integer Library
    We present a fully verified arbitrary-precision integer arithmetic library designed using the Why3 program verifier. It is intended as a verified replacement for the mpn layer of the state-of-the-art GNU Multi-Precision library (GMP).
  • Le 11 février 2020 à 11:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    R. Bianchini
    Nonresonant bilinear forms for partially..dissipative hyperbolic systems violating the..Shizuta-Kawashima condition
    We consider a simple example of a partially dissipative hyperbolic system violating the Shizuta-Kawashima condition, i.e. such that some eigendirections do not exhibit dissipation at all. In the space-time resonances framework introduced by Germain, Masmoudi and Shatah, we prove that, when the source term has a Nonresonant Bilinear Form, as proposed by Pusateri and Shatah CPAM 2013, the formation of singularities is prevented, despite the lack of dissipation. This allows us to show that smooth solutions to this preliminary case-study model exist globally in time.
  • Le 11 février 2020 à 14:00
  • BLOC NOTES
    salle 286
    Laurent Facq de la Cellule Informatique de l'IMB
    Formation SSH

  • Le 13 février 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Vincent Duval Inria Paris\, Mokaplan
    Representing the solutions of total variation regularized problems
    The total (gradient) variation is a regularizer which has been widely used in inverse problems arising in image processing, following the pioneering work of Rudin, Osher and Fatemi. In this talk, I will describe the structure the solutions to the total variation regularized variational problems when one has a finite number of measurements. First, I will present a general representation principle for the solutions of convex problems, then I will apply it to the total variation by describing the faces of its unit ball. It is a joint work with Claire Boyer, Antonin Chambolle, Yohann De Castro, Frédéric de Gournay and Pierre Weiss.
  • Le 13 février 2020 à 14:00
  • Séminaire de l'équipe Dynamique des Populations
    Salle 1
    Simon Labarthe\, INRAE Bordeaux
    modèles et données en écologie microbienne

  • Le 13 février 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Vesselin Petkov\, IMB\, Université de Bordeaux
    Théorèmes Tauberiens pour des suites de fonctions
    Cf. https://plmbox.math.cnrs.fr/f/5f7325088cb24e5cb0df/
  • Le 14 février 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Vincent Pécastaing Université du Luxembourg
    Actions de réseaux de rang supérieur sur des structures conformes et projectives
    L'idée phare du programme de Zimmer est qu'en rang supérieur ou égal à 2, la rigidité des réseaux des groupes de Lie semi-simples est telle qu'on peut comprendre leurs actions sur des variétés compactes. Après un bref survol donnant une idée plus précise des conjectures de Zimmer et de leur contexte, je présenterai des résultats récents portant sur les actions conformes ou projectives de réseaux cocompacts. L'absence de forme volume naturelle invariante sur ces structures est l'une des motivations principales. On verra que le rang réel est borné comme lorsque le groupe de Lie ambiant agit, et qu'à la valeur critique, la variété est globalement équivalente à un espace homogène modèle. Les preuves s'appuient en outre sur un "principe d'invariance" introduit récemment par Brown, Rodriguez-Hertz et Wang, assurant l'existence de mesures finies invariantes dans certains contextes dynamiques.
  • Le 14 février 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Benjamin Wesolowski IMB
    Discrete logarithms in quasi-polynomial time in finite fields of small characteristic
    We prove that the discrete logarithm problem can be solved in quasi-polynomial expected time in the multiplicative group of finite fields of fixed characteristic. In 1987, Pomerance proved that this problem can be solved in expected subexponential time $L(1/2)$. The following 30 years saw a number of heuristic improvements, but no provable results. The quasi-polynomial complexity has been conjectured to be reachable since 2013, when a first heuristic algorithm was proposed by Barbulescu, Gaudry, Joux, and Thomé. We prove this conjecture, and more generally that this problem can be solved in the field of cardinality $p^n$ in expected time $(pn)^{2 log_2(n)+O(1)}$.
  • Le 17 février 2020 à 14:00
  • Groupe de Travail Analyse
    Salle 2
    Sebastian Tapia IMB
    compact operators and differentiability

  • Le 17 février 2020 à 16:00
  • Groupe de Travail de Théorie Algorithmique des Nombres
    Salle 2
    Razvan Barbulescu IMB
    Equivalence entre le cryptosystem d'Alekhnovich et son problème sousjacent

  • Le 17 février 2020 à 16:00
  • Groupe de Travail de Théorie Algorithmique des Nombres
    Salle 2
    Razvan Barbulescu IMB
    Equivalence entre le cryptosystem d'Alekhnovich et son problème sousjacent

  • Le 18 février 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 385
    Alex Bartel University of Glasgow
    The ray class group of a "random" number field
    The Cohen–Lenstra–Martinet heuristics are a probabilistic model for the behaviour of class groups of number fields in natural families. In this talk, I will discuss a generalisation to ray class groups. About 5 years ago, Varma determined the average number of 3-torsion elements in the ray class group of K with respect to m, when m is a fixed rational modulus, and K runs through the family of imaginary quadratic or of real quadratic fields. Since then, Bhargava has been challenging the community to come up with a natural probabilistic model that would explain the numbers obtained by Varma, and to predict more general averages in more general families of number fields. As I will explain in my talk, there turns out to be a very simple-minded way of doing so, and also a much more conceptual one, and they both turn out to be equivalent. The more conceptual one involves an object that does not appear to have been treated in the literature before, but that is very natural: the Aralelov ray class group of a number field. This is joint work with Carlo Pagano.
  • Le 18 février 2020 à 11:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    G. Fourdonavlos
    Stabilité linéarisée des "étoiles dures" en relativité générale
    On va introduire et étudier une famille de solutions statiques des équations d'Einstein-Euler à symétrie sphérique. Celles-ci sont décrites par un fluide parfait avec une équation d'état linéaire, modélisant le noyau dur d'une étoile qui a subi une supernova, mais ne s'est pas effondré dans un trou noir. La première étude variationnelle de ces étoiles, en relativité générale, a été réalisée par Harrison-Thorne-Wakano-Wheeler (1965). Je présenterai un travail récent, en collaboration avec Volker Schlue, traitant les équations d'Einstein-Euler linéarisées, sur ces solutions statiques, en symétrie sphérique. Nous aborderons notamment deux caractéristiques principales des étoiles dures de petite masse, l'énergie bornée et la présence de solutions périodiques au système d'équations linéarisé. Nous relierons ensuite ces propriétés au problème de stabilité orbitale.
  • Le 20 février 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle 2
    Christèle Etchegaray Inria\, IMB
    Stochastic modeling of single-cell migration
    Cell migration is commonly involved in physiological and pathological phenomena. It is also a very complex process, since cell trajectories result from an intracellular self-organized activity spanning different space and time scales. In this talk, I will introduce a stochastic model for single cell trajectories based on a nonlinear measure-valued Markovian jump process for the membrane's deformation dynamics. Performing some scaling limit allows to obtain a nonlinear Stochastic Differential Equation for the cell velocity. Further analysis puts to light the ability of the model to capture several migratory behaviors and to derive key quantities of the dynamics. Finally, I will explain how this model can be enriched to take into account the cell's interaction with its environment.
  • Le 20 février 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Nikolaos Chalmoukis - University of Bologna
    Simple Interpolating Sequences for the Dirichlet Space

  • Le 20 février 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Paul Vigneaux ENS Lyon
    [Séminaire CSM] Variations autour des fluides de Bingham : équations naturelles ou intégrées
    Dans cet exposé, nous ferons un panorama de méthodes et simulations numériques pour les fluides à seuil, basées sur des méthodes de dualité. Dans un premier temps, nous présenterons le problème des équations de type Bingham dans un canal en expansion-contraction qui permet d'obtenir des couches limites viscoplastiques. Nous revisiterons la théorie asymptotique d'Oldroyd (1947) dans le cas où les nombres caractéristiques sont modérés. Cette étude mélange simulations HPC et allers-retours avec des expériences physiques d'IRSTEA. Une seconde partie traitera ensuite d'un modèle original de Saint-Venant-Bingham pour ces fluides viscoplastiques, en lien avec des applications géophysiques. Nous proposons un nouveau schéma volumes-finis qui couple dualité et techniques équilibrées. Ses propriétés sont illustrées sur un prototype d'avalanche de neige dense dans le couloir de Taconnaz (massif du Mont-Blanc).
  • Le 21 février 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Jasmin Raissy Toulouse
    Un plongement holomorphe dynamique Runge de $\mathbb{C}\times\mathbb{C}^*$ dans $\mathbb{C}^2$.
    Je vais présenter la construction d'une famille d'automorphismes de $\mathbb{C}^2$ ayants une composante de Fatou invariante, attractive non-récurrente, c'est-à-dire où toute orbite converge vers un point fixe au bord de la composante, qui est biholomorphe à $\mathbb{C}\times\mathbb{C}^*$. Comme corollaire, nous obtenons une copie Runge de $\mathbb{C}\times\mathbb{C}^*$ plongée holomorphiquement dans $\mathbb{C}^2$. (Il s'agit d'un travail en collaboration avec Filippo Bracci et Berit Stensønes).
  • Le 21 février 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Matthias Flach California Institute of Technology
    Zeta functions of arithmetic surfaces and the conjecture of Birch and Swinnerton-Dyer..
    We discuss a special value conjecture for the Zeta function of an arithmetic surface at $s=1$, and how it is equivalent to the conjecture of Birch and Swinnerton-Dyer for the Jacobian of the generic fibre. Along the way we slightly generalize a formula due to Geisser relating the Brauer group and the Tate-Shafarevich group, and we develop some results on the eh-topology for varieties over finite fields.
  • Le 25 février 2020 à 10:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Jiao He
    Évanescence d'un petit solide dans un fluide visqueux incompressible.
    Dans cet exposé, je présenterai un problème qui modélise le mouvement d'un solide dans un fluide visqueux incompressible. On s'intéresse ici à l'évolution d'un seul petit obstacle qui se contracte vers un point dans un fluide de R^2 ou R^3. On montrera la convergence des solutions du système fluide-solide vers une solution des équations de Navier-Stokes sans obstacle grâce aux estimations d'énergie.
  • Le 25 février 2020 à 11:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    L. Hillairet Orléans
    Ecart uniforme entre les valeurs propres pour un potentiel singulier...
    On étudie comment une singularité de type puissance dans le potentiel affecte le spectre d'une équation de Schrödinger semiclassique 1D sur une demi-droite. On s'intéresse notamment à une description de l'écart entre les valeurs propres uniformisant les différents régimes (énergies non-critiques, fond de puits). Travail en commun avec Jeremy Marzuola (UNC).
  • Le 27 février 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    -
    Relâche

  • Le 2 mars 2020
  • BLOC NOTES
    Bureau 225
    La Cellule Informatique
    Effectif réduit pendant la semaine, anticipez vos passages avec un mail à help si possible pour le récolement. Pour les autres demandes, les plages d'ouverture sont réduites aux créneaux 10h-12h et 14h-16h.

  • Le 5 mars 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    -
    Vacances d'hiver

  • Le 9 mars 2020 à 14:30
  • Soutenance de thèse
    Salle de Conférences
    Michael Matusinski présentera son exposé en vue de son Habilitation à Diriger des Recherches
    Titre des travaux :"Séries formelles et méthodes transcendantes en géométrie modérée".

  • Le 9 mars 2020 à 16:00
  • Groupe de Travail de Théorie Algorithmique des Nombres
    Salle 2
    Jean Kieffer IMB
    Codes géométriques

  • Le 9 mars 2020 à 16:00
  • Groupe de Travail de Théorie Algorithmique des Nombres
    Salle 2
    Jean Kieffer IMB
    Codes géométriques

  • Le 10 mars 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 385
    Florent Jouve IMB
    Harmonie et disparités dans le théorème de Chebotarev
    Étant donné une extension galoisienne de corps de nombres L/K, le théorème de Chebotarev affirme l'équirépartition des éléments de Frobenius, relatifs aux idéaux premiers non ramifiés, dans les classes de conjugaison de Gal(L/K). On présentera une étude portant sur les variations du terme d'erreur dans le théorème de Chebotarev, lorsque L/K parcourt certaines familles d'extensions. On donnera une formule de transfert pour les fonctions classiques de décompte des nombres (ou idéaux) premiers permettant de ramener la situation à celle d'une extension des rationnels. On exposera enfin quelques conséquences à des problèmes de "type Linnik" et à l'analogue du phénomène de biais de Chebyshev dans les corps de nombres. L'exposé porte sur un travail commun avec D. Fiorilli.
  • Le 11 mars 2020 à 11:00
  • Séminaire de Théorie des Nombres
    Salle 385
    Cathy Swaenepoel (Montréal)\n Attention à l'horaire et au lieu inhabituels : mercredi 11 mars à 11h en salle 385
    Nombres premiers avec des chiffres préassignés
    Bourgain (2015) a estimé le nombre de nombres premiers avec une proportion $c>0$ de chiffres préassignés en base 2 (c est une constante absolue non précisée). Nous présenterons une généralisation de ce résultat à toute base $g \geq 2$ et nous donnerons des valeurs explicites pour la proportion $c$ en fonction de $g$. Notre preuve, qui développe, précise et prolonge la stratégie de Bourgain, est fondée sur la méthode du cercle et combine des techniques d'analyse harmonique avec des résultats sur les zéros des fonctions $L$ de Dirichlet, notamment une région sans zéro très fine due à Iwaniec.
  • Le 12 mars 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Barbara Pascal ENS Lyon
    How fractal texture segmentation turns to be a strongly convex optimization problem ?
    Texture segmentation still constitutes an ongoing challenge, especially when processing large-size images. The aim of this work is twofold.
    First, we provide a variational model for simultaneously extracting and regularizing local texture features, such as local regularity and local variance. For this purpose, a scale-free wavelet-based model, penalised by a Total Variation regularizer, is embedded into a convex optimisation framework. Second, we investigate convergence acceleration strategies, relying on strong-convexity of the objective function, in order to deal with computational cost induced by the minimization. Finally, we illustrate the developed procedures on real-world images of multiphasic flows.
  • Le 12 mars 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM] Créneau libre

  • Le 12 mars 2020 à 14:00
  • Séminaire de l'équipe Dynamique des Populations
    Salle 1
    Connor Tiffany
    Omic data in microbial ecology. Inferring ecological models with metabarcoding data.

  • Le 12 mars 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Romuald Ernst\, LMPA\, Université du Littoral Côte d'Opale
    De la fréquente hypercyclicité à la fréquente hypercyclicité commune.
    Dans cet exposé, je comparerai certains résultats de dynamique linéaire dus à différents auteurs et j'expliquerai ce qui m'a motivé à considérer les questions de fréquente hypercyclicité commune. Je parlerai ensuite de travaux en cours obtenus en collaboration avec Stéphane Charpentier, Monia Mestiri (Mons) et Augustin Mouze (Lille) sur ce sujet.
  • Le 12 mars 2020 à 15:30
  • Le Colloquium
    Salle de Conférences
    Vladimir Dotsenko
    Many faces of pre-Lie algebras
    Pre-Lie algebras appear virtually everywhere : from combinatorics to mathematical physics, from differential geometry to homotopy theory. In this talk, I will tell a historical overview of how this notion was repeatedly invented, give some hands-on examples of pre-Lie algebras, and explain some theorems about them, from very old to surprisingly recent.
  • Le 12 mars 2020 à 17:00
  • Le séminaire des doctorant·es
    Salle 2
    Alexandre Bailleul
    Fonctions L et courses de nombres premiers..
    La répartition des nombres premiers est profondément liée à la répartition des zéros de certaines fonctions analytiques, appelées fonctions L. Un problème relativement récent et peu connu concernant la répartition des nombres premiers est celui des "courses de nombres premiers". L'exemple typique est le suivant : bien que les nombres de nombres premiers inférieurs à x congrus à 1 mod 4 et à 3 mod 4 sont asymptotiquement équivalents quand x tend vers l'infini (théorème des nombres premiers en progressions arithmétiques), on observe que les premiers congrus à 3 mod 4 apparaissent plus fréquemment que ceux qui sont congrus à 1 mod 4. Dans l'exposé, j'expliquerai comment étudier ce phénomène, appelé biais de Tchebychev, dans divers contextes à l'aide de fonctions L.
  • Le 13 mars 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Nicolas Tholozan DMA/ENS
    Géométrie des espaces localement homogènes
    On s'intéresse dans cet exposé aux quotients compacts d'espaces homogènes réductifs, c'est-à-dire aux espaces de la forme $\Gamma \backslash G/H$ où $G$ est un groupe de Lie semi-simple, $H$ un sous-groupe réductif et $\Gamma$ un sous-groupe discret de $G$ agissant proprement discontinûment et cocompactement sur $G/H$. Nous formulerons une conjecture sur la géométrie de ces quotients et nous expliquerons que, bien que loin d'être résolue en général, cette conjecture inspire de nombreux résultats intéressants, notamment des obstructions puissantes à l'existence de tels quotients.
  • Le 13 mars 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    K. Buyukboduk Dublin
    ANNULÉ

  • Le 17 mars 2020 à 14:00
  • Manifestations Scientifiques
    Institut Mathématique d'Orsay
    Organisation : Laurent Michel
    Rencontre QuAMProcs

  • Le 19 mars 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Antonin Prochazka\, LMB\, Université de Franch-Comté\, Besançon
    Annulé!!! - Plongements des espaces Lipschitz libres dans $ell_1$.
    We show that, for a separable and complete metric space M, the Lipschitz-free space F(M) embeds linearly and almost-isometrically into $\ell_1$ if and only if M is a subset of an R-tree with length measure 0. Moreover, it embeds isometrically if and only if the length measure of the closure of the set of branching points of M (taken in any minimal R-tree that contains M) is negligible. We also prove that, for any subset M of an R-tree, every extreme point of the unit ball of F(M) is an element of the form (δ(x)−δ(y))/d(x,y) for x≠y∈M. Joint work with R. Aliaga and C. Petitjean.
  • Le 19 mars 2020 à 14:00
  • Séminaire de l'équipe Dynamique des Populations
    Salle 1
    -
    Gwenael Peltier

  • Le 20 mars 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Anne Lonjou Bâle
    Actions des groupes de Cremona sur des complexes cubiques CAT(0) (annulé)
    À toute variété algébrique nous pouvons associer son groupe de transformations birationnelles. Un des cas les plus intéressants est lorsque la variété considérée est l'espace projectif de dimension n. Dans ce cas, ce groupe est appelé groupe de Cremona de rang n. Le groupe de Cremona de rang 2 est maintenant assez bien compris bien que ce soit un groupe compliqué. Un des outils clés pour l'étudier est son action sur un espace hyperbolique. Malheureusement, en rang supérieur une telle action n'est pas à notre disposition. Récemment en théorie géométrique des groupes, les actions de groupes sur des complexes cubiques CAT(0) se sont avérées être un outil important pour étudier une large classe de groupes. Dans cet exposé, basé sur un travail en commun avec Christian Urech, nous construirons de tels complexes sur lesquels les groupes de Cremona agissent. Nous verrons également quels résultats nous pouvons ainsi obtenir sur ces groupes.
  • Le 20 mars 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    F. Pazuki Copenhague/Bordeaux
    Sans titre

  • Le 23 mars 2020 à 14:00
  • Groupe de Travail Analyse
    Salle 2
    Thomas Cometx (IMB) (GDT reporté)
    Fonctions de Littlewood-Paley-Stein pour les opérateurs de Schrödinger et de Hodge-de Rham dans le cas sous-critique
    Les fonctions de Littlewood-Paley-Stein sont très liées à la transformée de Riesz $\Delta^{-1/2}$ et peuvent être utilisées pour prouver sa continuité en norme $L^p$. Dans cet exposé, nous étudierons la continuité $L^p$ de ces fonctions soit pour les opérateurs de Schrodinger sur les fonctions dans le cas où la partie négative du potentiel est sous critique, soit pour le Laplacien de Hodge pour les 1-formes dans la cas où le partie négative de la courbure de Ricci est sous critique. On obtient leur continuité sur une intervalle $(p_0,2]$ où $p_0$ depend des hypothèses prises sur le potentiel ou sur la courbure. Cela donne des résultats sur la continuité de la transformée de Riesz pour $p > 2$ sans hypothèse de doublement de volume ou d'estimation Gaussienne sur le noyau de la chaleur.
  • Le 24 mars 2020 à 10:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    R. Höfer Bonn
    Sans titre

  • Le 24 mars 2020 à 11:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    H. Isozaki
    Sans titre

  • Le 25 mars 2020 à 09:00
  • BLOC NOTES
    salle 286
    Laurent Facq de la Cellule Informatique de l'IMB
    Formation "Git Débutant"

  • Le 25 mars 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    ANNULE : Roland Schnaubelt Karlsruhe Institute of Technology\, KIT
    ANNULE : Decay of quasilinear Maxwell equations with conductivity
    We discuss the Maxwell system with nonlinear instantaneous material laws and a strictly positive conductivity in the domain. The coefficients are matrix-valued. For small initial data we can show that the solution exponentially decays to 0 in H^3. We use higher order energy bounds and observability-type estimates both with error terms arising from the quasilinearity. A detailed regularity analysis is needed to control these error terms. This is joint work with Irena Lasiecka (Memphis) and Michael Pokojovy (El Paso).
  • Le 26 mars 2020
  • Manifestations Scientifiques
    Salle de Conférences
    Comité d'organisation : L. Abi-Rizk\, X. Caruso\,R. Loubère\, V. Koziarz
    Journée des prix en Mathématiques 2019-2020 de l'Académie des Sciences

  • Le 26 mars 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Bochra Mejri
    [Séminaire CSM] REPORTÉ - Topological sensitivity analysis for identification of voids under Navier's boundary conditions in linear elasticity
    This talk is concerned with a geometric inverse problem related to the two-dimensional linear elasticity system. Thereby, voids under Navier's boundary conditions are reconstructed from the knowledge of partially over-determined boundary data. The proposed approach is based on the so-called energy-like error functional combined with the topological sensitivity method. The topological derivative of the energy-like misfit functional is computed through the topological-shape sensitivity method. Firstly, the shape derivative of the corresponding misfit function is presented briefly from previous work. Then, an explicit solution of the fundamental boundary-value problem in the infinite plane with a circular hole is calculated by the Muskhelishvili formulae. Finally, the asymptotic expansion of the topological gradient is derived explicitly with respect to the nucleation of a void. Numerical tests are performed in order to point out the efficiency of the developed approach.
  • Le 26 mars 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle de Conférences
    -
    [Séminaire CSM]

  • Le 26 mars 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    -
    Relache - Journée des Prix de l'Académie des Sciences

  • Le 27 mars 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Fabrizio Barroero Roma Tre
    REPORTÉ

  • Le 31 mars 2020 à 11:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    A. Bondesan
    Sans titre

  • Le 2 avril 2020 à 13:00
  • Séminaire de l'équipe Dynamique des Populations
    Salle 1
    Sepideh Mirrahimi
    Selection and mutation in a shifting and fluctuating environment

  • Le 2 avril 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Jaydeb Sarkar\, Indian Institute of Statistics\, Bangalore\, India
    Annulé!!! - tba

  • Le 3 avril 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    A. Queguiner-Mathieu Paris 13
    Sans titre

  • Le 7 avril 2020 à 11:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    C. Fermanian
    Théorème d'Egorov sur les groupes de type Heisenberg
    Nous présenterons dans cet exposé des résultats récents obtenus en collaboration avec Véronique Fischer (University of Bath, UK) et visant à développer une analyse semi-classique sur les groupes de Lie. Nous discuterons un calcul pseudodifférentiel semi-classique sur ces groupes ainsi que les théorèmes de type Egorov et la notion de mesure semi-classique qui en découlent dans le cas des groupes de type Heisenberg.
  • Le 10 avril 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Ludovic Marquis IRMAR
    Exposé reporté

  • Le 10 avril 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    F. Campagna Copenhague
    Sans titre

  • Le 14 avril 2020 à 11:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    D. Häfner Grenoble
    Séminaire annulé

  • Le 16 avril 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Bertrand Michel
    [Séminaire CSM] REPORTÉ

  • Le 16 avril 2020 à 14:00
  • Manifestations Scientifiques
    Guimaraes, Portugal
    Comité d'organisation : Stéphane Clain univ. Minho\, Braga\, Raphaël Loubère univ.Bordeaux.
    Machine learning for CFD Computation

  • Le 21 avril 2020 à 11:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    C. Collot
    On the derivation of the homogeneous kinetic wave equation
    The kinetic wave equation arises in many physical situations: the description of small random surface waves, or out of equilibria dynamics for large quantum systems for example. In this talk we are interested in its derivation as an effective equation from the nonlinear Schrodinger equation (NLS) for the microscopic description of a system. More precisely, we will consider (NLS) in a weakly nonlinear regime on the torus in any dimension greater than two, and for highly oscillatory random Gaussian fields as initial data. A conjecture in statistical physics is that there exists a kinetic time scale on which, statistically, the Fourier modes evolve according to the kinetic wave equation. We prove this conjecture up to an arbitrarily small polynomial loss in a particular regime, and obtain a more restricted time scale in other regimes. The main difficulty, that I will comment on, is that one needs to identify the leading order statistically observable nonlinear effects. This means understanding correlation between Fourier modes, and relating randomness with stability and local well-posedness. The key idea of the analysis is the use of Feynman interaction diagrams to understand the solution as colliding linear waves. We use this framework to construct an approximate solution as a truncated series expansion, and use in addition random matrices tools to obtain its nonlinear stability using Bourgain spaces. This is joint work with P. Germain from Courant Institute, New York University.
  • Le 23 avril 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Mohamed Bachir\, Université Paris 1
    tba

  • Le 24 avril 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Thomas Haettel Montpellier
    Exposé reporté

  • Le 30 avril 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    -
    Vacances de printemps

  • Le 30 avril 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Solène Bulteau Maison de la simulation
    [Séminaire CSM] REPORTÉ

  • Le 7 mai 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    -
    ANNULE !!! Colloque WACOT2020 "Workshop on Analysis and Control Theory"

  • Le 12 mai 2020 à 11:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    J. Faupin Univ. Lorraine
    Sans titre

  • Le 14 mai 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Maelle Nodet
    [Séminaire CSM] REPORTÉ - Quelques contributions à l'assimilation de données images
    "Assimiler des données" est un problème inverse qui consiste à combiner diverses informations sur un système physique donné en vue d'effectuer des prévisions de l'évolution de ce système. Par exemple, en météorologie, on combine l'information contenue dans 1/ les mesures et observations de l'atmosphère, 2/ les équations de la mécanique des fluides et 3/ les statistiques sur les erreurs de mesure, en vue de prévoir le temps futur. Dans cet exposé, je présenterai l'assimilation de données puis je donnerai un exemples de problème d'assimilation dans le cas où les observations du système sont des images (comme des images satellites, des photos, etc.), autrement dit des données denses en espace.
  • Le 14 mai 2020 à 15:30
  • Le Colloquium
    Salle de Conférences
    Sébastien Gouezel Nantes
    REPORTE A UNE DATE ULTERIEURE

  • Le 15 mai 2020
  • Soutenance de thèse
    Salle de Conférences
    Felipe NEGREIRA
    Sujet : "Extensions de la théorie de l'échantillonnage: échantillonnage sur des espaces de type homogène et échantillonnage le long de..courbes". Directeur de thèse : Philippe Jaming

  • Le 15 mai 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Pierre Py Strasbourg
    reporté

  • Le 15 mai 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    K. Kedlaya UCSD
    Sans titre

  • Le 19 mai 2020 à 11:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    A. Stingo UC Davies
    Sans titre

  • Le 20 mai 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Hakan Hedenmalm\, KTH\, Stockholm\, Suède
    Gaussian analytic functons & Dirichlet type symbols.

  • Le 21 mai 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    -
    Ascension, férié

  • Le 22 mai 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Mario Shannon
    reporté

  • Le 28 mai 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM] Créneau libre

  • Le 29 mai 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Florent Schaffhauser Strasbourg
    Exposé en visio !

  • Le 4 juin 2020 à 11:00
  • Séminaire d'Analyse
    Salle de Conférences
    José Pelaez\, Université de Malaga\, Espagne
    On the boundedness of Bergman projection on L^p spaces.
    https://plmbox.math.cnrs.fr/f/a107a654345941ae9992/
  • Le 5 juin 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Laurent Manivel Toulouse
    Exposé reporté

  • Le 5 juin 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Stefan Schröer Düsseldorf
    Sans titre

  • Le 8 juin 2020
  • Manifestations Scientifiques
    Paris
    Comité d'organisation : Rémi Boutonnet\, Claire Debord\, Pierre Fima\, François le Maître
    Workshop on Operator algebras and group dynamics

  • Le 11 juin 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM] Créneau libre

  • Le 11 juin 2020 à 14:30
  • Séminaire d'Analyse
    Salle de Conférences
    Félipé Negreira\, IMB\, Université de Bordeaux
    Soutenance de la thèse: Extensions of sampling theory:..sampling on spaces of homogeneous type and sampling along curves.

  • Le 12 juin 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Benoît Kloeckner
    Exposé en visio à 10h15 !

  • Le 12 juin 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Anna Cadoret IMJ
    Sans titre

  • Le 19 juin 2020 à 10:15
  • Séminaire de Géométrie
    En Visio
    Uri Bader Weizmann Institute
    Totally geodesic subspaces and arithemeticity phenomena in hyperbolic manifolds
    In this talk I will survey a well known, still wonderful, connection between geometry and arithmetics and discuss old and new results in this topic. The starting point of the story is Cartan's discovery of the correspondence between semisimple Lie groups and symmetric spaces. Borel and Harish-Chandra, following Siegel, later realized a fantastic further relation between arithmetic subgroups of semisimple Lie groups and locally symmetric space - every arithemtic group gives a locally symmetric space of finite volume. The best known example is the modular curve which is associated in this way with the group SL_2(Z). This relation has a partial converse, going under the name "arithmeticity theorem", which was proven, under a higher rank assumption, by Margulis and in some rank one situations by Corlette and Gromov-Schoen. The rank one setting is related to hyperbolic geometry - real, complex, quaternionic or octanionic. There are several open questions regarding arithmeticity of locally hyperbolic manifolds of finite volume over the real or complex fields and there are empirical evidences relating these questions to the geometry of totally geodesic submanifolds. Recently, some of these questions were solved by Margulis-Mohammadi (real hyp. 3-dim), Baldi-Ullmo (complex hyp.) and B-Fisher-Miller-Stover. The techniques involve a mixture of ergodic theory, algebraic groups theory and hodge theory. After surveying the above story, explaining all the terms and discuss some open questions, I hope to have a little time to say something about the proofs.
  • Le 22 juin 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Anton Baranov\, St. Petersburg State University\, Russia
    Backward shift and nearly invariant subspaces of Fock-type spaces.
    We study the structure of the backward shift-invariant and nearly invariant subspaces in weighted Fock-type spaces whose weight is not necessarily radial. We show that in the spaces which contain polynomials as a dense subset (in particular, in the radial case) any nontrivial backward shift-invariant subspace coincides with a finite dimensional subspace consisting of polynomials up to a certain degree. In general, the structure of nearly invariant subspaces is more complicated. In the case of spaces of slow growth (up to zero exponential type) we establish an analogue of de Branges' Ordering Theorem. This is a joint work with Alexandru Aleman, Yurii Belov, and Haakan Hedenmalm.
  • Le 24 juin 2020 à 14:00
  • Soutenance de thèse
    Institut Bergonié
    Amandine CROMBE
    Sujet : "Développement des approches de radiomics à visées pronostique et thérapeutique en cancérologie à partir du modèle des sarcomes..des tissus mous". Directeur de thèse : Olivier Saut

  • Le 25 juin 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM] Créneau libre

  • Le 25 juin 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    A. Fernandez-Bertolin\, Université du Pays Basque/EHU.
    Three balls inequalities for discrete Schrödinger

  • Le 30 juin 2020 à 14:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    L. Le Treust
    On the semiclassical spectrum of the Dirichlet-Pauli operator
    This talk is devoted to semiclassical estimates of the eigenvalues of the Pauli operator on a bounded open set whose boundary carries Dirichlet conditions. Assuming that the magnetic field is positive and a few generic conditions, we establish the simplicity of the eigenvalues and provide accurate asymptotic estimates involving Bergman-Hardy spaces associated with the magnetic field.
  • Le 24 juillet 2020 à 14:00
  • Soutenance de thèse
    Salle de Conférences
    Yulin CAI
    Sujet : "Points entiers sur les courbes modulaires, les modules singuliers et l'inégalité conducteur-discriminant". Directeur de thèse : Yuri Bilu, co-directeur : Qing Liu

  • Le 28 juillet 2020 à 10:00
  • Soutenance de thèse
    Dipartimento di Matematica "Federigo Enriques - Milano - Italia
    Davide MARANGONI
    Sujet : "Cohomologie de DeRham derivée". Directeur de thèse : Baptiste Morin. Co-directeur : Fabrizio Andreatta

  • Le 10 septembre 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    -
    Réunion de rentrée du Séminaire d'Analyse

  • Le 17 septembre 2020 à 10:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    -
    réunion rentrée séminaire EDP

  • Le 17 septembre 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Nikolai Nikolski\, IMB\, Université de Bordeaux
    100 ans des distributions asymptotiques type Szegö
    Il y a deux approches aux théorèmes classiques de distribution des spectres type Szegö - celle de l'analyse complexe et puis des algèbres C^*. En les comparant brièvement, je passerai ensuite aux matrices de Toeplitz sur les groupes discrets. En particulier, je traiterai les matrices de "Toeplitz-multiplicatives" {s(k/n)} à l'aide des approximations de Følner. Les résultats s'appliquent aux systèmes de fonctions dilatées f(nx), ainsi qu'à l'intégrabilité de la fonction zeta le longue des droites verticales. L'exposé est basé sur un article avec A.Pushnitski (KCL), St.Pétersbourg Math. J., 2020.
  • Le 18 septembre 2020 à 10:00
  • Soutenance de thèse
    Salle de Conférences
    Sergio CORRIDORE
    Sujet :"Real data calibration and floating potential model in the context of electroporation". Directeur de thèse : Clair Poignard, co-directrice : Annabelle Collin.

  • Le 22 septembre 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Nicolas Mascot Trinity College Dublin
    Modular Galois representations p-adically using Makdisi's moduli-friendly forms
    We will present a p-adic method to compute Galois representations attached to modular forms. This method compares very favourably to the better-known complex-analytic approach. The main ingredient is the use of “moduli-friendly" forms introduced by Makdisi, which allow us to evaluate modular forms at p-adic points of modular curves, and thus to compute in the Jacobian of modular curves without writing down any equations nor q-expansions.
  • Le 24 septembre 2020 à 15:30
  • Le Colloquium
    Salle de Conférences
    Sébastien Gouezel Nantes
    Reporté à une date ultérieure

  • Le 25 septembre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Francesco Campagna Copenhague
    Singular moduli and $S$-units
    A remarkable property of singular invariants of CM elliptic curves (singular moduli) is that they are algebraic integers. Hence it makes sense to ask, for a fixed set of rational primes S, how many singular moduli are S-units. When the set S is empty, Yu. Bilu, P. Habegger and L. Kühne have answered this question by proving that singular units do not exist. What happens now if we allow S to be a non-empty set of primes? We will discuss this problem and give partial answers.
  • Le 1er octobre 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Julie Delon MAP5\, Univ. Paris Descartes
    Une distance de Wasserstein entre mélanges de gaussiennes et quelques applications en traitement d'image
    Les modèles de mélanges de gaussiennes (GMM) s'avèrent particulièrement utiles pour représenter des distributions de probabilité complexes de données réelles. Par exemple, en traitement d'images, de nombreux travaux utilisent des GMM pour représenter des distributions de patchs dans les images, et ces modèles sont utilisés comme a priori pour la restauration d'image ou la synthèse de texture. Le transport optimal et les distances de Wasserstein sont aujourd'hui massivement utilisés pour analyser des statistiques extraites des images ou comme métriques en apprentissage profond. Si le transport optimal peut être utilisé pour définir des géodésiques entre GMM, les interpolées ainsi définies ne conservent pas la propriété d'être des mélanges de gaussiennes. Afin de conserver cette propriété, nous définissons une nouvelle distance entre mélanges en restreignant l'ensemble des mesures de couplage à des GMM dans la formulation originale du transport optimal. De manière surprenante, on montre que cette distance entre mélanges peut se réécrire sous la forme d'un problème de transport discret, ce qui la rend simple à calculer même en grande dimension. On étudie ses propriétés, le problème multi-marginal associé et les barycentres pour cette formulation. Finalement, on illustre son utilisation en traitement d'images.
  • Le 1er octobre 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Sebastian Tapia IMB
    Wild dynamics and Asymptotically separated sets
    Let $X$ be a separable infinite dimensional (real or complex) Banach space. Augé in 2012 constructed a bounded operator on $X$ such that the set $A_T:=\{x\in X:~ \|T^nx\|\to \infty\}$ is not dense and has nonempty interior. Moreover, he introduced the notion of wild operators. In this talk we study the class of wild operators and we introduce the notion of asymptotically separated sets, which allows us to construct operators with non-intuitive dynamics. Specifically, operators for which the set $A_T$ and the set of recurrent points form a partition of the space.
  • Le 2 octobre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférence (en visio)
    Francesca Balestrieri American University of Paris
    Strong approximation for homogeneous spaces of linear algebraic groups
    Building on work by Yang Cao, we show that any homogeneous space of the form $G/H$ with $G$ a connected linear algebraic group over a number field $k$ satisfies strong approximation off the infinite places with étale-Brauer obstruction, under some natural compactness assumptions when $k$ is totally real. We also prove more refined strong approximation results for homogeneous spaces of the form $G/H$ with $G$ semisimple simply connected and $H$ finite, using the theory of torsors and descent. (This latter result is somewhat related to the Inverse Galois Problem.)
  • Le 6 octobre 2020 à 14:00
  • BLOC NOTES
    Salle de Conférences
    -
    Après-midi de rentrée de l'IMB en l'honneur des nouveaux doctorants et post-doctorants
    . Accueil des nouveaux membres du laboratoire . Présentation des nouveaux doctorants et post-doctorants par les responsables d'équipe . Intervention de Bill Allombert Crystal 2020 du CNRS
  • Le 8 octobre 2020 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Salle 2
    Xavier Blanchot PhD student\, IMB\, OptimAl
    Benders by batch: an enhanced algorithm to solve multicut Benders reformulation of two-stage stochastic programs..
    We introduce a new exact algorithm based on Benders decomposition to solve two-stage stochastic linear programs. We propose to solve only a few number of subproblems at each iteration, and develop and easy and exact framework thanks to the multicut formulation of Benders decomposition. We propose three primal stabilization methods for the algorithm. We perform an extensive computational study on six large-scale benchmarks of stochastic optimization literature. Results show the efficiency of the method compared to three classical alternative algorithms and significant time saving provided by its primal stabilization.
  • Le 8 octobre 2020 à 17:00
  • Le séminaire des doctorant·es
    Salle de Conférences
    Sebastián Tapia IMB
    Self-contracted dynamics and extensions
    Self-contracted dynamics were introduced in 2010. This is a metric property which is an abstract framework for several dynamics that come from optimization. The rectifiability of self-contracted curves was the main question about this phenomena, which was stablished in 2015 for finite dimensional Euclidean spaces and in 2017 for finite dimensional normed spaces. In this talk we present some results concerning self-contracted dynamics, the main ideas of the euclidean technique for rectifiability and we explore different extensions of the self-contracted notion.
  • Le 9 octobre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférence (en visio)
    Efthymios Sofos Glasgow
    Schinzel Hypothesis with probability 1 and rational points
    Joint work with Alexei Skorobogatov, preprint: https://arxiv.org/abs/2005.02998. Schinzel's Hypothesis states that every integer polynomial satisfying certain congruence conditions represents infinitely many primes. It is one of the main problems in analytic number theory but is completely open, except for polynomials of degree 1. We describe our recent proof of the Hypothesis for 100% of polynomials (ordered by size of coefficients). We use this to prove that, with positive probability, Brauer--Manin controls the Hasse principle for Châtelet surfaces.
  • Le 13 octobre 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Christopher Doris Heilbronn Institute and University of Bristol
    Computing Galois groups over p-adic fields
    We give an overview of the history of computing Galois groups over p-adic fields, with some diversions to recent progress over the rational field. We focus on the "resolvent method," a family of techniques to compute Galois groups, and present a recent algorithm to do this in general over p-adic fields, the first of its kind. This algorithm greatly increases the degree of polynomial that can be routinely handled, and for example has been used to extend existing databases of Galois groups of p-adic fields to include all degree 18, 20 and 22 extensions of the 2-adic field. The implementation and tables of results are available on the speaker's website.
  • Le 13 octobre 2020 à 11:15
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    R. Höfer
    Effective equations for fluids with many small particles
    Particles immersed in fluids are ubiquitous in nature and technology. Depending on the model, various effective equations may occur in the limit of many small particles. One of the most well-studied models are the incompressible Stokes equations with no slip bounday conditions. In this case, the individual drag forces of the particles give rise to a collective force leading to the Brinkman equations or Darcy's law. However, the same collective effect can also be observed for non-creeping flows such as the incompressible and even the compressible Navier-Stokes equations. In this talk we will discuss in which cases the local fluid flow around each particle can be well approximated by the incompressible Stokes equations such that the Stokes-Brinkman force prevails. The talk is based on joint work with Arianna Giunti, Jonas Jansen, Karina Kowalczyk, Sebastian Schwarzacher and Juan Velázquez.
  • Le 15 octobre 2020
  • Manifestations Scientifiques
    Organizing committee : Quentin Griette (Université de Bordeaux)\, Jane Heffernan (York University)\, Yvon Maday (Sorbonne Université)\, Pierre Magal (Université de Bordeaux)\, Jianhong Wu (York University)
    Infectious Disease Outbreaks

  • Le 15 octobre 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Anas Barakat Télécom ParisTech
    Convergence and Dynamical Behavior of the ADAM Algorithm for Non-Convex Stochastic Optimization
    Adam is a popular variant of stochastic gradient descent for finding a local minimizer of a function. In the constant stepsize regime, assuming that the objective function is differentiable and non-convex, we establish the convergence in the long run of the iterates to a stationary point under a stability condition. The key ingredient is the introduction of a continuous-time version of Adam, under the form of a non-autonomous ordinary differential equation. This continuous-time system is a relevant approximation of the Adam iterates, in the sense that the interpolated Adam process converges weakly towards the solution to the ODE. The existence and the uniqueness of the solution are established. We further show the convergence of the solution towards the critical points of the objective function and quantify its convergence rate under a Lojasiewicz assumption. Then, we introduce a novel decreasing stepsize version of Adam. Under mild assumptions, it is shown that the iterates are almost surely bounded and converge almost surely to critical points of the objective function. Finally, we analyze the fluctuations of the algorithm by means of a conditional central limit theorem.
  • Le 15 octobre 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Isabelle Cheylan
    [Séminaire CSM] Optimisation de forme avec la méthode adjointe appliquée aux équations de Lattice-Boltzmann en aérodynamique
    Le travail présenté a pour objectif le développement d'un solveur adjoint dans ProLB, un logiciel de mécanique des fluides basé sur la méthode de Lattice-Boltzmann. Ce solveur adjoint, basé sur les multiplicateurs de Lagrange, permet de calculer les sensibilités surfaciques des efforts aérodynamiques d'un obstacle par rapport à la forme de celui-ci. Dans un premier temps, l'étude de cas 2D laminaires permet de détailler le développement du solveur adjoint étape par étape. Les complexités apportées par l'étude d'un cas 3D turbulent à grandes échelles sont ensuite expliquées, puis les modifications apportées au solveur adjoint sont détaillées afin de pouvoir l'utiliser dans un contexte industriel. Les différentes hypothèses retenues pour le développement du solveur adjoint sont justifiées et documentées, afin d'arriver à un solveur adjoint opérationnel en industrie. Le solveur adjoint permet ainsi de savoir où déformer un véhicule afin de le rendre plus performant en terme d'aérodynamique. L'objectif final est de déformer, par des techniques de morphing, la forme d'un véhicule afin d'améliorer la force de traînée agissant sur celui-ci.
  • Le 15 octobre 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Michel Bonnefont IMB
    Inégalités de covariance pour des fonctions convexes et d'autres classes de fonctions.
    Dans cet exposé, on discutera certaines inégalités de covariance. Le point de départ est l'inégalité suivante démontrée par Hu puis Hargé pour la gaussienne dans R^d: Si f et g sont gaussiennes alors: cov(f,g) \geq cov(f,x) . cov(g,x). Le premier résultat de cet exposé est de montrer que cette inégalité est en fait valable pour toute mesure en dimension 1. Dans la suite de cet exposé nous essaierons de généraliser cette inégalité pour d'autres classes de fonctions et d'autres mesures produits. (travail en cours avec Erwan Hillion et Adrien Saumard)
  • Le 15 octobre 2020 à 15:30
  • Le Colloquium
    Salle de Conférences
    Jane Heffernan
    Vaccination and Waning Immunity
    Immunity is gained from infection and/or vaccination. An effect of immunity is in the ability of a host's body to resist infection. At the population level this is realized through the measurement of ‘herd immunity' – when a sufficient fraction of the population is immune to an infectious disease so as to indirectly protect the entire population. The protective effects of immunity can decay over time -- immunity can wane, allowing asymptomatic or mild infections, or severe infections if a decay to full susceptibility is achieved. In this talk I will review some basic models of immunity from the literature. These models will then be extended to studies of the effects of waning immunity on specific infectious diseases (i.e., pertussis, measles, and COVID-19) and the feasibility of herd immunity.
  • Le 15 octobre 2020 à 17:00
  • Le séminaire des doctorant·es
    Salle de Conférences
    Dasha Poliakova University of Copenhaguen
    From polyhedra to operads
    I will construct associahedra and multiplihedra - polytopes which are responsible for non-associativity in algebra. I will therefore introduce operads in general and A-infinity operad in particular. If time permits, I will discuss some contractions of associahedra and multiplihedra.
  • Le 16 octobre 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Anne Lonjou Orsay
    Action du groupe de Cremona sur un complexe cubique CAT(0)
    Bien que le groupe des transformations birationnelles (isomorphismes entre deux ouverts) du plan projectif, appelé groupe de Cremona, soit issu de la géométrie algébrique, son action sur un espace hyperbolique a permis de grandes avancées dans l'étude de ce groupe. Récemment, avec Christian Urech, nous avons construit un complexe cubique CAT(0) sur lequel ce groupe agit de façon non-triviale et très naturellement. Dans cet exposé, nous construirons ce complexe et nous verrons quels types de résultats nous pouvons ainsi obtenir.
  • Le 16 octobre 2020 à 14:00
  • Soutenance de thèse
    Salle de Conférences
    Mohamed BENKIRANE
    Sujet : "Optimisation des moyens dans la recomposition commerciale de dessertes TER". Directeur de these : François Clautiaux, co-directeur : Boris Detienne

  • Le 16 octobre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle 2
    Elena Berardini LIX - École polytechnique
    Codes géométriques sur des familles de surfaces algébriques
    Le but de cet exposé est de borner la distance minimale de codes géométriques algébriques construits sur des surfaces définies sur les corps finis. Dans un premier temps, nous étudions les codes sur deux grandes familles de surfaces algébriques : celles dont le diviseur anti-canonique est strictement nef ou anti-nef et celles qui ne contiennent pas de courbes irréductibles de petit genre. Puis, nous améliorerons ces bornes dans des familles particulières, notamment pour les surfaces minimales fibrées et les surfaces abéliennes, en utilisant la géométrie propre à ces surfaces. Il s'agit d'un travail conjoint avec Y. Aubry, F. Herbaut et M. Perret, preprint: https://arxiv.org/abs/1912.07450, à paraître dans Contemporary Maths, AMS.
  • Le 20 octobre 2020 à 10:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    -
    Journée rentrée équipe EDP-Physique Mathématique
    10h-10h15 Thomas Normand, Retour à l'équilibre pour l'équation de Boltzmann linéarisée semiclassique avec relaxation 10h15-10h30 Pei Su, Control of small-amplitude water waves in a rectangular domain 10h30-10h45 Tifanie Carlier, Modélisation d'un système de dégivrage par la méthode des frontières décalées 10h45-11h00 Pierre Brun, Long time existence for the semilinear Klein-Gordon equation 11h00-11h15 Matthieu Pauron, Problème d'eaux-mortes et modèles asymptotiques 11h15-11h30 Nacer Aarach, Approximation hydrostatique pour le système primitive et MHD 11h30-11h45 Valentin Ayot, Méthodes cinétiques appliqués à l'étude de certains comportements collectifs
  • Le 20 octobre 2020 à 10:00
  • Soutenance de thèse
    Leiden, Pays-Bas
    Thibault POIRET
    Sujet : "Modèles de Néron en dimension supérieure: courbes nodales et leurs Jacobiennes, changement de base modérément ramifié". Directeur de thèse : Qing Liu, co-directeur : Bas Edixhoven

  • Le 20 octobre 2020 à 13:30
  • Direction
    Salle de Conférences
    -
    Ordre du jour du conseil scientifique de mardi 20 octobre :1/Présentation de la fédération Margaux par Raphaël Loubère2/Discussion sur la communication au sein du conseil scientifique et du laboratoire

  • Le 22 octobre 2020 à 14:00
  • Séminaire d'Analyse
    Salle 2
    Marcu-Antone Orsoni
    Séparation de singularités pour l'espace de Bergman et application à la théorie du contrôle
    Soit $\Omega_1$ et $\Omega_2$ deux ouverts de $\mathbb{C}$ d'intersection non-vide. On peut se demander si étant donnée une fonction $f$ holomorphe sur $\Omega_1 \cap \Omega_2$, il existe deux fonctions $f_1$ et $f_2$ holomorphes respectivement sur $\Omega_1$ et $\Omega_2$ telles que $f = f_1 + f_2$ sur $\Omega_1 \cap \Omega_2$. Ce problème est connu sous le nom de problème de séparation de singularités et a été résolu en 1935 par N. Aronszajn qui a montré que la réponse est positive quelque soit les ouverts $\Omega_1$ et $\Omega_2$. Il peut être également posé dans un espace de Banach X de fonctions holomorphes : étant donnée une fonction $f \in X(\Omega_1 \cap \Omega_2)$, existe-t-il deux fonctions $f_1 \in X(\Omega_1)$ et $f_2 \in X(\Omega_2)$ telles que $f = f_1 + f_2$ ? Dans cet exposé nous nous intéresserons au cas de l'espace de Bergman, c'est-à-dire des fonctions holomorphes et de carré intégrable. Nous donnerons des théorèmes de séparation de singularités pour les polygones et pour une large classe d'ouverts convexes. Finalement nous appliquerons ces résultats à la description de l'espace atteignable de l'équation de la chaleur. Travail en commun avec Andreas Hartmann.
  • Le 22 octobre 2020 à 14:00
  • Soutenance de thèse
    Salle de Conférences
    Paul GENIET
    Sujet : "Analyse spectrale de quelques opérateurs de Schrödinger magnétiques fibrés". Directeur de thèse : Vincent Bruneau, co-directeur : Nicolas Popoff.

  • Le 22 octobre 2020 à 17:00
  • Le séminaire des doctorant·es
    Salle de Conférences
    Ludovic Monier Université de Toulouse
    Théorèmes HKR en géométrie dérivée
    Après une rapide introduction à la géométrie dérivée, j'exposerai les différentes versions du théorème HKR, en caractéristique nulle, et aussi en caractéristique quelconque avec le cercle filtré. Si le temps le permet, on abordera les possibilités d'existence d'analogues cristallin ou prismatique de ce cercle.
  • Le 23 octobre 2020 à 14:00
  • Soutenance de thèse
    Salle de Conférences
    Loïc LABACHE
    Sujet : "Création d'atlas des réseaux cérébraux à large échelle sous-tendants les fonctions cognitives à partir d'une base de données de neuroimagerie fonctionnelle de 297 sujets sains. Application à l'étude de la variabilité inter-individuelle du langage". Directeur de thèse : Jérôme Saracco, co-directeur : Marc Joliot

  • Le 23 octobre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle 2 (en visio)
    Raphael Steiner ETH\, Zurich
    Fourth moments of eigenforms, the sup-norm problem, and theta functions
    It is a classical problem in harmonic analysis to bound L^p-norms of eigenfunctions of the Laplacian on (compact) Riemannian manifolds in terms of the eigenvalue. A general sharp result in that direction was given by Hörmander and Sogge. However, in an arithmetic setting, one ought to do better. Indeed, it is a classical result of Iwaniec and Sarnak that exactly that is true for Hecke-Maass forms on arithmetic hyperbolic surfaces. They achieved their result by considering an amplified second moment of Hecke eigenforms. Their technique has since been adapted to numerous other settings. In my talk, I shall explain how to use Shimizu's theta function to express a fourth moment of Hecke eigenforms in geometric terms suitable for further analysis. In joint work with Ilya Khayutin and Paul Nelson, we give sharp bounds for said fourth moments in the weight and level aspect. As a consequence, we improve upon the best known bounds for the sup-norm in these aspects. In particular, we prove a stronger than Weyl-type subconvexity result.
  • Le 26 octobre 2020
  • Manifestations Scientifiques
    Salle de Conférences
    Organisateur : Edoardo Provenzi
    SEME Bordeaux
    Du 26 au 30 octobre, l'IMB héberge la SEME, semaine "Semaines d'Etude Mathématiques – Entreprises". La SEME réunit, autour de sujets exploratoires, des entreprises et des jeunes chercheuses et chercheurs (doctorat en cours ou récent). Des industriels viennent présenter le matin de lundi 26 des problèmes ouverts, dont la formulation même n'est pas toujours aboutie, sur lesquels travaillent de petits groupes de jeunes chercheurs et chercheuses pendant une semaine. L'objectif est de proposer des embryons de solutions ou des pistes possibles, qui seront présentés le matin de vendredi 30. Les entreprises et les doctorants intéressés à participer sont invités à contacter le facilitateur AMIES du Sud Ouest qui organise cette SEME, Edoardo Provenzi, professeur à l'IMB à l'adresse mail edoardo.provenzi(at)math.u-bordeaux.fr .
  • Le 26 octobre 2020 à 14:00
  • Manifestations Scientifiques
    Amphi du LaBRI
    Organisation : Vincent Delecroix\, Elise Goujard\,
    Mini rencontre ANR MoDiff

  • Le 2 novembre 2020
  • Direction
    Amphi du LaBRI
    -
    (02/11) Venue à l'IMB, nouvelles consignes pour le confinementLe télétravail est étendu à 5 jours. Il devient la règle pour toutes les activités qui le permettent. Seules les activités nécessitant impérativement une présence sur site continueront à se dérouler en présentiel, dans le strict respect des consignes sanitaires et des gestes barrières permettant de limiter la propagation du virus. Les autorisations de déplacement de l'université se trouvent sur le site https://www.u-bordeaux.fr/Urgence/Espace-d-information-CoronavirusLes activités nécessitant impérativement une présence sur site incluent notamment :- une rencontre entre doctorant et encadrant ;- une soutenance de thèse en présence d'une partie du jury ;- une visite à la bibliothèque entre 10h et 16h sur rendez-vous à l'adresse bibli@math.u-bordeaux.fr ;- l'utilisation du matériel de visioconférence dans une salle ;- la venue pour chercher du matériel informatique, sur rendez-vous à l'adresse help@math.u-bordeaux.fr..

  • Le 3 novembre 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Samuele Anni Université Aix-Marseille
    Isomorphismes de représentations galoisiennes modulaires et graphes
    Dans cet exposé, je vais expliquer comment tester efficacement et effectivement si deux représentations galoisiennes modulaires du groupe absolu de Galois des rationnels sont isomorphes. En particulier, je présenterai de nouvelles bornes optimales sur le nombre de traces à tester. Je discuterai également brièvement des graphes des isomorphismes, des résultats associés sur les algèbres de Hecke et de la construction d'une base de données de représentations.
  • Le 5 novembre 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Bochra Mejri
    [Séminaire CSM] Identification of geometric flaws and elastic properties in linear elasticity
    This talk presents a panorama of my research related to the two-dimensional linear elasticity system. The first part is concerned with a geometric inverse problem: the identification of voids under Navier's boundary conditions (i.e. the elastic solid can slide in tangential direction while in the normal direction the displacement is clamped) from the knowledge of partially over-determined boundary data. Sensitivity analysis methods (shape derivative, topological derivative) are developed to spot numerically the flaws. Secondly, a parametric inverse problem is studied: the reconstruction of interface stiffness parameter (i.e. the interface tractions are continuous while the displacement is discontinuous across the debonded region and proportional to the interface traction). Lipschitz stability estimate is established and based on a new Carleman's inequality with suitable weight functions. Finally, I am interested in quantifying the elastic properties of intensely fractured rocks around tectonic faults. The density and complexity of the natural fracture networks over a wide range of spatial scales is modeled by a statistical scaling model calibrated with field observations and measurements. The effective parameters of the medium are estimated by the stochastic homogenization method.
  • Le 6 novembre 2020 à 11:00
  • Séminaire de Géométrie
    VIsio
    Jean Kieffer IMB
    Quelques aspects algorithmiques de l'espace de modules des surfaces abéliennes
    L'espace de modules $A_2$ des surfaces abéliennes principalement polarisées est, sur $\mathbb C$, le quotient du demi-espace de Siegel $H_2$ par le groupe modulaire $Sp_4(\mathbb Z)$. Dans cet exposé, j'introduirai les équations modulaires de niveau l, qui décrivent la sous-variété de $A_2$ x $A_2$ constituée des surfaces abéliennes l-isogènes. Ce sont des polynômes multivariés à coefficients rationnels, dont le degré et la hauteur des coefficients sont connus depuis récemment. Puis nous verrons comment les utiliser pour calculer toutes les surfaces abéliennes l-isogènes à une surface abélienne A donnée: de façon surprenante, même lorsque A est définie sur un corps fini, la méthode la plus efficace passe par des approximations complexes.
  • Le 6 novembre 2020 à 14:00
  • Soutenance de thèse
    Salle de Conférences
    Corentin DARREYE
    Sujet : "Sur la répartition des coefficients des formes modulaires de poids demi-entier". Directeur de thèse : Guillaume Ricotta, co-directeur : Florent Jouve

  • Le 10 novembre 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Raphaël Pagès IMB
    Calcul efficace des polynômes caractéristiques des p-courbures d'un opérateur différentiel à coefficients entiers
    Nous présentons un nouvel algorithme permettant de calculer les polynômes caractéristiques des $p$-courbures d'un opérateur différentiel à coefficients entiers pour tout $p$ premier inférieur à un entier $N$ donné, en temps quasi-linéaire, donc quasi-optimal, en $N$. L'algorithme présenté se base sur les travaux de A. Bostan, X. Caruso et E. Schost ramenant le calcul de cet invariant au calcul d'une factorielle de matrices, ainsi que sur la technique de calcul de factorielles développée par E. Costa, R. Gerbicz et D. Harvey.
  • Le 10 novembre 2020 à 11:15
  • Séminaire de Physique Mathématique - EDP
    visio-conférence
    A. Koenig
    Contrôlabilité de quelques équations aux dérivées partielles peu dissipatives
    On sait depuis 1995 et les travaux de Lebeau-Robbiano et Fursikov-Immanuvilov que l'équation de la chaleur à contrôlable à zéro en temps arbitrairement petit. Nous discuterons du cas de l'équation de la chaleur fractionnaire, et aussi de quelques équations paraboliques qui ressemblent à l'équation de la chaleur mais qui se comportent comme l'équation de la chaleur fractionnaire : l'équation de Baouendi-Grushin parabolique et quelques équations de type Kolmogorov. Nous montrerons en particulier comment on peut exhiber des conditions géométriques nécessaires à la contrôlabilité de ces équations grâce des outils (relativement) simples d'analyse complexe.
  • Le 10 novembre 2020 à 11:15
  • Séminaire d'Analyse
    Salle de Conférences
    Armand Koenig Univ. Paris Dauphine
    Séminaire commun Analyse et EDP, jour exceptionnel pour le séminaire d'analyse...Titre:TBA

  • Le 12 novembre 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Arthur Mensch DMA\, École Normale Supérieure
    Online Sinkhorn: Optimal Transport distances from sample streams
    Optimal Transport (OT) distances are now routinely used as loss functions in ML tasks. Yet, computing OT distances between arbitrary (i.e. not necessarily discrete) probability distributions remains an open problem. This paper introduces a new online estimator of entropy-regularized OT distances between two such arbitrary distributions. It uses streams of samples from both distributions to iteratively enrich a non-parametric representation of the transportation plan. Compared to the classic Sinkhorn algorithm, our method leverages new samples at each iteration, which enables a consistent estimation of the true regularized OT distance. We provide a theoretical analysis of the convergence of the online Sinkhorn algorithm, showing a nearly-O(1/n) asymptotic sample complexity for the iterate sequence. We validate our method on synthetic 1D to 10D data and on real 3D shape data.
  • Le 13 novembre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    En Visio
    Marta Pieropan Utrecht
    Campana points, a new number theoretic challenge
    This talk introduces Campana points, an arithmetic notion, first studied by Campana and Abramovich, that interpolates between the notions of rational and integral points. Campana points are expected to satisfy suitable analogs of Lang's conjecture, Vojta's conjecture and Manin's conjecture, and their study introduces new number theoretic challenges of a computational nature.
  • Le 13 novembre 2020 à 15:30
  • Séminaire de Géométrie
    VIsio
    Quentin Gendron Mexique
    Équation de Pell-Abel et applications
    Depuis son étude par Abel en 1826, l'équation de Pell-Abel sur les courbes hyperelliptiques est apparue dans des problèmes très divers. Parmi ceux-ci, je souhaite expliquer dans cet exposé, comment l'étude de certaines pluri-différentielles sur les courbes hyperelliptiques fait intervenir cette équation. Une fois ce lien établi, je détaillerai une méthode qui permet d'obtenir les solutions de cette équation sur certaines courbes. Cette méthode fait intervenir les différentielles abéliennes, les polynômes de Tchebychev et les applications conformes. Cet exposé se basera principalement sur un article éponyme.
  • Le 17 novembre 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Fredrik Johansson IMB
    Calcium: computing in exact real and complex fields
    Calcium is a C library for real and complex numbers in a form suitable for exact algebraic and symbolic computation. Numbers are represented as elements of fields $\mathbb{Q}(a_1,\ldots,a_n)$ where the extension numbers $a_k$ may be algebraic or transcendental. The system combines efficient field arithmetic with automatic construction of fields and ideals of algebraic relations, resulting in a practical computational model of $\mathbb{R}$ and $\mathbb{C}$ in which equality is rigorously decidable for a large class of numbers which includes $\overline{\mathbb{Q}}$ as a subset.
  • Le 19 novembre 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle 1
    Quentin Mérigot Laboratoire de Mathématiques d'Orsay
    Stabilité quantitative en transport optimal
    Un théorème de Brenier affirme qu'étant donnée une densité de probabilité rho et une mesure de probabilité mu sur R^d, tous deux à support compact, il existe un unique plan de transport optimal T_\mu pour le coût quadratique, transportant rho vers mu. Nous nous intéressons à l'utilisation de T_\mu pour représenter une mesure mu: comme T_\mu appartient à l'espace de Hilbert L^2(\rho,R^d), ce plongement mu -> T_\mu permet en principe d'appliquer toute méthode statistique hilbertienne (analyse en composante principale, k-moyennes, apprentissage de dictionnaire) à des données à valeur mesures, e.g. des familles de nuages de points. Pour justifier cette approche, il est nécessaire de comprendre les propriétés de l'application mu -> T_\mu. Il est connu que l'application mu -> T_\mu est continue pour la topologie faible sur les mesures et la norme L^2(\rho) entre les plans de transport, mais la démonstration ne donne aucune information sur le module de continuité. Dans cet exposé, nous montrerons en utilisant des outils d'analyse fonctionnelle que T_\mu dépend de manière Hölderienne de mu pour un exposant de Hölder indépendant de la dimension. Travail en collaboration avec A. Delalande et F. Chazal.
  • Le 19 novembre 2020 à 14:00
  • Séminaire de l'équipe Dynamique des Populations
    https://u-bordeaux-fr.zoom.us/j/88352607665
    Lara Abi Rizk
    Asymptotic speed of spread for a nonlocal evolutionary-epidemic system

  • Le 19 novembre 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Solene Bulteau
    [Séminaire CSM] Développement et analyse de schémas numériques préservant les régimes asymptotiques de diffusion linéaire et non linéaire
    L'objectif de ces travaux est de construire et analyser des schémas numériques capables de discrétiser les solutions de systèmes de lois de conservation hyperboliques avec terme source. La propriété principale recherchée dans ces travaux est la préservation de l'asymptotique, c'est-à-dire que les schémas développés doivent rester précis en régime de diffusion, à savoir en temps long et terme source raide. La première partie de cet exposé est consacrée à la présentation d'un résultat de convergence numérique rigoureux pour un schéma discrétisant les solutions du p-système. Le taux de convergence ainsi obtenu est exprimé explicitement et est en accord avec les résultats déjà connus dans les cadres continu et semi-discret. La seconde partie de cet exposé est dédiée à la présentation de deux schémas préservant l'asymptotique pour les équations de Saint-Venant avec terme source de friction de Manning. A la différence du p-système, l'opérateur de dérivation intervenant dans la limite de diffusion est non linéaire, ce qui rend plus difficile le développement de schémas capables de la préserver. La première méthode exposée est développée à partir d'une discrétisation HLL dans laquelle de la viscosité numérique bien choisie a été ajoutée pour que, à la limite, celle-ci discrétise l'asymptotique correcte. Le deuxième schéma présenté est, lui, construit de sorte à ce que tous les états stationnaires soient préservés. Je montrerai qu'une simple modification dans la discrétisation du terme source permet également à ce schéma de préserver la limite de diffusion. Ce travail exhibe un lien entre la préservation des états stationnaires et celle de l'asymptotique de diffusion qui sont, à la base, deux propriétés de natures très différentes.
  • Le 20 novembre 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Mario Shannon Dijon
    Exposé reporté

  • Le 20 novembre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    En Visio
    Xenia Spilioti Aahrus
    Non-commutative harmonic analysis, spectral theory of automorphic forms and applications
    In this talk we will present some recent results on the dynamical zeta functions of Ruelle and Selberg and the Fried's conjecture. Moreover, we will present topics related to spectral identities for Fourier coefficients of automorphic forms, and methods developed by Reznikov to derive Rankin-Selberg identities.
  • Le 24 novembre 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Anne-Edgar Wilke IMB
    Recouvrements optimaux d'ensembles de Siegel tronqués par des boules euclidiennes
    Étant donné un groupe algébrique $G$ agissant sur un espace affine $V$, il arrive que l'ensemble $V(\mathbb{Z})/G(\mathbb{Z})$ des orbites entières paramètre des objets arithmétiques et soit donc intéressant à énumérer. Une façon de s'y prendre consiste à expliciter un domaine fondamental de l'action de $G(\mathbb{Z})$ sur $V(\mathbb{R})$ et à y rechercher les points entiers. Pour cela, on peut essayer de recouvrir ce domaine fondamental par une famille de boules euclidiennes de rayon constant dont le cardinal soit du même ordre de grandeur que le nombre de points entiers. Je montrerai comment mettre en œuvre cette stratégie dans le cas simple de l'action à droite de $\mathrm{GL}_n$ sur $\mathrm{M}_n$, dont les orbites entières paramètrent les sous-modules de $\mathbb{Z}^n$, et pour laquelle on dispose de domaines fondamentaux approchés faciles à décrire, à savoir les ensembles de Siegel.
  • Le 24 novembre 2020 à 11:15
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Christophe Prange CNRS et Université Paris Cergy
    Régularité quantitative et phénomènes de concentration pour les équations de Navier-Stokes
    Dans cet exposé, je mettrai l'accent sur deux aspects liés de l'étude de la régularité des solutions des équations de Navier-Stokes en trois dimensions: (i) l'obtention d'estimations de régularité quantitatives, (ii) l'étude de phénomènes de concentration au voisinage de singularités. J'explorerai le lien entre ces deux questions et montrerai comment cela permet en particulier de quantifier un résultat de régularité de Seregin de 2012 faisant intervenir une norme critique pour le scaling des équations. De plus, il est possible par ces techniques de donner des bornes inférieures sur la vitesse d'explosion de certaines normes critiques au voisinage de singularités, dans le sillage des travaux de Tao en 2019. Cet exposé s'appuie sur des résultats récents obtenus en collaboration avec Tobias Barker (University of Warwick).
  • Le 26 novembre 2020 à 09:30
  • Soutenance de thèse
    Salle de Conférences
    Guillaume MARQUES
    Sujet :"Problèmes de tournées de véhicules sur deux niveaux pour la logistique urbaine : approches basées sur les méthodes exactes de l'optimisation mathématique". Directeurs de thèse : Rémy Dupas, Ruslan Sadykov.

  • Le 26 novembre 2020 à 14:00
  • Séminaire de l'équipe Dynamique des Populations
    https://u-bordeaux-fr.zoom.us/j/88564699953
    Gwenaël PeltierB
    Population facing a nonlinear environmental gradient: a perturbation approach
    We consider a population structured by both a spatial variable and a phenotypical trait. Our model takes into account the effects of migrations, mutations, growth and nonlocal competition. When the environment is assumed homogeneous, if the population survives, it spreads to the whole space, and we have a complete picture of the large-time propagation: the solution converges towards a front, which connects a positive steady state to zero, and spreads at a determined speed. This model was also recently studied in the case where, instead of being homogeneous, the environment presents a linear gradient, that is the optimal trait for survival depends linearly on the spatial variable. Part of the above results have been proved in this context, where the linear assumption is used in a crucial manner. Here, we consider that the optimal trait depends nonlinearly on the spatial variable. We construct a steady state and a front using perturbation technics, based on the homogeneous case. Our analysis provides some insights on how population adapts to this environmental change, and in particular reveals an interplay between the profile of the optimal trait and the selection pressure.
  • Le 26 novembre 2020 à 14:00
  • Soutenance de thèse
    Salle de Conférences
    Thomas COMETX
    Sujet : "Fonctions de Littlewood-Paley-Stein pour les opérateurs de Schrödinger et le laplacien de Hodge-de Rham sur des variétés noncompactes". Directeur de thèse : El Maati Ouhabaz

  • Le 26 novembre 2020 à 15:30
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Davide Torlo
    High order IMEX deferred correction residual distribution schemes for stiff kinetic problems.
    In this talk we study a class of kinetic models presented by Aregba-Driollet and Natalini, whose macroscopic limits are hyperbolic conservation laws. These models contain stiff relaxation terms which may produce spurious unphysical results. We present a high order scheme that can be used over the complete range of the relaxation parameter and, moreover, that can preserve the asymptotic limit of the physical model. To deal with stiff terms, it is natural to use an implicit time discretization. To get a high order scheme, we recast a (DeC) Deferred Correction approach. The spatial discretization comes from the Residual Distribution (RD) framework, a Finite Element based class of schemes that can recast many finite element, finite volume and discontinuous Galerkin schemes. Through these models, we can simulate, for instance Euler's equation, and we present an idea of an extension in the shallow water case. We have tested some example with different schemes, reaching the asymptotic preserving properties and the correct order of convergence for 1D and 2D.
  • Le 27 novembre 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Eveline Legendre Toulouse
    Exposé reporté

  • Le 27 novembre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    En Visio
    Ariyan Javanpeykar Mayence
    Hilbert's irreducibility theorem for abelian varieties
    We will discuss joint work with Corvaja, Demeio, Lombardo, and Zannier in which we extend Hilbert's irreducibility theorem (for rational varieties) to the setting of abelian varieties. Roughly speaking, given an abelian variety $A$ over a number field $k$ and a ramified covering $X$ of $A$, we show that $X$ has "less" $k$-rational points than $A$.
  • Le 27 novembre 2020 à 16:00
  • Soutenance de thèse
    Salle de Conférences
    Alexandre BAILLEUL
    Sujet : "Étude de la répartition des automorphismes de Frobenius dans les groupes de Galois". Directeur de thèse : Florent Jouve

  • Le 1er décembre 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Tommy Hofmann Saarland University
    The conjugacy problem in $mathrm{GL}(n, mathbb{Z})$
    We consider the problem of deciding whether two matrices are conjugate. If the coefficient ring is a field, this problem can be easily solved by using the Jordan normal form or the rational canonical form. For more general coefficient rings, the situation becomes increasingly challenging, both from a theoretical and a practical viewpoint. In this talk, we show how the conjugacy problem for integer matrices can be efficiently decided using techniques from group and number theory. This is joint work with Bettina Eick and Eamonn O'Brien.
  • Le 1er décembre 2020 à 13:30
  • Direction
    Salle de Conférences
    -
    Ordre du jour du conseil de laboratoire : 1) Approbation du compte-rendu du conseil du 3 novembre 2020 ;2) Discussion sur le budget 2021 de l'IMB ;3) Questions diverses.

  • Le 3 décembre 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Raphaël Ducatez Université de Genève
    Spectre des graphes critiques d'Erdos Renyi
    Nous analysons le spectre de la matrice d'adjacence A du graphe aléatoire d'Erdős-Rényi G(N, d/N) dans le régime critique d = b log N. On établit une correspondance un à un entre les sommets de degré au moins 2d et les valeurs propres en dehors du bulk [-2, 2]. Cette correspondance implique une transition à un b* explicite. Pour d>b* log N, le spectre est contenu dans [-2, 2] et les vecteurs propres sont complètement délocalisés. Pour d< b* log N, une autre phase apparaît. Le spectre à l'extérieur de [-2, 2] est non vide et les vecteurs propres correspondants se concentrent autour des sommets de grand degré. En collaboration avec Antti Knowles et Johannes Alt
  • Le 3 décembre 2020 à 14:00
  • Séminaire d'Analyse
    Visio
    Christopher Shirley Paris Saclay
    Opérateurs de Schrödinger aléatoires stationnaires à petit désordre
    Dans cet exposé nous allons étudier les opérateurs de Schrödinger avec potentiel stationnaire et étudier l'existence d'ondes de Bloch stationnaires pour différent type de stationnarité et en particulier dans le cas aléatoire. Nous verrons que les ondes de Bloch de l'opérateur non perturbé semblent disparaitre à faible désordre dans le cas où les corrélations sont à courtes portées. Ce phénomène laisse entrevoir un problème de résonance, difficile à étudier faute de compacité. Nous allons montrer comment dans le cas Gaussien nous pouvons définir des notions de transport et construire des inégalités de Mourre pour les opérateurs non perturbés agissant sur l'espace de probabilité, et régulariser le problème pour donner une preuve spectrale de la décroissance des corrélations temporelles en temps cinétique.
  • Le 3 décembre 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Bertrand Michel
    [Séminaire CSM] Une approche statistique de l'analyse topologique des données
    L'analyse topologique des données (TDA) désigne un ensemble de méthodes et d'algorithmes dont l'objectif est l'estimation et l'exploitation des propriétés topologiques d'une forme géométrique. Dans une première partie de l'exposé, je proposerai une introduction aux principales méthodes de l'analyse topologique des données. Je présenterai en particulier la persistance homologique. Je donnerai ensuite quelques résultats et méthodes statistiques pour la TDA. Je présenterai enfin quelques exemples d'application de la TDA.
  • Le 4 décembre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    En Visio
    Gabriel Dill Oxford
    Torsion points on isogenous abelian varieties
    The Manin-Mumford conjecture, proven by Raynaud, predicted that a subvariety of an abelian variety over a field of characteristic zero contains a Zariski dense set of torsion points if and only if it is a union of torsion cosets, i.e. of translates of abelian subvarieties by torsion points. We study subvarieties of abelian schemes that contain a Zariski dense set of torsion points that lie on pairwise isogenous fibers. If the abelian scheme has maximal variation, conjectures of Zannier and Pink characterize such subvarieties. If everything is defined over the algebraic numbers, we prove one half of the conclusion of these conjectures: the geometric generic fiber of an irreducible such subvariety over its projection to the base is a union of torsion cosets. Our proof is based on a strategy due to Lang, Serre, Tate, and Hindry of using Galois automorphisms that act as homotheties on the torsion points. If the abelian scheme is a fibered power of the Legendre family of elliptic curves, this method yields explicit and uniform results. It also yields uniform Manin-Mumford results within a given isogeny class.
  • Le 8 décembre 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 385
    Alexandre Bailleul ENS Lyon
    Zéros réels de fonctions L d'Artin et biais de Chebyshev dans les corps de nombres
    Le biais de Chebyshev est un phénomène qui a été étudié tout d'abord dans le cadre des "courses de nombres premiers" (Rubinstein et Sarnak, 1994) pour expliquer la prédominance apparente des nombres premiers congrus à 3 mod 4 par rapport à ceux qui sont congrus à 1 mod 4. Ces courses de nombres premiers ont été généralisées notamment dans le contexte des corps de nombres par Ng en 2000. Dans des travaux récents, Fiorilli et Jouve ont étudié le biais de Chebyshev dans des familles d'extensions de corps de nombres, et mis en évidence des comportements limites de type "grandes déviations" et "théorème central limite". Dans le travail présenté, je mets en évidence l'influence considérable qu'ont certains zéros réels de fonctions L d'Artin sur le biais de Chebyshev dans des extensions particulières de corps de nombres.
  • Le 8 décembre 2020 à 11:15
  • Séminaire de Physique Mathématique - EDP
    visio-conférence
    R. Winter ENS Lyon
    Debye screening in the Vlasov-Poisson equation
    When analyzing systems governed by Coulomb-interaction, we are faced with the problem of infinite reach: A localized perturbation has a significant influence over arbitrarily large distances. However, in many physically relevant cases the influence of a perturbation is immediately shielded by the response of the system, and the interaction becomes effectively of short range. This effect is known as Debye screening in plasma physics. The onset of Debye screening has been proved for the Gibbs distribution by Brydges and Federbush. For systems out of equilibrium, mathematically rigorous results are scarce. We prove (exponential) Debye screening for the perturbation induced by a point charge in the nonlinear Vlasov-Poisson system. Joint work with Adolfo Arroyo-Rabasa.
  • Le 8 décembre 2020 à 13:30
  • Direction
    visio-conférence
    -
    Mardi 8 Décembre à partir de 13h30 télé-café de Noël convivialProgramme:- 13h30: Andrea Fanelli, une introduction au groupe de Cremona, un objet très classique en géométrie algébrique.- 14h00: Elise Goujard, sur le théorème de la baguette magique d'Erzin Mirzakhani.- 14h30: Quartier libre et atelier commun autour du tableau numérique partagé http://xavier.toonywood.org/blackboard/?id=IMB

  • Le 11 décembre 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Laurent Manivel Toulouse
    Reporté

  • Le 11 décembre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    En Visio
    Jiandi Zou Versailles
    Représentations supercuspidales de $GL(n,F)$ distinguées par un sous-groupe unitaire
    Soit $G = GL(n,F)$ avec $F$ un corps local non-archimédien de caractéristique résiduelle $p$ different de 2. On prouve que les représentations lisses supercuspidales de $G$ soient distinguées par une sous-groupe unitaire $H$, c'est-à-dire les représentations aient une forme linéaire non-triviale $H$-invariante, si et seulement si qu'elles soient invariantes par l'action galoisienne, et dans ce cas la dimension de l'espace de distinction soit 1. Ce résultat est connu et prouvé par Jacquet et Feigon-Lapid-Offen, si F est $p$-adique et les représentations sont complexes. Notre méthode, basée au théorie de type développé par Bushnell-Kutzko, est totalement différente, qui marche aussi pour les représentations $l$-modulaires avec $l$ different de $p$.
  • Le 15 décembre 2020 à 10:00
  • Soutenance de thèse
    Salle de Conférences
    Lara ABI RIZK
    Sujet : "Ondes progressives et propriétés de propagation pour un problème d'épidémiologie évolutive non-local". Directeur de thèse : Jean-Baptiste Burie. Co-directeur de thèse : Arnaud Ducrot

  • Le 15 décembre 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Elie Eid Université de Rennes
    Équations différentielles $p$-adiques pour le calcul d'isogénies en.petite caractéristique
    On présente une méthode effective de calcul sur les $p$-adiques d’isogénies entre courbes elliptiques et Jacobiennes de courbes hyperelliptiques de petit genre. Une application importante est le cas des courbes définies sur un corps fini de petite caractéristique, qui peut être résolu par relèvement dans les $p$-adiques. Notre algorithme repose sur la résolution d’équations différentielles avec un bon contrôle de perte de précision. Son analyse est basée sur la théorie de la précision différentielle développée par Caruso, Roe et Vaccon.
  • Le 15 décembre 2020 à 14:00
  • Soutenance de thèse
    Salle 2
    Christophe DUMORA
    Sujet : "Estimation de paramètres clés liés à la gestion d'un réseau de distribution d'eau potable : Méthode d'inférence sur les noeuds d'un graphe". Directeur de thèse : Jérémie Bigot. Co-directeur : David Auber.

  • Le 15 décembre 2020 à 14:00
  • Soutenance de thèse
    visio-conférence
    Gregorio DALLE VEDOVE NOSAKI
    Sujet : "Machine de Turing et chaos pour des modèles bidimensionnels à température zéro". Directeur de thèse : Philippe Thieullen. Co-directeur : Rodrigo Bissacot Proenca.

  • Le 16 décembre 2020 à 14:30
  • Soutenance de thèse
    ONERA - The French Aerospace Lab, Meudon, Visioconférence
    Luis BENETTI RAMOS
    Sujet : "Auto-propulsion et interaction hydrodynamique d'ailes battantes dans des écoulements visqueux". Directeurs de thèse : Michel Bergmann et Angelo Iollo.

  • Le 17 décembre 2020 à 09:00
  • Soutenance de thèse
    Salle de Conférences
    Baptiste HUGUET
    Sujet : "Calcul Stochastique dans les variétés et application aux inégalités fonctionnelles". Directeur de thèse : Marc Arnaudon. Co-directeur : Michel Bonnefont.

  • Le 17 décembre 2020 à 09:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Baptiste Huguet IMB
    Soutenance de thèse

  • Le 17 décembre 2020 à 13:00
  • Soutenance de thèse
    Rapenburg 73, 2311 GJ Leiden
    Pavel SOLOMATIN
    Sujet : "Corps globaux et leurs fonctions L". Directeurs de thèse : Karim Belabas, Bart De Smit.

  • Le 17 décembre 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Victor Péron
    [Séminaire CSM] Développement de modèles asymptotiques d'ordre élevé pour la résolution numérique de problèmes de perturbation en électromagnétisme et en sismologie
    Les développements asymptotiques multi-échelles permettent de résoudre des problèmes de perturbation à l'aide de la méthode des éléments finis sans rencontrer le problème de l'adaptation de maillage relativement à un petit paramètre caractéristique du problème à résoudre. C'est le cas notamment pour certains problèmes de transmission en présence de couches minces ou de couches limites. Dans cet exposé, nous présentons des modèles asymptotiques d'ordre élevé pour des problèmes d'ondes acoustiques et élastiques en régime harmonique en temps ainsi que pour les équations de Maxwell harmoniques. La précision et la stabilité de modèles obtenus sont illustrées par des résultats numériques.
  • Le 17 décembre 2020 à 15:00
  • Soutenance de thèse
    Salle de Conférences
    Guillaume RAVEL
    Sujet :"Three-dimensional modeling and experiment-driven numerical simulation of zebrafish escape swimming for biological applications". Directeurs de thèse : Afaf Bouharguane, Patrick J. Babin.

  • Le 18 décembre 2020 à 10:00
  • Soutenance de thèse
    Salle de Conférences
    Sébastien RIFFAUD
    Sujet : "Modèles réduits : convergence entre calcul et données pour la mécanique des fluides". Directeur de thèse : Angelo Iollo

  • Le 7 janvier 2021 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Guillaume Carlier Cérémade\, Université Paris-Dauphine
    Systèmes d'EDPs liés aux barycentres dans l'espace de Wasserstein
    Les barycentres dans l'espace de Wasserstein qui généralisent l'interpolation de McCann à plus de deux mesures sont fréquemment utilisés dans des champs appliqués comme le traitement d'images ou les statistiques et il y a des algorithmes efficaces pour les calculer. Néanmoins, comme observé par Bigot, Cazelles et Papadakis ces barycentres présentent typiquement beaucoup d'oscillations quand on discretise les marges, c'est pourquoi ces auteurs ont proposé de régulariser le problème, typiquement avec une entropie. Dans cet exposé, je voudrais insister sur la caractérisation de ces barycentres Wasserstein « entropiques » en termes de systèmes d'équations de Monge-Ampère, je donnerai quelques résultats de régularité, un principe du maximum ainsi que des estimations sur les moments et l'information de Fisher et en déduirai un TCL pour les barycentres de mesures aléatoires i.i.d. L'exposé sera basé sur des travaux avec Martial Agueh et Katharina Eichinger et Alexey Kroshnin.
  • Le 7 janvier 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM] Créneau libre

  • Le 8 janvier 2021 à 14:00
  • Séminaire de Théorie des Nombres
    En Visio
    Ronan Terpereau Dijon
    Structures réelles sur des variétés presque homogènes
    Dans cet exposé nous allons nous intéresser aux structures réelles de certaines variétés algébriques complexes munies d'une action d'un groupe algébrique réductif : les variétés presque homogènes. Nous verrons comment déterminer si de telles structures existent et, le cas échéant, comment les décrire et les dénombrer. En particulier, nous tâcherons d'illustrer notre approche sur deux familles classiques de variétés presque homogènes : les variétés horosphériques (qui incluent les variétés toriques et les variétés de drapeaux) et les SL(2)-variétés presque homogènes de dimension 3. Il s'agit d'un travail en collaboration avec Lucy Moser-Jauslin (IMB, Dijon).
  • Le 12 janvier 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Alain Couvreur LIX -- Inria Saclay
    On the hardness of code equivalence problems in rank metric
    In recent years, the notion of rank metric in the context of coding theory has known many interesting developments in terms of applications such as space time coding, network coding or public key cryptography. These applications raised the interest of the community for theoretical properties of this type of codes, such as the hardness of decoding in rank metric or better decoding algorithms. Among classical problems associated to codes for a given metric, the notion of code equivalence has always been of the greatest interest. In this talk, we discuss the hardness of the code equivalence problem in rank metric for $\mathbb F_{q^m}$--linear and general rank metric codes.
  • Le 14 janvier 2021 à 10:00
  • Soutenance de thèse
    Salle de Conférences
    Marcu-Antone ORSONI
    Sujet : "Espaces de fonctions holomorphes et espace atteignable de l'équation de la chaleur". Directeur de thèse : Andreas Hartmann

  • Le 14 janvier 2021 à 14:00
  • Séminaire d'Analyse
    En Visio
    Isabelle Chalendar
    Comportement asymptotique des puissances d'un opérateur de composition.
    Nous étudions le comportement asymptotique des puissances T^n d'un opérateur de composition T sur un espace de Banach X de fonctions holomorphes sur le disque unité du plan complexe. Nous montrons que l'on obtient la dichotomie suivante : soit les puissances convergent uniformément, soit elles ne convergent même pas fortement. Nos résultats sont appliqués à l'étude asymptotique de semi-groupes d'opérateurs de compositions associés à des semi-flots.
  • Le 14 janvier 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Laurent Boudin
    [Séminaire CSM] Méthode de moments pour un modèle cinétique de mélange gazeux
    Je commencerai par quelques considérations sur l'équation de Boltzmann pour les mélanges. Puis je reviendrai sur deux applications de la méthode de moments de Levermore, notamment pour discrétiser cette équation de Boltzmann dans l'asymptotique diffusive. C'est un travail en collaboration avec Andrea Bondesan et Bérénice Grec.
  • Le 15 janvier 2021 à 09:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    En Visio
    David Rey\, Senior Lecturer\, UNSW Sydney Australia
    Bilevel discrete network design problems in transportation (Zoom link is in the abstract)
    Improving, scheduling maintenance and repairing a transportation network often requires anticipating the reaction of travelers to changes in the design of the network, e.g. routes, link capacity, speed changes. This has a natural representation in bilevel optimization where the leader problem represents the transportation authority in charge of designing the network and the follower problem is a convex optimization problem which captures traffic equilibrium conditions i.e. users' route choice in the long run. If the design decision variables are restricted to integer values, the resulting formulation is known as a discrete network design problem (DNDP). Solving the DNDP to optimality is computationally challenging, even on small to medium size instances. This is due to both the bilevel structure of the problem and the nonlinearities, although convex, which arise in link travel time functions to capture congestion effects. The DNDP can also be formulated in a time-staged manner to account for the impact of improving the network over time. Such time-dependent DNDPs typically have an extended solution space, thus further increasing computational challenges. This talk will first discuss existing exact and near-optimal methods for the DNDP in transportation. In a second part, this talk will present recent results for a network maintenance scheduling problem (NMSP) which belongs to the class of time-dependent DNDPs. To solve the proposed NMSP, a novel branch-and-price algorithm is developed based on a reformulation of the original bilevel optimization problem. In a third and final part, this talk will discuss a variation of the NMSP which includes precedence constraints on projects and can be applied to network recovery problems. Join Zoom Meeting https://u-bordeaux-fr.zoom.us/j/86486802150?pwd=bU9PcTFzVlArVkRCOEVYa1F4bzJOQT09 Meeting ID: 864 8680 2150 Passcode: 421753
  • Le 19 janvier 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Renaud Vilmart LSV -- Inria Saclay
    Une introduction aux circuits quantiques et au ZX-calcul
    L'informatique quantique est de plus en plus un sujet brûlant, car elle promet bien des avantages, que ça soit pour la complexité de ses algorithmes, ou pour ce qu'elle permet en cryptographie. Dans cet exposé, nous allons d'abord voir les circuits quantiques : le modèle habituellement utilisé par les chercheurs et les ingénieurs pour décrire des processus quantiques. Nous nous intéresserons à une question fondamentale liée à ces circuits, celle de la complétude d'une théorie équationnelle. Nous présenterons ensuite le ZX-Calcul, un modèle issu de la théorie des catégories, qui répond, lui, positivement à cette même question.
  • Le 19 janvier 2021 à 11:15
  • Séminaire de Physique Mathématique - EDP
    visio-conférence
    Marco Bravin BCAM
    Interaction of a small rigid body with a compressible fluid
    In this talk I will present a recent result in collaboration with Prof Necasova, where we study the interaction between a small rigid body and a compressible viscous fluid modeled by the compressible Navier-Stokes equations. In particular I will recall the previous results where the fluids were supposedly incompressible and then I will focus my attention on the improved pressure estimates that are the main novelty in our result. In contrast with the incompressible case the pressure estimates depend on a lower bound of the mass and the inertia matrix of the object as its size tends to zero.
  • Le 19 janvier 2021 à 13:30
  • Direction
    visio-conférence
    -
    Ordre du jour du conseil scientifique de l'IMB qui aura lieu mardi 19 janvier à 13h30 : 1) Présentation d'une nouvelle membre de l'IMB : Samia Boukir 2) Présentation de l'équipe projet dirigée par François Clautiaux 3) Présentation de l'équipe projet dirigée par François Dufour 4) Avis sur 2 demandes d'inscription à l'HDR (CS restreint)

  • Le 20 janvier 2021 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Joshep de Vilmarest
    TBA
    TBA
  • Le 21 janvier 2021 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Julián Tachella University of Edinburgh
    Large system limit of convolutional neural networks for image denoising
    Convolutional Neural Networks (CNNs) are now a well-established tool for solving computer vision and imaging problems, and modern CNNs often obtain state-of-the-art performance. Perhaps surprisingly, it has been recently shown that, despite being highly overparameterized, such networks can be trained with a single corrupted image and still perform as well as fully trained networks - a phenomenon encapsulated in the deep image prior (DIP). Here we attempt to explain what might be going on in terms of recent advances of Neural Tangent Kernel (NTK) theory, which characterizes the large system limit of neural networks. We identify strong links between CNN architectures and well-known signal processing techniques such as non-local means, showing that the function associated with a CNN to a given image can be obtained in closed form without need to train the network. Although our analysis shows that the NTK still does not fully explain the DIP phenomenon, we argue it suggests that CNN's inductive bias is better characterized by images with non-local self-similar structure.
  • Le 22 janvier 2021 à 14:00
  • Séminaire de Théorie des Nombres
    En Visio
    Sid Mathur Düsseldorf
    Searching for the impossible Azumaya Algebra
    In two 1968 seminars, Grothendieck used the framework of etale cohomology to extend the definition of the Brauer group to all schemes. Over a field, the objects admit a well-known algebro-geometric description: they are represented by $\mathbb{P}^n$-bundles (equivalently: Azumaya Algebras). Despite the utility and success of Grothendieck's definition, an important foundational aspect remains open: is every cohomological Brauer class over a scheme represented by a $\mathbb{P}^n$-bundle? It is not even known if smooth proper threefolds over the complex numbers have enough Azumaya algebras! In this talk, I will outline a strategy to construct a Brauer class that cannot be represented by an Azumaya algebra. Although the candidate is algebraic, the method will leave the category of schemes and use formal-analytic line bundles to create Brauer classes. I will then explain a strange criterion for the existence of a corresponding Azumaya Algebra. At the end, I will reveal the unexpected conclusion of the experiment.
  • Le 26 janvier 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Mercedes Haiech Université Rennes 1
    The Fundamental Theorem of Tropical Partial Differential Algebraic .Geometry
    Given a partial differential equation (PDE), its solutions can be difficult, if not impossible, to describe. The purpose of the Fundamental theorem of tropical (partial) differential algebraic geometry is to extract from the equations certain properties of the solutions. More precisely, this theorem proves that the support of the solutions in $k[[t_1, \cdots, t_m]]$ (with $k$ a field of characteristic zero) can be obtained by solving a so-called tropicalized differential system.
  • Le 26 janvier 2021 à 11:15
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    N.Popoff UB
    Eigenvalues and Resonances asymptotics in slightly perturbed..waveguide: twisting versus bending.
    On considère le laplacien de Dirichlet dans un guide d'onde infini. Le guide d'onde de référence possède une torsion périodique, éventuellement nulle. Nous considérons une déformation du guide de référence qui consiste à appliquer une courbure et un torsion, toutes deux de petite amplitude. Lorsque la torsion de référence est nulle le guide d'onde initial est un cylindre infini droit, et il est connu que le courber peut créer des valeurs propres sous le spectre essentiel, tandis que le tordre ne modifie pas le spectre, bien qu'il existe peu de critère quantitatif lorsque les deux déformations sont superposées. Lorsque le guide d'onde de référence possède une torsion périodique, on sait que diminuer cette torsion crée des valeurs propres, mais l'augmenter ne modifie pas le spectre. Nous démontrons qu'il existe exactement une résonance près du bas du spectre pour le modèle perturbé, et nous donnons le développement asymptotique de cette résonance par rapport à l'amplitude de la perturbation. En particulier nous obtenons des critères pour que cette résonance soit une valeur propre sous le spectre essentiel. Nous montrons que la méthode est assez générale et s'étend à d'autres types d'opérateurs invariants par translation.
  • Le 26 janvier 2021 à 13:30
  • Direction
    Salle de Conférences
    -
    Ordre du jour du conseil de laboratoire du 26 janvier 2021 : 1) Approbation des compte-rendu des conseils de laboratoire du 1er décembre 2020 et du 5 janvier 2021 2) Budget 2021 3) Préparation de la visite du comité HCERES 4) Questions diverses

  • Le 28 janvier 2021 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Nicolas Marie Modal'X\, Université Paris Nanterre
    Sur quelques extensions de la méthode PCO
    L'exposé portera sur deux extensions de la méthode PCO (Penalized Comparison to Overfitting) introduite dans Lacour, Massart et Rivoirard (2018). Initialement conçue pour sélectionner la fenêtre de l'estimateur de Parzen-Rosenblatt de la densité parente d'un $n$-échantillon à partir des données, cette méthode a l'avantage d'être numériquement performante, comme la cross-validation, mais également celui d'être pertinente du point de vue théorique comme la méthode de Goldenshluger-Lepski. En effet, une borne de risque pour l'estimateur adaptatif associé, dont la preuve repose notamment sur l'inégalité de concentration pour les U-statistics démontrée dans Houdré et Reynaud-Bourret (2003), a été démontrée. Nous proposerons une extension de la méthode PCO à la sélection des fenêtres d'un estimateur type Nadaraya-Watson en régression, ainsi qu'une extension de la méthode PCO à la sélection de la suite des fenêtres de l'estimateur récursif de Wolverton-Wagner de la densité. En réalité, la méthode PCO est également compatible avec le contexte de l'estimation par projection et cette question sera traitée durant l'exposé. Ce dernier porte sur plusieurs travaux en collaboration avec Fabienne Comte (Université Paris Descartes) et Hélène Halconruy (Université du Luxembourg).
  • Le 28 janvier 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Pierre Sochala
    [Séminaire CSM] Méthodes de propagation des incertitudes en géosciences numériques
    La quantification des incertitudes paramétriques est désormais incontournable en calcul scientifique pour estimer la fiabilité des prédictions issues des simulations. Les méthodes de type Monte-Carlo ont un coût de calcul prohibitif pour les modèles numériques complexes; il est alors nécessaire de construire des modèles de substitution statistiques s'appuyant sur un nombre limité de simulations. Nous présentons plusieurs approches de type polynômes de chaos pour construire des modèles de substitution de champs aléatoires et de processus stochastiques. Les méthodes de préconditionnement stochastiques sont particulièrement efficaces pour améliorer l'approximation de la quantité d'intérêt grâce à une transformation qui absorbe une large part des non-linéarités stochastiques. La décomposition sur des bases de fonctions orthogonales empiriques (associées à la variable physique) combinée à une représentation fonctionnelle des coordonnées dans cette base permet également de réduire significativement la complexité de représentation. Ces diverses approches ont été implémentées dans plusieurs applications en géosciences numériques, incluant les écoulements en milieux poreux, les écoulements océaniques et la propagation des ondes sismiques. Nous présentons en particulier l'impact de paramètres de modèles incertains sur la dynamique de fronts d'infiltration, la surcote cyclonique induite par un ouragan aux caractéristiques incertaines, et les accélérations du sol générées par un séisme se propageant dans un milieu aléatoire. Les perspectives d'extension des différentes méthodes proposées sont discutées.
  • Le 29 janvier 2021 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Pierre Py Université de Strasbourg
    Propriétés de finitude des groupes et géométrie complexe..
    Suivant C.T.C Wall, on dit qu'un groupe G est de type $F_n$ s'il possède un espace classifiant (un K(G,1)) dont le n-squelette a un nombre fini de cellules. Lorsque n=1, un groupe est de type $F_1$ si et seulement s'il est finiment engendré. Lorsque $n=2$, un groupe est de type $F_2$ si et seulement s'il est finiment présenté. L'étude d'exemples de groupes qui sont de type $F_{n-1}$ mais pas de type $F_n$ a une longue histoire (Stallings, Bestvina-Brady, etc...). On dit que ces exemples sont des groupes ayant des propriétés de finitude exotiques. Dans cet exposé j'expliquerai comment utiliser la géométrie complexe pour construire de nouveaux exemples de groupes ayant des propriétés de finitude exotiques. Il s'agit d'un travail en commun avec F. Nicolas qui généralise des résultats antérieurs de Dimca, Papadima et Suciu, Llosa Isenrich, Bridson et Llosa Isenrich. Lien visio : https://webconf.math.cnrs.fr/b/rem-zyg-anv
  • Le 29 janvier 2021 à 10:00
  • Soutenance de thèse
    visio-conférence
    Orlando RIVERA LETELLIER
    Sujet : "Applications de de la programmation en nombres entiers et la décomposition aux problèmes d'ordonnancement : le problème de la planification stratégique des mines et le problème de bin packing avec délais.". Directeur de thèse : Ruslan Sadykov. Co-directeur de thèse : Marcos Goycoolea

  • Le 29 janvier 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Visio
    Robert Tichy Graz\, CIRM
    Diophantine equations and linear recurrences

  • Le 1er février 2021
  • Manifestations Scientifiques
    Amphithéâtre du LaBRI
    Organisateurs : Auriane Dantes\, Vincent Delecroix\, Katel Guérin\, Sébastien Labbé
    Journées de combinatoire de Bordeaux 1-4 février 2021, LaBRI, Bordeaux

  • Le 2 février 2021
  • Direction
    Visioconférence
    -
    Pour rappel : l'évaluation du laboratoire par le comité HCERES aura lieu du mardi 2 février au jeudi 4 février, et se déroulera exclusivement en distanciel. Infos internes

  • Le 2 février 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Bogdan Dina Ulm University
    Isogenous hyperelliptic and non-hyperelliptic Jacobians with maximal complex multiplication
    We analyze complex multiplication for Jacobians of curves of genus 3, as well as the resulting Shimura class groups and their subgroups corresponding to Galois conjugation over the reflex field. We combine our results with numerical methods to find CM fields $K$ for which there exist both hyperelliptic and non-hyperelliptic curves whose Jacobian has complex multiplication by $\mathbb{Z}_K$.
  • Le 4 février 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Mejdi Azaiez
    [Séminaire CSM] A variant of scalar auxiliary variable approaches for some non linear problems
    In this talk, we present and analyze some class of schemes based on a variant of the scalar auxiliary variable (SAV) approaches (Shen et al. (2018)) for some nonlinear problems. Precisely, we construct robust first and second order unconditionally stable schemes by introducing a new defined auxiliary variable to deal with nonlinear terms in gradient flows. The approach consists in splitting the gradient flow into decoupled linear systems with constant coefficients, which can be solved using existing fast solvers for the Poisson equation. We end the talk by given some results for the incompressible Navier-Stokes equations.
  • Le 5 février 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Visio
    Gautier Ponsinet MPIM Bonn
    Normes universelles de représentations galoisiennes $p$-adiques et la courbe de Fargues-Fontaine
    En 1996, Coates et Greenberg ont calculé le module des normes universelles d'une variété abélienne dans une extension de corps perfectoïde. Une description précise de ce module est essentielle en théorie d'Iwasawa, notamment pour étudier les groupes de Selmer dans des extensions de corps algébriques infinies. Coates et Greenberg ont alors demandé si leur résultat pouvait s'étendre à d'autres motifs. Dans cet exposé, je présenterai une nouvelle approche de cette question se servant de la classification des fibrés vectoriels sur la courbe de Fargues-Fontaine et permettant d'y répondre positivement dans de nouveaux cas.
  • Le 9 février 2021 à 11:15
  • Séminaire de Physique Mathématique - EDP
    visio-conférence
    Clotilde Fermanian\, UPEC
    Analyse semi-classique de problèmes sous-elliptiques
    Dans cet exposé, nous présenterons l'approche semi-classique développée avec Véronique Fischer (University of Bath, UK) sur les groupes de Lie nilpotents par l'introduction d'un calcul pseudodifférentiel fondé sur l'analyse de Fourier de ces groupes et leurs représentations. L'utilisation de ces outils donne un éclairage sur la dispersion de familles de solutions d'équations de Schrödinger sous-elliptiques ainsi que sur le contrôle de ces équations, ce dernier thème a été développé avec Cyril Letrouit (ENS Paris). Nous nous attacherons à décrire ces résultats en expliquant les principales idées qui les font fonctionner.
  • Le 11 février 2021 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Kévin Polisano LJK\, Université Grenoble Alpes
    Riesz-based orientation of localizable Gaussian fields
    Texture modeling and analysis are challenging issues of image processing. In many cases, the model has to incorporate some important characteristics of the data as roughness or anisotropy properties, that can be handled using a stochastic approach, involving fractional anisotropic random fields. We give a sense to the notion of orientation for self-similar Gaussian fields with stationary increments, based on a Riesz analysis of these fields, with isotropic zero-mean analysis functions. We propose a structure tensor formulation and provide an intrinsic definition of the orientation vector as eigenvector of this tensor. That is, we show that the orientation vector does not depend on the analysis function, but only on the anisotropy encoded in the spectral density of the field. Then, we generalize this definition to a larger class of random fields called localizable Gaussian fields, whose orientation is derived from the orientation of their tangent fields. Finally two classes of Gaussian models with prescribed orientation are studied in the light of these new analysis tools.
  • Le 11 février 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Astrid Decoene
    [Séminaire CSM] Modélisation et simulation numérique de systèmes ciliés
    Dans cet exposé je présenterai des travaux autour de la modélisation mathématique de fluides complexes actifs dans lesquels l'activité provient de structures fines appelées cils. C'est le cas par exemple du mucus bronchique, mis en mouvement par le battement coordonné de cils nappant les parois des bronches. Ce mécanisme, appelé transport mucociliaire, est nécessaire à l'évacuation des impuretés inhalées et de nombreuses pathologies - asthme, bronchite chronique - résultent de son dysfonctionnement. L'étude de ce mécanisme comporte des aspects de modélisation, d'analyse et de calcul, en lien avec des applications potentielles en médecine. Notre objectif est de proposer un outil d'analyse et de simulation numérique permettant d'étudier l'impact sur ces fluides biologiques du battement des cils et la dépendance de certains paramètres comme leur densité ou la viscosité du fluide. Étant donné que nous souhaitons pouvoir faire des simulations à grand nombre de cils, il nous faut considérer un modèle d'interaction fluide-structure impliquant un coût de résolution réduit, mais suffisamment complet pour permettre de reproduire les mouvements collectifs émergeant dans ces fluides. Je présenterai des modèles de différente complexité, ainsi que différentes stratégies numériques pour les résoudre, et je montrerai les dynamiques collectives reproduites par nos simulations.
  • Le 12 février 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Visio
    Annamaria Iezzi Université de la Polynésie française
    Un résultat sur les fonctions rationnelles sur un corps fini à l'aide de la borne d'Hasse–Weil
    La borne d'Hasse–Weil donne une estimation du nombre de points rationnels d'une courbe définie sur un corps fini et trouve plusieurs applications dans l'arithmétique sur les corps finis. En effet, dans l'étude des équations polynomiales sur les corps finis, elle représente un outil pour prouver des énoncés de type "asymptotique", c'est-à-dire quand la cardinalité du corps fini est suffisamment grande. Des exemples de tels résultats asymptotiques apparaissent, par exemple, dans la littérature des polynômes de permutation sur les corps finis. Dans cet exposé nous verrons, alors, comment utiliser cette borne pour démontrer un résultat curieux sur les fonctions rationnelles définies sur un corps fini. Ceci est un travail en commun avec Xiang-dong Hou.
  • Le 23 février 2021 à 11:15
  • Séminaire de Physique Mathématique - EDP
    Visio
    Y. Kian
    Détermination d'un terme non-linéaire apparaissant dans une équation de type réaction diffusion
    Dans cet exposé on s'intéressera au problème inverse consistant à déterminer un terme semi-linéaire apparaissant dans une équation parabolique non-linéaire. Notre objectif sera de déterminer une classe suffisamment générale de termes non-linéaires à partir de mesures aux bords du domaine en l'espace pour des solutions de l'équation s'annulant au temps initiale. Pour cela nous introduirons un nouveau critère, basé sur la seconde linéarisation du problème inverse, permettant d'obtenir ce type de résultat. Ce travail est issu d'une collaboration avec Gunther Uhlmann.
  • Le 25 février 2021 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Samuel Vaiter Institut de Mathématiques de Bourgogne
    Hyper-Parameter Selection by Algorithmic Differentiation
    Setting regularization parameters for variational estimators in imaging or machine learning is notoriously difficult. Grid-search requires to choose a predefined grid of parameters and scales exponentially in the number of parameters which can be quickly inconvenient or even impossible in imaging. Another class of approaches casts hyperparameter optimization as a bi-level optimization problem, typically solved by gradient descent. The key challenge for these approaches is the estimation of the gradient w.r.t. the hyperparameters. In this presentation, I will show algorithmic/automatic differentiation can help to overcome this challenge, both for inverse problems with a differentiable Stein Unbiased Risk Estimator and in regression using held-out loss.
  • Le 25 février 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM]

  • Le 25 février 2021 à 15:30
  • Le Colloquium
    En Visio
    Eva Löcherbach
    Quelques résultats probabilistes sur des grands systèmes de neurones en interactions
    Dans l'exposé je discuterai la convergence en grande population de systèmes de neurones décrits par leur trains de décharge, en interactions de type champ moyen. Je montrerai comment deux théorèmes classiques des probabilités, la loi forte des grands nombres/le théorème de Glivenko-Cantelli et le théorème central limite peuvent être généralisés à un cadre avec interactions, lorsque les interactions sont négligeables à l'échelle de la population. Dans le régime de la loi forte des grands nombres, cela donne lieu à la propriété de propagation du chaos : dans un système infini limite, les neurones deviennent indépendants les uns des autres, et chaque neurone est décrit par un processus limite du type McKean-Vlasov où la dynamique fait intervenir la loi du processus. Je discuterai ensuite le regime du théorème central limite et comment le TCL fait apparaître un mouvement Brownien supplémentaire qui constitue une source de bruit commun pour les neurones dans le processus limite. Ceci induit une propriété de propagation conditionnelle, c'est-à-dire l'indépendance conditionnelle des neurones dans le système limite. Le processus non-linéaire limite sera dirigé par ce mouvement Brownien et fera intervenir un terme de variance qui est une loi conditionnelle, à savoir le taux de sauts moyen, sachant le Brownien.
  • Le 26 février 2021 à 11:00
  • Séminaire de Géométrie
    Salle 2
    Danilo Lewanski IHES/IPhT
    Cohomologie des espaces de modules des courbes de la physique mathématique.
    La compréhension de la cohomologie des espaces des modules des courbes est un problème de longue date en géométrie algébrique. Ce qui est surprenant, c'est le degré de motivation que ce problème hérite des autres branches des mathématiques et de la physique : théorie des cordes, symétrie miroir, systèmes intégrables, surfaces planes, géométrie hyperbolique, énumération de cartes sur les surfaces et théorie d'Hurwitz, théorie des nœuds, systèmes d'Hitchin.... Nous passerons en revue quelques exemples, en nous concentrant sur les volumes de Masur-Veech, en exploitant la méthode récente de la récursion topologique de Eynard-Orantin (2007), qui fournit un moyen universel de générer de manière récursive des solutions à ces problèmes d'énumération sous forme de nombres d'intersection.
  • Le 26 février 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Visio
    Fabrizio Barroero Rome
    On the Zilber-Pink conjecture for complex abelian varieties and distinguished categories.
    I will report on recent joint work with Gabriel Dill in which we proved that the Zilber-Pink conjecture for a complex abelian variety A can be deduced from the same statement for its trace, i.e., the largest abelian subvariety of A that can be defined over the algebraic numbers. This gives some unconditional results, e.g., the conjecture for curves in complex abelian varieties (over the algebraic numbers this is due to Habegger and Pila) and the conjecture for arbitrary subvarieties of powers of elliptic curves that have transcendental j-invariant. While working on this project we realised that many definitions, statements and proofs were formal in nature and we came up with a categorical setting that contains most known examples and in which (weakly) special subvarieties can be defined and a Zilber-Pink statement can be formulated. We obtain some conditional as well as some unconditional result.
  • Le 2 mars 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Jade Nardi Inria Saclay\, LIX
    Explicit construction and parameters of projective toric codes
    Toric codes, introduced by Hansen in 2002, generalize (weighted) Reed-Muller codes on other toric varieties than projective spaces. They consist of evaluation codes of monomials at tuples of non-zero coordinates, which correspond to the points on the dense torus contained in the associated toric variety. Our aim is to ‘projectivise’ these codes, in the same spirit that turns a Reed-Muller codes into a projective one: we consider codes obtained by evaluating global sections on the whole set of the rational points of a toric variety. We focus on simplicial toric varieties, which come with a nice quotient description, and we give an explicit construction of projective codes on them, as well as a combinatorial way to determine their parameters. 'Projectivizing' toric codes opens new possibilities of getting codes with excellent parameters, by extending some champion classical toric codes geometrically.
  • Le 2 mars 2021 à 11:15
  • Séminaire de Physique Mathématique - EDP
    Visio
    Badreddine Benhellal
    Quantum Confinement induced by Dirac operators with anomalous magnetic $delta$-shell interactions.
    Abstract: Let $\Omega$ be a bounded domain and $\upsilon\in\mathbb{R}$. I will consider the coupling $\mathcal{H}_{\upsilon}=\mathcal{H}+ V_\upsilon$, where $\mathcal{H}$ is the free Dirac operator in $\mathbb{R}^3$ and $V_\upsilon= i\upsilon\beta(\alpha\cdot \mathit{N})\delta_{\partial\Omega}$ is the anomalous magnetic $\delta$-interactions potential. In the first instance, assuming that $\upsilon^2 eq 4$ and under some regularity assumption on the domain $\Omega$, we prove that $\mathcal{H}_{\upsilon}$ is self-adjoint and its domain is included in the Sobolev space $\mathit{H}^{1}(\mathbb{R}^3\setminus \partial\Omega)^4$. Moreover, a Krein-type resolvent formula and a Birman-Schwinger principle are obtained, and several qualitative spectral properties of $\mathcal{H}_{\upsilon}$ are given. Finally, we study the self-adjoint realization of $\mathcal{H}_{\upsilon}$ in the case $\upsilon^2=4$. In particular, if $\Omega$ is $\mathit{C}^1$-smooth, we then show that $\mathcal{H}_{\upsilon}$ is essentially self-adjoint and the domain of the closure is not included in any Sobolev space $\mathit{H}^{s}(\mathbb{R}^3\setminus \partial\Omega)^4$, for all $s>0$. In addition, we show that $\overline{\mathcal{H}_{\pm2}}$ generates confinement and prove the existence of embedded eigenvalues on the essential spectrum of $\overline{\mathcal{H}_{\pm2}}$.
  • Le 4 mars 2021 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    François-Pierre Paty CREST\, ENSAE Paris
    Regularizing Optimal Transport through Regularity Constraints
    Optimal transport (OT) suffers from the curse of dimensionality. Therefore, OT can only be used in machine learning if it is substantially regularized. In this talk, I will present a new regularization of OT which leverages the regularity of the Brenier map. Instead of considering regularity as a property that can be proved under suitable assumptions, we consider regularity as a condition that must be enforced when estimating OT. From a statistical point of view, this defines new estimators of the OT map and 2-Wasserstein distance between arbitrary measures. From an algorithmic point of view, this leads to an infinite-dimensional optimization problem, which, when dealing with discrete measures, can be rewritten as a finite-dimensional separately-convex problem. I will finish by sharing some recent ideas on how to speed up the algorithms. The talk is based on some joint work with Marco Cuturi and Alexandre d'Aspremont.
  • Le 5 mars 2021 à 10:00
  • Soutenance de thèse
    Salle de Conférences
    Gaël GUILLOT
    Sujet :"Méthodes d'agrégation et désagrégation de programmes linéaires en nombres entiers". Directeur de thèse : François Clautiaux, co-directeur : Boris Detienne.

  • Le 5 mars 2021 à 16:00
  • Séminaire de Théorie des Nombres
    Visio
    Türkü Özlüm Çelik Simon Fraser University\, Vancouver
    KP equation in Symbolic, Numerical and Combinatorial Algebraic Geometry
    The Kadomtsev-Petviashvili (KP) equation is a partial differential equation that describes nonlinear wave moves. It is known that algebro-geometric approaches to the KP equation provide solutions coming from a complex algebraic curve, in terms of the Riemann theta function associated with the curve. Reviewing this relation, I will introduce an algebraic object and discuss its geometric features: the so-called Dubrovin threefold of a complex algebraic curve, which parametrizes the solutions. Mentioning the relation of this threefold with the classical algebraic geometry problem, namely the Schottky problem, I will report a procedure that is via the threefold and based on numerical algebraic geometric tools, which can be used to deal with the Schottky problem from the lens of computations. I will finally focus on the geometric behaviour of the threefold when the underlying curve degenerates. This is joint work with Daniele Agostini and Bernd Sturmfels.
  • Le 9 mars 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Cécile Armana LMB\, Université de Franche-Comté
    Bornes de Sturm pour des formes automorphes sur les corps de fonctions
    Les bornes de Sturm indiquent combien de coefficients de Fourier successifs suffisent à déterminer une forme modulaire. Pour les formes modulaires classiques, elles fournissent aussi des bornes sur le nombre d'opérateurs de Hecke engendrant l'algèbre du même nom. Cet exposé propose d'étudier la situation pour certaines formes automorphes, dites de Drinfeld, sur les corps de fonctions. Il s'agit d'un travail en commun avec Fu-Tsun Wei (National Tsing-Hua University, Taïwan).
  • Le 9 mars 2021 à 11:15
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Louis Emerald Rennes
    Sur la dérivation rigoureuse des équations de Whitham dans le régime d'eau peu profonde
    Les équations de Whitham ont été introduites en 1967 afin d'étudier les phénomènes de vagues surplombantes et de vagues de Stokes d'amplitude maximale. Elles appartiennent à une classe spécifique de modèles irrotationnels en océanographie côtière, dite de type dispersion complète. C'est-à-dire que la relation de dispersion associée est la même que celle du modèle général, les équations des vagues. Dans cet exposé, nous allons voir deux méthodes permettant de dériver rigoureusement les équations de Whitham dans le régime d'eau peu profonde. La première est basé sur la construction d'approximations des invariants de Riemann pour un système dit de Whitham-Boussinesq. La deuxième utilise une généralisation de l'algorithme de la forme normale de Birkhoff pour des Hamiltoniens dit « presque lisses ». Nous verrons que ces deux méthodes permettent d'établir la qualité du modèle de Whitham en tant qu'approximation du modèle général dans le cadre de la propagation de vagues unidirectionnelles et bidirectionnelles.
  • Le 9 mars 2021 à 14:00
  • Groupe de Travail Intération fluide-solide
    Salle de Conférences
    Clair Poignard
    Quelques problèmes d'EDP issus de la modélisation en biologie
    Dans cet exposé (informel) je présenterai différents problèmes d'EDP issus de la modélisation en biologie. L'objectif est de susciter des collaborations au sein de l'équipe EDP autour de ces thématiques. J'axerai mon exposé autour de 3 applications : la migration cellulaire, l'électroporation et la croissance tumorale. Pour chaque axe je présenterai (brièvement) ce qui a été fait et j'insisterai plus sur ce qui reste à faire. A la fin de l'exposé l'idée serait d'identifier des points spécifiques qui pourraient être approfondis dans les séances suivantes.
  • Le 11 mars 2021 à 14:00
  • Séminaire d'Analyse
    Visio
    Karlheinz Gröchenig Vienne
    Marcinkiewicz-Zygmund Inequalities for Polynomials in Bergman, Hardy, and Fock Spaces
    We study the relationship between sampling sequences in infinite-dimensional Hilbert spaces of analytic functions and Marcinkiewicz-Zygmund inequalities in subspaces of polynomials. We focus on the study of the Hardy space, the Bergman space, and the Fock space. They provide three settings with a strikingly different behavior. This is joint work with Joaquim Ortega-Cerda.
  • Le 11 mars 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM] Créneau libre

  • Le 12 mars 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Visio
    Alexandre Bailleul ENS Lyon
    Zéros réels de fonctions $L$ d'Artin et biais de Tchebychev dans les corps de nombres
    Le biais de Tchebychev est un phénomène observé pour la première fois par Tchebychev dans les années 1850. Celui-ci prédit qu'il y a "plus souvent" plus de nombres premiers congrus à $3$ modulo $4$ que de nombres premiers congrus à $1$ modulo $4$, autrement dit que $\pi(x;4,3) > \pi(x;4,1)$ "la plupart du temps". Ce phénomène a été expliqué par Rubinstein et Sarnak en 1994, puis généralisé aux corps de nombres par Ng en 2000. Dans l'exposé, j'expliquerai comment on peut montrer que certains zéros réels de fonctions $L$ d'Artin peuvent avoir une influence considérable sur ce phénomène de biais.
  • Le 15 mars 2021
  • Direction
    Visio
    -
    Félicitations à Rémi Boutonnet pour sa médaille de bronze 2021 du CNRS : https://www.cnrs.fr/fr/personne/medailles-de-bronze-2021

  • Le 16 mars 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Vincent Neiger Université de Limoges
    Deterministic computation of the characteristic polynomial in the time of matrix multiplication
    This talk describes joint work with Clément Pernet on an algorithm which computes the characteristic polynomial of a matrix over a field within the same asymptotic complexity, up to constant factors, as the multiplication of two square matrices. Previously, this was only achieved by resorting to genericity assumptions or randomization techniques, while the best known complexity bound with a general deterministic algorithm was obtained by Keller-Gehrig in 1985 and involves logarithmic factors. The new algorithm computes more generally the determinant of a univariate polynomial matrix in reduced form.
  • Le 16 mars 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Vincent Neiger Université de Limoges
    Deterministic computation of the characteristic polynomial in the time of matrix multiplication
    This talk describes joint work with Clément Pernet on an algorithm which computes the characteristic polynomial of a matrix over a field within the same asymptotic complexity, up to constant factors, as the multiplication of two square matrices. Previously, this was only achieved by resorting to genericity assumptions or randomization techniques, while the best known complexity bound with a general deterministic algorithm was obtained by Keller-Gehrig in 1985 and involves logarithmic factors. The new algorithm computes more generally the determinant of a univariate polynomial matrix in reduced form.
  • Le 16 mars 2021 à 14:00
  • Direction
    Online
    -
    Ordre du jour du conseil scientifique de mardi 16 mars 2021
    1) Présentation de projets ANR déposés par des membres de l'IMB (partie 2) : Gilles Zemor ; Lisl Weynans ; Adrien Richou ; Boris Detienne ; Ruslan Sadykov 2) Présentation des sujets de thèse déposés sur l'appel IA de l'université Clair Poignard ; Olivier Saut 3) Présentation des 3 comités de sélection (pour les 3 postes de professeurs ouverts au concours cette année à l'IMB). 4) Questions diverses A la page 2 du document joint "PIA4_Strategie-Exploration_Consultation-interne.docx", on sélectionnera dans la liste des thématiques, celles pour lesquelles l'IMB pourrait répondre à des appels à projets dans le cadre de l'action Programme et Equipements Prioritaires de Recherche du 4ème Programme d'Investissement d'Avenir.
  • Le 18 mars 2021
  • BLOC NOTES
    Online
    -
    Le GAMNI organise la journée des Prix de thèse SMAI-GAMI prévue le 18 Mars 2020.
    Les infos et le programme sont à https://perso.univ-rennes1.fr/roger.lewandowski/Annonce_French.pdf La conf aura lieu en visio par zoom. Pour obtenir les identifiants de connexion il faut s'inscrire (inscription gratuite) à https://framaforms.org/journee-prix-de-these-smai-gamni-1613651951
  • Le 18 mars 2021 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Adrien Richou IMB
    Comment définir une notion d'espérance conditionnelle contrainte à prendre ses valeurs dans un ensemble non-convexe
    Dans un travail récent avec Jean-François Chassagneux (Université de Paris) et Sergey Nadtochiy (Illinois Institute of Technology) nous obtenons des résultats d'existence et d'unicité pour des équations différentielles stochastiques rétrogrades réfléchies dans un domaine non convexe. J'expliquerai dans cet exposé notre stratégie de preuve et quelques liens avec la géométrie stochastique.
  • Le 19 mars 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Visio
    Abhishek Saha Queen Mary University\, London
    Some analytic aspects of automorphic forms and L-functions
    The eigenfunctions (of the Laplacian) on various geometric spaces constitute a class of mathematical objects of fundamental importance. From the point of view of quantum mechanics, the eigenfunctions correspond to particles moving with a certain energy, which leads naturally to questions motivated by subfields of physics. For example, one also has the so-called sup-norm problem, which asks how high the peaks of an eigenfunctions can be. There is also the famous "Quantum Unique Ergodicity" problem for which Lindenstrauss won a Fields medal. In this talk, I will give a gentle introduction to some of these problems in a setting where number theory plays a key role. In the special case when the manifold is a surface of constant negative structure, and is constructed from "quaternion algebras", a famous result of Iwaniec and Sarnak improves upon the trivial bound for the sup-norm using number-theoretic techniques. I will explain this result, and then talk about recent progress on an analogous question where the underlying surface is itself allowed to vary (the level aspect). I will also explain the interesting connections between these questions and deep problems in number theory such as the subconvexity problem.
  • Le 23 mars 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Samuel Le Fourn Institut Fourier\, Université Grenoble Alpes
    Recherche de points entiers sur une variété modulaire de dimension 3
    La détermination effective des points entiers sur des variétés algébriques est un problème difficile, surtout en dimension plus grande que 1. Dans cet exposé, je présenterai brièvement deux approches naturelles pour les points entiers qui permettent dans des cas favorables de tous les trouver. En cherchant des raffinements de ces méthodes, on arrive à des problèmes combinatoires intéressants, que je mettrai en valeur dans le cas précis d'une variété "modulaire" de dimension 3, qu'on peut définir par une équation quartique dans $\mathbb{P}^4$.
  • Le 23 mars 2021 à 14:00
  • Soutenance de thèse
    salle Ada Lovelace (Inria)
    Amel KAROUI
    Sujet : "Méthodes numériques pour la résolution de problèmes inverses en électrocardiographie" . Directeur de thèse : Nejib Zemzemi, co-directeur : Mostafa Bendahmane

  • Le 25 mars 2021 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Emma Horton Inria\, Bordeaux
    Analyse stochastique de l'équation de transport des neutrons
    L'équation de transport des neutrons (NTE) est une équation d'équilibre qui décrit le mouvement net des neutrons à travers un milieu fissile inhomogène, tel qu'un réacteur nucléaire. Une façon de dériver la NTE est l'analyse stochastique d'un processus de branchement spatial. Cette approche est connue depuis les années 1960/70, cependant, depuis lors, très peu d'innovations dans la littérature ont vu le jour grâce à l'analyse probabiliste. Ces dernières années, cependant, les industries de l'énergie nucléaire et de la réglementation nucléaire ont davantage besoin d'une compréhension approfondie des propriétés spectrales de la NTE.
    Dans cet exposé, je décrirai formellement la dynamique du processus de branchement des neutrons, ainsi qu'une représentation de Feynman Kac associée. Je discuterai ensuite de la façon dont cette dernière peut être utilisée pour analyser le comportement à long terme des processus de fission nucléaire et comment nous pouvons l'utiliser pour développer des algorithmes pour simuler de tels processus.
  • Le 25 mars 2021 à 14:00
  • Séminaire d'Analyse
    En Visio
    Cristina Camara
    Compressions of multiplication operators and equivalence after extension
    In this talk I will revisit the concept of equivalence after extension for operators on Banach spaces, its relations with compressions of multiplication operators in L_2 - namely Toeplitz operators, truncated Toeplitz operators on model and multiband spaces, dual truncated Toeplitz operators - and how it allows us to study their spectral properties.
  • Le 25 mars 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Martin Parisot
    [Séminaire CSM] On the time-discrete Green-Naghdi model
    The Green-Naghdi model is a reduced model, nonlinear and dispersive, for free surface flows. We are interested in the structure of the time-discrete model. It will be shown that the model has a projection structure similar to models of incompressible flows. This result allows us to propose efficient and robust numerical schemes, as well as to define a class of boundary conditions.
  • Le 26 mars 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Visio
    Giacomo Cherubini Prague
    Prime geodesic theorem over $\mathbb{Z}$ and $\mathbb{Z}[i]$
    I will give an overview of the status of the prime geodesic theorem over $\mathbb{Z}$ and $\mathbb{Z}[i]$. In the last few years this topic has been an active area of research in analytic number theory and I will describe the most recent results. The proofs rely mainly on the spectral theory of automorphic forms, but have connections to L-functions, class numbers and Kloosterman sums.
  • Le 30 mars 2021
  • Soutenance de thèse
    La soutenance aura lieu à huis clos en Visioconférence
    Bastien BERTHELOT
    Sujet : "Contributions à l'estimation du coefficient de Hurst et son usage sur des biosignaux dans le domaine du crew monitoring". Directeur de thèse : Pierrick Legrand, co-directeur : Eric Grivel

  • Le 30 mars 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Charles Fougeron IRIF\, Université de Paris
    Dynamiques des algorithmes de fraction continue multidimensionnels
    Motivés par la richesse de l'algorithme de Gauss qui permet de calculer efficacement les meilleurs approximation d'un nombre réel par des rationnels, beaucoup de mathématiciens ont proposé des généralisations de ces algorithmes pour approximer des vecteurs de dimension supérieure à 1. Citons pour exemple celui de Poincaré introduit à la fin du 19e siècle ou ceux de Brun et Selmer à la moitié du 20e siècle.
  • Le 1er avril 2021 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Sepideh Mirrahimi Toulouse
    Séminaire Commun Analyse - EDP : Selection and mutation in a shifting and oscillating environment
    We study the evolutionary dynamics of a phenotypically structured population in a changing environment, where the environmental conditions vary with a linear trend but in an oscillatory manner. Such phenomena can be described by parabolic Lotka-Volterra type equations with non-local competition and a time dependent growth rate. We first study the long time behavior of the solution to this problem. Next, using an approach based on Hamilton-Jacobi equations we study asymptotically such long time solutions when the effects of the mutations are small. We prove that, as the effect of the mutations vanishes, the phenotypic density of the population concentrates on a single trait which varies linearly with time, while the size of the population oscillates periodically. We also provide asymptotic expansions for the moments of the phenotypic distribution. Via some examples and a comparison with a biological experiment, we show how our method can be used to determine the effect of the oscillations of the environment on the performance of the population or its ability to follow the environmental shift.
  • Le 2 avril 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Visio
    Roberto Svaldi EPFL Lausanne
    Minimal model program and foliations
    A foliation on an algebraic variety is a partition of the variety into 'parallel' disjoint immersed complex submanifolds. Foliations naturally appears in a wide range of problems in algebraic geometry. I will explain recent progress in the birational classification of algebraic foliations in low dimension inspired by the theory of the Minimal Model Program. I will try to use key examples that exemplify the richness of the foliated world both in analogy and in opposition to the classical case of algebraic varieties. The talk will feature joint work with Calum Spicer.
  • Le 6 avril 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Marc Masdeu Universitat Autònoma de Barcelona
    Numerical experiments with plectic Stark--Heegner points
    Let $E/F$ be an elliptic curve defined over a number field $F$, and let $K/F$ be a quadratic extension. If the analytic rank of $E(K)$ is one, one can often use Heegner points (or the more general Darmon points) to produce (at least conjecturally) a nontorsion generator of $E(K)$. If the analytic rank of $E(K)$ is larger than one, the problem of constructing algebraic points is still very open. In very recent work, Michele Fornea and Lennart Gehrmann have introduced certain $p$-adic quantities that may be conjecturally related to the existence of these points. In this talk I will explain their construction, and illustrate with some numerical experiments that we have been able to carry out that support their conjecture. This is joint work with Michele Fornea and Xevi Guitart.
  • Le 6 avril 2021 à 11:00
  • Séminaire de Physique Mathématique - EDP
    visio
    Pierre Degond (IMT) - Séminaire EDP Bilbao-Bordeaux-Toulouse
    Topological states in collective dynamics
    States of matter are characterized by different types of order. Recently, a new notion of order, popularized by the 2016 physics nobel prizes, has emerged : that of topological order. It refers to the global rigidity of the system arising from topological constraints. Recently, topological states has been shown to exist in collective dynamics, which describes systems of self-propelled particles. In this work, we consider a system of self-propelled solid bodies interacting through local full body alignment proposed in a joint work with A. Frouvelle, S. Merino-Aceituno and A. Trescases. In the large-scale limit, this system can be described by hydrodynamic equations with topologically non-trivial explicit solutions. At the particle level, these solutions undergo topological phase transitions towards trivial flocking states. Numerically we show that these transitions require the system to pass through a phase of disorder. To our knowledge, it is the first time that a hydrodynamic model guides the design of topologically non-trivial states and allows for their quantitative analysis and understanding. On the way, we will raise interesting mathematical questions underpinning the analysis of collective dynamics systems. Joint work with Antoine Diez and Mingye Na (Imperial College London)
  • Le 6 avril 2021 à 13:30
  • Direction
    visio
    Le prochain conseil de laboratoire aura lieu le 6 avril 2021.\nL'ordre du jour sera le suivant :\n1) Approbation du compte-rendu du conseil de laboratoire du 26 janvier\n2) Informations générales (nouvelles du CS\, de l'INSMI\, de la ZRR\, projet avec ONERA\, participation au conseil scientifique du MCIA\, changement de responsable Plafrim)\n 3) Présentation de la fédération MARGAUx\n4) Présentation de la charte et du référent parité et égalité des chances dans les comités de sélection\n5) Prolongation du contrat de Carole Gomila\n6) Nomination au conseil scientifique\n 7) Les candidats à la prochaine direction du laboratoire\n 8) Questions diverses
    Sans titre

  • Le 8 avril 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM] Indisponible

  • Le 8 avril 2021 à 14:00
  • Séminaire d'Analyse
    VIsio
    Charles Dossal Toulouse
    Etude des algorithmes inertiels d'optimisation convexe par EDO.
    Je présenterai un cadre unifié pour étudier les vitesses de convergence de différents algorithmes minimisant des fonctions convexes à valeurs réelles vérifiant plusieurs jeux d'hypothèses, tels que la forte convexité. On montrera d'abord qu'on peut voir ces schémas d'optimisation comme des schémas numériques de résolution de certaines EDO. Dans un second temps, nous verrons qu'il est possible de trouver des fonctions de Lyapunov sur ces EDO, c'est-à-dire des énergies qui décroissent le long de la trajectoire de la solution de l'EDO et nous montrons ensuite comment en déduire des suites de Lyapunov associés au schéma d'optimisation. De l'étude de ces suites décroissantes ou bornées on déduira les vitesses de convergence des algorithmes étudiés. Une telle méthodologie permet d'étudier une variété d'algorithmes inertiels, leur convergence, leur stabilité et d'en déduire des propriétés dans un cadre stochastique.
  • Le 9 avril 2021 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Elise Goujard
    Sous-variétés totalement géodésiques de $mathcal M_{g,n}$ (rodage Bourbaki)
    Soit $\mathcal M_{g,n}$ l'espace de module des surfaces de Riemann de genre $g$ à $n$ points marqués. Une sous-variété de $\mathcal M_{g,n}$ est dite totalement géodésique si elle contient toutes les géodésiques de Teichmüller qui lui sont tangentes. Les sous-variétés totalement géodésiques de dimension (complexe) 1, appelées courbes de Teichmüller, sont relativement bien étudiées depuis les premières constructions de Veech dans les années 80 ; elles sont en particulier infiniment nombreuses dans chaque espace de module $\mathcal M_{g,n}$. Récemment, Wright a montré, en s'appuyant sur des résultats de finitude d'Eskin, Filip et Wright, qu'en dimension plus grande, ce n'était plus le cas : il n'y a qu'un nombre fini de telles sous-variétés dans chaque $\mathcal{M}_{g,n}$. Un premier exemple de telle sous-variété primitive de dimension 2 dans $\mathcal{M}_{1,3}$ a été construit par McMullen, Mukamel et Wright à partir de courbes cubiques projectives ; Eskin, McMullen, Mukamel et Wright ont ensuite trouvé deux autres exemples de telles sous-variétés.
  • Le 9 avril 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Visio
    Corentin Darreye IMB
    Oscillations dans la suite des coefficients d'une forme modulaire
    Le but de cet exposé est de présenter certains résultats récents concernant la majoration, la minoration et le signe des coefficients de Fourier d'une forme modulaire de poids demi-entier. Ce sujet s'inscrit dans une thématique assez générale qui consiste à mettre en évidence des oscillations et des compensations dans la suite des coefficients d'une forme modulaire. En effet, ce genre de problème est intimement lié à des questions purement arithmétiques et notamment à de nombreux résultats d'équirépartition en théorie des nombres. Ainsi, après avoir fait les rappels nécessaires et afin de motiver au maximum la finalité de mon exposé, j'en profiterai pour présenter certaines de ces applications et j'insisterai particulièrement sur celles découlant du cas particulier des formes modulaires de poids demi-entier.
  • Le 13 avril 2021 à 11:15
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Jean-François Coulombel
    Stabilité de schémas aux différences finies pour le transport avec conditions aux limites numériques
    Depuis les travaux pionniers de Kreiss (1968) et Osher (1969), une voie pour étudier la stabilité des schémas aux différences finies pour le transport avec des conditions aux limites consiste à étudier le spectre des opérateurs linéaires mis en jeu et notamment à localiser leurs valeurs propres au moyen d'une fonction qui joue le rôle d'un polynôme caractéristique. En l'absence de toute valeur propre de module plus grand ou égal à 1, des théorèmes, qui couvrent désormais de très nombreuses situations, assurent que les opérateurs mis en jeu sont de puissances bornées, ce qui correspond à une propriété de stabilité du schéma numérique par rapport aux données initiales. Nous verrons comment ces résultats s'étendent au cas où l'opérateur linéaire admet des valeurs propres simples sur le cercle unité. Il s'agit d'un travail en collaboration avec Grégory Faye.
  • Le 13 avril 2021 à 11:30
  • Séminaire de Calcul Scientifique et Modélisation
    Salle de Conférences
    Jean-François Coulombel IMT
    Séminaire commun EDP-CSM

  • Le 15 avril 2021 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Arthur Leclaire IMB
    On the differential properties of WGAN-like problems
    The problem of WGAN (Wasserstein Generative Adversarial Network) learning is an instance of optimization problems where one wishes to find, among a parametric class of distributions, the one which is closest to a target distribution in terms of optimal transport (OT) distance. Applying a gradient-based algorithm for this problem requires to express the gradient of the OT distance with respect to one of its argument, which is related to the solutions of the dual problem (Kantorovich potentials). The first part of this talk aims at finding conditions that ensure the existence of such gradient. After discussing regularity issues that may appear with discrete target measures, we will show that regularity problems are avoided when using entropy-regularized OT. In the second part, we will see how these gradients can be exploited in a stable way to address some imaging problems where the target discrete measure is reasonably large. In particular, using OT distances between multi-scale patch distributions, this allows to estimate a generative convolutional network that can synthesize an exemplar texture in a faithful and very efficient way. This is a joint work with Antoine Houdard, Nicolas Papadakis and Julien Rabin.
  • Le 16 avril 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Visio
    Asbjørn Nordentoft Bonn
    Wide moments of automorphic L-functions
    Calculating the moments of L-function is a central theme in analytic number theory with applications to subconvexity and non-vanishing (which in turn has deep arithmetic implications for equidistribution problems and points counts). In this talk we will give a gentle introduction to a certain type of "wide moments", which in many cases can be calculated using geometric methods. In particular we will consider the case of Rankin--Selberg L-functions of $GL_2$ automorphic forms twisted by class group characters of an imaginary quadratic field, in which case the "wide moments" are connected to equidistribution of Heegner points using Waldspurger's formula. We will also present applications to non-vanishing.
  • Le 27 avril 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Ann Kiefer Luxembourg Centre for Educational Testing
    Property (FA) of the unit group of $2$-by-$2$ matrices over an order in a quaternion algebra
    We study property (FA) and its hereditary version for unit groups of $2$-by-$2$ matrices over orders in totally definite quaternion algebras with rational centres. In particular we consider the three matrix rings over totally definite rational quaternion algebras that can appear as Wedderbrun-Artin components of a group ring $\mathbb{Q}G$.
  • Le 27 avril 2021 à 11:15
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Denise Aregba
    Approximation des équations d'Euler bi-températures en 2D
    Le système d'Euler bi-température est un modèle fluide pour un plasma quasi-neutre. C'est un système non conservatif au sens où il comporte des termes sources et des produits de la vitesse par un gradient de pression n'ayant pas de forme divergentielle. Dans ce contexte la définition des chocs et leur approximation numérique doit faire jouer des informations supplémentaires provenant de la modélisation. Dans cet exposé nous utiliserons un système cinétique sous-jacent pour définir les solutions admissibles et nous approcherons ces solutions par une méthode de relaxation de type BGK discret de rang complet.
  • Le 27 avril 2021 à 13:30
  • Direction
    Visio
    Le prochain conseil scientifique aura lieu mardi 27 avril 2021 à 13h30 \nL'ordre du jour sera la suivant : \n1) Informations générales\, nouvelles du conseil de laboratoire\, approbation du compte-rendu du précédent CS\n2) Présentation du projet Naquidis par Gilles Zémor\n3) Plan de gestion : Orientations du prochain contrat\, et présentation de la nouvelle politique de l'INSMI en matière de recrutement PR par Marc Arnaudon\n4) Plan de gestion : présentation de 2 postes de MCF (MCF apprentissage présenté par Jérémie Bigot\, et MCF TDN\, présenté par Olivier Brinon)\n5) Plan de gestion : présentation des nouveaux CDD IDEX par Karim Belabas\n6) Présentation des demandes d'ADT/ inscriptions à l'HDR à l'IMB. Vote éventuel en conseil scientifique restreint.
    Sans titre

  • Le 29 avril 2021 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Derek Driggs CIA\, University of Cambridge
    Barriers to deploying deep learning models in healthcare
    A promising application for deep learning models is in assisting clinicians with interpreting X-ray and CT scans, especially when treating respiratory diseases. At the onset of the COVID-19 pandemic, radiologists had to quickly learn how to identify a new disease on chest X-rays and CT scans, and use this information to decide how to allocate scarce resources like ventilators. Researchers around the world developed deep learning models to help clinicians with these decisions, and some models were deployed after only three weeks of testing.
    Our group reviewed over 1,000 studies that introduce deep learning models for interpreting chest X-rays or CT scans of COVID-19 patients to determine which models, if any, have the potential to help clinicians during the pandemic. In this talk, I will present our findings and discuss how this pandemic could inform researchers creating deployable deep learning models in healthcare.
    This talk is based on the paper [1].
    [1] Roberts, M., Driggs, D., and the AIX-COVNET Collaboration. "Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans”. Nat. Mach. Intel. 3, 199–217 (2021).
  • Le 29 avril 2021 à 14:00
  • Séminaire d'Analyse
    Visio
    Geoffrey Beck ENS
    Séminaire Commun Analyse / EDP : Water Waves - floating structure interaction : Return to equilibrium case
    Collaboration avec David Lannes et Lisl Weynans. L'étude mathématique des structures solides flottantes à la surface de l'eau contribue à une meilleure compréhension du potentiel énergétique des vagues. Il sera question d'un solide partiellement immergé sur un fluide, initialement au repos, lâché initialement hors de sa position d'équilibre. Cette situation, dite du retour à l'équilibre, fera intervenir des équations de type perturbation dispersive de systèmes hyperboliques ou équations de transports non-locales.
  • Le 29 avril 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Edie Miglio
    [Séminaire CSM] Finite element approximation for high performance simulation of the Post Glacial Rebound
    From the mechanical point of view the interior of the Earth can be considered as composed of four main layers: the inner and outer core, the mantle and the lithosphere. The lithosphere can be assumed to be elastic and the solid mantle beneath behaves as a viscous fluid. The long term equilibrium pressure at a given depth in the Earth is due to the weight of the material above this depth. Deviations from this equilibrium state lead to material transport from regions of higher pressure towards lower pressure. If left undisturbed over time the mantle and the lithosphere reach an equilibrium, in which the depth of the base of the lithosphere will mainly depend on the thickness of the lithosphere. The growth of ice sheets during a glacial period concentrates mass on the Earth's surface to glaciated areas; this fact increases the pressure in the layers below, resulting in a sinking of the lithosphere and in a transport of mantle material away from the region. At the end of the glacial period, when the ice sheets melt away, the pressure on the lithosphere is reduced and the material will flow back causing the surface to uplift. In this talk I will present a discontinuous Galerkin finite element parallel approximation for forward modelling of the viscoelastic response of a three dimensional elastically compressible Earth to an arbitrary surface load. The code is able to perform global simulation of the rebound process, with more refined results on a selected geographical region.
  • Le 30 avril 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Visio
    Nicole Raulf Lille
    Sur le comportement d'un produit de fonctions L
    Le comportement asymptotique de moments de fonctions L est d'un intérêt particulier en théorie des nombres. Il existe plusieurs conjectures qui prédisent le comportement asymptotique pour des familles de fonctions L qui ont le même type de symétrie, mais malheureusement il n'y a que quelque résultats pour les premiers moments connus. Dans cet exposé je vais discuter le comportement asymptotique d'un produit d'une fonction L de Hecke et d'une fonction L du carré symétrique. Il s'agit d'un travail en commun avec O. Balkanova, G. Bhowmik et D. Frolenkov.
  • Le 4 mai 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Barinder Banwait Harish-Chandra Research Institute
    Explicit isogenies of prime degree over quadratic fields
    Let $K$ be a quadratic field which is not an imaginary quadratic field of class number one. We describe an algorithm to compute a superset of the set of primes $p$ for which there exists an elliptic curve over $K$ admitting a $K$-rational $p$-isogeny. Combining this algorithm with recent work on the determination of quadratic points on low-genus modular curves, we determine - conditional upon the Generalised Riemann Hypothesis - the above set of isogeny primes for several quadratic fields, providing the first such examples after Mazur's 1978 determination for $K = \mathbb{Q}$. We will give a live demo of the Sage and PARI/GP implementations of the algorithm.
  • Le 4 mai 2021 à 11:15
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Boris Haspot Ceremade
    Existence de solutions fortes globales pour les équations de Navier-Stokes compressibles avec viscosités dégénérées en une dimension d'espace
    In this presentation, we provide a result on the derivation of the incompressible Navier-Stokes-Fourier system from the Landau equation for hard, Maxwellian and moderately soft potentials. We first investigate the Cauchy theory associated to the rescaled Landau equation for small initial data. Our approach is based on proving estimates of some adapted Sobolev norms of the solution that are uniform in the Knudsen number. These uniform estimates also allow us to obtain a result of weak convergence towards the fluid limit system.
  • Le 4 mai 2021 à 13:30
  • Direction
    Visio
    -
    Le prochain conseil de laboratoire aura lieu mardi 4 mai à 13h30 et l'ordre du jour sera le suivant : 1) Approbation du compte-rendu du conseil de laboratoire du 6 avril, nouvelles du conseil scientifique, point sur le projet de prochaine direction2) Présentation des nouveaux CDD IdEx3) Préparation du plan de gestion des emplois 20224) Subventions pour missions exceptionnelles5) Questions diverses
    Le prochain conseil de laboratoire aura lieu mardi 4 mai à 13h30 et l'ordre du jour sera le suivant : 1) Approbation du compte-rendu du conseil de laboratoire du 6 avril, nouvelles du conseil scientifique, point sur le projet de prochaine direction2) Présentation des nouveaux CDD IdEx3) Préparation du plan de gestion des emplois 20224) Subventions pour missions exceptionnelles5) Questions diverses
  • Le 6 mai 2021 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Jonathan Vacher LSP\, ENS Ulm
    Texture Interpolation for Probing Visual Perception
    Texture synthesis models are important tools for understanding visual processing. In particular, statistical approaches based on neurally relevant features have been instrumental in understanding aspects of visual perception and of neural coding. New deep learning-based approaches further improve the quality of synthetic textures. Yet, it is still unclear why deep texture synthesis performs so well, and applications of this new framework to probe visual perception are scarce. Here, we show that distributions of deep convolutional neural network (CNN) activations of a texture are well described by elliptical distributions and therefore, following optimal transport theory, constraining their mean and covariance is sufficient to generate new texture samples. Then, we propose the natural geodesics (ie the shortest path between two points) arising with the optimal transport metric to interpolate between arbitrary textures. Compared to other CNN-based approaches, our interpolation method appears to match more closely the geometry of texture perception, and our mathematical framework is better suited to study its statistical nature. We apply our method by measuring the perceptual scale associated to the interpolation parameter in human observers, and the neural sensitivity of different areas of visual cortex in macaque monkeys.
  • Le 7 mai 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Visio
    Angelos Koutsianas Clermont-Ferrand
    Solving generalized Fermat equations with Frey hyperelliptic curves
    In this talk, I will talk about Darmon's program and the resolution of the generalized Fermat equation of signature (p,p,5) using Frey hyperelliptic curves. This is joint work with Imin Chen (Simon Fraser University).
  • Le 11 mai 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Weiqiang Wen Inria Rennes\, Irisa
    On algorithms for solving Euclidean lattice problems in cryptography
    In this talk, we will try to review the state-of-the-art of the algorithms for solving the Euclidean lattice problems underlying cryptography. In more details, this talk contains two parts. In the first part, we will focus on the lattice problems such as approximate Shortest Vector Problem (approx-SVP) and the lattice reduction algorithms as the best known solving algorithms so far. In particular, I will present an improved enumeration-based lattice reduction algorithm, which is shown to be (potentially) relevant to cryptanalysis. In the second part, we will instead consider a quantum problem that is computationally equivalent to approx-SVP. By directly solving a quantum problem, we may expect to have a more powerful use of the quantum computation. However, the best known algorithms for solving approx-SVP via solving this quantum problem, is not better than lattice reduction yet.
  • Le 11 mai 2021 à 15:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Bilbao-Bordeaux-Toulouse Seminar: Eugenia Malinnikova Stanford and St-Petersbourg
    On Dirichlet Laplace eigenfunctions in Lipschitz domains with small Lipschitz constant
    We consider bounded domains in the Euclidean space with Lipschitz boundary and locally small Lipschitz constant. We proof the sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions in such domains. One of our tools is the analysis of the frequency function of a harmonic function vanishing on a part of the boundary. The talk is based on a joint work with A. Logunov, N. Nadirashvili, and F. Nazarov.
  • Le 18 mai 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Aurore Guillevic Inria Nancy\, Loria
    Computing Murphy-alpha in the special tower number field sieve algorithm and applications to pairing-based cryptography
    Pairings on elliptic curves are involved in signatures, NIZK, and recently in blockchains (ZK-SNARKS). These pairings take as input two points on an elliptic curve $E$ over a finite field, and output a value in an extension of that finite field. Usually for efficiency reasons, this extension degree is a power of 2 and 3 (such as 12, 18, 24), and moreover the characteristic of the finite field has a special form. The security relies on the hardness of computing discrete logarithms in the group of points of the curve and in the finite field extension.
  • Le 20 mai 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Online
    Simon Girel
    [Séminaire CSM] Modèles multi-échelles de la réponse immunitaire T CD8
    Lorsqu'un organisme est infecté par un pathogène intra-cellulaire, les lymphocytes T-CD8 sont activés. Il s'ensuit un programme complexe de prolifération/différenciation au cours duquel les lymphocytes développent des phénotypes hétérogènes, associés à des contenus moléculaires hétérogènes. Les mécanismes qui organisent cette hétérogénéité restent largement incompris. Je présenterai deux modèles mathématiques et les pistes soulevées par ces derniers. Le premier est une équation différentielle ordinaire bistable avec des impulsions associées au partage inégal du contenu moléculaire lors des divisions cellulaires. Je discuterai l'influence du degré d'inégalité sur l'évolution possible de telles équations. Le second est un modèle computationnel à base d'agents de la réponse T CD8. Il couple la description d'une population cellulaire discrète à celle, continue, de l'activité d'un réseau de gène intégré à chaque cellule. Je montrerai comment nous avons étudié, à partir de ce modèle, les possibles conséquences de l'hétérogénéité cellulaire sur l'évolution de la réponse immunitaire. Ces deux travaux suggèrent que certains des aspects incompris de la réponse immunitaire pourraient s'expliquer par l'augmentation, puis la diminution, de l'hétérogénéité des phénotypes des lymphocytes T CD8.
  • Le 21 mai 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Visio
    Margaret Bilu IST Austria
    Produits eulériens motiviques et théorèmes de Bertini
    Le groupe de Grothendieck des variétés est le quotient du groupe abélien libre sur les classes d'isomorphisme de variétés algébriques par des relations qui permettent de découper une variété en une sous-variété et son complémentaire. Il a également une structure d'anneau provenant du produit de variétés. De nombreux résultats de théorie des nombres ont des analogues, dits motiviques, qui peuvent être formulés dans cet anneau et qui sont de nature plus géométrique. Nous allons présenter un résultat obtenu en collaboration avec Sean Howe, qui est un analogue motivique d'un célèbre théorème de Poonen; il s'agit de comprendre la probabilité qu'un polynôme homogène à n variables satisfasse certaines conditions sur son développement de Taylor en tout point, lorsque le degré tend vers l'infini. Un outil essentiel est l'introduction d'une notion de produit eulérien motivique pour écrire la valeur de la probabilité limite.
  • Le 25 mai 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Razvan Barbulescu CNRS\, IMB
    Quelques conséquences du programme de Mazur sur la cryptographie
    Les algorithmes de factorisation d'entiers et ceux de calcul de logarithmes discrets, adaptés aux tailles cryptographiques, ont deux étapes pertinentes pour notre exposé : la sélection polynomiale et la cofactorisation. La première consiste à sélectionner deux polynômes homogènes $F(x,y)$ et $G(x,y)$ dans $\mathbb{Z}[x,y]$ tels que les entiers de l'ensemble $\{F(a,b)G(a,b)\mid a,b\in\text{ un rectangle },\gcd(a,b)=1 \}$ contiennent le plus possible d'entiers $B$-friables (ayant tous les facteurs premiers inférieurs à $B$). La deuxième consiste à factoriser des entiers de la forme $F(a,b)$ et $G(a,b)$.
  • Le 25 mai 2021 à 11:15
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Mohamad Rachid Nantes
    Incompressible Navier-Stokes-Fourier limit from the Landau equation
    In this presentation, we provide a result on the derivation of the incompressible Navier-Stokes-Fourier system from the Landau equation for hard, Maxwellian and moderately soft potentials. We first investigate the Cauchy theory associated to the rescaled Landau equation for small initial data. Our approach is based on proving estimates of some adapted Sobolev norms of the solution that are uniform in the Knudsen number. These uniform estimates also allow us to obtain a result of weak convergence towards the fluid limit system
  • Le 25 mai 2021 à 13:30
  • Direction
    visio
    -
    Le prochain conseil scientifique de l'IMB aura lieu mardi 25 mai 2021 à 13h30 et l'ordre du jour sera le suivant :1) Informations générales : nouvelles du conseil de laboratoire, grands projets de recherche, demandes d'éméritat2) Point sur la future direction3) Examen de demandes d'ADT4) Plan de gestion des emplois : examen des demandes de chaires de pré-recrutement MCF..

  • Le 28 mai 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Alice Pellet-Mary IMB
    Random Self-reducibility of Ideal-SVP via Arakelov Random Walks
    The objective of this talk is to provide a worst case to average case reduction for the shortest vector problem in ideal lattices (ideal-SVP). More formally, the ideal-SVP problem asks, given as input an ideal of a number field (seen as a lattice), to find a soemhow short vector of the ideal. With our worst-case to average-case reduction, we show that, given as input any ideal, it is possible to re-randomize it in a way that any short vector of the rerandomized ideal can be transformed back into a short vector of the input ideal. In other words, this shows that in order to solve ideal-SVP for all lattices, it is sufficient to be able to solve it with non-negligible probability for a random ideal. The rerandomizetion procedure uses a random walk in the Arakelov class group, which was shown to provide a ``uniform'' ideal (for some appropriate definition of ``uniform''). This is a joint work with Koen de Boer, Léo Ducas and Benjamin Wesolowski
  • Le 1er juin 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Andreas Enge\, Bill Allombert\, Fredrik Johansson Inria\, CNRS\, Inria
    Présentation de l'équipe LFANT pour les stagiaires
    Cette séance spéciale est dédiée à l'accueil des stagiaires dans l'équipe LFANT. Après une présentation générale de l'équipe, nous présenterons deux logiciels que nous développons : PARI/GP et Arb.
  • Le 3 juin 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Elena Gaburro
    [Séminaire CSM] Diffuse interface approach for compressible flows around moving solids of arbitrary shape (and a brief overview of SuPerMan, my Marie Curie research project)
    In this seminar, I will present a new diffuse interface model for the numerical simulation of inviscid compressible flows around fixed and moving solid bodies of arbitrary shape assumed to be moving rigid bodies without any elastic properties. The mathematical model is a nonlinear system of hyperbolic conservation laws with non-conservative products, obtained as a simplified case of the seven-equation Baer-Nunziato model of compressible multi-phase flows. In particular, the geometry of the solid bodies is specified via a scalar field that represents the volume fraction of the fluid present in each control volume and allows the discretization of arbitrarily complex geometries on simple uniform Cartesian meshes. Due to the diffuse interface nature of the model, the volume fraction function can assume any value between zero and one in mixed cells that are occupied by both, fluid and solid. Moreover it is also possible to proof that at the material interface the normal component of the fluid velocity assumes the value of the normal component of the solid velocity. The numerical solution is computed via a high order path-conservative ADER discontinuous Galerkin (DG) finite element method with a posteriori sub-cell finite volume (FV) limiter and the effectiveness of the proposed approach is tested on a set of different numerical test problems, including 1D Riemann problems as well as supersonic flows over fixed and moving rigid bodies. I will also take this occasion to briefly introduce my MSCA-IF research project SuPerMan “Structure Preserving schemes for conservation laws on space-time Manifolds” (Grant No 101025563).
  • Le 4 juin 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Visio
    Bouchaïb Sodaïgui UPHF Valenciennes
    Structure galoisienne de puissances de la différente
    Je présenterai le problème des classes galoisiennes réalisables par des puissances de la différente et quelques conjectures. Ensuite, je traiterai le cas où le groupe de Galois est d'ordre un nombre premier.
  • Le 8 juin 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Stéphane Ballet I2M\, Université Aix-Marseille
    Optimization of the scalar complexity of Chudnovsky^2 multiplication algorithms in finite fields
    We propose several constructions for the original multiplication algorithm of D.V. and G.V. Chudnovsky in order to improve its scalar complexity. We highlight the set of generic strategies who underlay the optimization of the scalar complexity, according to parameterizable criteria. As an example, we apply this analysis to the construction of type elliptic Chudnovsky2 multiplication algorithms for small extensions. As a case study, we significantly improve the Baum-Shokrollahi construction for multiplication in F256/F4.
  • Le 9 juin 2021
  • Manifestations Scientifiques
    Paris 7
    Organisateurs : Rémi Boutonnet\, Pierre Fima\, François le Maître
    Rencontre ANR Algèbres d'Opérateurs et Dynamique des Groupes

  • Le 10 juin 2021 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Nicoletta Prencipe IMB
    Relativité et perception des couleurs : une première application au traitement d'image
    La perception de la couleur est un processus basé sur la dualité entre contexte de mesure et appareil d'observation. C'est donc aussi un phénomène relatif aux conditions de mesure. Cette idée est à la base de l'utilisation des outils mathématiques de la mécanique quantique et de la relativité restreinte dans la modélisation de l'espace des couleurs perçues. Je vais introduire le cadre axiomatique du modèle quantique de la perception de la couleur à partir duquel on obtient de façon naturelle une théorie relativiste de la perception chromatique, justifiée de façon heuristique par Yilmaz en 1962. Le rôle de l'information identifiée comme achromatique est décisif, il est lié à la définition du concept d'observateur adapté et à la maximisation de l'entropie de von Neumann. En particulier une conséquence du caractère relativiste du modèle est qu'il est possible de modéliser les changements d'observateurs adaptés à différents illuminants par des transformations caractéristiques de la relativité restreinte : les boosts de Lorentz. J'expliquerai comment utiliser ces résultats pour la correction des couleurs dans un algorithme de balance des blancs.
  • Le 10 juin 2021 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Ahmed Sebbar
    Autour de la formule de Vieta $\displaystyle \frac{sin x}{x}= prod_{n=1}cos \frac{x}{2^n}$
    Classiquement la formule de François Viète(1540-1603) donne la valeur de $\displaystyle \frac{2}{\pi} $. Marc Kac a montré qu'elle joue un rôle important en Probabilités. Le but de l'exposé est double (1) Donner une interpretation en termes de distributions (2) Donner de larges extensions, dont l'une fait apparaître(après transformation de Laplace) la célèbre fonction de Fabius qui est $\mathcal C^{\infty}$ sur $[0,1]$, mais nulle part analytique.
  • Le 10 juin 2021 à 16:00
  • Le séminaire des doctorant·es
    Salle de Conférences
    Mériadec Chuberre INSA Rennes
    TBA

  • Le 11 juin 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Visio
    Alexandre Maksoud Luxembourg
    Conjectures principales et extra zeros pour les motifs d'Artin
    La théorie d'Iwasawa est un outil puissant permettant, entre autres, d'attaquer la conjecture de Bloch et Kato prédisant un lien entre valeurs spéciales de fonctions L et certains invariants arithmétiques. Dans les grandes lignes, cela nécessite de construire une fonction L p-adique attachée à un motif M et un nombre premier p donnés, d'analyser ses zéros triviaux lorsqu'ils existent, et prouver une "conjecture principale d'Iwasawa" pour le motif M. Le but de cet exposé est de formaliser cette approche lorsque M provient d'une représentation d'Artin non-ramifiée en p. Nous montrerons aussi en quoi nos conjectures généralisent et unifient diverses conjectures et théorèmes apparaissant dans la littérature, telles que la conjecture de Gross-Stark ou la récente conjecture principale "en rang supérieur" de Burns, Kurihara et Sano. Enfin, si le temps le permet, nous donnerons une application inconditionnelle de nos techniques à la conjecture de Gross-Kuz'min.
  • Le 14 juin 2021 à 18:00
  • BLOC NOTES
    Salle 2
    -
    Assemblée générale de Lambda

  • Le 15 juin 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Fabien Narbonne IRMAR\, Université de Rennes
    Corps de modules des courbes de genre 2 à Jacobienne décomposée
    Nous nous intéresserons aux de courbes de genre 2 dont la Jacobienne est géométriquement le produit de deux courbes elliptiques avec multiplication complexe par le même ordre (maximal). Nous proposerons un algorithme permettant de compter combien d'entre elles ont pour corps de modules Q. Pour cela nous développerons une équivalence de catégories entre certaines variétés abéliennes polarisées et des réseaux hermitiens. Il s'agit d'une généralisation d'un article de A. Gélin, E. Howe et C. Ritzenthaler de 2018 dans lequel la Jacobienne est le carré d'une même courbe elliptique.
  • Le 15 juin 2021 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Nicolas Burq Paris Sud
    Séminaire BBT: Almost sure scattering for the one dimensional nonlinear Schrödinger equation
    We consider the one-dimensional nonlinear Schr"odinger equation with a nonlinearity of degree $p>1$. On compact manifolds many probability measures are invariant by the flow of the {em linear} Schr"odinger equation (e.g. Wiener measures), and it is sometimes possible to modify them suitably and get {em invariant} (Gibbs measures) or {em quasi-invariant} measures for the non linear problem. On $mathbb{R}^d$, the large time dispersion shows that the only invariant measure is the $delta$ measure on the trivial solution $u =0$, and the good notion to track is whether the non linear evolution of the initial measure is well described by the linear (non trivial) evolution. This is precisely what we achieve in this work. We exhibit measures on the space of initial data for which we describe the non trivial evolution by the linear Schr"odinger flow and we show that their nonlinear evolution is absolutely continuous with respect to this linear evolution. Actually, we give precise (and optimal) bounds on the Radon-Nikodym derivatives of these measures with respect to each other and we characterise their $L^p$ regularity. We deduce from this precise description the global well-posedness of the equation for $p>1$ and scattering for $p>3$ (actually even for $1


  • Le 15 juin 2021 à 14:00
  • Direction
    Salle de Conférences
    -
    Assemblée générale du laboratoire - Salle de conférences et visioconférence

  • Le 15 juin 2021 à 14:00
  • Soutenance de thèse
    Salle 1
    Damien ROBERT présentera son exposé en vue de son Habilitation à Diriger des Recherches
    Titre des travaux : " Algorithmes efficaces pour les variétés abéliennes et leurs espaces de module"

  • Le 15 juin 2021 à 15:30
  • BLOC NOTES
    Salle de Conférences
    La Cellule Informatique\, Karim Belabas
    AG Commission informatique

  • Le 17 juin 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Masayuki Yano
    [Séminaire CSM] reliable and efficient model reduction of parametrized nonlinear PDEs: error estimation, adaptivity, and application to aerodynamics
    Many engineering tasks, such as parametric study and uncertainty quantification, require rapid and reliable solution of partial differential equations (PDEs) for many different configurations. In this talk, we consider goal-oriented model reduction of parametrized nonlinear PDEs with an emphasis on aerodynamics problems. The key ingredients are as follows: the discontinuous Galerkin (DG) method, which provides stability for convection-dominated flows; adaptive mesh refinement, which controls DG spatial error; reduced basis (RB) spaces, which provide rapidly convergent approximations of the parametric manifolds; the dual-weighted residual (DWR) method, which provides effective error estimates for quantities of interest; the empirical quadrature procedure (EQP), which provides hyperreduction of the nonlinear residual and error estimates; and adaptive greedy algorithms, which simultaneously trains the DG spaces, RB spaces, and EQP to meet the user-specified output error tolerance. We demonstrate the framework for parametrized aerodynamics problems modeled by the compressible Euler and Reynolds-averaged Navier-Stokes equations, including unsteady flows and geometry transformation problems with high-dimensional parameter spaces. In the offline stage, the adaptive greedy algorithm trains reduced models in a fully automated manner. In the online stage, the reduced models accelerate the computation by several orders of magnitude and provide the associated error estimate for the quantities of interest.
  • Le 17 juin 2021 à 15:30
  • Le Colloquium
    Salle de Conférences
    Rémi Boutonnet
    Dual unitaire des groupes et théorie ergodique non-commutative
    Après avoir introduit les notions utiles, j'expliquerai comment on peut étudier des représentations unitaires de groupes avec des outils de théorie ergodique. Il aura fallu attendre Connes et Margulis, puis Peterson pour que cette approche pensée par von Neumann il y a presque un siècle se concrétise.
  • Le 17 juin 2021 à 16:00
  • Le séminaire des doctorant·es
    En visio
    Grégoire Barrué Rennes
    Introduction to the Stochastic Sakharov system

  • Le 18 juin 2021 à 14:00
  • Séminaire de Géométrie
    Salle 1
    Thomas Haettel Montpellier
    Actions de groupes sur les graphes de Helly et les espaces métriques injectifs
    Dans cet exposé, nous brosserons un panorama de résultats récents concernant les espaces métriques injectifs : ceux pour lesquels toute famille de boules s'intersectant deux à deux s'intersecte globalement. La version discrète de cette propriété définit les graphes de Helly. Si un groupe agit par isométries sur un tel espace, on peut en déduire de nombreuses propriétés typiques de la courbure négative ou nulle. Nous présenterons des familles de groupes classiques qui ont une telle action : groupes hyperboliques, réseaux cocompacts dans des groupes de Lie semisimples sur des corps locaux, groupes de tresses et groupes d'Artin, groupes modulaires de surface (travail en commun avec Nima Hoda et Harry Petyt).
  • Le 18 juin 2021 à 16:00
  • Séminaire de Théorie des Nombres
    Visio
    Peter Humphries Virginia
    Zeroes of Rankin-Selberg L-Functions and Nonsplit Quantum Ergodicity
    Rudnick and Sarnak have conjectured that the L^2-mass of Laplacian eigenfunctions of a negatively curved surface should equidistribute in the large Laplacian eigenvalue limit. This is known as the quantum unique ergodicity conjecture. When this surface is the modular surface, these eigenfunctions are a type of automorphic form called Maass forms, and this conjecture is implied by nontrivial bounds for special values of certain Rankin-Selberg L-functions associated to these automorphic forms. I will discuss a generalisation of this conjecture involving the restriction to the modular surface of automorphic forms associated to quadratic number fields, and how progress towards this conjecture is dependent on nontrivial bounds for certain Rankin-Selberg L-functions. This is joint work with Jesse Thorner.
  • Le 22 juin 2021 à 09:30
  • Soutenance de thèse
    Salle de Conférences
    Hoang Thanh NUGYEN
    Sujet : "Identifiabilité d'une classe de modèles SIR et applications". Directeur de thèse : Pierre Magal, co-directeur : Arnaud Ducrot

  • Le 22 juin 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Vandita Patel University of Manchester
    Shifted powers in Lucas-Lehmer sequences
    The explicit determination of perfect powers in (shifted) non-degenerate, integer, binary linear recurrence sequences has only been achieved in a handful of cases. In this talk, we combine bounds for linear forms in logarithms with results from the modularity of elliptic curves defined over totally real fields to explicitly determine all shifted powers by two in the Fibonacci sequence. A major obstacle that is overcome in this work is that the Hilbert newspace which we are interested in has dimension 6144. We will focus on how this space is computationally handled with respect to the underlying Diophantine equation. This is joint work with Mike Bennett (UBC) and Samir Siksek (Warwick).
  • Le 24 juin 2021 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Bernard Chevreau
    Perturbations de rang $1$ d'opérateurs
    Un "test" intéressant par son apparente simplicité (mais toujours ouvert dans sa généralité) pour le PSI sur un espace de Hilbert est le problème suivant: Soit $D \in \mathcal{L}(\mathcal{H})$ un opérateur diagonal relativement à une base orthonormale $(e_n)_{n\in \mathbb{N}}$ de $\mathcal{H}$ (ainsi $D e_n =\lambda_n e_n$, $n \in \mathbb{N}$ avec $(\lambda_n)_{n\in \mathbb{N}} \in [1, \infty)$ et $R = u\otimes v$ opérateur de rang un ($u\otimes v(x) = (x , v) u $); l'opérateur $T = D+u\otimes v$ possède-t-il des sous-espaces invariants non triviaux? La réponse sera évidemment positive si $\sigma_p(T)$ (le spectre ponctuel, i.e. l'ensemble des valeurs propres de $T$) est non vide (ce qui se produit entre autres si la suite $(\lambda_n)_{n\in \mathbb{N}}$ n'est pas injective). Mais cette question (celle de l'existence ou non de valeurs propres pour $T$) restant elle- même mystérieuse nous sommes revenus avec R. Zarouf au cas où $\hbox{dim} \mathcal{H} < \infty$ et discutons quel peut être le spectre de $A + u \otimes v$ avec ici $A$ quelconque dans $\mathcal{L}(\mathcal{H})$. Au passage nous corrigeons une formulation de Feintuch qui avait déjà examiné cette question il y a une quarantaine d'années.
  • Le 25 juin 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Visio
    Farrell Brumley Sorbonne Paris Nord
    Equidistribution simultanée des orbites toriques
    Un résultat bien connu de Duke montre que les courbes elliptiques ayant de la multiplication complexe par l'anneau des entiers d'un corps quadratique imaginaire de grand discriminant s'équidistribuent, selon la mesure de Poincaré, sur la courbe modulaire. La preuve moderne de ce théorème s'appuie sur une borne sous-convexe des fonctions L tordues par un caractère quadratique. On parlera dans cet exposé des variantes du théorème de Duke sur deux copies de la courbe modulaire, ou, plus généralement, sur deux courbes de Shimura, distinctes ou pas. Dans ce contexte, l'équidistribution simultanée des points CM n'est plus gouvernée pas une borne de sous-convexité, mais par des propriétés analytiques plus fines, inaccessibles sans l'hypothèse de Riemann. Il s'agit d'un travail en commun avec Blomer et Khayutin.
  • Le 28 juin 2021
  • Manifestations Scientifiques
    Saint Jean de Monts
    Comité d'organisation : Frédéric Hérau (Université de Nantes)\, Laurent Michel (Université de Bordeaux)\, Karel Pravda-Starov (Université de Rennes 1)
    École-Des équations cinétiques à la mécanique statistique

  • Le 28 juin 2021
  • Manifestations Scientifiques
    La Rochelle Université
    Organisateurs : Cyrille Ospell\, Rafik Imekraz\, Fabien Caubet\, Raphaël Loubère
    Journées d'inauguration de la Fédération de Recherche en Mathématiques en Nouvelle-Aquitaine MARGAUx

  • Le 29 juin 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Pierre Briaud Inria Paris
    An algebraic approach to the Rank Support Learning problem
    Rank-metric code-based cryptography relies on the hardness of decoding a random linear code in the rank metric. The Rank Support Learning problem (RSL) is a variant where an attacker has access to N decoding instances whose errors have the same support and wants to solve one of them. This problem is for instance used in the Durandal signature scheme. In this talk, we will present a new algebraic attack on RSL. We build upon Bardet et al., Asiacrypt 2020, where similar techniques are used to solve MinRank and RD. However, our analysis is simpler and overall our attack relies on very elementary assumptions compared to standard Gröbner bases attacks. In particular, our results show that key recovery attacks on Durandal are more efficient than was previously thought. This is joint work with Magali Bardet.
  • Le 2 juillet 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Javier Fresán École polytechnique
    Une fonction E non hypergéométrique
    Les fonctions E sont des séries entières à coefficients algébriques qui satisfont à une équation différentielle et à certaines conditions de croissance ; elles ont été introduites par Siegel dans un article révolutionnaire de 1929 avec le but de généraliser les théorèmes de transcendance pour les valeurs de la fonction exponentielle. Outre l'exponentielle, des exemples incluent les fonctions de Bessel et une famille riche de séries hypergéométriques. Siegel a posé la question : est-ce que toute fonction E peut s'écrire comme une expression polynomiale en des fonctions hypergéométriques ? Dans un travail récent, Fischler et Rivoal montrent qu'une réponse positive à cette question contredirait une forme de la conjecture de périodes de Grothendieck. Dans mon exposé, j'expliquerai comment la théorie de Galois différentielle fournit une réponse négative inconditionnelle à la question de Siegel, et même des exemples explicites de fonctions E qui ne sont pas de type hypergéométrique. Il s'agit d'un travail en commun avec Peter Jossen.
  • Le 5 juillet 2021 à 09:30
  • Manifestations Scientifiques
    Salle de Conférences
    Organizers: E. Abakumov\, A. Baranov\, A. Borichev\, K. Kellay\, S. Kupin
    Analysis day in honor of the 80-th anniversary of Nikolai Nikolski

  • Le 6 juillet 2021
  • Manifestations Scientifiques
    Salle 2
    Comité d'organisation : Evgueni Abakumov (Paris-Est)\, Alexander Borichev (Marseille)\,Philippe Jaming (Bordeaux)\,Karim Kellay (Bordeaux) Stanislas Kupin (Bordeaux)\,Marius Tucsnak (Bordeaux)
    Workshop on Analysis & Control Theory

  • Le 6 juillet 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Anna Somoza IRMAR\, Université de Rennes 1
    The Inverse Jacobian problem
    To an algebraic curve $C$ over the complex numbers one can associate a non-negative integer $g$, the genus, as a measure of its complexity. One can also associate to $C$, via complex analysis, a $g\times g$ symmetric matrix $\Omega$ called period matrix. Because of the natural relation between $C$ and $\Omega$, one can obtain information about one by studying the other. Therefore, it makes sense to consider the inverse problem: Given a period matrix $\Omega$, can we compute a model for the associated curve $C$?
  • Le 6 juillet 2021 à 14:00
  • Direction
    Grand Amphi de math - bât A33
    -
    Le conseil de laboratoire et le conseil scientifique de l'IMB se réuniront avec le conseil d'UF MI le mardi 6 juillet à 14h dans le Grand Ampli de Mathématiques, Bâtiment A33, avec pour ordre du jour :1) Plan de Gestion des Emplois 2022et pour le conseil de laboratoire2) Examen du Document Unique d'Evaluation des Risques Professionnels3) Point sur le budget 2021

  • Le 8 juillet 2021 à 14:00
  • Soutenance de thèse
    Salle 1
    Rolando III PEREZ
    Sujet : "Applications de l'analyse complexe au problème de la phase". Directeur de thèse : Philippe Jaming, co-directeur : Karim Kellay

  • Le 9 juillet 2021 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Zoom
    Adèle Pass-Lanneau\, Operations Research engineer at DGA
    Ancrage robuste en ordonnancement de projet
    (Lien Zoom: https://u-bordeaux-fr.zoom.us/j/81764946277?pwd=YVJkNHFrME9hZi85MHhzek8wVTFkUT09) Dans cet exposé je présenterai un extrait des travaux réalisés pendant ma thèse, effectuée à EDF R&D et au LIP6. Le concept d'ancrage proposé dans la thèse sera tout d'abord exposé et situé par rapport à la littérature robuste 2-stage. L'approche robuste-ancrée vise à atteindre un compromis entre le coût d'une solution baseline, et les garanties sur les décisions prises dans cette solution. Elle consiste à calculer en avance un sous-ensemble de décisions dites ancrées : pour toute réalisation des données dans l'ensemble d'incertitude considéré, on peut réparer la solution baseline en une nouvelle solution sans changer les décisions ancrées. Nous montrerons comment ce concept a été décliné en ordonnancement de projet, tout d'abord sous contraintes de précédences seulement (PERT scheduling) [1], puis sous contraintes de précédences et de ressources (Resource-Constrained Project Scheduling Problem) [2]. Les résultats présentés porteront sur la complexité algorithmique des problèmes robustes-ancrés et la conception d'approches algorithmiques et polyédrales dédiées. En particulier nous montrerons comment l'étude fine de la combinatoire des problèmes robustes-ancrés a permis le développement de techniques de PLNE, et notamment l'obtention de reformulations compactes, dont l'efficacité numérique sera illustrée. Enfin nous discuterons l'implémentabilité pratique de l'ancrage pour la planification industrielle. [1] https://hal.archives-ouvertes.fr/hal-02144834v1 [2] https://arxiv.org/abs/2011.02020
  • Le 13 juillet 2021 à 15:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle de conférences
    Jean Kieffer IMB
    Équations modulaires en dimension supérieure, applications au calcul d'isogénies et au comptage de points

  • Le 13 juillet 2021 à 15:00
  • Soutenance de thèse
    Salle de Conférences
    Jean KIEFFER
    Sujet : "Equations modulaires en dimension superieure, applications au calcul d'isogenies et au comptage de points". Directeur de thèse : Damien Robert, co-directeur : Aurel Page

  • Le 3 septembre 2021
  • Direction
    Salle de Conférences
    -
    A l'attention des membres de l'IMB : l'accès nomade au courrier électronique a été rétabli à l'adresse habituelle. Ce webmail est une solution temporaire de secours. Il vous permettra seulement d'envoyer ou consulter vos mails. Plus d'informations dans votre messagerie.
    TBA
  • Le 3 septembre 2021 à 14:00
  • Soutenance de thèse
    Salle de Conférences
    Antoine FONDANECHE
    Sujet :"Interaction fluide-structure dans un dispositif vasculaire actif". Directeur de thèse : Michel Bergmann, co-directeur : Angelo Iollo

  • Le 7 septembre 2021 à 13:30
  • Direction
    Salle de Conférences
    -
    Conseil de laboratoire
    L'ordre du jour sera le suivant :1) Approbations des compte-rendus des conseils de laboratoire des 4 mai et 6 juillet 2) Plan de gestion des emplois 3) Examen des demandes de financement au CNRS (DIALOG) 4) Budget 2021 : discussions sur quelques opérations exceptionnelles 5) Questions diverses
  • Le 8 septembre 2021 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Salle 385
    Christophe Lecoutre\, Prof. à l'Université d'Artois
    Efficient Modeling and Solving in Constraint Programming
    Dans cet exposé, nous présenterons dans un premier temps PyCSP3, une librairie Python pour modéliser des problèmes sous contraintes en Python. Dans un deuxième temps, nous donnerons quelques éléments concernant les travaux de développement et de recherche en cours, notamment l'impact de ces travaux en terme d'efficacité pratique des solveurs de contraintes.
  • Le 16 septembre 2021 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Elsa Cazelles CNRS\, IRIT
    A novel notion of barycenter for probability distributions based on optimal weak mass transport.
    We introduce weak barycenters of a family of probability distributions, based on the recently developed notion of optimal weak transport of mass. We provide a theoretical analysis of this object and discuss its interpretation in the light of convex ordering between probability measures. In particular, we show that, rather than averaging in a geometric way the input distributions, as the Wasserstein barycenter based on classic optimal transport does, weak barycenters extract common geometric information shared by all the input distributions, encoded as a latent random variable that underlies all of them. We also provide an iterative algorithm to compute a weak barycenter for a finite family of input distributions, and a stochastic algorithm that computes them for arbitrary populations of laws. The latter approach is particularly well suited for the streaming setting, i.e., when distributions are observed sequentially.
  • Le 23 septembre 2021 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Lucile Laulin IMB
    La marche aléatoire de l'éléphant et sa version renforcée
    La marche aléatoire de l'éléphant est un processus introduit au début des années 2000 en physique statistique. Il s'agit d'une marche aléatoire avec un paramètre de mémoire, a priori non-markovienne, et telle que la loi de chaque nouveau pas dépend de tous les pas précédents. On explicitera une approche martingale qui permet d'obtenir de nombreux résultats en dimension 1 ainsi qu'en dimension supérieure. On présentera ensuite une généralisation de la marche de l'éléphant avec un renforcement de la mémoire qu'on étudiera toujours à l'aide de martingales. Enfin on expliquera le lien entre un modèle généralisé d'urnes de Pólya et la marche de l'éléphant qui permet de retrouver certains des résultats présentés.
  • Le 23 septembre 2021 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Jasmin Raissy IMB
    Méthodes locales en dynamique holomorphe
    Dans cet exposé, je présenterai brièvement des résultats de dynamique holomorphique locale et globale en dimension un, en me concentrant sur la linéarisation pour les germes de biholomorphisme, et sur la classification des composantes de Fatou. Ensuite, je traiterai des questions de dynamique locale pour les germes de biholomorphisme en plusieurs variables complexes avec un point fixe isolé et en particulier je me concentrerai sur la dimension 2. Je montrerai enfin comment on peut utiliser des techniques locales pour étudier la dynamique globale et en particulier les composantes de Fatou en dimension 2.
  • Le 23 septembre 2021 à 16:00
  • Soutenance de thèse
    Salle de Conférences
    Luming ZHAO
    Sujet : "Cohomologie galoisienne des corps p-adiques et (phi,tau)-modules". Directeur de thèse : Olivier Brinon

  • Le 24 septembre 2021 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Jean-Philippe Furter IMB
    Description des sous-groupes de Borel du groupe de Cremona
    Un sous-groupe de Borel d'un groupe linéaire algébrique complexe est défini comme étant un sous-groupe maximal parmi les sous-groupes fermés connexes résolubles. Un résultat classique de Borel affirme que de tels sous-groupes sont tous conjugués. Le groupe de Cremona complexe est le groupe des transformations birationnelles du plan projectif complexe. Algébriquement, ce groupe correspond au groupe des C-automorphismes du corps des fractions rationnelles en deux indéterminées C(x,y). Demazure et Serre ont expliqué comment munir ce groupe d'une topologie naturelle (appelée la topologie de Zariski). Dès lors, on peut définir les sous-groupes de Borel du groupe de Cremona en utilisant la même définition que dans le cas des groupes linéaires algébriques. Nous décrirons ces sous-groupes. Plus précisément, nous montrerons (dans les très grandes lignes) qu'un sous-groupe de Borel du groupe de Cremona a pour rang 0,1 ou 2 (on définit le rang comme étant la dimension maximale n d'un sous-tore (C^*)^n). Si le rang vaut 1 ou 2, il n'y a, à conjugaison près, qu'un seul sous-groupe de Borel. Si le rang est nul, on a une bijection entre les classes de conjugaison des sous-groupes de Borel de rang 0 et les courbes hyperelliptiques (abstraites) de genre au moins un. Cette description répond "dans l'esprit" à une question de Popov. Il s'agit d'un travail effectué en collaboration avec I. Hedén.
  • Le 24 septembre 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Dimitrios Chatzakos IMB\, Patras
    Distribution of lattice points on hyperbolic circles
    Using motivation from results for lattice points on the euclidean plane, we'll discuss some refined equidistribution results for lattice points arising from the action of the modular group on the hyperbolic plane. This is a joint work with P. Kurlberg, S. Lester and I. Wigman.
  • Le 30 septembre 2021 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Xuan Hieu Ho IMB
    Le spectre généralisé de moyenne intégrale de Whole-Plane SLE
    En 1999, Odded Schramm a créé la célèbre évolution de Schramm-- Loewner (SLE) en introduisant la "Brownian driving function" $\lambda(t)=e^{i\sqrt{\kappa}B_t}$ dans la classique équation de Loewner. Depuis sa découverte, SLE est beaucoup étudiée par les mathématiciens et aussi par les physiciens due à sa relation avec des modèles de la physique statistique. Dans cet exposé, je parlerai de la question de déterminer les valeurs du spectre multifractal associé aux moyennes intégrales de Whole--Plane SLE (une version de SLE). Je présenterai brièvement le Whole--Plane SLE, le spectre de moyenne intégrale et le spectre généralisé de moyenne intégrale. Je parlerai ensuite des résultats obtenus sur les valeurs de ces spectres (en espérance). Une hypothèse sur les valeurs du spectre généralisé sera introduite. La partie principale de cet exposé est une analyse synthétique avec laquelle nous allons réviser les résultats déjà obtenus sur les spectres de moyenne intégrale ainsi que les approches prises dans les travaux antérieurs. Finalement je présenterai comment utiliser cette analyse pour obtenir des nouveaux résultats sur ce sujet.
  • Le 1er octobre 2021 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Jean-François Quint
    Représentations unitaires de groupes libres
    Une représentation unitaire d'un groupe libre (de type fini) constitue simplement en la donnée d'un ensemble fini d'automorphismes unitaires d'un espace de Hilbert. Dans cet exposé, je présenterai une nouvelle construction de telles représentations pour laquelle on peut calculer explicitement certains invariants spectraux.
  • Le 1er octobre 2021 à 11:00
  • Le séminaire des doctorant·es
    Salle de Conférences
    William Dallaporta IMT
    When quadratic forms enable to derive information about ideals
    In 1847, Gabriel Lamé published an incorrect proof for the Theorem of Fermat-Wiles. It has not a lot to do with the heart of this presentation, where quadratic forms will play a leading role. The author invites you first to rediscover the introduction of the ideal class group, difficult to control but having lot of arithmetic information, then to relive the experiments he made thanks to the link (in the quadratic case) between this group and the quadratic forms, regarding a problem of specialization of ideals in integral values.
  • Le 1er octobre 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Florian Luca University of the Witwatersrand\, Johannesburg
    Universal Skolem Sets..
    Coauthors: J. Ouaknine (Max--Planck Saabr"ucken), J. B. Worrell (Oxford). The celebrated Skolem--Mahler--Lech theorem asserts that if ${\bf u}:=(u_n)_{n\ge 0}$ is a linearly recurrent sequence of integers then the set of its zeros, that is the set of positive integers $n$ such $u_n=0$, form a union of finitely many infinite arithmetic progressions together with a (possibly empty) finite set. Except for some special cases, is not known how to bound effectively all the zeros of ${\bf u}$. This is called {\it the Skolem problem}. In this talk we present the notion of a {\it universal Skolem set}, which an infinite set of positive integers ${\mathcal S}$ such that for every linearly recurrent sequence ${\bf u}$, the solutions $u_n=0$ with $n\in {\mathcal S}$ are effectively computable. We present a couple of examples of universal Skolem sets, one of which has positive lower density as a subset of all the positive integers.
  • Le 4 octobre 2021 à 13:30
  • Séminaire d'Analyse
    Salle de Conférences
    Alexander Bufetov\, I2M\, Université Aix-Marseille
    Mesures de Palm et mesures conditionnelles de processus déterminantaux (ATTENTION: jour et horaire exceptionnel: Lundi 13:30, Salle 2)
    Dans cet exposé d'introduction, nous appliquerons le formalisme des mesures de Palm à la description des mesures conditionnelles des processus ponctuels déterminantaux. Un rôle essentiel est joué par l'action du groupe des difféomorphismes à support compact sur les mesures en question.
  • Le 5 octobre 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Henri Cohen IMB
    Algebraic values of the hypergeometric function
    In this talk, I will study the general problem of when the value of the hypergeometric function $F(a,b;c;z)$ is algebraic, assuming $a$,$b$,$c$, and $z$ rational. The results involve modular forms and functions, complex multiplication, Shimura curves, and computer searches.
  • Le 5 octobre 2021 à 10:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    -
    Journée de rentrée de l'équipe EDP Physique Mathématique
    9h30-9h45, S. Bechtel: Le problème de la racine carré de Kato à conditions aux limites mêlées 9h45-10h: J. Zhang, Boundary stabilization of 1-D nonlocal transport equation 10h-10h15: F. Noisette, Dérivée de forme et applications à la mécanique des fluides 10h15-10h30: M. Shahine, Compactness properties of the linearized Boltzmann operator for a polyatomic single gas model 10h30-10h45: pause 10h45-11h: K. Guillon, A Fick relaxation BGK model for a mixture of polyatomic gases 11h-11h15: A. Tendani-Soler, Analycité pour NSK et problème bien posé pour MHD hyperbolique 11h15-11h30: G. Vergara, On shallow water equations and wave energy converters 11h30-11h45: L. Thabouti, Estimées de Carleman $L^p$ globales 11h45-12h: M. Zreik, Spectral properties of Dirac operators on some domains
  • Le 5 octobre 2021 à 13:30
  • Direction
    Salle de Conférences
    -
    Conseil de laboratoire
    L'ordre du jour sera le suivant :1) Approbation du compte-rendu du conseil de laboratoire du 7 septembre2) Quelques points d'information et de discussion (plan de gestion des emplois 2022, dernières opérations sur budget 2021, campagne de mobilité, stages de master 2)3) Proposition de création de l'équipe de diffusion4) Soutien à la fédération MARGAUx5) Questions diverses
  • Le 6 octobre 2021 à 10:00
  • Soutenance de thèse
    Salle de Conférences
    Yann TRAONMILIN présentera son exposé en vue de son Habilitation à Diriger des Recherches
    Titre des travaux : "Sur la performance des méthodes convexes et non-convexes de reconstruction de modèles de faible dimension en science des données".

  • Le 7 octobre 2021 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle 2
    Laurent Jacques UCLouvain
    Interferometric Lensless Endoscopy: Rank-one Projections of Image Frequencies with Speckle Illuminations
    Lensless endoscopy (LE) with multicore fibers (MCF) enables fluorescent imaging of biological samples at cellular scale. In this talk, we will see that under a common far-field approximation, the corresponding imaging process is tantamount to collecting multiple rank-one projections (ROP) of an Hermitian "interferometric" matrix--a matrix encoding a subsampling of the Fourier transform of the sample image. Specifically, each ROP of this matrix is achieved with the complex vector shaping the incident wavefront (using a spatial light modulator), and, for specific MCF core arrangements, the interferometric matrix collects as many image frequencies as the square of the core number. When the SLM is configured randomly, this combined sensing viewpoint allows us to characterize the sample complexity of the system. In particular, by inspecting the separate dimensional conditions ensuring the specific restricted isometry properties of the two composing sensing models in the observation of sparse images, we show that a basis pursuit denoising (BPDN) program associated with an $\ell_1$-fidelity cost provably provides a stable and robust image estimate. Finally, preliminary numerical experiments demonstrate the effectiveness of this imaging procedure.
    This is an ongoing research made in collaboration with Olivier Leblanc (UCLouvain, Belgium), Siddharth Sivankutty (Cailabs, Rennes, Brittany, France), and Hervé Rigneault (Institut Fresnel, Marseille, France).
  • Le 7 octobre 2021 à 11:00
  • Manifestations Scientifiques
    Salle de Conférences
    Organisateurs : Enrica Floris\, Andrea Fanelli
    Rencontre Bordeaux-Poitiers 7-8 octobre

  • Le 7 octobre 2021 à 11:30
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    http://www-math.sp2mi.univ-poitiers.fr/~efloris/sitoBdPo21.html
    Rencontre Bordeaux-Poitiers de Géométrie Algébrique

  • Le 7 octobre 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Ilya Peshkov University of Trento
    Symmetric Hyperbolic equations for dissipative continuum mechanics
    We discuss a class of first-order symmetric hyperbolic thermodynamically compatible (SHTC) equations for continuum mechanics. Many continuum models can be cast into the SHTC class of equations, e.g. classical models such as Euler equations, elasticity, and MHD equations, but also non-classical models for viscous fluids, multi-phase flows, poroelasticity, heat conduction, resistive, electrodynamics, etc. The dissipation is modeled via relaxation-type source terms which allows us to stay in the class of hyperbolic equations. I will discuss some aspects of the SHTC equations and present some numerical results for problems historically covered by the parabolic-type equations such as Fourier-Navier-Stokes equations.
  • Le 8 octobre 2021 à 10:00
  • Séminaire de Géométrie
    Salle de Conférences
    http://www-math.sp2mi.univ-poitiers.fr/~efloris/sitoBdPo21.html
    Rencontre Bordeaux-Poitiers (7-8 octobre)

  • Le 8 octobre 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Lola Thompson Utrecht
    Summing $\mu(n)$: an even faster elementary algorithm
    We present a new elementary algorithm for computing $M(x) = \sum_{n \leq x} \mu(n),$ where $\mu(n)$ is the M"{o}bius function. Our algorithm takes \[\begin{aligned} \mathrm{time} \ \ O_\epsilon\left(x^{\frac{3}{5}} (\log x)^{\frac{3}{5}+\epsilon} \right) \ \ \mathrm{and}\ \ \mathrm{space} \ \ O\left(x^{\frac{3}{10}} (\log x)^{\frac{13}{10}} \right)\end{aligned},\] which improves on existing combinatorial algorithms. While there is an analytic algorithm due to Lagarias-Odlyzko with computations based on the integrals of $\zeta(s)$ that only takes time $O(x^{1/2 + \epsilon})$, our algorithm has the advantage of being easier to implement. The new approach roughly amounts to analyzing the difference between a model that we obtain via Diophantine approximation and reality, and showing that it has a simple description in terms of congruence classes and segments. This simple description allows us to compute the difference quickly by means of a table lookup. This talk is based on joint work with Harald Andr'{e}s Helfgott.
  • Le 12 octobre 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Damien Robert IMB
    Revisiter l'algorithme de Satoh de comptage de points en petite caractéristique par relèvement canonique
    L'algorithme de Satoh de comptage de points sur les courbes elliptiques permet d'obtenir (après des améliorations de Harvey) une complexité quasi-quadratique en le degré pour une (petite) caractéristique fixée $p$. Dans cet exposé je passerai en revue plusieurs variantes de cet algorithme et ses extensions aux variétés abéliennes. J'expliquerai ensuite comment on peut grandement simplifier l'implémentation de cet algorithme. L'implémentation dans Pari/GP du nouvel algorithme produit un gain d'un facteur 30 à la fois de temps de calcul et de consommation mémoire.
  • Le 12 octobre 2021 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Dimitri Cobb Lyon
    La question de l'existence et l'unicité de solutions en MHD plane
    Les équations de la magnétohydrodynamique (MHD) décrivent l'évolution d'un fluide conducteur de courant. Il s'agit d'un couplage non-linéaire entre une équation cinétique (Navier-Stokes ou Euler) et une équation électromagnétique. Pendant cet exposé, nous explorerons les questions liées à l'existence et l'unicité de solutions au problème de Cauchy en deux dimensions d'espace. Dans un premier temps, nous chercherons à mettre en évidence les difficultés du problème en abordant des modèles de difficulté croissante. Nous partirons d'un modèle de type ``Navier-Stokes généralisé'' complètement parabolique et enlèverons les termes de dissipation les uns après les autres en expliquant comment cela affecte la résolution du problème de Cauchy. Dans un deuxième temps, nous nous concentrerons sur le modèle complètement hyperbolique de la MHD idéale. Nous verrons en particulier que le temps de vie des solutions peut être pris arbitrairement grand dans le régime des champs magnétiques faibles. Ce résultat a été obtenu en collaboration avec Francesco Fanelli.
  • Le 13 octobre 2021 à 16:30
  • Le séminaire des doctorant·es
    Salle de Conférences
    Marco Artusa IMB
    Condensed Mathematics: exploring a rising theory
    Topological spaces are a key concept in modern mathematics, and they can model different types of objects, but not without problems… Condensed Mathematics is a new theory currently being developed by Dustin Clausen and Peter Scholze with the goal of solving such problems by redefining the concept of topological space. The result unifies different branches of mathematics (analysis, p-adic geometry, complex geometry): in this talk, I will present the foundations and the basic definitions of this rising theory. Finally, I will show how Condensed Mathematics can provide a new approach to the classical problem of computing the K-theory of C. In the same way, it is likely that the new objects coming from the condensed world will make it possible to attack mathematical conjectures in a new way.
  • Le 14 octobre 2021 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Karim Kellay IMB
    Suréchantillonnage dans les espaces de Paley-Wiener et applications : Théorème de Bernstein et Théorème de Donoho-Logan
    TBA
  • Le 14 octobre 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Andrea Thomann University of Mainz
    [Séminaire CSM] Low Mach schemes based on Jin-Xin relaxation
    Low Mach problems arise in fluid dynamics when the local speed of the material is much smaller than the one of acoustic or shear waves. In these regimes, a full resolution of all the waves present in the model requires very small time steps, while usually one is mainly interested in the dynamics of the slow wave. Here, we use a Jin-Xin relaxation approach to develop a general framework for the construction of low Mach schemes for hyperbolic problems. Due to the relaxation procedure, the flux of the resulting model is linear which allows the use of implicit solvers without a restriction on the time step. The time-semi discrete scheme is written in elliptic form which reduces the number of variables to be updated. The relaxation source term is treated by projection on relaxation equilibrium resulting into a generic scheme independent of the relaxation rate. The scheme is applied on the Euler equations and the equations of non-linear elasticity.
  • Le 14 octobre 2021 à 15:30
  • Le Colloquium
    Salle de Conférences
    Olivier Benoist ENS
    Positivité et sommes de carrés.
    Le 17ème problème de Hilbert, résolu en 1927 par Artin, affirme que tout polynôme réel qui ne prend que des valeurs positives est une somme de carrés de fractions rationnelles. Je présenterai l'histoire de cette question, des développements récents, et des problèmes ouverts.
  • Le 15 octobre 2021 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Martin Mion-Mouton Strasbourg
    Difféomorphismes partiellement hyperboliques de contact
    Depuis les travaux de Ghys puis de Benoist-Foulon-Labourie dans les années 90, on sait classifier les flots Anosov de contact dont les distributions invariantes sont lisses (ils sont tous d'origine algébrique). Dans cet exposé nous nous intéresserons à la situation analogue dans le cas des temps discrets, c'est à dire aux difféomorphismes partiellement hyperboliques de type contact dont les distributions invariantes sont lisses. Nous verrons que l'étude d'une structure géométrique rigide préservée par ces derniers, appelée structure Lagrangienne de contact, permet de les classifier en l'absence de point errant.
  • Le 15 octobre 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Roberto Pirisi Rome Sapienza
    Brauer groups of moduli stacks via cohomological invariants
    Given an algebraic variety X, the Brauer group of X is the group of Azumaya algebras over X, or equivalently the group of Severi-Brauer varieties over X, i.e. fibrations over X which are étale locally isomorphic to a projective space. It was first studied in the case where X is the spectrum of a field by Noether and Brauer, and has since became a central object in algebraic and arithmetic geometry, being for example one of the first obstructions to rationality used to produce counterexamples to Noether's problem of whether given a representation V of a finite group G the quotient V/G is rational. While the Brauer group has been widely studied for schemes, computations at the level of moduli stacks are relatively recent, the most prominent of them being the computations by Antieau and Meier of the Brauer group of the moduli stack of elliptic curves over a variety of bases, including Z, Q, and finite fields. In a recent series of joint works with A. Di Lorenzo, we use the theory of cohomological invariants, and its extension to algebraic stacks, to completely describe the Brauer group of the moduli stacks of hyperelliptic curves, and their compactifications, over fields of characteristic zero, and the prime-to-char(k) part in positive characteristic. It turns out that the Brauer group of the non-compact stack is generated by elements coming from the base field, cyclic algebras, an element coming from a map to the classifying stack of étale algebras of degree 2g+2, and when g is odd by the Brauer-Severi fibration induced by taking the quotient of the universal curve by the hyperelliptic involution. This paints a richer picture than in the case of elliptic curves, where all non-trivial elements come from cyclic algebras. Regarding the compactifications, there are two natural ones, the first obtained by taking stable hyperelliptic curves and the second by taking admissible covers. It turns out that the Brauer group of the former is trivial, while for the latter it is almost as large as in the non-compact case, a somewhat surprising difference as the two stacks are projective, smooth and birational, which would force their Brauer groups to be equal if they were schemes.
  • Le 19 octobre 2021 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle 285
    Victor Arnaiz Orsay
    Sharp resolvent estimates for damped Baouendi-Grushin operators on the torus
    In this talk I will consider the damped-wave equation associated with the Baouendi-Grushin operator on the two-dimensional flat torus. I will show new semiclassical resolvent estimates for the corresponding non-selfadjoint operator associated with this evolution problem, detailing the effect of sub-ellipticity in connection with the geometry of the damping region and the regularity of the damping term. As a corollary, sharp energy decay rates of solutions of the damped-wave equation are obtained and some differencies with respect to the elliptic Laplacian are exhibited. The method of proof is based on the study of two-microlocal semiclassical measures, normal-form reductions and construction of quasimodes via propagation of time-dependent solutions within the damping region.
  • Le 20 octobre 2021 à 09:00
  • Soutenance de thèse
    Salle de Conférences
    Gaston VERGARA
    Sujet : "Modelling, analysis and control of some water waves-rigid body interactions". Directeur de thèse : Marius Tucsnak, codirecteur : Franck Sueur

  • Le 20 octobre 2021 à 14:00
  • Manifestations Scientifiques
    Salle de Conférences
    Organisateur : Stéphane Brull
    Modèles et méthodes pour les équations cinétiques

  • Le 21 octobre 2021 à 09:00
  • Séminaire Images Optimisation et Probabilités
    Salle 1
    -
    Demie-journée de Rentrée de l'équipe IOP

  • Le 21 octobre 2021 à 14:00
  • Séminaire d'Analyse
    Salle 285
    Martin Rathmair IMB
    Stable Gabor Phase Retrieval..ATTENTION: Salle inhabituelle, salle 285 !
    Phase retrieval generally refers to the nonlinear inverse problem of recovering a signal from phaseless linear measurements. We discuss a specific problem of this type, namely the question of recovering a function from its Gabor spectrogram (= modulus of its short-time Fourier transform with Gaussian window). As it is well-known this essentially amounts to asking 'can an entire function be determined from its modulus only?'. The focus of this talk lies on discussing stability properties of this problem, that is a quantitative notions of uniqueness. We will present results which characterize the stability of signals in terms of the connectivity of their spectrograms as measured by the Cheeger constant, a concept which plays an important role in Graph clustering.
  • Le 22 octobre 2021 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Simon Barazer IHES
    Récurrence pour les volumes des espaces des modules des graphe en ruban orientés
    Les volumes des espaces des modules sont des objets intéressants et souvent difficiles à calculer. Les relations de récurrences sur la topologie sont des outils puissants permettant de calculer ces volumes. Historiquement ces idées ont été développé par Maryam Mirzakhani dans le cadre des volumes de Weil Petersson à l'aide de la formule de Mirzakhani Mac shane. Dans mon travail je me suis intéressé aux graphes enrubannés et aux volumes des espaces des modules correspondants, ce sont des modèles combinatoires de surfaces qui sont utilisés notamment dans l'étude des différentielle quadratique et abélienne. Des récurrences étaient connues dans le cas générique où les sommets sont trivalents (ou univalents). Dans cet exposé m'intéresserai aux graphes enrubannés orientés, dans le cas où les sommets sont de degrés 4 il est possible d'obtenir des relations de récurrence pour les volumes qui sont similaire à la récurrence topologique. Dans le cas où les sommets sont de degrés supérieur les relations de récurrence sont différentes, si le temps le permet nous verrons des applications au comptage des dessins d'enfants.
  • Le 22 octobre 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Salle 1
    Luming Zhao IMB
    Cohomologie galoisienne des corps $p$-adiques et $(\varphi, \tau)$-modules.
    Dans cet exposé, je construirai plusieurs complexes de Herr explicites qui calculent la cohomologie galoisienne d'une représentation p-adique du groupe de Galois absolu des corps de valuation discrète complets de caractéristique $0$ à corps résiduels parfaits de caractéristique $p$, en utilisant les $(\varphi,\tau)$-modules associés (définis par Xavier Caruso), au lieu des $(\varphi,\Gamma)$-module. Je donnerai également une application aux groupes $p$-divisibles.
  • Le 26 octobre 2021 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Benjamin Texier Université de Lyon
    Instabilites haute-frequence en physique des interactions laser-plasma
    Les expériences de fusion par confinement inertiel ne parviennent pas a produire de quantités substantielles d'énergie en particulier du fait de l'instabilité Raman. Je parlerai de ce phénomène dans le cadre des équations d'Euler-Maxwell, pour lesquelles des résonances de type espace-temps sont responsables de l'instabilité Raman. C'est une étude de type "optique géométrique" qui porte sur le comportement en temps court de solutions rapidement oscillantes de systèmes d'équations aux dérivées partielles quasi-linéaires. Avec Eric Dumas (Grenoble) et Lu Yong (Nanjing).
  • Le 27 octobre 2021 à 16:30
  • Le séminaire des doctorant·es
    Salle de Conférences
    Jordan Michelet Université de La Rochelle
    Équation aux dérivées partielles et traitement d'image radar marin
    Dans cette intervention, il sera présenté des méthodes de traitement d'image basé sur la résolution d'équation aux dérivées partielles. Dans l'objectif de débruiter les images radar marin, il sera présenté deux méthodes dont leur schéma numérique découle de la méthode de Boltzmann sur réseau (en deux dimensions et à temps de relaxation multiple : MRT). Dans un cadre général, il sera décrit ce schéma numérique qui est très peu utilisé en traitement d'image dans le cas MRT [1, 2, 3]. Ensuite, il sera détaillé le lien entre les deux méthodes de traitement d'image et le schéma numérique. Enfin, les contributions [2, 4] et les résultats seront détaillés.
  • Le 27 octobre 2021 à 18:15
  • BLOC NOTES
    Amphithéâtre du LaBRI
    Jean-françois Aujol\, IMB\, University of Bordeaux
    Le Graduate Program Numerics vous invite à son séminaire sur les enjeux sociétaux & la culture scientifique en lien avec le numérique. La 3ème séance aura lieu le mercredi 27 octobre à 18h15 dans le Grand amphi du LaBRI.
    Is Nesterov acceleration actually an acceleration ? Since Nesterov's work in 1984, and Beck and Teboule's FISTA algorithm (2008), it is acknowledged that using an inertial gradient algorithm instead of a classical gradient algorithm is in general much more efficient to minimize a convex functional. In particular, such an idea is the foundation of all the optimization algorithms used in deep learning where first order algorithms are the cornerstone due to the high dimension of the problems. In this talk, we Shall see that the usefulness of the inertia highly depends on the geometry of the functional to minimize. As a consequence, the use of inertia is not always useful. These results have direct consequences in image processing and deep learning.
  • Le 28 octobre 2021 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Belhassen Dehman Tunis
    Observation de l'équation des ondes par le bord.
    Dans cet exposé on s'intéresse aux solutions de l'équation des ondes sur un ouvert, à données initiales nulles, vérifiant une condition de Dirichlet non homogène qu'on notera par g. L'objectif est d'observer cette donnée au bord à l'aide de la dérivée normale de la solution sur une autre partie du bord ( la région d'observation ). Nous verrons qu'en dimension supérieure à 1 , contrairement à ce qu'on obtient pour les solutions nulles au bord, générées par des données initiales, la donnée g rechigne à livrer tous ses secrets. On établit une inégalité d'observation sous une condition géométrique sur le bord, comparable à la condition de contrôle géométrique de Bardos-Lebeau-Rauch, et une condition pseudo-différentielle sur la donnée g. Les méthodes sont essentiellement microlocales. Cet exposé repose sur une collaboration avec Enrique Zuazua (Univ. Erlangen-Nurenberg & Univ. A. Madrid).
  • Le 29 octobre 2021 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Philippe Thieullen IMB
    Comportement à température zéro de mesures de Gibbs pour des potentiels localement constants
    En dimension 1, les mesures Gibbs de potentiels localement constants convergent lorsque la température tend vers zéro. En dimension supérieure ce n'est plus vrai. Le résultat était connu par Chazottes-Hochman en dimension supérieure à 3, nous étendons ce résultat à la dimension 2 dans un travail en commun avec S. Barbieri, R. Bissacot, G. Dalle-Vedove.
  • Le 29 octobre 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Federico Scavia UCLA\, Los Angeles
    Dimension essentielle et déformations
    La dimension essentielle d'un objet algébro-géométrique est le nombre de paramètres indépendants nécessaires pour le décrire. Soit G un groupe algébrique linéaire. Je discuterai du comportement en familles de la dimension essentielle des G-variétés génériquement libres et je donnerai des applications de saveur géométrique et arithmétique. Il s'agit d'un travail commun avec Z. Reichstein.
  • Le 8 novembre 2021 à 16:00
  • Soutenance de thèse
    Visioconférence - Chili
    Sebastian TAPIA
    Sujet :"Contributions à la dynamique linéaire, au processus de rafle, et à la regularité des applications Lipschitziennes". Directeur de thèse : Robert Deville, codirecteur : Aris Daniilidis

  • Le 9 novembre 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Koen de Boer CWI Amsterdam
    Sampling relatively near-prime ideals
    We show a method to sample an element alpha from a given ideal I, such that their quotient ideal (alpha)/I is a (possibly large) prime times a smooth number ('near-prime') with reasonable probability. This method consists of 'randomizing' the ideal I by multiplying it with small primes (yielding J) and consequently sampling the element alpha from this randomized ideal J intersected with a large box. The probability that the quotient (alpha)/J is prime (i.e., that the quotient (alpha)/I is a near-prime) is tightly related to density results on prime ideals (prime ideal theorem). As an application we show an efficient way to compute power residue symbols for varying degree number fields.
  • Le 9 novembre 2021 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Sebastian Bechtel Bordeaux
    How boundary conditions can help to do harmonic analysis without a doubling measure
    Classical harmonic analysis often relies on the structure of the Euclidean space. It turns out that a good substitute for the Euclidean structure which allows to prove deep results on singular integral operators and is at the same time flexible enough for most applications are homogeneous spaces. I will provide examples why a doubling measure is indeed crucial for lots of arguments in homogeneous spaces. However, already subsets of Euclidean space can lead easily to constellations which are not captured by the framework of homogeneous spaces, take for instance an outward cusp. I will explain how one can show boundedness of singular integral operators related to differential operators on such sets taking advantage of their boundary conditions. To make ideas more accessible, I will begin with the case of pure Dirichlet boundary conditions and only if time allows I will demonstrate how the arguments can be modified to also apply to the case of mixed boundary conditions.
  • Le 9 novembre 2021 à 11:00
  • Séminaire d'Analyse
    Salle de Conférences
    Sebastian Bechtel IMB
    How boundary conditions can help to do harmonic analysis without a doubling measure ..SEMINAIRE COMMUN ANALYSE - EDP, créneau du séminaire EDP Physique Mathématiques
    Classical harmonic analysis often relies on the structure of the Euclidean space. It turns out that a good substitute for the Euclidean structure which allows to prove deep results on singular integral operators and is at the same time flexible enough for most applications are homogeneous spaces. I will provide examples why a doubling measure is indeed crucial for lots of arguments in homogeneous spaces. However, already subsets of Euclidean space can lead easily to constellations which are not captured by the framework of homogeneous spaces, take for instance an outward cusp. I will explain how one can show boundedness of singular integral operators related to differential operators on such sets taking advantage of their boundary conditions. To make ideas more accessible, I will begin with the case of pure Dirichlet boundary conditions and only if time allows I will demonstrate how the arguments can be modified to also apply to the case of mixed boundary conditions.
  • Le 9 novembre 2021 à 13:30
  • Direction
    Salle 285
    -
    Conseil de laboratoire
    L'ordre du jour sera le suivant :1) Approbation du compte-rendu du conseil de laboratoire du 5 octobre ;2) Quelques points d'information et de discussion (mentorat, nouvelles du conseil scientifique,...) ;3) Discussion et vote sur une nouvelle intégration à l'IMB ;4) Discussion et vote sur la prochaine équipe de direction ;5) Questions diverses
  • Le 10 novembre 2021 à 14:00
  • Soutenance de thèse
    Grand Amphi de math - bât A33
    Alexandre CONANEC
    Sujet :"Modélisation de l'optimisation du pilotage des qualités et des performances de production de la viande bovine". Directeur de thèse : Jérôme Saracco, co-directeur : Marie Chavent

  • Le 10 novembre 2021 à 16:30
  • Le séminaire des doctorant·es
    Salle de Conférences
    Francesco Paolo Gallinaro University of Leeds
    Model Theory of the Complex Exponential Function
    It is a well-known fact in model theory that subsets of the complex numbers that are definable in the language of rings (so, using polynomials) are either finite or cofinite. In the 1990s, some people started wondering what happens if you add the exponential to the mix: can we say anything meaningful about the subsets of the complex numbers definable using polynomials and exponentials? This question ended up having surprising ties to number theory and complex algebraic geometry. In this talk, I'll introduce the topic and present some of these connections, focusing on the role of finding solutions to exponential-polynomial equations.
  • Le 10 novembre 2021 à 17:15
  • BLOC NOTES
    Amphithéâtre du LaBRI
    Rodolphe Thiébaut ISPED\, Université de Bordeaux
    SEMINAIRE NUMERICSLa science des données en Santé publique pour la lutte contre la SARS-Cov-2
    Ce séminaire portera sur plusieurs exemples d'application de méthodes issues de la science des données en Santé Publique couvrant donc les statistiques, l'informatique et l'épidémiologie. Les exemples couvrent le suivi de l'épidémie liée à SARS-Cov-2, la compréhension de son évolution et sa prédiction mais aussi l'étude de l'évolution clinique de l'infection et le développement des vaccins.
  • Le 12 novembre 2021 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Nguyen-Bac Dang Orsay
    Croissance des degrés d'itérés d'applications rationnelles et analyse fonctionnelle
    Dans cet exposé, on va s'intéresser à l'étude du comportement asymptotique de la suite des degrés algébriques des itérés d'une application rationnelle donnée. Je vais ensuite présenter les difficultés auxquelles on est confronté et j'expliquerai comment des méthodes d'analyse fonctionnelles permettent de comprendre ces questions.
  • Le 12 novembre 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Robin Riblet Nancy
    Ensembles de Sidon
    Un ensemble de Sidon d'un semi-groupe est un ensemble dont toutes les sommes de deux éléments sont distinctes. Des travaux de Erdös, Turàn, Chowla et Singer établissent que le cardinal maximal d'un ensemble de Sidon dans un intervalle d'entiers de cardinal $n$ est équivalent à $\sqrt{n}$. Nous nous intéresserons au cardinal maximal d'un ensemble de Sidon dans l'union (de cardinal $n$) de deux intervalles. Un résultat d'Abbott affirme qu'il est supérieur à $0,0805\sqrt{n}$. Nous améliorerons cette borne et prouverons que ce cardinal est en fait supérieur à $0,8444\sqrt{n}$. D'autre part, nous montrerons qu'il est également inférieur à $\sqrt{n}$. Nous parlerons également d'autres résultats à propos des ensembles de Sidon et d'une de leurs généralisations : les ensembles $B_2[g]$.
  • Le 15 novembre 2021 à 14:00
  • Soutenance de thèse
    Salle de Conférences
    ABHINANDAN
    Sujet : "Représentations de hauteur finie et complexe syntomique". Directeur de thèse : Denis Benois, co-directeur : Nicola Mazzari.

  • Le 16 novembre 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Benjamin Wesolowski CNRS\, IMB
    SQISign: Compact Post-Quantum Signature from Quaternions and Isogenies
    We will present the signature scheme SQISign, (for Short Quaternion and Isogeny Signature) exploiting isogeny graphs of supersingular elliptic curves. The signature and public key sizes combined are an order of magnitude smaller than all other post-quantum signature schemes. Its efficient implementation and security analysis open new research challenges.
  • Le 16 novembre 2021 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Changzhen Sun Orsay
    Uniform regularity and low Mach number limit for viscous fluids in a domain with boundaries.
    In this talk, we focus on the propagation of uniform (w.r.t the Mach number $varepsilon$ ) high order regularity and the incompressible limit for compressible Navier-Stokes equations in a domain with fixed or free boundaries. In the case of the fixed domain, we can establish the above results by assuming the initial data to be ill-prepared (in the sense that the acoustic part of the system is of order one initially). The simultaneous appearance of the boundary layers and the fast oscillation effects serves as the main obstacle of the proof. In the case of a domain with free boundaries, due to the extra difficulties arising from the regularity of the surface, we allow the data to be slightly well-prepared (in the sense that the acoustic part is at of order sqrt{varepsilon}). These are joint works with Professors Nader Masmoudi and Frederic Rousset.
  • Le 17 novembre 2021 à 18:15
  • BLOC NOTES
    Amphithéâtre du LaBRI
    Raymond Namyst LaBRI\, Université de Bordeaux
    SEMINAIRE NUMERICSProgrammation des supercalculateurs exaflopiques : quels défis ?
    L'exposé fera le point sur la façon dont on programme les machines parallèles aujourd'hui, et tentera de dégager les principaux défis qu'il sera nécessaire de relever pour exploiter pleinement les supercalculateurs de demain.
  • Le 18 novembre 2021 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Émilie Chouzenoux Inria Saclay\, en distanciel
    Unfolding proximal algorithms
    We show in this talk how proximal algorithms, which constitute a powerful class of optimization methods, can be unfolded under the form of deep neural networks. This yields to improved performance and faster implementations while allowing to build more explainable, more robust, and more insightful neural network architectures. Application examples in the domain of image restoration will be provided.
  • Le 18 novembre 2021 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Fabrizio Bianchi Lille
    Un trou spectral pour l'opérateur de transfert sur les espaces projectifs complexes
    On étudie l'opérateur de transfert (ou de Perron-Frobenius) sur Pk(C) induit par un endomorphisme holomorphe générique et un poids continu d'une regularité donnée. On prouve l'existence d'un unique état d'équilibre et on introduit plusieurs nouveaux espaces fonctionnels invariants, dont un espace de Sobolev dynamique, sur lequels l'operateur admet un trou spectral. C'est l'une des propriétés les plus recherchées en dynamique. Il nous permet d'obtenir une liste de propriétés statistiques pour les états d'équilibre telles que l'équidistribution des points, vitesses de convergence, le K-mélange, le mélange de tous les ordres, le mélange exponentiel, le théorème de la limite centrale, le théorème de Berry-Esseen, le théorème de la limite centrale locale, le principe invariant presque sûr, la loi des logarithmes itérés, le théorème limite central presque sûr et le principe de grande déviation. La plupart des résultats sont nouveaux même en dimension 1 (ici, meme sans hypothèse de généricité) et dans le cas du poids constant, c'est-à-dire pour l'opérateur f_*. Notre construction des espaces fonctionnels invariants utilise des idées issues de la théorie du pluripotentiel et de l'interpolation entre les espaces de Banach. Il s'agit d'un travail en commun avec Tien-Cuong Dinh.
  • Le 18 novembre 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Stéphanie Salmon Université de Reims
    [Séminaire CSM] Modèles et simulations numériques des écoulements veineux cérébraux
    L'intérêt des simulations numériques pour le vivant n'est plus à démontrer. Elles donnent accès à des informations impossibles à obtenir in vivo ou de manière non invasive chez l'homme. Dans cet exposé, nous présentons des modèles et simulations numériques développés lors de projets récents visant à étudier différents aspects du fonctionnement du cerveau. En particulier, dans le projet ANR HANUMAN, nous nous intéressons à une modélisation numérique du système cérébro-spinal pour l'humain et pour un modèle animal, le marmouset. L'objectif est d'obtenir des informations sur la pression intra-crânienne, qui constitue un paramètre vital assurant le bon fonctionnement de notre cerveau, à l'aide de mesures de flux et de modèles numériques des écoulements de liquide cérébro-spinal et de son interaction avec les écoulements sanguins. Pour cela, dans un premier temps, nous simulons des écoulements sanguins dans les réseaux veineux cérébraux à une échelle macroscopique, ces écoulements étant de plus en plus mis en cause dans des pathologies de la pression intracrânienne. Ces réseaux réalistes sont reconstruits à partir d'images angiographiques, en l'occurrence, des images IRM (Imagerie par Résonance Magnétique). Des maillages adéquats pour la simulation sont ensuite construits à partir de la segmentation de ces images. Les équations de la dynamique des fluides incompressibles sont alors résolues dans ces maillages par des méthodes d'éléments finis. Chacune de ces étapes est réalisée à l'aide de logiciels libres, permettant la reproductibilité et une possible diffusion de ces outils.
  • Le 18 novembre 2021 à 15:30
  • Le Colloquium
    Salle de Conférences
    Sébastien Gouezel Rennes
    Assistants de preuve : un outil pour les mathématiciens ?..
    Les assistants de preuve sont des outils informatiques qui permettent de formaliser et vérifier tous les détails d'une preuve. Alors qu'ils sont développés et utilisés depuis longtemps par des informaticiens (notamment pour prouver qu'un programme fait bien ce qu'il attend de lui), leur adoption par des mathématiciens est beaucoup plus récente. Je décrirai à travers mon expérience personnelle ce que ces outils permettent déjà de faire, notamment pour des résultats niveau recherche, mais aussi les difficultés que pose leur utilisation pour un mathématicien. Et j'espère aussi dissiper quelques fantasmes !
  • Le 19 novembre 2021 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Emanuele Macri Orsay
    Antisymplectic involutions on projective hyperkähler manifolds
    An involution of a projective hyperkähler manifold is called antisymplectic if it acts as (-1) on the space of global holomorphic 2-forms. I will present joint work in progress with Laure Flapan, Kieran O'Grady, and Giulia Saccà on antisymplectic involutions associated to polarizations of degree 2. We study the number of connected components of the fixed loci and their geometry; in particular their relation with Fano manifolds of higher dimension.
  • Le 19 novembre 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Salle 1
    Ana-Maria Castravet Versailles Paris Saclay
    Non-polyhedral effective cones
    I will discuss joint work with Antonio Laface, Jenia Tevelev and Luca Ugaglia on constructing examples of projective toric surfaces whose blow-up at a general point has a non-polyhedral effective cone. A class of such surfaces can be constructed from what we call Lang-Trotter polygons; in this case, the effective cone is non-polyhedral in characteristic 0 and in characteristic p, for an infinite set of primes p of positive density. As a consequence, we prove that the effective cone of the Grothendieck-Knudsen moduli space of stable rational curves with n markings is not polyhedral for n>=10, both in characteristic 0 and in every prime characteristic p.
  • Le 23 novembre 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Aurel Page IMB
    Norm relations and class group computations
    When $L/K$ is a Galois extension of number fields with Galois group $G$, some invariants of $L$ can be related to those of its proper subfields. I will present some old and some new such relations, and an application to the computation of class groups of some large number fields. This is joint work with Jean-François Biasse, Claus Fieker and Tommy Hofmann.
  • Le 23 novembre 2021 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Jean-Marc Huré
    SEMINAIRE REPORTE AU 11 JANVIER

  • Le 24 novembre 2021 à 17:00
  • Le séminaire des doctorant·es
    Salle 285
    Bianca Gouthier IMB
    Introduction to essential dimension
    In my seminar I will do an introduction to the concept of essential dimension: roughly speaking, the essential dimension is a measure of how many independent parameters we need to describe some algebraic object. The concept of essential dimension was introduced by Buhler and Reichstein in 1995 and it is linked to an algebraic version of Hilbert's 13th problem. For a finite group $G$; the essential dimension measures how much one can compress a faithful representation of $G$. When $G$ is the symmetric group $S_n$; the essential dimension tells us how many independent parameters we need to write a generic polynomial of degree $n$ on a field $k$ of characteristic zero; equivalently, the essential dimension of $S_n$ computes the number of parameters needed to write a generating polynomial for separable field extensions of degree n: This is still an open problem for $n \geq 8$. Suprisingly, the analogue problem for inseparable field extensions has been solved explicitely.
  • Le 25 novembre 2021 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Salle 2
    François Pacaud\, post-doc at Argonne National Laboratory
    Reduced-space optimization for large-scale optimal power flow
    The optimal power flow is a challenging optimization problem, both nonlinear and nonconvex. We revisit the reduced-space method of Dommel and Tinney to work directly in the non-Euclidean manifold corresponding to the nonlinear power flow equations. Our algorithm extracts at each iteration a reduced gradient and a reduced Hessian, and use an interior point algorithm to solve the OPF to (local) optimality. All the algorithm is running directly on GPU, in a parallel fashion. In this talk, we will focus on the numerical challenges we have encountered, and give numerical results showing a comparison with Ipopt.
  • Le 25 novembre 2021 à 12:45
  • BLOC NOTES
    Salle de Conférences
    -
    Séminaire transversal
    Regard psychosocial : Les croyances autour des maths et leurs impacts sur le vécu et l'orientation des étudiantes et étudiants Malgré le droit d'accès aux études supérieures de tous et toutes, il existe toujours des stéréotypes et croyances qui restreignent les étudiant·es dans leurs choix et dans le déploiement de leurs potentiels. Le très faible nombre de femmes en maths en est une conséquence. Durant le séminaire, je présenterai les conclusions de mon étude en psychologie sociale, menée sur 390 étudiant·es en Licence de maths. Ces conclusions permettent d'une part de mieux comprendre certains ressentis spécifiques aux femmes en maths, mais aussi de cerner les stéréotypes qui limitent les potentiels. Je proposerai alors des pistes d'actions concrètes, avec un moment d'échange : en tant qu'enseignant·e, responsable pédagogique, ou encadrant·e de thèse, que peut-on faire ?
  • Le 25 novembre 2021 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Christian Léonard Paris Nanterre
    Transport optimal entropique, retournement de temps et transport optimal (usuel) - Séminaire commun avec IOP
    Felix Otto a découvert il y a une vingtaine d'années que le transport optimal quadratique sur une variété riemannienne M permet de définir la géométrie de Wasserstein sur l'espace des probabilités P(M) sur M. Les ingrédients de base de cette géométrie sont les interpolations par déplacement de McCann qui sont construites en remontant les géodésiques de M sur P(M) et jouent le rôle de géodésiques sur P(M). Si l'on remplace dans cette construction les géodésiques de M par des ponts browniens, on obtient naturellement une nouvelle notion d'interpolations sur P(M) : les interpolations entropiques. On sait qu'en faisant décroître la température des ponts brownien vers zéro on retrouve à la limite les interpolations par déplacement. Sans surprise, le retournement du temps de certains processus stochastiques associés aux interpolations entropiques (les ponts de Schrödinger) permet de quantifier l'écart énergétique entre les interpolations entropiques et leurs limites de McCann. Quelques conséquences bien établies et heuristiques du retournement du temps des ponts de Schrödinger seront présentées.
  • Le 25 novembre 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Philippe Helluy Univ. Strasbourg
    [Séminaire CSM] Schémas Galerkin Discontinu explicites inconditionnellement stables
    Il est possible de construire des représentations cinétiques de tous les systèmes de lois de conservation hyperboliques. Dans ce type de représentation, des équations cinétiques, en petit nombre, sont couplées par un terme de relaxation non linéaire. L'approche cinétique est très intéressante en pratique, car la résolution numérique est ramenée à la résolution d'étapes de transport à vitesse constante, alternant avec des étapes de relaxations locales. Pour résoudre les étapes de transports, plusieurs approches sont possibles. Il est bien sûr envisageable de s'appuyer sur la méthode des caractéristiques. Sur une grille régulière, cela conduit à la méthode Lattice-Boltzmann. Il est aussi possible de résoudre le transport par une méthode de type Galerkin Discontinu. Cela permet d'utiliser des maillages déstructurés et de construire des schémas explicites inconditionnellement stables. Je rappellerai les principes de l'approche cinétique, puis je montrerai des applications en mécanique des fluides et en électromagnétisme.
  • Le 25 novembre 2021 à 14:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Christian Léonard Université Paris Nanterre
    Transport optimal entropique, retournement de temps et transport optimal (usuel). Séminaire commun Analyse - IOP
    Felix Otto a découvert il y a une vingtaine d'années que le transport optimal quadratique sur une variété riemannienne M permet de définir la géométrie de Wasserstein sur l'espace des probabilités P(M) sur M. Les ingrédients de base de cette géométrie sont les interpolations par déplacement de McCann qui sont construites en remontant les géodésiques de M sur P(M) et jouent le rôle de géodésiques sur P(M). Si l'on remplace dans cette construction les géodésiques de M par des ponts browniens, on obtient naturellement une nouvelle notion d'interpolations sur P(M) : les interpolations entropiques. On sait qu'en faisant décroître la température des ponts brownien vers zéro on retrouve à la limite les interpolations par déplacement. Sans surprise, le retournement du temps de certains processus stochastiques associés aux interpolations entropiques (les ponts de Schrödinger) permet de quantifier l'écart énergétique entre les interpolations entropiques et leurs limites de McCann. Quelques conséquences bien établies et heuristiques du retournement du temps des ponts de Schrödinger seront présentées.
  • Le 26 novembre 2021 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Thomas Haettel : exposé reporté !
    Actions de groupes sur les graphes de Helly et les espaces métriques injectifs
    Dans cet exposé, nous brosserons un panorama de résultats récents concernant les espaces métriques injectifs : ceux pour lesquels toute famille de boules s'intersectant deux à deux s'intersecte globalement. La version discrète de cette propriété définit les graphes de Helly. Si un groupe agit par isométries sur un tel espace, on peut en déduire de nombreuses propriétés typiques de la courbure négative ou nulle. Nous présenterons des familles de groupes classiques qui ont une telle action : groupes hyperboliques, réseaux cocompacts dans des groupes de Lie semisimples sur des corps locaux, groupes de tresses et groupes d'Artin, groupes modulaires de surface (travail en commun avec Nima Hoda et Harry Petyt).
  • Le 26 novembre 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Abhinandan IMB
    Crystalline representations and Wach modules in the relative case
    In this talk, we will introduce the notion of Wach modules in the relative setting, generalizing the arithmetic case. Over an unramified base, for a p-adic representation admitting such structure, we will examine the relationship between its relative Wach module and filtered $(\varphi, \partial)$-module. Further, we will show that such a representation is crystalline (in the sense of Brinon), and one can recover its filtered $(\varphi, \partial)$-module from the relative Wach module. Conversely, for low Hodge-Tate weights [0, p-2], we will construct relative Wach modules from free relative Fontaine-Laffaille modules (in the sense of Faltings).
  • Le 29 novembre 2021 à 10:00
  • Manifestations Scientifiques
    Salle de Conférences
    Comité organisateur : Sylvain Ervedoza\, Karim Kellay\, Jérôme Lohéac\,Takéo Takahashi
    Contrôle et analyse des systèmes PDE, 29 novembre - 1er décembre 2021, Bordeaux

  • Le 30 novembre 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Katharina Boudgoust IRISA EMSEC\, Rennes
    The partial Vandermonde knapsack problem
    In my seminar I will do an introduction to the concept of essential dimension: roughly speaking, the essential dimension is a measure of how many independent parameters we need to describe some algebraic object. The concept of essential dimension was introduced by Buhler and Reichstein in 1995 and it is linked to an algebraic version of Hilbert's 13th problem. For a finite group $G$; the essential dimension measures how much one can compress a faithful representation of $G$. When $G$ is the symmetric group $S_n$ the essential dimension tells us how many independent parameters we need to write a generic polynomial of degree $n$ on a field $k$ of characteristic zero; equivalently, the essential dimension of $S_n$ computes the number of parameters needed to write a generating polynomial for separable field extensions of degree $n$. This is still an open problem for $n geq 8. Suprisingly, the analogue problem for inseparable field extensions has been solved explicitely.
  • Le 30 novembre 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Katharina Boudgoust IRISA EMSEC\, Rennes
    The partial Vandermonde knapsack problem
    This work contributes in the field of lattice-based cryptography, a research domain of public key cryptography that was initiated at the end of the 1990s by two different branches. On the one had, there have been proposals benefiting from strong theoretical connections to presumed hard worst-case lattice problems, leading to the development of public key cryptography based on the SIS (Short Integer Solution) and LWE (Learning With Errors) problems. On the other hand, very efficient schemes basing their security on average-case structured lattice problems have been introduced, the most popular among them is the NTRU encryption scheme.
  • Le 1er décembre 2021 à 14:00
  • Soutenance de thèse
    Salle de Conférences
    Camille PALMIER
    Sujet : "Nouveaux filtres particulaires pour la navigation sous-marine par fusion multi-capteurs". Directeur de thèse : Pierre Del Moral, codirecteur : Karim Dahia

  • Le 1er décembre 2021 à 16:30
  • Le séminaire des doctorant·es
    Salle 385
    Antoine Meddane LMJL\, Nantes
    Pétrissage par un boulanger mathématicien et théorie du chaos
    Le chaos mathématique désigne généralement un comportement évolutif (solution d'une EDO) qui dépend fortement de ses conditions initiales. La dynamique hyperbolique est un cas particulier de dynamique chaotique qui a été grandement étudié et est toujours d'actualité. Dans les années 60-70, S. Smale a énormément contribué à l'étude de ces dynamiques et a notamment défini son célèbre fer à cheval qui est aussi connu sous le nom d'application du boulanger. Dans cet exposé, je présenterai cette application ainsi que d'autres dynamiques hyperboliques célèbres puis je discuterai de mélange pour ces dynamiques.
  • Le 1er décembre 2021 à 18:15
  • BLOC NOTES
    Amphithéâtre du LaBRI
    Serge Chaumette LaBRI\, Université de Bordeaux
    SEMINAIRE NUMERICS Drones, Swarming and Embedded Distributed and Collaborative Intelligence
    Autonomous systems are "objects" with a certain capacity for making decisions in response to changes in their environment, without outside intervention. These could be, for example, robots or drones. In addition, it often makes sense to combine a large number of such systems to perform complex tasks. We then speak of swarms of autonomous systems: swarms of robots, drones or in the living world, colonies of ants, swarms of bees, physarum polycephalum (known as a blob), etc. These systems, by interacting and collaborating, have the capacity to build a coherent behavior with very partial and potentially false information (because very quickly obsolete). We can thus speak of a form of intelligence at the level of the swarm considered as a whole. The objective of this presentation is to present the mechanisms that govern their operation.
  • Le 2 décembre 2021 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    En Visio
    Boris Detienne\, IMB
    Mixed-integer convex two-stage robust optimization with objective uncertainty
    In this work, we study the class of optimization problems where some costs are not known at decision time and the decision flow is modeled as a two-stage process. We show how two-stage robust models for this class of problems can be solved by means of a branch-and-price algorithm where one may branch on continuous values so as to tighten the optimality gap. Our approach generalizes a recent result from the literature which addressed the linear case and was only applicable in presence of linking constraints involving binary variables, and extends the associated results to problems with convex constraints and general mixed-integer linking constraints. Zoom link: https://u-bordeaux-fr.zoom.us/j/81481860493?pwd=NE51REJqaDZ1Z0RYdS9tYWJQaENKZz09
  • Le 2 décembre 2021 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Titouan Vayer ENS Lyon
    Less is more ? How Optimal Transport can help for compressive learning
    Nowadays large-scale machine learning faces a number of fundamental computational challenges, triggered by the high dimensionality of modern data and the increasing availability of very large training collections. These data can also be of a very complex nature, such as those described by the graphs that are integral to many application areas. In this talk I will present some solutions to these problems. I will introduce the Compressive Statistical Learning (CSL) theory, a general framework for resource-efficient large scale learning in which the training data is summarized in a small single vector (called sketch) that captures the information relevant to the learning task. We will show how Optimal Transport (OT) can help us establish statistical guarantees for this type of learning problem. I will also show how OT can allow us to obtain efficient representations of structured data, thanks to the Gromov-Wasserstein distance. I will address concrete learning tasks on graphs such as online graph subspace estimation and tracking, graphs partitioning, clustering and completion.
  • Le 2 décembre 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Walter Boscheri
    Modeling and simulating the spatial spread of an epidemic through multiscale kinetic transport equations
    In this work we propose a novel space-dependent multiscale model for the spread of infectious diseases in a two-dimensional spatial context on realistic geographical scenarios. The model couples a system of kinetic transport equations describing a population of commuters moving on a large scale (extra-urban) with a system of diffusion equations characterizing the noncommuting population acting over a small scale (urban). The modeling approach permits to avoid unrealistic effects of traditional diffusion models in epidemiology, like infinite propagation speed on large scales and mass migration dynamics. A construction based on the transport formalism of kinetic theory allows to give a clear model interpretation to the interactions between infected and susceptible in compartmental space-dependent models. In addition, in a suitable scaling limit, our approach permits to couple the two populations through a consistent diffusion model acting at the urban scale. A discretization of the system based on finite volumes on unstructured grids, combined with an asymptotic preserving method in time, shows that the model is able to describe correctly the main features of the spatial expansion of an epidemic. An application to the initial spread of COVID-19 is finally presented.
  • Le 2 décembre 2021 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Rafael Tiedra Pontifical Catholic University of Chile
    Spectral and scattering properties of quantum walks on homogenous trees of odd degree (Séminaire Commun avec EDP - Physique Mathématiques)
    For unitary operators U_0, U in Hilbert spaces H_0, H and identification operator J:H_0→H, we present results on the derivation of a Mourre estimate for U starting from a Mourre estimate for U_0 and on the existence and completeness of the wave operators for the triple (U,U_0,J). As an application, we determine spectral and scattering properties of a class of anisotropic quantum walks on homogenous trees of odd degree with evolution operator U. In particular, we establish a Mourre estimate for U, obtain a class of locally U-smooth operators, and prove that the spectrum of U covers the whole unit circle and is purely absolutely continuous, outside possibly a finite set where U may have eigenvalues of finite multiplicity. We also show that (at least) three different choices of free evolution operators U_0 are possible for the proof of the existence and completeness of the wave operators.
  • Le 3 décembre 2021 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Laurent Manivel Toulouse
    A propos de l'inversion des matrices
    Etant donné un espace linéaire de matrices carrées, pas toutes singulières, on peut se demander quel est le degré de la variété qui paramètre leurs inverses. J'expliquerai comment répondre à cette question pour un espace générique de matrices symétriques à coefficients complexes. La méthode repose sur l'anneau d'intersection des variétés de quadriques complètes et la théorie des fonctions symétriques.
  • Le 3 décembre 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Giuseppe Ancona Strasbourg
    La conjecture standard de type Hodge pour les variétés abéliennes de dimension quatre
    Soient S une surface algébrique, V le Q-espace vectoriel des diviseurs sur S modulo équivalence numérique et d la dimension de V. Le produit d'intersection définit un accouplement parfait sur V. Le théorème de l'indice de Hodge dit qu'il est de signature (1,d-1). Dans les années soixante Grothendieck a conjecturé une généralisation de cet énoncé aux cycles de codimension quelconque sur des variétés de dimension arbitraire. En caractéristique zéro cette conjecture est une conséquence des relations de Hodge-Riemann. En caractéristique positive assez peu est connu. A l'aide de formules du produit classiques sur les formes quadratiques nous allons traduire cette question de signature en un problème p-adique. Il se trouve que ce dernier peut être attaqué avec la théorie de Hodge p-adique. Cela nous permettra de démontrer la question originale pour les variétés abéliennes de dimension quatre.
  • Le 6 décembre 2021 à 09:00
  • Soutenance de thèse
    A31, amphi Jean-Paul Dom
    Anaïs GASTINEAU
    Sujet : "Amélioration des résolutions spatiale et spectrale d'images satellitaires par réseaux antagonistes". Directeur de thèse : Jean-François Aujol, codirecteur : Yannick Berthoumieu

  • Le 6 décembre 2021 à 10:00
  • Soutenance de thèse
    Salle 285
    Mahamet KOITA
    Sujet : "Analyse spectrale des opérateurs de Toeplitz sur des espaces de Bergman et applications ". Directeur de thèse : Stanislas Kupin, codirecteur : Belco Toure

  • Le 6 décembre 2021 à 13:30
  • Séminaire d'Analyse
    Salle 2
    Anna Doubova Séville
    GT Analyse, part I, 13h30 - 14h30: Some Inverse Problems for the Burgers Equation and Related Systems..
    We present the main questions and motivations related to geometric inverse problems for some PDE's. We will focus our talk on the inverse problems concerning the one-dimensional Burgers equation and some related nonlinear systems (involving heat effects and variable density). In these problems, the goal is to find the size of the spatial interval from some appropriate boundary observations of the solution. Depending on the properties of the initial and boundary data, we prove uniqueness and non-uniqueness results. On the other hand, we also solve these inverse problems numerically and compute approximations of the interval sizes. The presented work has been performed in collaboration with Jone Apraiz, Enrique Fernández-Cara and Masahiro Yamamoto.
  • Le 6 décembre 2021 à 15:00
  • Séminaire d'Analyse
    Salle 2
    Masimba Nemaire Masimba Nemaire Bordeaux & Nice
    GT Analyse, Part II: ..
    TBA
  • Le 7 décembre 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 386
    Olivier Bernard IRISA EMSEC\, Rennes
    Log-S-unit lattices using Explicit Stickelberger Generators to solve Approx Ideal-SVP
    The Twisted-PHS algorithm to solve Approx-SVP for ideal lattices on any number field, based on the PHS algorithm by Pellet-Mary, Hanrot and Stehlé in 2019, was introduced in 2020. The authors performed experiments for prime conductors cyclotomic fields of degrees at most 70, reporting exact approximation factors reached in practice. The main obstacle for these experiments is the computation of a log-S-unit lattice, which requires classical subexponential time.
  • Le 7 décembre 2021 à 10:30
  • Soutenance de thèse
    Visioconférence
    Siaka KONATE
    Sujet : "Espaces de fonctions holomorphes, ensembles dominants". Directeur de thèse : Andreas Hartmann, codirecteur : Dantouma Kamissoko

  • Le 8 décembre 2021 à 18:15
  • BLOC NOTES
    Amphithéâtre du LaBRI
    Aurélie Bugeau - LaBRI\, Université de Bordeaux
    SEMINAIRE NUMERICSNumérique et environnement
    Si les technologies numériques sont souvent citées comme indispensables pour la transition écologique, leurs effets sur l'environnement ne doivent pas être ignorées. Dans un contexte de numérisation et virtualisation croissantes de notre société, nous passerons en revue différents impacts écologiques, géopolitiques et sociétaux du numérique. Nous donnerons des pistes concrètes de solutions pour réduire ces impacts.
  • Le 9 décembre 2021 à 11:00
  • Séminaire d'Analyse
    Salle 285
    Hervé Gaussier Grenoble
    Quelques propriétés des métriques invariantes..ATTENTION HORAIRE INHABITUEL 11h-12h..
    Les métriques invariantes, par l'action des biholomorphismes, jouent un rôle important dans l'étude des variétés complexes non compactes à bord. Leurs propriétés au bord (comportement asymptotique) peut par exemple, dans certains cas, caractériser la géométrie du bord du domaine. Je m'intéresserai à leur stabilité par déformation ainsi qu'à la caractérisation des domaines strictement pseudoconvexes pour lesquels la métrique de Kobayashi est Kähler.
  • Le 9 décembre 2021 à 14:00
  • Soutenance de thèse
    Salle de Conférences
    Pei SU
    Sujet : "Stabilisation des systèmes décrivant le mouvement des vagues et leurs interactions avec un objet flottant". Directeur de thèse : Marius Tucsnak, co-directeur : David Lannes

  • Le 10 décembre 2021 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Eveline Legendre Toulouse
    Métriques sasakiennes extrémales, K-stabilité et métriques kählériennes à poids.
    Une première partie de cet exposé sera une introduction au point de vue sasakien sur le problème de Calabi et d'une version de la conjecture de Yau-Tian-Donaldson dans ce contexte. Dans une collaboration récente avec V.Apostolov et D.Calderbank nous avons progressé sur ce problème en utilisant les métriques kählériennes à poids de Lahdilli, c'est ce que j'expliquerai dans la deuxième partie de l'exposé.
  • Le 10 décembre 2021 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Thomas Geisser Rikkyo University\, Tokyo
    A Weil-etale version of the Birch and Swinnerton-Dyer conjecture
    We'll explain the Birch and Swinnerton-Dyer Conjecture for abelian varieties over global fields. If the field is of characteristic p, we give a reformulation in terms of Weil-etale cohomology of the Neron-model and show that it holds if the Tate-Shafarevich group is finite.
  • Le 14 décembre 2021 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Xavier Goaoc Université de Lorraine\, LORIA
    Un phénomène de concentration en géométrie combinatoire
    Le type d'ordre d'une séquence de points du plan est une généralisation de la permutation associée à une séquence de nombres réels. Cette structure combinatoire encode de nombreuses propriétés géométriques de la séquence de points, par exemple le treillis des faces de son enveloppe convexe, ou encore les triangulations qu'elle supporte.
  • Le 14 décembre 2021 à 14:00
  • Soutenance de thèse
    Amphithéâtre - IHU Lyric Hopital Xavier Arnozan
    Yingjing FENG
    Sujet : "Apprentissage automatique sur les potentiels de surface corporelle aidé par la modélisation multi-échelle pour la personnalisation du traitement de la fibrillation..auriculaire". Directeur de thèse : Edward Vigmond

  • Le 14 décembre 2021 à 14:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Dario Bambusi Milan
    Après-midi hamiltonienne I: Growth of Sobolev norms for unbounded perturbations of the Laplacian on flat tori (towards a quantum Nekhoroshev theorem)

  • Le 14 décembre 2021 à 15:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Benoit Grébert Nantes
    Après-midi hamiltonienne II: Formes normales de Birkhoff pour les EDP Hamiltoniennes en basse régularité

  • Le 14 décembre 2021 à 17:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Mouez Dimassi
    Après-midi hamiltonienne III: Propriétés spectrales des perturbations de l'opérateur de Schrödinger avec potentiel homogène de degré zéro

  • Le 15 décembre 2021 à 14:00
  • Soutenance de thèse
    Inria Sud-Ouest, Salle Ada Lovelace.
    Michele Giuliano CARLINO
    Sujet : " Schéma ADER sur des Maillages Overset avec Transmission Compact et Hyper-réduction : Application aux Équations de Navier-Stokes Incompressibles". Directeur de thèse : Michel Bergmann, co-directeur : Angelo Iollo

  • Le 15 décembre 2021 à 14:00
  • Soutenance de thèse
    Salle de Conférences
    Pierre BRUN
    Sujet : "Dynamique de l'équation de Klein-Gordon à valeurs propres mal séparées". Directeur de thèse : El Maati OUHABAZ, codirecteur : Rafik Imekraz

  • Le 15 décembre 2021 à 14:00
  • Soutenance de thèse
    Salle 1
    Boris DETIENNE présentera son exposé en vue de son Habilitation à Diriger des Recherches
    Titre des travaux "Algorithmes de décomposition pour la programmation entière déterministe et incertaine".
    Les progrès de la programmation linéaire en nombres entiers (PLNE) accomplis lors des dernières décennies en font un outil de choix pour la modélisation et la résolution de problèmes d'optimisation, notamment rencontrés dans l'industrie. Cependant, une approche directe de la PLNE peut souffrir a) d'une relaxation linéaire de mauvaise qualité, b) de la nature intrinsèquement non-linéaire et non-convexe du problème (p.e. modèles robustes avec recours) et/ou c) de modèles de très grande taille (modèles stochastiques avec scénarios), voire infinie (modèles robustes). Diverses stratégies de relaxation et reformulation peuvent être employées pour contourner ces problèmes (reformulation de Dantzig-Wolfe, de Benders, relaxation lagrangienne, formulation flot...). Celles-ci ayant tendance à accentuer la difficulté c), elles s'accompagnent de techniques algorithmiques permettant de gérer en pratique la grande taille des modèles résultants (relaxation de l'espace d'états, génération de colonnes et/ou de lignes...). L'utilisation de ces ingrédients pour obtenir des solutions (presque) optimales sera discutée, ainsi que des perspectives ouvertes pour la résolution de problèmes déterministes et incertains.
  • Le 15 décembre 2021 à 16:00
  • Le séminaire des doctorant·es
    Salle 385
    Magalie Benefice IMB
    Couplages de mouvements browniens sur $R^n$ et applications
    La construction de couplages sur les variétés est un outil permettant d'obtenir de nombreux résultats que ce soit en probabilité ou en analyse. En particulier, les couplages de mouvements browniens fournissent des estimations de gradients pour le semi-groupe de la chaleur et des inégalités de type Poincaré et Sobolev. Dans cet exposé, je rappellerai quelques notions de base sur le mouvement brownien. Je définirai et détaillerai quelques couplages sur $R^n$, notamment des couplages dits co-adaptés. Enfin, je présenterai quelques idées pour étendre ces couplages sur d'autres variétés et je donnerai un aperçu des résultats que l'on peut obtenir avec cet outil.
  • Le 15 décembre 2021 à 17:15
  • BLOC NOTES
    Amphithéâtre du LaBRI
    Xavier Caruso IMB\, Université de Bordeaux
    SEMINAIRE NUMERICSLes promesses de l'ordinateur quantique
    Au début du 20ème, la physique connaît deux révolutions majeures avec la théorie de la relativité et la mécanique quantique qui modifient à jamais notre conception du monde à toutes les échelles. La mécanique quantique concerne l'infiniment petit et a des conséquences qui ont surpris les plus grands physiciens de l'époque. L'une d'entre elles est le fameux paradoxe EPR qui semble défier la théorie de la relativité générale puisqu'il implique la possibilité, pour deux personnes éloignées dans l'espace, de se mettre d'accord instantanément sur un bit d'information. Pourtant, la mécanique quantique est l'une des théories les plus éprouvées de la physique moderne avec de nombreuses expériences la confirmant avec une précision phénoménale. Au milieu du 20ème siècle, Feynman a émis l'idée de mettre à profit les propriétés quantiques de la matière pour fabriquer des ordinateurs plus puissants que nos machines classiques. C'est ainsi qu'un modèle de l'ordinateur quantique a été proposé et que les premiers algorithmes quantiques ont été conçus. La vision de Feynman s'est ainsi vue fabuleusement confirmée après les travaux de Deutsch, Jozsa, Shor et Grover qui ont montré que plusieurs problèmes mathématiques classiques réputés difficiles (dont celui de la factorisation des nombres entiers) pouvaient être résolus efficacement dans le monde quantique. Ces résultats résonnent avec d'autant plus d'ampleur, aujourd'hui, qu'ils remettent en cause la sécurité des protocoles cryptographiques les plus utilisés dans le monde moderne et que la course à la fabrication du premier ordinateur quantique a d'ores et déjà commencé.
  • Le 16 décembre 2021 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Jérôme Stenger Université Toulouse 3
    Optimal Uncertainty Quantification of a Risk Measurement
    Uncertainty quantification in a safety analysis study can be conducted by considering the uncertain inputs of a physical system as a vector of random variables. The most widespread approach consists in running a computer model reproducing the physical phenomenon with different combinations of inputs in accordance with their probability distribution. Then, one can study the related uncertainty on the output or estimate a specific quantity of interest (QoI). Because the computer model is assumed to be a deterministic black-box function, the QoI only depends on the choice of the input probability measure. It is formally represented as a scalar function defined on a measure space. We propose to gain robustness on the quantification of this QoI. Indeed, the probability distributions characterizing the uncertain input may themselves be uncertain. For instance, contradictory expert opinion may make it difficult to select a single probability distribution, and the lack of information in the input variables inevitably affects the choice of the distribution. As the uncertainty on the input distributions propagates to the QoI, an important consequence is that different choices of input distributions will lead to different values of the QoI. The purpose of this work is to account for this second level uncertainty. We propose to evaluate the maximum of the QoI over a space of probability measures, in an approach known as optimal uncertainty quantification (OUQ). Therefore, we do not specify a single precise input distribution, but rather a set of admissible probability measures defined through moment constraints. In the case where the QoI is a quasi-convex function, it is then optimized over this measure space. After exposing theoretical results showing that the optimization domain of the QoI can be reduced to the extreme points of the measure space, we present several interesting quantities of interest satisfying the assumption of the problem.
  • Le 16 décembre 2021 à 11:30
  • Séminaire d'Analyse
    Salle 1
    Jacques Benatar\, University of Tel-Aviv\, Israel.
    On the distribution of trigonometric polynomials with (random) multiplicative coefficients.
    TBA
  • Le 16 décembre 2021 à 14:00
  • Manifestations Scientifiques
    Salle de Conférences
    Coordinateur : Adrien Richou - Maître de conférences à l'université de Bordeaux
    Rencontre Bordeaux décembre 2021

  • Le 16 décembre 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Hugo Martin Inserm
    [Séminaire CSM] Glioblastoma cell variability and circadian rhythms control temozolomide efficacy: from cellular pharmacokinetics-pharmacodynamics to heterogeneous cancer cell population models
    Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults, and is currently associated with a dismal prognosis despite intensive treatments combining surgery, radiotherapy and temozolomide-based chemotherapy. Clinical trials over the last two decades testing various multi-agent pharmacotherapies have failed demonstrating any significant patient survival improvement so far. Chronotherapy, that consists in administering antitumor drug according to the patient's 24h-rhythms is considered as a promising therapeutic approach to improve treatment tolerability and efficacy. Interestingly, recent clinical and preclinical studies have highlighted the dependency of temozolomide (TMZ) efficacy on administration timing. Median overall survival (OS) of GBM patients receiving TMZ in the morning was equal to 1.43 years as compared to 1.13 for patients taking the same drug dose in the evening. In a subgroup of patients whose tumor presented methylated promoter of MGMT DNA repair enzyme (resulting in decreased MGMT protein expression and increased sensitivity to TMZ), the difference in survival was even higher as the median OS was 6 months longer for AM patients as compared to evening patients. In order to obtain quantitative predictions on the mechanisms underlying temozolomide chronoefficacy, we designed a systems pharmacology model at the cell population level as follows. A simplified ODE-based model of TMZ pharmacokinetics-pharmacodynamics (PK-PD) was connected to a model representing the cancer cell population dynamics though a PDE structured in the amount of DNA damage in a cell and sensitivity to damage. The PK part of the ODE model was fully designed and calibrated to data, whereas the remaining elements of this combined model were inferred from cell culture circadian datasets. To properly fit all datasets, we had to include in the model an inter-cell variability accounting, standing either for different rates of DNA damage formation or repair. This addition allowed a successful model calibration, in contrast to the model in which population heterogeneity came solely from the initial damage distribution, prior any drug exposure. In the talk, I will present the data available, on which we tailored our model on. Then I shall introduce a simplified version of the PDE model, that suggested the need of inter-cell variability, and afterwards the complete model, that covers more datasets and includes more biological assumptions. I will conclude on the first conclusions of this work in progress, and say a few words on the dataset that is not yet included.
  • Le 17 décembre 2021 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Maxime Wolff IMJ-PRG
    Rigidité d'actions de certains groupes sur le cercle
    Je raconterai des travaux en collaboration avec Kathryn Mann, dans lesquels nous nous servons de propriétés fortes de rigidité d'actions de certains groupes fuchsiens sur le cercle. Nous obtenons des propriétés de rigidité d'action sur le cercle des mapping class groups de surfaces marquées, ainsi que des groupes qui ont des propriétés de régularités critiques pour leurs actions sur le cercle.
  • Le 17 décembre 2021 à 14:00
  • Soutenance de thèse
    Salle de Conférences
    Adrien DROUILLET
    Sujet : "Modélisation et simulation numérique d'un front de fusion/solidification à l'interface d'un bain de corium". Directeur de thèse : Raphaël Loubère, co-directeur : Mathieu Peybernes

  • Le 4 janvier 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Guillaume Moroz Inria\, LORIA
    New data structure for univariate polynomial approximation and applications to root isolation, numerical multipoint evaluation, and other problems
    We present a new data structure to approximate accurately and efficiently a polynomial $f$ of degree $d$ given as a list of coefficients. Its properties allow us to improve the state-of-the-art bounds on the bit complexity for the problems of root isolation and approximate multipoint evaluation. This data structure also leads to a new geometric criterion to detect ill-conditioned polynomials, implying notably that the standard condition number of the zeros of a polynomial is at least exponential in the number of roots of modulus less than $\frac{1}{2}$ or greater than $2$.
  • Le 4 janvier 2022 à 13:30
  • Direction
    visio-conférence
    -
    Conseil de laboratoire
    L'ordre du jour sera le suivant :1) Approbation du compte-rendu du conseil de laboratoire du 9 novembre 2021 ;2) Charte des référents parité pour les comités de sélection ;3) Proposition de budget pour 2022 ;4) Questions diverses
  • Le 6 janvier 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle 285
    Stéphane Dartois
    Entanglement criteria for the bosonic and fermionic induced ensembles
    We introduce the bosonic and fermionic ensembles of density matrices and study their entanglement. In the fermionic case, we show that random bipartite fermionic density matrices have non-positive partial transposition, hence they are typically entangled. The similar analysis in the bosonic case is more delicate, due to a large positive outlier eigenvalue. We compute the asymptotic ratio between the size of the environment and the size of the system Hilbert space for which random bipartite bosonic density matrices fail the PPT criterion, being thus entangled. We also relate moment computations for tensor-symmetric random matrices to evaluations of the circuit-counting and interlace graph polynomials for directed graphs.
  • Le 6 janvier 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Nicolas Meunier Univ. Évry
    [Séminaire CSM] Modelling of Cell Motility, mathematical analysis and numerical simulations
    In this talk, I will present a new model to describe some aspects of cell migration. Cell migration plays a key role in many physiological processes, such as embryogenesis, wound repair or metastasis formation. It is the result of a complex activity that involves different time and space scales. I will first detail the construction of the model and then present rigorous results and numerical simulations. Keywords: complex and multiscale processes; active fluid; free boundary problem; surface tension; traveling-wave solution; bifurcation.
  • Le 6 janvier 2022 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    -
    Séance banalisée: rencontres de l'ANR SINGFLOWS

  • Le 7 janvier 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Pierre Dehornoy Grenoble
    Livres brisés et dynamique des flots de Reeb en dimension 3
    C'est un travail avec A Rechtman, V Colin et U Hryniewicz. On introduit la notion de livre brisé pour un champ de vecteurs en dimension 3, qui généralise celle de section de Birkhoff (aussi appelé livre ouvert). On montre que les flots de Reeb non dégénéré admettent des livres brisés, ce qui nous permet de montrer qu'ils ont une infinité d'orbites périodiques. Aussi on utilise ces livres brisés pour montrer que, pour un ensemble ouvert et dense, il y a même une section de Birkhoff d'une part, et de l'entropie d'autre part.
  • Le 7 janvier 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Séminaire reporté.
    --

  • Le 10 janvier 2022 à 11:00
  • Séminaire d'Analyse
    Salle de Conférences
    Chenmin Sun Créteil
    Séminaire commun avec Physique et EDP
    TBA
  • Le 11 janvier 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Jean-Marc Huré
    La théorie des figures étendue aux systèmes stratifiés: outils et méthodes.
    La gravitation régule l'évolution et la structure de la plupart des systèmes astrophysiques sur les échelles spaciales très variées allant de l'Univers dans son ensemble aux galaxies, étoiles et planètes. Celle-ci conduit souvent à la production de composantes multiples en étroite interaction (amas, systèmes doubles). Selon les conditions initiales, et aidée des équations d'état de la matière et des mécanismes de transport de l'énergie, la gravité sculpte aussi finement chaque composante, du centre à la surface, en densité (séparation de phases, noyau, manteau, atmosphère) comme en dynamique (cisaillement, rotation différentielle). La Théorie des Figures, qui prend racine XVIIe siècle avec Newton et Cassini (au sujet de la forme de la Terre), offre un contexte simple et puissant d'étude des systèmes auto-gravitants tels que les étoiles et les planètes en rotation. Elle permet, dans certains cas très particuliers (e.g. elllipsoides incompressibles de Maclaurin et de Jacobi) d'accéder à des grandeurs clés comme la masse, la taille et la forme et la rotation d'ensemble. Dans le cas très général, toutefois, la rotation représente l'une des grandes difficultés du problème, car elle impose des calculs sophistiqués des forces gravitationnelles en présence et la détermination des frontières du système, non-connues à l'avance. Nous discuterons les ingrédients physiques et mathématiques qui composent la Théorie des Figures et notamment son extension aux systèmes stratifiés en densité et en rotation (symétrie de révolution). Ceux-ci incluent: i) la résolution de l'équation de Poisson d'un fluide inhomogène présentant éventuellement des sauts de masse volumique internes, ii) la détermination de la frontière libre et des éventuelles interfaces, et iii) la résolution d'un système d'équations algébriques de type Bernoulli. D'un point de vue numérique, ces équations sont mise en oeuvre simultanément à l'interieur d'un algorithme cyclique dit du “champ auto-cohérent” (dont la convergence reste, d'ailleurs, un mystère). L'accent sera mis sur la difficulté de concilier précision et résolution spatiale (i.e. temps de calcul). Comme application, nous aborderons le problème inverse de reconstitution de la structure interne d'une planète comme Jupiter, visitée par quelques sondes spatiales, sur la base de quelques observables dont les premières harmoniques du potentiel gravitationnel exterieur.
  • Le 12 janvier 2022
  • Direction
    Salle de Conférences
    -
    Toute l'équipe administrative sera en télétravail mercredi 12 janvier, remplacement des fenêtres dans les bureaux 100 à 106 ce jour là.

  • Le 13 janvier 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Slim Kammoun
    Mots de permutations invariantes
    Soient $w$ un mot du groupe libre $F_k=$ et $w(\sigma_1,\dots,\sigma_k)$ la permutation obtenue en remplaçant $x_i$ par $\sigma_i$ dans $w$. Il est connu que si $\sigma_1, \dots,\sigma_k$ sont des i.i.d uniformes, alors la trace non normalisée de $w(\sigma_1,\dots,\sigma_k)$ converge vers une limite qui ne dépend que du maximum des $d$ tels que il existe $\Omega\in F_k$ tel que $w=\Omega^d$. On s'intéresse au cas où les permutations sont non-uniformes (mais invariantes par conjugaison), les mêmes limites apparaissent sous des conditions sur les petits cycles. L'étude du cas non-uniforme est naturel et est motivée par une conjecture de Bukh et Zhou sur l'espérance de la longueur de la plus longue sous suite commune de deux permutations i.i.d.
  • Le 13 janvier 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Kilian Raschel
    Probabilités de persistance et polynômes de Mallows-Riordan
    Etant donnée une suite de variables aléatoires réelles X(1), X(2), etc., sa probabilité de persistance est la probabilité que les n premières variables soient toutes positives. Intéressantes du seul point de vue mathématique, ces quantités ont aussi beaucoup d'applications en physique. Dans cet exposé nous étudierons le cas où la suite de variables est auto-regressive d'ordre 1, c'est-à-dire lorsque X(n+1)=a*X(n)+U(n+1). Dans ce contexte, a est un paramètre et les variables U(1), U(2), etc., sont appelées innovations et forment une suite de variables indépendantes et identiquement distribuées. Le plus souvent, seules des estimées asymptotiques sont obtenues sur la persistance. Dans ce travail en commun avec Gerold Alsmeyer (Münster), Alin Bostan (Inria Saclay) et Thomas Simon (Lille), nous considérons le cas particulier où les U(1), U(2), etc., suivent des lois uniformes sur un intervalle. Nous montrons un lien surprenant entre les probabilités de persistance associées et une famille de polynômes bien connue en combinatoire : les polynômes de Mallows-Riordan. De cette connexion nous déduisons un dictionnaire entre identités combinatoires sur les polynômes de Mallows-Riordan et propriétés probabilistes du modèle de persistance.
  • Le 13 janvier 2022 à 14:00
  • Séminaire Images Optimisation et Probabilités
    Salle 1
    Jean François Marckert
    Un candidat pour la carte Brownienne en dimension supérieure : les feuilletages aléatoires
    La recherche d'un analogue de la carte Brownienne en dimension supérieure (pour des motivations physiques, notamment) passe souvent par la recherche d'un modèle analogue aux cartes combinatoires faisant intervenir des briquesde bases ayant elles mêmes une dimension >2: par exemple, modèle de "collages de polyhèdres", modèles de tenseurs, etc. Pour l'instant ces méthodes marchent mal, dans le sens où les limites d'échelle de ces modèles discrets n'ont pas les propriétés espérées. On introduit une façon de procéder totalement différente: le feuilletage. Il s'agit, de produire une suite d'objets ( A_k, k geq 0) (cette construction étant similaire en discret et en continu), où A_{k+1} est obtenu depuis A_k en identifiant des points aléatoires de A_k. La construction, dans le cadre continu, est paramétrée de sorte qu'A_0, A_1, A_2 sont 3 objets importants: le cercle déterministe, l'arbre continu d'Aldous, la carte Brownienne. On discutera de la construction et des A_i suivant. Il s'agit d'un exposé consistant à davantage présenter des principes que des détails, et il devrait être accessible au plus grand nombre. Travail commun avec Luca Lionni
  • Le 13 janvier 2022 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Nikolai Nikolski\, IMB\, Université de Bordeaux
    REPORTE A UNE DATE ULTERIEURE
    à préciser
  • Le 13 janvier 2022 à 15:00
  • Séminaire Images Optimisation et Probabilités
    Salle 1
    Bernard Bercu
    Promenade sur des permutations aléatoires
    L'objectif de cet exposé est de montrer comment la théorie des martingales permet de retrouver de manière simple ou de prouver de nouveaux résultats sur les permutations aléatoires. On fera une étude approfondie du nombre de descentes. On parlera également de pics et d'oscillations.
  • Le 13 janvier 2022 à 15:30
  • Le Colloquium
    Salle de Conférences
    Colin Guillarmou Paris Saclay
    REPORTE AU 3 MARS 2022
    Tba
  • Le 14 janvier 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Charles Favre
    Entropie des applications rationnelles
    (travail en commun avec Junyi Xie et Tuyen Truong). Nous discuterons le problème de calculer l'entropie topologique d'une application rationnelle sur un corps métrisé quelconque.
  • Le 14 janvier 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Léo Poyeton IMB
    Relèvement du corps des normes
    Un outil intéressant pour étudier les représentations p-adiques du groupe de Galois absolu d'une extension finie de Qp est la théorie des (phi,Gamma)-modules cyclotomiques de Fontaine, qui repose notamment sur un relèvement en caractéristique 0 du corps des normes de l'extension cyclotomique. Dans cet exposé, on s'intéressera à la question suivante : par quelles extensions galoisiennes L/K peut-on remplacer l'extension cyclotomique pour construire une théorie des (phi,Gamma)-modules ? On montrera que, sous une hypothèse additionnelle portant sur le Frobenius, une telle extension est nécessairement engendrée par les points de torsion d'un groupe de Lubin-Tate relatif, et que les séries donnant l'action du groupe de Galois de l'extension L/K sont, à twist près, semi-conjuguées aux endomorphismes du même groupe de Lubin-Tate relatif.
  • Le 18 janvier 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Aminat Mecherbet Institut de Math de Jussieu
    Autour des équations de Transport-Stokes
    Etant donnée une suite de variables aléatoires réelles X(1), X(2), etc., sa probabilité de persistance est la probabilité que les n premières variables soient toutes positives. Intéressantes du seul point de vue mathématique, ces quantités ont aussi beaucoup d'applications en physique. Dans cet exposé nous étudierons le cas où la suite de variables est auto-regressive d'ordre 1, c'est-à-dire lorsque X(n+1)=a*X(n)+U(n+1). Dans ce contexte, a est un paramètre et les variables U(1), U(2), etc., sont appelées innovations et forment une suite de variables indépendantes et identiquement distribuées. Le plus souvent, seules des estimées asymptotiques sont obtenues sur la persistance. Dans ce travail en commun avec Gerold Alsmeyer (Münster), Alin Bostan (Inria Saclay) et Thomas Simon (Lille), nous considérons le cas particulier où les U(1), U(2), etc., suivent des lois uniformes sur un intervalle. Nous montrons un lien surprenant entre les probabilités de persistance associées et une famille de polynômes bien connue en combinatoire : les polynômes de Mallows-Riordan. De cette connexion nous déduisons un dictionnaire entre identités combinatoires sur les polynômes de Mallows-Riordan et propriétés probabilistes du modèle de persistance.
  • Le 20 janvier 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Joseph de Vilmarest
    Stochastic Online Optimization using Kalman Recursion
    We present an analysis of the Extended Kalman Filter (EKF) in a degenerate setting called static. It has been remarked that in this setting the EKF can be seen as a gradient algorithm. Therefore, we study the static EKF as an online optimization algorithm to enrich the link between bayesian statistics and optimization. We propose a two-phase analysis. First, for Generalized Linear Models, we obtain high probability bounds on the cumulative excess risk, under the assumption that after some time the algorithm is trapped in a small region around the optimum. Second, we prove that « local » assumption for linear and logistic regressions, slightly modifying the algorithm in the logistic setting. This is a joint work with Olivier Wintenberger.
  • Le 21 janvier 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Michele Ancona Strasbourg
    Raréfaction exponentielle des hypersurfaces algébriques réelles maximales
    Dans cet exposé, on étudiera les hypersurfaces algébriques réelles à l'intérieur d'une variété algébrique réelle donnée. On prouvera que les hypersurfaces algébriques réelles avec de très grands nombres de Betti (par exemple, les hypersurfaces maximales au sens de Smith-Thom) sont exponentiellement rares dans leur système linéaire.
  • Le 21 janvier 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Julia Schneider Toulouse
    Generating the plane Cremona group by involutions
    Cremona groups are the groups of birational transformations of a projective space. The structure of these groups depends on the dimension of the projective space, and on the field over which the transformations are defined. In this talk I consider the Cremona group of the plane over a perfect field and proof that they are generated by involutions. I will explain how to decompose such birational maps into Sarkisov links and how this gives a generating set of the plane Cremona group. Afterwards, I will decompose them into involutions, among them are Geiser and Bertini involutions as well as reflections in an orthogonal group associated to a quadratic form. This is joint work with Stéphane Lamy.
  • Le 25 janvier 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Céline Maistret University of Bristol
    Parity of ranks of abelian surfaces
    Let $K$ be a number field and $A/K$ an abelian surface. By the Mordell-Weil theorem, the group of $K$-rational points on $A$ is finitely generated and as for elliptic curves, its rank is predicted by the Birch and Swinnerton-Dyer conjecture. A basic consequence of this conjecture is the parity conjecture: the sign of the functional equation of the $L$-series determines the parity of the rank of $A/K$.
  • Le 27 janvier 2022 à 16:00
  • Soutenance de thèse
    Salle de Conférences
    Quentin GRIETTE présentera son exposé en vue de son Habilitation à Diriger des Recherches
    Titre des travaux : "Phénomènes de propagation en dynamique des populations".

  • Le 28 janvier 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Ludovic Marquis - Exposé reporté
    Reporté

  • Le 28 janvier 2022 à 14:00
  • Séminaire de Théorie des Nombres
    En visio
    Andrea Di Lorenzo Humboldt\, Berlin
    Integral Chow ring of moduli of stable 1-pointed curves of genus two
    Moduli of curves play a prominent role in algebraic geometry. In particular, their rational Chow rings have been the subject of intensive research in the last forty years, since Mumford first investigated the subject. There is also a well defined notion of integral Chow ring for these objects: this is more refined, but also much harder to compute. In this talk I will present the computation of the integral Chow ring of moduli of stable 1-pointed curves of genus two, obtained by using a new approach to this type of questions (joint work with Michele Pernice and Angelo Vistoli).
  • Le 1er février 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Albert Mas Universitat Politècnica de Catalunya
    Spectral analysis of a confinement model in relativistic quantum mechanics
    In this talk we will focus on the Dirac operator on domains of R^3 with confining boundary conditions of scalar and electrostatic type. This operator is a generalization of the MIT-bag operator, which is used as a simplified model for the confinement of quarks in hadrons that has interested many scientists in the last decades. It is conjectured that, under a volume constraint, the ball is the domain which has the smallest first positive eigenvalue of the MIT-bag operator. I will describe our results -in collaboration with N. Arrizabalaga (U. País Vasco), T. Sanz-Perela (U. Autónoma de Madrid), and L. Vega (U. País Vasco and BCAM)- on the spectral analysis of the generalized operator. I will discuss on the parameterization of the eigenvalues, their symmetry and monotonicity properties, the optimality of the ball for large values of the parameter, and the connection to boundary Hardy spaces.
  • Le 2 février 2022 à 14:00
  • Soutenance de thèse
    Salle de conférence - Liryc - Pessac
    Bachar TARAF
    Sujet : "Modélisation mathématiques de l'activité de la mitochondrie cardiaque". Directeur de thèse : Yves Coudière, co-directeur : Michael Leguebe

  • Le 3 février 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Fabrice Grela
    Minimax detection and localisation of an abrupt change in a Poisson process
    Considering a Poisson process observed on a bounded, fixed interval, we are interested in the problem of detecting an abrupt change in its distribution, characterized by a jump in its intensity. Formulated as an off-line change-point problem, we address two questions : the one of detecting a change-point and the one of estimating the jump location of such change-point. This study aims at proposing a non-asymptotic minimax testing set-up, first to construct a minimax and adaptive detection procedure and then to give a minimax study of a multiple testing procedure designed for simultaneously detect and localise a change-point.
  • Le 3 février 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Zoom
    Antoine Zurek Université de Technologie de Compiègne
    [Séminaire CSM] Existence of traveling wave solutions for the Diffusion Poisson Coupled Model: a computer-assisted proof
    In France one option under study for the storage of high-level radioactive waste is based on an underground repository. More precisely, the waste shall be confined in a glass matrix and then placed into cylindrical steel canisters. These containers shall be placed into micro-tunnels in the highly impermeable Callovo-Oxfordian claystone layer at a depth of several hundred meters. The Diffusion Poisson Coupled Model (DPCM) aims to investigate the safety of such long term repository concept by describing the corrosion processes appearing at the surface of carbon steel canisters in contact with a claystone formation. It involves drift-diffusion equations on the density of species (electrons, ferric cations and oxygen vacancies), coupled with a Poisson equation on the electrostatic potential and with moving boundary equations. So far, no theoretical results giving a precise description of the solutions, or at least under which conditions the solutions may exist, are avalaible in the literature. However, a finite volume scheme has been developed to approximate the equations of the DPCM model. In particular, it was observed numerically the existence of traveling wave solutions for the DPCM model. These solutions are defined by stationary profiles on a fixed size domain with interfaces moving at the same velocity. The main objective of this talk is to present how we apply a computer-assisted method in order to prove the existence of such traveling wave solutions for the system. This approach allows us to obtain for the first time a precise and certified description of some solutions. This work is in collaboration with Maxime Breden and Claire Chainais-Hillairet.
  • Le 3 février 2022 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Sophie Grivaux Lille
    Méthodes de Baire pour le Problème du sous-espace invariant
    Etant donné un espace de Banach séparable $X$ de dimension infinie, on peut considérer sur l'algèbre $\mathcal{B}(X)$ des opérateurs linéaires continus sur $X$ plusieurs topologies naturelles qui font de la boule unité fermée $B_1(X)=\{T\in\mathcal{B}(X);||T||\le 1\}$ un espace Polonais, c'est-à-dire un espace séparable et complètement métrisable. Dans cet exposé, je présenterai quelques résultats concernant les propriétés "typiques" au sens de Baire des opérateurs de $B_1(X)$ pour ces topologies quand $X$ est un espace $\ell_p$. Notre motivation principale pour cette étude est liée au Problème du sous-espace invariant, qui concerne l'existence de sous-espaces fermés invariants non-triviaux pour les opérateurs sur les espaces de Banach. Ainsi, il est intéressant d'essayer de déterminer si une contraction "typique" sur un espace $\ell_p$ a un sous-espace invariant non-trivial (ou pas). Cet exposé sera basé sur un travail joint avec Etienne Matheron et Quentin Menet.
  • Le 4 février 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Jérôme Bertrand Toulouse
    Stabilité du spectre et du diamètre observable pour des espaces CD(1, $infty$).
    Je présenterai l'analogue de résultats classiques de géométrie riemannienne concernant des variétés de courbure positive. Plus précisément, une variété compacte, sans bord, de dimension fixée et de courbure positive (i.e dont la courbure de Ricci est supérieure à celle de la sphère canonique) a sa première valeur propre du laplacien et son diamètre contrôlés par ceux de la sphère canonique. Par ailleurs, la valeur extrémale du bas du spectre ou du diamètre caractérise la sphère canonique parmi ces variétés de courbure positive et ces inégalités sont "stables". Dans cet exposé, l'espace modèle n'est plus la sphère canonique de dimension donnée mais son analogue "de dimension infinie" : l'espace gaussien. Je présenterai des résultats de stabilité concernant le bas du spectre ainsi que le diamètre observable, qui est l'analogue naturel du diamètre dans ce cadre où les variétés ne sont pas nécessairement compactes. Il s'agit d'un travail en collaboration avec Max Fathi.
  • Le 4 février 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Farrell Brumley Paris Nord
    La conjecture de mélange de Michel--Venkatesh
    Les problèmes de Linnik, résolus par Duke il y a une trentaine d'années, portent sur l'équirépartition des orbites toriques de grand discriminant dans les espaces homogènes associés au groupe des unités des algèbres de quaternions. L'exemple le plus concret est celui de la répartition uniforme des points entiers sur la sphère, parfois appelés points de Linnik (on peut également penser aux points CM sur la courbe modulaire). La résolution complète des problèmes de Linnik, achevée par Michel et Venkatesh, a marqué une période d'échange fructueuse entre la théorie ergodique et les formes automorphes. Par leur description comme orbite torique, les points de Linnik reçoivent une action transitive du groupe de Picard d'un ordre quadratique. Dans les actes de l'ICM en 2006, Michel et Venkatesh proposent une conjecture, dite ``de mélange”, qui mesure la complexité de cette action, et qui se traduit par un énoncé d'équirépartition sur le groupe produit G x G; il s'agit donc d'un raffinement quadratique des problèmes de Linnik. Après avoir expliqué la progression de ces idées, j'expliquerai une preuve de la conjecture, conditionnelle sous l'hypothèse de Riemann généralisée, qui fait intervenir un joli mélange d'objets en théorie analytique des nombres: les formes automorphes et leurs périodes, un point de vue probabiliste sur le comportement des valeurs spéciales des fonctions L en familles, ainsi que les valeurs moyennes des fonctions multiplicatives. Travail en commun avec Valentin Blomer et Ilya Khayutin.
  • Le 7 février 2022
  • BLOC NOTES
    Bureau 225
    La Cellule Informatique
    De nouveaux horaires d'accueil sont affichés porte 225 et sur le site web
    Visitez la page https://www.math.u-bordeaux.fr/imb/cellule/
  • Le 8 février 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Elisa Lorenzo Garcia Université de Neuchâtel
    Reduction type of hyperelliptic curves in terms of the valuations of their invariants.
    In this talk we will first review the classical criteria to determine the (stable) reduction type of elliptic curves (Tate) and of genus 2 curves (Liu) in terms of the valuations of some particular combinations of their invariants. We will also revisit the theory of cluster pictures to determine the reduction type of hyperelliptic curves (Dokchitser's et al.). Via Mumford theta constants and Takase and Tomae's formulas we will be able to read the cluster picture information by looking at the valuations of some (à la Tsuyumine) invariants in the genus 3 case. We will also discuss the possible generalization of this strategy for any genus and some related open questions.
  • Le 8 février 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Yann Chaubet ENS Paris
    Séries de Poincaré pour les surfaces à bord
    Dans cet exposé, je parlerai de certaines séries de Poincaré qui comptent des arcs géodésiques reliant deux points sur une surface à courbure négative et à bord totalement géodésique. J'expliquerai comment obtenir un prolongement méromorphe à tout le plan complexe pour ces séries ; les pôles de ces fonctions sont contenus dans le spectre de résonances du flot géodésique (résonances de Pollicott-Ruelle). Enfin, je montrerai que la valeur en zéro de ces fonctions coïncide avec l'inverse de la caractéristique d'Euler de la surface.
  • Le 8 février 2022 à 13:00
  • Direction
    Salle de Conférences
    -
    Le conseil scientifique et le conseil de laboratoire de l'IMB se réuniront avec le conseil d'UF MI
    L'ordre du jour sera le suivant : Information et discussion sur la disparition des avancements de grade nationaux, le repyramidage, le nouveau référentiel indemnitaire des enseignants-chercheurs, l'éméritat.
  • Le 9 février 2022 à 14:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Salle 1
    Daniil Khachai\, Ph.D student\, Optimal team
    Precedence Constrained Generalized Traveling Salesman Problem: Polyhedral Structure and Branch-and-Cut Algorithm
    The Precedence Constrained Generalized Traveling Salesman Problem (PCGTSP) is an extension of the well-known Generalized Traveling Salesman Problem (GTSP), where feasible tours are restricted to visit all the clusters with respect to some given partial order. Unlike the GTSP, to the best of our knowledge, the PCGTSP is studied rather weakly both in terms of polyhedral theory and algorithms' design and implementation. In this paper, by extending of the seminal Fischetti's inductive approach, we establish dimension of the PCGTSP polytope and prove sufficient conditions that allow us to lift the facet-inducing inequalities proposed by E.Balas for the Precedence Constrained Asymmetric TSP polytope to the case of PCGTSP. Relying on these theoretical results, we design the first branch-and-cut algorithm for the PCGTSP and implement it in the context of the Gurobi user callbacks framework. Results of the numerical evaluation against the public PCGTSPLIB benchmark library show that proposed algorithm outperforms both the state-of-the-art MIP solver Gurobi with default setting of cutting planes and the known branch-and-bound and dynamic programming algorithms for PCGTSP, even in the case, where all competing algorithms are equipped with the same MIP-start solution.
  • Le 10 février 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Claire Delplancke
    Un algorithme primal-dual stochastique et ses applications à la reconstruction d'images pour la tomographie à émission de positrons
    L'algorithme SPDHG (Stochastic Primal-Dual Hybrid Gradient) est une version stochastique de l'algorithme PDHG (Primal-Dual Hybrid Gradient) développé par Chambolle et Pock, utilisé dans le cadre de problèmes inverses où le terme d'attache aux données et le régulariseur sont convexes mais pas nécessairement lisses. Grâce à sa composante randomisée, SPDHG permet de ne réaliser que des évaluations partielles de l'opérateur direct et de son adjoint. Cela en fait un algorithme particulièrement adapté à la tomographie à émission de positrons (PET), où le principal frein à l'adoption pratique de méthodes itératives sophistiquées est le coût computationnel des projections. Je présenterai un résultat de convergence pour SPDHG ainsi que des applications, en particulier liées à la question du choix du pas, sur des jeux de données PET réels et simulés.
  • Le 10 février 2022 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    S. Kupin\, IMB\, Université de Bordeaux
    Sur les asymptotiques spectrales d'opérateurs de Toeplitz compacts d'une certaine classe sur les espaces de Bergman

  • Le 11 février 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Vladimiro Benedetti Dijon
    Automorphismes de sections linéaires de Grassmanniennes
    Il s'agit d'un travail en commun avec L. Manivel. Etant donnée une Grassmannienne complexe généralisée, on étudie les sections hyperplanes linéaires de son plongement minimal. En particulier, on montre que, sauf des cas bien compris, tous les automorphismes d'une section lisse s'étendent en un automorphisme de la Grassmannienne ambiante. Pour obtenir ce résultat, on étudie les espaces linéaires et les quadriques contenues dans la Grassmannienne et dans la section hyperplane.
  • Le 11 février 2022 à 16:15
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Zoom
    Fayçal A. Touzout\, INP Grenoble Génie Industriel et G-SCOP
    Time-dependent inventory routing problem: mathematical formulations and solving approaches
    The time-dependent inventory routing problem (TD-IRP) is an extension of the IRP on its routing component. It considers the travelling time between two locations as no longer constant but depending on the departure time. In this presentation, we propose four mathematical formulations for the TD-IRP inspired by the time-dependent travelling salesman (TD-TSP) and vehicle routing problems literature. The difference between these formulations lies in the way they enforce the FIFO property by discretising the time in different manners and using different forms of travelling time functions. An exact branch-and-cut algorithm is proposed to assess and compare the formulations on a new generated benchmark. Moreover, based on the structure of optimal TD-IRP solutions, a matheuristic that decomposes the problem to an affectation problem first and a set of TD-TSPs second is proposed. Zoom link: https://u-bordeaux-fr.zoom.us/j/81481860493?pwd=NE51REJqaDZ1Z0RYdS9tYWJQaENKZz09
  • Le 11 février 2022 à 17:15
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Zoom
    Céline Comte\, l'Université Technologique d'Eindhoven Pays-Bas
    Stochastic Dynamic Matching in Graphs
    Paired kidney donation gives rise to complex matching problems for which an optimal solution is still unknown. In this presentation, we will consider such a matching problem in which items of different classes, representing incompatible donor-receiver couples, arrive according to independent Poisson processes, and compatibilities between items are described by an undirected graph on their classes. We will first focus on a specific matching policy called first-come-first-matched. Our main contribution is the observation that, under this policy, the matching model is equivalent to an order-independent (loss) queue, a model that has recently gained momentum in the queueing-theory literature. Using this equivalence, we will formulate simpler proofs for several existing results and derive closed-form expressions for performance metrics like the waiting time of a class and the matching rate along an edge. In a second time, we will use results from graph theory and linear algebra to characterize the set of achievable matching rates under any matching policy. Zoom link : https://u-bordeaux-fr.zoom.us/j/81481860493?pwd=NE51REJqaDZ1Z0RYdS9tYWJQaENKZz09
  • Le 18 février 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Gregorio Baldi IHES
    The Hodge locus
    I will report on a joint work with Klingler and Ullmo. Given a polarizable variation of Hodge structure on a smooth quasi projective variety S (e.g. the one associated to a family of pure motives over S), Cattani, Deligne and Kaplan proved that its Hodge locus (the locus of closed points of S where exceptional Hodge tensors appear) is a *countable* union of closed algebraic subvarieties of S. In this talk I will discuss when this Hodge locus is actually algebraic. If time permits I will explain how such algebraicity result complements the Lawrence-Venkatesh method.
  • Le 25 février 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Vacances d'Hiver

  • Le 28 février 2022
  • Direction
    Salle de Conférences
    -
    Mini AAP missions : envoyez votre projet à Vincent Koziarz avant le 4 mars

  • Le 1er mars 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Paul Alphonse ENS Lyon
    Propriétés de régularisation et de contrôlabilité à zéro des équations d'évolution quadratiques à travers la décomposition polaire.
    Dans cet exposé, on s'intéressera aux équations d'évolution associées aux opérateurs différentiels quadratiques non-autoadjoints. D'une part, on expliquera comment les phénomènes de non-commutation entre les parties autoadjointe et anti-autoadjointe de ces opérateurs permettent aux équations d'évolution étudiées de jouir de propriétés de régularisation et de localisation dans certaines directions spécifiques de l'espace des phases, que l'on décrira précisément. D'autre part, on constatera que les propriétés de contrôlabilité à zéro de ces équations sont reliées à une notion d'épaisseur en moyenne associée à la partie anti-autoadjointe des opérateurs mis en jeu. Ces différentes propriétés seront déduites d'une description fine de la décomposition polaire des opérateurs d'évolution associés aux équations étudiées. Une application aux équations d'Ornstein-Uhlenbeck généralisées, dont les équations de Kolmogorov et de Kramers-Fokker-Planck avec potentiel externe quadratique sont des cas particuliers, sera donnée. Il s'agit de travaux en commun avec J. Bernier (LMJL) et J. Martin (IRMAR).
  • Le 3 mars 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Wasilij Barsukow
    [Séminaire CSM] Active Flux: a new numerical method for hyperbolic conservation laws
    A conservation laws generically develops discontinuities in finite time. For convergence to its weak solution, a numerical method needs to be conservative. A popular way to derive such methods (due to Godunov) is to introduce discontinuities at every cell interface (reconstruction step), and to evolve such step-wise data over a short period of time. Godunov's approach thus introduces discontinuities everywhere in the solution. In view of the big effort associated with grid refinement (particularly in multi-d), efforts are ongoing to guarantee properties of numerical solutions for coarse grids already. It is not surprising that flow phenomena different from shocks (low Mach limit, vortices, ...) are not well approximated by standard Godunov methods on coarse grids. This observation has sparked the development of Active Flux, a numerical method whose degrees of freedom are cell averages and, additionally, point values located at cell interfaces and shared by adjacent cells. The evolution of the averages is conservative, and the method is able to resolve shocks correctly, despite a globally continuous reconstruction. Its centerpiece is a short-time evolution of continuous data. The talk will describe this numerical method, in particular its application to nonlinear conservation laws, as well as recent developments.
  • Le 3 mars 2022 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Martin Leguil U. Picardie
    Mesures u-Gibbs & SRB des difféomorphismes d'Anosov du tore de dimension trois
    Pour un système dynamique ``chaotique'', les mesures physiques/SRB jouent un rôle central dans la description de la statistique suivie par la plupart des orbites. Un angle d'attaque pour la compréhension de ces mesures consiste en l'étude d'une autre classe de mesures, a priori différentes, mais intimement liées aux mesures SRB : les mesures u-Gibbs. Dans un travail en commun avec Sébastien Alvarez, Davi Obata et Bruno Santiago, nous explorons les liens entre ces deux classes de mesures pour une famille de difféomorphismes d'Anosov du tore de dimension 3, et montrons que sous une certaine condition géométrique (non-intégrabilité conjointe des distributions stable/instable), ces deux classes de mesures coïncident ; en particulier, il existe une unique mesure u-Gibbs dans ce cas.
  • Le 3 mars 2022 à 15:30
  • Le Colloquium
    Salle de Conférences
    Colin Guillarmou Paris Saclay
    Sur la théorie conforme des champs en dimension 2
    La théorie quantique des champs est un vaste sujet qui mathématiquement reste assez mystérieux. En dimension 2, certaines théories des champs ont des symétries conformes dues aux transformations holomorphes/anti-holomorphes du plan. Les physiciens ont développé dans les années 80 une approche, appelée « bootstrap conforme » pour calculer explicitement les fonctions de corrélations sur les surfaces de Riemann à l'aide d'outils algébriques et de théorie de représentation d'algèbre de Lie de dimension infinie (Virasoro). Du point de vue mathématique, la réalisation du bootstrap conforme est restée obscure jusuqu'ici. Dans cet exposé, on expliquera comment pour un modèle concret, appelé théorie des champs de Liouville (qui est une théorie de surfaces aléatoires), on arrive à donner un sens probabiliste aux fonctions de correlations, et comment en combinant des outils d'analyse et de probabilité, on peut montrer rigoureusement le bootstrap conforme et donner des formules aux fonctions de correlations, ce qui montre que la théorie est en quelque sorte « intégrable ». L'exposé se focalisera sur quelques idées, sans entrer dans les détails techniques. Une partie plus technique sera exposée dans le séminaire du vendredi matin en analyse spectrale et scattering. Il s'agit d'un travail en collaboration avec A. Kupiainen, R. Rhodes et V. Vargas.
  • Le 4 mars 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Nguyen-Thi Dang Heidelberg
    Équidistribution et comptage des tores plats périodiques
    On se place dans l'espace des chambres de Weyl d'un espace symétrique de rang supérieur, ce qui correspond dans le cas d'une surface hyperbolique à son fibré unitaire tangent. Dans le cas compact ainsi que pour les orbivariétés qui sont des revêtements finis de SL(d,ZZ)\SL(d,IR), l'espace des chambres de Weyl contient des tores plats. Cela correspond, dans le cas des surfaces hyperboliques aux orbites fermées du flot géodésique. Je vais vous présenter un résultat d'équidistribution et de comptage de ces tores plats périodiques, obtenus en collaboration avec Jialun Li.
  • Le 4 mars 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Lucile Devin Université du Littoral
    Disparité dans la répartition des premiers de Gauss
    Etant donné un premier congru à 1 modulo 4, on peut l'écrire de façon unique comme une somme de deux carrés d'entiers positifs $a^2 +4b^2$, l'un pair et l'autre impair. Que peut-on dire de la répartition de l'entier impair a modulo 4 ? Une conséquence de résultats de Hecke est que les classes 1 et 3 sont asymptotiquement autant représentées. Cependant, les données sont surprenantes, il semble qu'il y a plus de premiers avec a congru à 1 modulo 4. On donnera un argument heuristique basé sur la généralisation de l'approche de Rubinstein et Sarnak des biais de Chebyshev pour expliquer cette observation.
  • Le 4 mars 2022 à 14:00
  • Soutenance de thèse
    salle Ada Lovelace (Inria)
    Sixtine MICHEL
    Sujet : "Méthodes éléments finis pour la simulation d'écoulements en eaux peu profondes : Analyse, modélisation et applications à l'hydrodynamique côtière". Directeur de thèse : Mario Ricchiuto.

  • Le 8 mars 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Elena Berardini Télécom Paris
    Calcul d'espaces de Riemann-Roch pour les codes géométriques
    Les codes de Reed-Solomon sont largement utilisés pour représenter des données sous forme de vecteurs, de sorte que les données peuvent être récupérées même si certaines coordonnées des vecteurs sont corrompues. Ces codes ont de nombreuses propriétés. Leurs paramètres sont optimaux. Ils permettent de reconstruire des coordonnées qui ont été effacées. Ils sont compatibles avec l'addition et la multiplication de données. Néanmoins, ils souffrent de certaines limitations. Notamment, la taille de stockage des coordonnées des vecteurs augmente de manière logarithmique avec le nombre de coordonnées. Les codes dits géométriques généralisent les codes de Reed-Solomon en bénéficiant des mêmes propriétés, tout en étant libres de ces limitations. Par conséquent, l'utilisation de codes géométriques apporte des gains de complexité, et s'avère utile dans plusieurs applications telles que le calcul distribué sur les secrets et les preuves zero-knowledge. Les codes géométriques sont construits en évaluant des familles de fonctions, appelées espaces de Riemann-Roch, en les points rationnels d'une courbe. Il s'ensuit que le calcul de ces espaces est crucial pour la mise en œuvre des codes géométriques. Dans cet exposé, je présenterai un travail récent en collaboration avec S. Abelard, A. Couvreur et G. Lecerf sur le calcul effectif des bases des espaces de Riemann-Roch de courbes. Après avoir révisé l'état de l'art sur le sujet, je discuterai des idées à la base de notre algorithme, en particulier la théorie de Brill-Noether et l'utilisation des expansions de Puiseux. Les courbes utilisées dans la construction des codes géométriques sont pour la plupart limitées à celles pour lesquelles les bases de Riemann-Roch sont déjà connues. Ce nouveau travail et ceux qui suivront, permettront la construction de codes géométriques à partir de courbes plus générales.
  • Le 8 mars 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Vincent Duchêne Rennes
    Il faut sauver le modèle WW2
    Nous verrons pourquoi le problème de Cauchy associé à un modèle quadratique pour la propagation des vagues est selon toute vraisemblance mal posé pour des données initiales à régularité finie (et ce malgré le caractère bien posé du système complètement non-linéaire dont il est issu). Mais l'histoire finit bien : fort de cette analyse, nous verrons également comment rectifier le dit modèle afin qu'il offre toute satisfaction. Il s'agit d'un travail en collaboration avec Benjamin Melinand (Paris Dauphine).
  • Le 10 mars 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Reda Chhaibi
    Free Probability, Newton lilypads and hyperbolicity of Jacobians as a solution to the problem of tuning the architecture of neural networks
    Gradient descent during the learning process of a neural network can be subject to many instabilities. The spectral density of the Jacobian is a key component for analyzing robustness. Following the works of Pennington et al., such Jacobians are modeled using free multiplicative convolutions from Free Probability Theory (FPT). We present a reliable and very fast method for computing the associated spectral densities. This method has a controlled and proven convergence. Our technique is based on an homotopy method: it is an adaptative Newton-Raphson scheme which chains basins of attraction. We find contiguous lilypad-like basins and step from one to the next, heading towards the objective. In order to demonstrate the applicability of our method we show that the relevant FPT metrics computed before training are highly correlated to final test losses – up to 85%. We also give evidence that a very desirable feature for neural networks is the hyperbolicity of their Jacobian at initialization.
  • Le 10 mars 2022 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Stéphane Jaffard Paris Est-Créteil
    Analyse multifractale multivariée: de nouvelles interactions entre analyse mathématique et traitement du signal.
    L'analyse multifractale fournit des outils pour mesurer les fluctuations de régularité des fonctions en mesurant leur ``spectre multifractal'' (dimensions fractionnaires des ensembles de points ayant un exposant de régularité donné). Les méthodes d'ondelettes fournissent des outils robustes pour effectuer cette estimation et elles sont devenues un outils classique de classification et de sélection de modèles en traitement du signal. Un nouveau champ d'application s'est ouvert avec des récents besoins d'analyse de collections de signaux captés simultanément (analyse multivariée). Le but de l'exposé est de décrire les fondations mathématiques d'une analyse multifractale multivariée, permettant d'estimer la façon dont les ensembles de singularités de plusieurs fonctions sont corrélés. Nous montrerons les nouveaux problèmes d'analyse fonctionnelle que ces méthodes posent, et nous illustrerons ces résultats sur des exemples issus de modèles mathématiques employés en traitement du signal ainsi que sur des applications à des données physiologiques captées lors de marathons.
  • Le 11 mars 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Charles Fougeron P13
    Formalisme thermodynamique pour la renormalisation des surfaces de translation.
    La dynamique des surfaces de translations est essentiellement comprise à travers celle de leur renormalisation par le flot de Teichmüller. Ce flot admet une mesure invariante naturelle, équivalente à Lebesgue, nommée mesure de Masur-Veech. Après avec introduit quelques notions de formalisme thermodynamique, j'expliquerai comment cet outil peut être utilisé avec l'induction de Rauzy-Veech pour étudier le flot de Teichmüller. J'esquisserai une preuve du fait que la mesure de Masur-Veech est l'unique mesure d'entropie maximale pour ce flot. Puis je terminerai avec d'autres applications sur les dimensions fractales de sous-espaces de paramètres particuliers.
  • Le 11 mars 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Kazim Buyukboduk University College Dublin
    Heegner cycles in families and Gross-Zagier at critical slope
    I will report on joint work with R. Pollack and S. Sasaki, where we prove a p-adic Gross–Zagier formula for critical slope (but non-\theta-critical) p-adic L-functions. Besides the strategy for our proof, which involves interpolation of Heegner cycles in Coleman families, I will illustrate two applications. The first is the proof of a conjecture of Perrin-Riou, which predicts an explicit (p-adic) construction of a generator of the Mordell–Weil group of an elliptic curve of analytic rank one. The second is a BSD formula for elliptic curves of analytic rank one.
  • Le 11 mars 2022 à 16:00
  • Le séminaire des doctorant·es
    Salle de Conférences
    Francesco Stocco
    Classical authentication in Quantum Key Distribution
    After a brief introduction to cryptography, we will focus on the need for authentication which is the obvious requirement that prevents fraudulent incoming messages to be accepted as genuine. This topic will be discussed also in the context of Quantum Key Distribution (QKD), which is an innovative technology aiming to realize a cryptographic key exchange based on quantum physics laws. QKD has become so important in recent years since it represents a possible solution to the threat of quantum computers against most used current cryptographic schemes.
  • Le 15 mars 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Pierrick Dartois Corps des mines\, Rennes 1
    Cryptanalyse du protocole OSIDH
    Oriented Supersingular Isogeny Diffie-Hellman (OSIDH) est un échange de clé post-quantique proposé par Leonardo Colò et David Kohel en 2019. La construction repose sur l’action du groupe de classe d’un ordre quadratique imaginaire sur un espace de courbes elliptiques supersingulières et peut donc être vue comme une généralisation du célèbre échange de clé à base d’isogénies CSIDH. Cependant, OSIDH est très différent de CSIDH d’un point de vue algorithmique parce qu’OSIDH utilise des groupes de classe plus structurés que CSIDH. Comme l’ont reconnu Colò et Kohel eux-mêmes, cela rend OSIDH plus vulnérable aux attaques. Pour contourner cette faiblesse, ils ont proposé une façon ingénieuse d’effectuer l’échange de clé en échangeant de l’information sur l’action du groupe de classe au voisinage des courbes publiques, et ont conjecturé que cette information additionnelle n’impacterait pas la sécurité.
  • Le 15 mars 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Bilbao-Bordeaux-Toulouse seminar: Didier Bresch Chambéry
    Mean field limits and singular kernels: some recent advances
    In this talk, I will present mathematical justifications for mean field limits with singular nuclei based on the control of appropriate weights. These weights must be dynamic and fully relevant to the problem under consideration. We will explain some recent results obtained with Pierre-Emmanuel Jabin (Penn-State) and initially with Z. Wang (Peking Univ) then in a second time with J. Soler (Granada Univ.) respectively around systems of order 1 and then around systems of order 2. This idea of ​​well-adapted dynamical weights finds for us its origin in a joint work with P.-E. Jabin on compressible Navier-Stokes.
  • Le 15 mars 2022 à 13:15
  • Direction
    Salle de Conférences
    -
    Conseil de laboratoire commun avec le conseil scientifique
    L'ordre du jour sera le suivant :1) Approbation du compte-rendu du conseil du 4 janvier ;2) Quelques informations : remplacement d'un directeur adjoint, accord cadre INRIA-CNRS, ... ;3) Exposés de prospective scientifique par Guilhem Castagnos, Sylvain Ervedoza et Jérémie Bigot.
  • Le 17 mars 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Annabelle Collin (Bordeaux INP) & Mélanie Prague (Inria)
    [Séminaire CSM] Using population based Kalman estimator to model COVID-19 epidemic in France: estimating the effects of non-pharmaceutical interventions on the dynamics of epidemic
    The COVID-19 pandemic is a global pandemic of coronavirus disease caused by SARS-CoV-2. Governments are taking a wide range of non-pharmaceutical interventions (NPIs) in response to the COVID-19 outbreak. These measures include interventions as stringent as strict lockdown to school closings, bars and restaurants closings, curfews and barrier gesture such as masks wearing and social distanciation. Distinguish the effectiveness of each NPI is crucial to inform future preparedness response plans. We propose an approach which focuses on French data and combines estimation of epidemics dynamics models and estimation of NPIs effectiveness. We develop a multi-level model of the French COVID-19 epidemic at the regional level relying on a global extended Susceptible-Exposed-Infectious-Recovered (SEIR) model as a simplified representation of the average epidemic process. We estimate the transmission rate with a population Kalman filter using hospitalization data from the SIVIC database over a period of one year (March 2020 to 2021). Then we infer the linear relationship between transmission rate and NPIs introduction allowing to estimate the effect of non-pharmaceutical interventions adjusting for weather, vaccination and apparition of more transmissible variants.
  • Le 17 mars 2022 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Kévin Le Balc'h LJLL
    Espace atteignable pour des équations de la chaleur perturbées.
    Dans cet exposé, nous montrons que l'équation de la chaleur génère un C^0 semi-groupe sur son espace atteignable. Autrement dit, restreinte à son espace atteignable, l'équation de la chaleur est un système de contrôle exactement contrôlable. Des arguments perturbatifs standards nous permettent alors de décrire l'espace atteignable de l'équation de la chaleur perturbée. Ces perturbations sont de différente nature : il peut s'agir de petits potentiels, de termes non locaux ou des semi-linéarités. Il s'agit d'un travail en commun avec Sylvain Ervedoza et Marius Tucsnak.
  • Le 17 mars 2022 à 15:30
  • Le Colloquium
    Salle de Conférences
    Gabriel Peyré CNRS et Ecole Normale Supérieure
    Le transport optimal pour l'apprentissage machine
    Le transport optimal est un outil naturel pour comparer de manière géométrique des distributions de probabilité. Il trouve des applications à la fois pour l'apprentissage supervisé (pour la classification) et pour l'apprentissage non supervisé (pour entrainer des réseaux de neurones génératifs). Le transport optimal souffre cependant de la "malédiction de la dimension", le nombre d'échantillons nécessaires pouvant croitre exponentiellement vite avec la dimension. Dans cet exposé, j'expliquerai comment tirer parti de techniques de régularisation entropique afin d'approcher de façon rapide le transport optimal et de réduire l'impact de la dimension sur le nombre d'échantillons nécessaires. Plus d'informations et de références peuvent être trouvées sur le site de notre livre "Computational Optimal Transport" https://optimaltransport.github.io/
  • Le 18 mars 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Bertrand Deroin Cergy-Pontoise
    Invariants de Toledo des représentations quantiques
    Les représentations quantiques forment une famille de représentations des groupes modulaires des surfaces à valeurs dans les groupes pseudo-unitaires PU(p,q) qui envoient les twists de Dehn sur des éléments d'ordre fini. Les invariants de Toledo de ces dernières, s'étendent alors à des classes dans la cohomologie de la compactification de Deligne-Mumford de l'espace des modules des courbes, et définissent des théories cohomologiques des champs. Nous expliciterons ces classes dans certains cas incluant les représentations quantiques de Fibonacci, ce qui nous permettra de construire des structures hyperboliques complexes sur certains espaces de modules. Il s'agit d'un travail en collaboration avec Julien Marché.
  • Le 18 mars 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Fabio Bernasconi EPFL Lausanne
    Sur les relèvements des surfaces globalement F-scindée
    Étant donné une variété projective X sur un corps algébriquement clos k de caractéristique positive, c'est intéressante comprendre les éventuelles obstructions géométriques et arithmétiques à l'existence d'un relèvement en caractéristique nulle. Motivée par le cas des variétés abéliennes et des surfaces K3, on conjecture que les variétés de Calabi-Yau ordinaires devraient admettre un relèvement sur l'anneau des vecteurs de Witt W(k). Je rapporterai un travail conjoint avec I. Brivio, T. Kawakami et J. Witaszek où nous montrons que les surfaces globalement F-scindées (qui peuvent être pensée comme des surfaces log Calabi-Yau qui se comportent arithmétiquement bien) sont relevable sur W(k). Comme corollaire, on déduit la borne de Bogomolov sur le nombre de points singuliers des surfaces klt del Pezzo F-scindées.
  • Le 21 mars 2022
  • BLOC NOTES
    Bureau 225
    Accueil de la Cellule informatique
    Modifications pour la semaine du 21 au 25 mars. Pensez à anticiper la récupération des matériels empruntés...
    - l'accueil bureau 225 sera fermé : s'adresser au bureau 104 pour le retrait des matériels empruntés (bureau 104 fermé mercredi 23 après-midi).
  • Le 22 mars 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Jean Kieffer Harvard University
    Schémas de Newton certifiés pour l'évaluation des fonctions thêta en petit genre
    Les fonctions thêta permettent de relier les points de vue algébrique et analytique dans l'étude des variétés abéliennes: ce sont des formes modulaires de Siegel qui fournissent des coordonnées sur ces variétés et leurs espaces de modules. Rendre ce lien effectif nécessite un algorithme efficace d'évaluation de ces fonctions thêta en un point. Dupont, dans sa thèse (2006), a décrit un algorithme heuristique basé sur la moyenne arithmético-géométrique (AGM) et un schéma de Newton pour évaluer certaines fonctions thêta en genre 1 et 2 en temps quasi-linéaire en la précision. Le but de cet exposé est de montrer que l'on peut en fait obtenir un algorithme certifié dont la complexité est uniforme. Je discuterai également des obstacles restants pour généraliser ce résultat en dimension supérieure.
  • Le 22 mars 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Astrid Decoene IMB
    Modélisation et simulation directe de suspensions actives
    Certains micro-organismes ont la capacité de nager dans un fluide visqueux et leur vitesse peut atteindre plusieurs fois leur taille par seconde, malgré le régime de bas nombre de Reynolds dans lequel ils vivent. Cette nage engendre des dynamiques collectives étonnantes; on observe en effet dans ces suspensions, au-delà d'une certaine concentration, une transition vers un mouvement collectif qui ne correspond pas à la simple addition des mouvements individuels. Je présenterai un aperçu de nos travaux sur la modélisation et la simulation de ces suspensions actives, basés sur une représentation de chaque entité au niveau microscopique. Cette approche permet de reproduire les dynamiques collectives à partir d'une description de la dynamique individuelle, et d'étudier numériquement la dépendance de différentes grandeurs macroscopiques par rapport aux paramètres du modèle.
  • Le 23 mars 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Pas de séminaire
    NA
    NA
  • Le 23 mars 2022 à 16:00
  • Le séminaire des doctorant·es
    Salle de Conférences
    Florent Noisette
    Intégrabilité complète de l'équation de Korteweg-de Vries
    l'objectif de cet exposé est de présenter l'article historique de Peter Lax dans lequel il introduit la notion d'intégrabilité complète d'une équation. Ce concept a deux aspects. D'abord, quand il existe une infinité de quantités conservées pour une équation d'évolution donnée, alors ses solitons (solutions remarquables de cette équation) intéragissent de façon simple. Ensuite, dès qu'il existe deux lois de conservation vérifiant certaines conditions pour une équation d'évolution donnée, il existe une procédure algorithmique permettant de calculer un nombre arbitrairement grand de lois de conservations pour cette équation.
  • Le 24 mars 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Antoine Mouzard
    Chemins rugueux, calcul paracontrôlé et ED(P)S
    Dans cet exposé, on présentera les théories des chemins rugueux de Lyons et des chemins contrôlés de Gubinelli, introduites pour la résolution des Équations Différentielles Stochastiques (EDS). On expliquera ensuite comment ces idées ont été étendues à la résolution des Équations aux Dérivées Partielles Stochastiques (EDPS) singulières à l'aide du calcul paracontrôlé. Enfin, on donnera quelques exemples de modèles aléatoires décrits par de telles équations.
  • Le 24 mars 2022 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Bernhard Haak IMB
    Opérateurs de Ritt, leur calcul H^\infty et des estimations de fonctions carrées associés
    Dans cet exposé j'explique la "théorie de Chr. LeMerdy" sur la opérateurs de Ritt, leur calcul H^infty et des estimations de fonctions carrées associés, mais avec de nouvelles preuves, plus courtes, et en gagnant un peu en généralité. L'approche uniformise la théorie entre opérateurs sectoriels, de type "bande spectrale" avec ce petit dernier dans la famille: les opérateurs de Ritt.
  • Le 25 mars 2022 à 10:30
  • Séminaire de Géométrie
    Salle 2
    Pas de séminaire
    Discussion prospective pour l'équipe de géométrie

  • Le 25 mars 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    João Pedro Dos Santos Paris\, Montpellier
    Groupes de Galois pour les équations différentielles sur un trait.
    Dans cet exposé, je parlerai de quelques propriétés des schémas en groupes affines sur un trait R qui apparaissent comme des groupes de Galois différentiels. La théorie de Galois différentielle -- dans le contexte classique -- a pour objectif associer des groupes linéaires aux EDOs. Dès que les équations dépendent d'un paramètre (D-modules sur R), deux théories s'imposent: les schémas en groupes affines, et les catégories tannakiennes. Avec quelques exemples simples, je montrerai comment ces deux théories se rencontrent dans le contexte "D-Galoisien.'' Dans la suite, j'introduirai les éclatements de Néron et "formels" pour donner une idée du type de schémas en groupes qui peuvent jouer un rôle dans la théorie différentielle. Enfin, je parlerai d'une façon importante pour calculer explicitement. Dans la théorie classique, un résultat central, le théorème de Schlesinger, permet le calcul à partir de l'analyse complexe: pour les "singularités régulières" le groupe de Galois est la clôture du groupe de monodromie. J'expliquerai comment obtenir un tel théorème dans le contexte relatif et montrerai que des exemples de schémas en groupes assez exotiques apparaissent naturellement.
  • Le 25 mars 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Alessia Del Grosso Univ Versailles
    [Séminaire CSM] On implicit-explicit well-balanced Lagrange-projection schemes for two-layer shallow water equations
    This work concerns the study of well-balanced Lagrange-projection schemes applied to the two-layer shallow water system. In particular, a formulation of the mathematical model in Lagrangian coordinates is proposed. Based on the acoustic-transport splitting interpretation, we describe an approximate Riemann solver for the acoustic-Lagrangian step. Then, both an explicit and an implicit-explicit method are proposed, where the latter can allow fast simulations in subcritical regimes. Indeed, since the Lagrange-projection splitting entails a decomposition of the (fast) acoustic and (slow) material waves of the model, an implicit approximation of the acoustic equations allows us to neglect the corresponding CFL condition on the time step.
  • Le 28 mars 2022 à 10:00
  • Soutenance de thèse
    salle Ada Lovelace (Inria)
    Elie SOLAI
    Sujet :"Simulation Numérique et Quantification d'Incertitudes pour le Refroidissement par Immersion des Batteries Lithium-ion". Directeur de thèse : Héloïse Beaugendre, co-directeur : Pietro Marco Congedo

  • Le 29 mars 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Andreas Pieper Universität Ulm
    Constructing all genus 2 curves with supersingular Jacobian
    F. Oort showed that the moduli space of principally polarized supersingular abelian surfaces is a union of rational curves. This is proven by showing that every principally polarized supersingular abelian surface is the Jacobian of a fibre of one of the families of genus 2 curves $\pi: \mathcal{C}\rightarrow \mathbb{P}^1$ constructed by L. Moret-Bailly. We present an algorithm that makes this construction effective: Given a point $x\in \mathbb{P}^1$ we compute a hyperelliptic model of the fibre $\pi^{-1}(x)$. The algorithm uses Mumford's theory of theta groups to compute quotients by the group scheme $\alpha_p$.
  • Le 29 mars 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Stéphane Brull IMB
    Etude d'un système bitempérature non conservatif en 2 dimensions..d'espace et application en physique des plasmas...
    Cet exposé est dédié à l'approximation du système d'Euler bitempérature en deux dimensions d'espace. Ce modèle est un système hyperbolique non conservatif décrivant un plasma hors équilibre situé en régime quasi-neutre. La non-conservativité est due à des produits vitesse-gradients de pression et à des termes sources. Le système ne peut s'écrire sous forme divergentielle. On développe alors un schéma numérique d'ordre 2 en utilisant un modèle de type BGK discret. L'extension à l'ordre 2 est basée sur des subdivisions de cellules pour réaliser une reconstruction affine de la solution. De telles idées ont été développées auparavant dans la littérature des systèmes de loi de conservation. Nous montrons alors comment les étendre à un cadre non conservatif. La méthode est ensuite implémentée et testée.
  • Le 30 mars 2022 à 16:30
  • Le séminaire des doctorant·es
    Salle de Conférences
    Dorian Martino IMJ
    Problème de Plateau et surfaces minimales
    Comment trouver une surface minimisant l'aire parmi une famille de surfaces donnée ? Ce problème a d'abord été posé par Lagrange en 1760, puis a été popularisé par Plateau durant le 19ème siècle en étudiant les bulles de savon et les tensions de surface. En 1930, Douglas et Rado ont été les premiers à apporter une approche générale pour ce problème en généralisant la notion de plus court chemin entre deux points. Douglas a obtenu l'une des premières médailles Fields pour ce travail en 1936. Dans les années 1990, Hélein eu l'idée d'utiliser la notion de repères mobiles qui a grandement simplifié l'étude de la régularité des solutions. Cela permet de vraiment les considérer comme surfaces et de les étudier en tant que telles. Dans cet exposé, je parlerai de l'existence et de la régularité des surfaces minimales, je donnerai une idée de comment les construire et si le temps le permet, je donnerai quelques généralisations.
  • Le 31 mars 2022 à 14:00
  • Soutenance de thèse
    Salle de Conférences
    Yann CABANES
    Sujet : "Apprentissage dans les disques de Poincaré et de Siegel de séries temporelles multidimensionnelles complexes suivant..un modèle autorégressif gaussien stationnaire centré : application à la classification de données audio et de fouillis..radar". Directeur de thèse : Marc Arnaudon. Co-directeur : Jérémie Bigot

  • Le 31 mars 2022 à 14:00
  • Séminaire d'Analyse
    Salle 1
    Robert Deville IMB
    Compositions de trois projections orthogonales...
    Le but de cet exposé est de faire une démonstration complète du résultat suivant, dû à Kopecka, Muller et Paskiewicz. Si H est un espace de Hilbert de dimension infinie et si $z_0\in H\backslash\{0\}$, alors il existe trois sous-espaces fermés $X_1,X_2,X_3$ et $k\in\{1,2,3\}^N\}$ tels que, si (par abus de language) $X_i$ désigne aussi la projection orthogonale de H sur $X_i$, la suite $(z_n)=(X_{k_n}...X_{k_2}X_{k_1}z_0)$ ne converge pas en norme. Un historique des résultats ayant amené à ce théorème sera aussi présenté. (Dans le résumé, N est l'ensemble des entiers naturels).
  • Le 1er avril 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Sébastien Labbé (LaBRI) null
    Induction de Rauzy de Z2-rotations sur le tore et de partitions de Markov associées
    Nous étudierons un système dynamique symbolique deux-dimensionnel donné par le codage d'une Z^2-rotation sur le tore deux-dimensionnel par une partition polygonale bien choisie. En utilisant une notion bidimensionnelle de l'induction de Rauzy, nous démontrerons que la partition est auto-induite. Par conséquent, le système dynamique symbolique est auto-similaire. Nous montrerons qu'il est aussi de type fini et on en déduira que la partition est une partition de Markov pour la Z^2-rotation sur le tore. L'objectif de l'exposé est d'illustrer tranquillement et à la main au tableau le calcul de l'induction de Rauzy pour les Z^2-rotations dans le cas le plus simple et associé au nombre d'or. Les détails de la méthode sont disponibles ici: https://doi.org/10.3934/jmd.2021017
  • Le 1er avril 2022 à 14:00
  • Soutenance de thèse
    salle Ada Lovelace (Inria)
    Oumayma BOUHAMANA null
    "Titre de la thèse :""Méthodes numériques pour la résolution du problème inverse en électrocardiographie dans le cas danomalies structurelles du tissu cardiaque"". Directeur de thèse : Lisl Weynans. Co-directeur : Laura Bear."

  • Le 1er avril 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle 2
    Dorian Berger (Université de Caen) null
    Morphismes étales entre espaces de Berkovich sur Z : critères par fibres et structure locale
    La géométrie de Berkovich a pour avantage de permettre la construction d'espaces analytiques sur un anneau de Banach quelconque. En particulier, on peut construire des espaces analytiques sur Z muni de la valeur absolue usuelle et on obtient dans ce cas des espaces naturellement fibrés en espaces analytiques complexes et p-adiques. Dans cet exposé, on se propose d'étudier les morphismes étales entre de tels espaces, induisant un isomorphisme local entre les fibres complexes et un morphisme étale au sens classique entre les fibres p-adiques. On détaillera plus particulièrement les arguments de restriction à la fibre. Les méthodes utilisées permettent d'obtenir les résultats sur une classe d'anneaux plus générale, comprenant les corps valués complets, les anneaux d'entiers de corps de nombres et les anneaux de valuation discrète.
  • Le 4 avril 2022 à 17:00
  • Manifestations Scientifiques
    Présentation par Elise Goujard\, Pierre Mounoud et Rémi Boutonnet des posters et activités sur les surfaces qu'ils ont élaborés et déjà testés à plusieurs reprises.
    Pause Café 16h30 en salle de détente. null
    Exposé Diffusion lundi 4 avril 17h salle de conférences

  • Le 5 avril 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Damien Robert IMB
    Towards computing the canonical lift of an ordinary elliptic curve in medium characteristic
    Satoh's algorithm for counting the number of points of an elliptic curve $E/\mathbb F_q$ with $q=p^n$ is the fastest known algorithm when $p$ is fixed: it computes the invertible eigenvalue $»$ of the Frobenius to $p$-adic precision $m$ in time $\tilde{O}(p^2 n m)$. Since by Hasse's bound, recovering $\chi_{\pi}$ requires working at precision $m=O(n)$, the point counting complexity is of $\tilde{O}(p^2 n^2)$, quasi-quadratic in the degree $n$.Unfortunately, the term $p^2$ in the complexity makes Satoh's algorithm suitable only for smaller $p$. For medium sized $p$, one can use Kedlaya's algorithm which cost $\tilde{O}(p n^2 m)$ or a variant by Harvey's which cost $\tilde{O}(p^{1/2} n^{5/2} m + n^4 m)$, which have a better complexity on $p$ but a worse one on $n$. For large $p$, the SEA algorithm costs $\tilde{O}(log^4 q)$.In this talk, we improve the dependency on $p$ of Satoh's algorithm while retaining the dependency on $n$ to bridge the gap towards medium characteristic. We develop a new algorithm with a complexity of $\tilde{O}(p n m)$. In the particular case where we are furthermore provided with a rational point of $p$-torsion, we even improve this complexity to $\tilde{O}(p^{1/2} n m)$.This is a joint work with Abdoulaye Maiga.
  • Le 5 avril 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Antti Kupiainen (University of Helsinki) null
    BBT Seminar (visio depuis Bilbao): Renormalisation group and SPDEs
    Non-linear diffusive PDEs driven by space-time white noise require infinite renormalisations to be well posed. I will discuss why this is the case and how the renormalisations can be found by using an idea from quantum field theory, the renormalisation group.
  • Le 5 avril 2022 à 13:30
  • Direction
    Salle 285
    Conseil de Laboratoire
    L'ordre du jour sera le suivant :
    1) Quelques informations générales (laboratoire, département, RIPEC...) ;
    2) Un point financier ;
    3) Début de réflexion sur le plan de gestion des emplois 2023 ;
    4) Les chaires de professeur junior ;
    5) Un projet de création de vidéos par l'équipe de diffusion ;
    6) Questions diverses.
  • Le 7 avril 2022 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Nikolai Nikolski\, IMB\, Université de Bordeaux null
    Transport optimal et plongement de Sobolev pour les mélanges des signes sur les espaces homogènes.
    "Motivé par les distributions des signes des bases de Riesz et des frames dans l'espace L^2, j'utilise la norme de Kantorovich-Rubinstein (de transport optimal) pour déterminer la classe de Schatten de plongement de l'espace Lip(1) et celui de Sobolev dans L^2 au dessus d'un compacte métrique mesuré satisfaisant les conditions de ""doubling/halving"". Les valeurs numériques des trois dimensions d'un tel espace (le ""doubling"" géométrique, ainsi que les ""doubling"" et ""halving"" de la mesure) jouent les rôles différents pour les plongements et pour la qualité de mélange des signes des systèmes représentatifs comme les frames."
  • Le 8 avril 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Ludovic Marquis (Rennes) null
    "Groupes de réflexions fortement convexe-cocompacts\n"
    "Les groupes de réflexions sont les images des groupes de Coxeter par des représentations introduites par Vinberg dans les années 60. Les groupes de symétries des pavages de l'espace euclidien ou de l'espace hyperbolique dont le pavé fondamental est un polyèdre dont les angles dièdres sont des sous-multiples de pi et le groupe de symétrie est engendré par les réflexions par rapport aux faces du polyèdre sont des cas particuliers de groupes de réflexions.Ces représentations permettent de faire agir les groupes de Coxeter sur des convexes de l'espace projectif réel. On caractérisera parmi ces représentations, lesquelles fournissent des sous-groupes fortement convexe-cocompacts.Travail en commun avec Jeff Danciger, François Guéritaud, Fanny Kassel et Gye-Seon Lee."
  • Le 8 avril 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Sara Mehidi (IMB) null
    Prolongement des torseurs via les log schéma
    "On présente ici une approche du problème de prolongement des torseurs définis sur la fibre générique d'une famille de courbes. La question est de prolonger chacun du groupe structural et de l'espace total du torseur au dessus de la famille.L'origine de ce problème remonte au travaux de Grothendieck, qui, au début des années 1960, a donné une bonne définition du groupe fondamental de variétés algébriques, basée sur la notion de revêtements étales galoisiens. Le problème du prolongement des torseurs sous un groupe constant, d'ordre premier à la caractéristique résiduel, a été résolu. Lorsqu'on est intéressé par les variétés algébriques d'un point de vue arithmétique, il est naturel de considérer des torseurs sous un groupe fini non nécessairement constant : on parle de torseurs fppf. On se donne alors un torseur fppf pointé sur une courbe et on cherchera à le prolonger sur un modèle régulier de cette dernière. On sait déjà qu'un prolongement fppf n'existe pas toujours, on se placera alors dans une catégorie plus large, à savoir, celle des torseurs logarithmiques. On montrera en particulier que l'existence d'un tel prolongement revient à prolonger des schémas en groupes et des morphismes entre eux. Puis, on cherchera à calculer l'obstruction à relever le torseur log prolongé en un torseur fppf."
  • Le 11 avril 2022 à 12:00 au 13 avril 2022 à 12:00
  • Manifestations Scientifiques
    Amphithéatre du LaBRI
    Organisateurs : V. Delecroix\, E. Goujard\, DM. Nguyen null
    Mini rencontre ANR MoDiff du 11 au 13 avril - Amphithéâtre du labri

  • Le 11 avril 2022 à 16:00
  • Manifestations Scientifiques
    Salle 2
    Organisateurs : Jean-Baptiste Burie\, Frédéric Fabre null
    Mario Ayala (post-doctorant, INRAE Avignon) donnera un exposé ouvert à tous dans le cadre de l'ANR ArchiV
    Titre : A measure-valued stochastic model for vector-borne viruses.
    In this talk we propose a measure-valued stochastic process representing the dynamics of a virus population, structured by phenotypic traits and geographical space, and where viruses are transported between spatial locations by mechanical vectors. As a first example of the use of this model, we will show how to use this model to infer results on the probability of extinction of the virus population. Later, by combining various scalings on population sizes, speed of diffusion of vectors, and other relevant model parameters, we show the emergence of two systems of integro-differential equations as Macroscopic descriptions of the system. Under the existence of densities at time zero, we also show the propagation of this property for later times, and derive the strong formulation of the limiting systems of IDEs. These strong formulations, in a sense, correspond to spatial Lotka-Volterra competition models with mutation and vector-borne dispersal.
  • Le 12 avril 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Josué Tonelli-Cueto Inria Paris\, IMJ-PRG
    A p-adic Descartes solver: the Strassman solve
    Solving polynomials is a fundamental computational problem in mathematics. In the real setting, we can use Descartes' rule of signs to efficiently isolate the real roots of a square-free real polynomial. In this talk, we show how to translate this method into the p-adic worlds. We show how the p-adic analog of Descartes' rule of signs, Strassman's theorem, leads to an algorithm to isolate the p-adic roots of a square-free p-adic polynomial and provide some complexity estimates adapting the condition-based complexity framework from real/complex numerical algebraic geometry to the p-adic case.
  • Le 12 avril 2022 à 11:00 au 14 avril 2022 à 12:00
  • Manifestations Scientifiques
    Salle de Conférences
    Organisateur : David Lannes null
    Conférence Singflows du 12 au 14 avril - Salle de conférences de l'IMB

  • Le 14 avril 2022 à 14:00
  • Séminaire d'Analyse
    PAS DE SÉMINAIRE D'ANALYSE: CONFÉRENCE SINGFLOWS DU 12 AU 14 AVRIL

  • Le 14 avril 2022 à 16:00
  • Le Colloquium
    Batiment A29/Amphi B
    Eric Rivals - LIRMM\, CNRS\, Univ. Montpellier\, https://www.lirmm.fr/~rivals/ null
    "LMIA: Superchaînes: des chevauchements entre mots aux graphes d'assemblage.
    \n"
    https://www.math.u-bordeaux.fr/imb/les-lecons-de-mathematiques-d-aujourd-hui
  • Le 15 avril 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Alba Málaga Sabogal null
    Tores plats polyédraux
    "The only compact surface with positive constant curvature is the sphere, which is unique up to homothety; the only compact surface with everywhere zero curvature is the torus, and there is a 2-dimensional family of such tori, parameterised by a subset of the complex plane (a fundamental domain of the modular surface). This parameter is called the modulus of the flat torus. However, while it is trivial to give a smooth (twice continuously differentiable) realisation of the sphere in 3-dimensional space, a smooth model of a flat torus cannot exist: such a model, being compact, would be contained in a sphere, and any intersection point of the model with a minimal containing sphere would have positive curvature.Borrelli et al in 2012 gave a once continuously differentiable isometric embedding for the square torus. Origami-style models, i.e. models as polyhedral surfaces in 3-dimensional space, exist for all flat tori (flat tori of any modulus), by work of Zalgaller and Burago in the 1990s, but have not become common knowledge, and many still deem it impossible.We explain in this text how to produce paper layouts to realise physically such origami-style models of flat tori, and we prove that flat tori of all moduli can be realised this way. More precisely, we describe a family of layouts of polyhedral flat tori, with 2 discrete and 2 continuous parameters; each layout is the fundamental domain of a lattice tiling of the plane.The main ingredient of the construction is a rather non-intuitive approximation of a one-sheet hyperboloid by a piecewise linear surface, that we call a ploid. As built up from two ploids, we call these tori, diplotori.We prove that all moduli of tori are attained.Moreover, we give a method to obtain a diplotorus realisation of any given modulus, and in particular we give explicit parameters for the square flat torus, and the regular hexagon torus. In doing this, we go further than the independent description of diplotori by Tsuboi (arxiv:2007.03434)."
  • Le 15 avril 2022 à 16:00
  • Le séminaire des doctorant·es
    Salle de Conférences
    Emanuele Tron (IMB) null
    Deux problèmes d'intersections improbables
    Les intersections improbables sont un formalisme qui regroupe des problèmes géométriques d'intersection en familles ayant un caractère nettement arithmétique. Dans cet exposé, on s'intéresse à deux de ces problèmes qui jouent un rôle important dans la théorie : la conjecture d'André-Oort, concernant les points CM dans les sous-variétés et l'équidistribution de Galois, et la conjecture d'Ailon-Rudnick, liée aux hauteurs sur les éclatements et aux conjectures de Vojta. Ces deux conjectures (et les méthodes pour les attaquer) touchent des sujets tels que la théorie de la transcendance, la théorie des modèles, le théorème du sous-espace, la théorie de l'intersection arithmétique.
  • Le 20 avril 2022 à 16:00
  • Le séminaire des doctorant·es
    Salle de Conférences
    Haojie Hong (IMB) null
    Brief introduction to linear forms in logarithms
    An expression of the form $\beta_1\log\alpha_1+\cdots+\beta_n\log\alpha_n$ is called linear form in logarithms, where $\alpha_i$ are given non-zero algebraic numbers and $\beta_j$ are variables. Alan Baker proved that if the $\log\alpha_i$ are linearly independent over the rationals, they are also linearly independent over the algebraic numbers. In this talk, I will give a concise historical introduction to the theory of linear forms in logarithms, then show some main theorems and simple applications.
  • Le 26 avril 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Lassina Dembélé King's College London
    "Correspondance de Langlands inertielle explicite pour ${\nm GL}_2$ et quelques applications arithmétiques"
    Dans cet exposé nous allons décrire une approche explicite qui permet de calculer les types automorphes inertiels pour ${\rm GL}_2$. Nous donnerons ensuite quelques applications de cet algorithme à des problèmes diophantiens ou de nature arithmétique.
  • Le 3 mai 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Sergey Yurkevich University of Vienna\, Inria
    The generating function of the Yang-Zagier Numbers is algebraic
    In a recent paper Don Zagier mentions a mysterious integer sequence $(a_n) _{n \geq 0}$ which arises from a solution of a topological ODE discovered by Marco Bertola, Boris Dubrovin and Di Yang. In my talk I show how to conjecture, prove and even quantify that $(a_n) _{n \geq 0}$ actually admits an algebraic generating function which is therefore a very particular period. The methods are based on experimental mathematics and algorithmic ideas in differential Galois theory, which I will show in the interactive part of the talk. The presentation is based on joint work with A. Bostan and J.-A. Weil.
  • Le 3 mai 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Ludovick Gagnon (Institut Elie Cartan de Lorraine) null
    Stabilisation rapide des water waves linéarisée et backstepping de type Fredholm pour opérateurs critiques
    "Dans cet exposé, on présente un résultat récent de stabilité rapide de léquation des water waves linéarisée grâce à la méthode du backstepping de type Fredholm. Initialement introduite avec une transformation de Volterra, la méthode du backstepping avec une transformation de Fredholm permet de montrer la stabilisation rapide pour une grande classe dEDP grâce à des propriétés de contrôlabilité. Léquation des water waves linéarisée représente un cas critique pour cette méthode, puisque les techniques classiques ne permettent pas de traiter des opérateurs de type i|D_x|^a, avec 1 < a \leq 3/2. Nous introduisons un nouvel argument de compacité/dualité permettant de franchir le seuil a=3/2 et nous montrons que la méthode du backstepping de type Fredholm sapplique pour des opérateurs anti-adjoints du type i|D_x|^a, avec 1 < a \leq 3/2.Il sagit dun travail en collaboration avec Amaury Hayat, Shengquan Xiang et Christophe Zhang "
  • Le 3 mai 2022 à 16:30
  • Le séminaire des doctorant·es
    Paul Freulon (IMB) null
    An Introduction to the Wasserstein distance in Statistics
    "In this talk, I will give an introduction to the Wasserstein distance andits use in statistics. In a first part, I will present a bio-statistical application that will motivate the need to compare probability distributions. In a second part, I will introduce the Wasserstein distance with some historical elements. For instance, I plan to talk about Monge problem formulated in 1781, Kantorovich contributions in the 1940s, and why statisticians have currently a lot of interest for this distance. In a third part, I will present some explicit formulations of the Wasserstein distance and a few properties of this distance. Finally, I will try to give some statistical results related to this distance. For instance, given samples from two distributions $\mu$ and $u$ how can we estimate the Wasserstein distance between those two distributions?"
  • Le 5 mai 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Jérémie Bigot null
    Modèles mathématiques sur linfluence de la taille de la couche cachée dans des réseaux de neurones à 2 couches - Approches par matrices aléatoires ou par flots de gradient et transport optimal.
    Comprendre linfluence de la taille des couches cachées dans la capacité de généralisation des modèles de réseaux de neurones est une question qui a suscité de très nombreux travaux. Dans cette série dexposés, nous proposons de présenter quelques modèles mathématiques pour répondre à cette problématique qui se basent soit sur la théorie des matrices aléatoires et des probabilités libres, soit sur la théorie des flots de gradient dans lespace de Wasserstein et les outils du transport optimal de mesures. Nous espérons ainsi débuter un groupe de travail autour de ces modèles dont de nombreux aspects peuvent intéresser la communauté de recherche en mathématiques appliquées à Bordeaux.
  • Le 5 mai 2022 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Karine Isambard (Marseille) null
    Annulé et reporté à une date ultérieure

  • Le 5 mai 2022 à 15:30
  • Le Colloquium
    Salle de Conférences
    Adrian Lam (Ohio State University) null
    The nonlocal selection of spreading speed in shifting environments
    Since the work of [Potapov & Lewis, 2004] and [Berestycki et al. 2009], there has been a lot of interest in the population dynamics driven by climate change. Of particular interest is the persistence and invasion profile of species as their suitable habitat are shifting poleward. In this talk, I will discuss some results concerning determination of spreading speed in Fisher-KPP equation with shifting heterogeneity. Surprisingly, in some cases the spreading speed is no longer determined by the formula 2\sqrt{rd}, i.e. it exceeds the level predicted by local conditions. We will explain the nonlocal mechanism behind the speed enhancement. We will also survey some related works motivated by the conjecture of Shigesada et al concerning the co-invasion of competing tree species into an open space. This is joint work with Leo Girardin (Institut Camille Jordan, Lyon) and Xiao Yu (South China Normal University).
  • Le 6 mai 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Gal Porat (Chicago) null
    Locally analytic vector bundles on the Fargues-Fontaine curve
    The category of p-adic representations of $Gal(\overline{Q_p}/Q_p)$ embeds fully faithfully into the category of equivariant vector bundles on the Fargues-Fontaine curve. In this talk we present recent work, where we show every such equivariant vector bundle descends canonically to a locally analytic vector bundle, an object equipped with a connection. Next, we shall focus on potentially semistable locally analytic vector bundles (for example, these coming from potentially semistable representations of $Gal(\overline{Q_p}/Q_p))$. We shall explain how to interpret invariants of these objects in terms of solutions to p-adic differential equations on the locally analytic vector bundle.
  • Le 10 mai 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle 1
    Julien Mathiaud (CELIA) null
    Construction de modèles aux moments pour la dynamique des gaz raréfiés
    Dans cette présentation, nous allons proposer de nouveaux modèles aux moments (BGK/ Fokker Planck) permettant de résoudre des problèmes de dynamique de gaz raréfié. Un cadre formel sera proposé pour créer des modèles conservatifs bénéficiant d'une dissipation d'entropie. On montrera notamment que le modèle ESBGK de Perthame/LeTallec peut être retrouvé dans ce cadre tout en précisant les valeurs physiques des paramètres du modèle. Par ailleurs les asymptotiques fluides de ces modèles seront obtenues. Ce travail a été mené conjointement avec Luc Mieussens (IMB)
  • Le 12 mai 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Paul Freulon null
    Some statistical insights into entropy regularized Wasserstein estimators, through weights estimation in a mixture model
    In 2013, Marco Cuturi introduced an entropic regularized version of the Wasserstein distance. Due to its computational advantages, this regular- ized version of the Wasserstein distance is now a popular tool in statistics to compare probability distributions, or point clouds. In 2017, Arjovsky et al. proposed with Wasserstein-GANs, to minimize the Wasserstein dis- tance among a class of parameterized distributions, and an empirical prob- ability distribution; this is an example of Wasserstein estimation method. In this talk, I will discuss the use of the regularized Wasserstein distance to perform Wasserstein estimation. Motivated by a bio-statistical appli- cation, we propose to find among mixture distributions parameterized by their weights, the closest to an empirical probability distribution with re- spect to the regularized Wasserstein distance. Through this example of Wasserstein estimator, I will discuss the influence of the regularization parameter on the statistical properties of Wasserstein estimators. It is a joint work with Jérémie Bigot, Boris Hejblum and Arthur Leclaire.
  • Le 13 mai 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Thomas Haettel (Montpellier) null
    Actions de groupes sur des espaces métriques injectifs
    Un espace métrique est dit injectif lorsque toute famille de boules d'intersectant deux à deux a une intersection globale non vide. De tels espaces métriques injectifs ont de nombreuses propriétés typiques de la courbure négative. En particulier, lorsqu'un groupe agit par isométries sur un tel espace, on peut en déduire de nombreuses conséquences. Nous présenterons également de nombreux groupes ayant une action intéressante sur un espace injectif, notamment les groupes hyperboliques, les groupes cubulables, les réseaux dans les groupes de Lie, les groupes modulaires de surface, certains groupes d'Artin...
  • Le 13 mai 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Giulio Codogni (Rome Tor Vergata) null
    Characterizing Jacobians via the KP equation and via flexes and degenerate trisecants to the Kummer variety: an algebro-geometric approach.
    "I will present algebro-geometric proofs of a theorem by T. Shiota, and of a theorem by I. Krichever. These results characterize Jacobians of algebraic curves among all irreducible principally polarized abelian varieties. Shiota's characterization is in terms of the KP equation. Krichever's characterization is in terms of trisecant lines to the Kummer variety; I will discuss only the degenerate case of his result. The proofs rely on a new theorem asserting that the base locus of a complete linear system on an abelian variety is reduced. The talk is based on a joint work with E. Arbarello and G. Pareschi."
  • Le 16 mai 2022 au 20 mai 2022
  • Manifestations Scientifiques
    Organisateurs : A. Freuslon\, F. Le Maître\, M. Musat\, R. Boutonnet null
    Operator algebras ans Group Dynamics - 16 au 20 mai - CIRM à Marseille

  • Le 16 mai 2022 au 18 mai 2022
  • Manifestations Scientifiques
    Salle de Conférences
    Organisateurs : B. Gouthier\, L. Laulin\, F. Noisette\, M. Pauron\, N. Prencipe\, T. Untrau null
    Journées Doctorales de la Fédération MARGAUx du 16 au 18 mai - Salle de conférences de l'IMB

  • Le 17 mai 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Daniel Fiorilli Université Paris Saclay
    Résultats de type oméga pour les comptages de corps cubiques
    Il s'agit d'un travail en collaboration avec P. Cho, Y. Lee et A. Södergren. Depuis les travaux de Davenport-Heilbronn, beaucoup d'articles ont été ecrits donnant des estimations de plus en plus précises sur le comptage du nombre de corps cubiques de discriminant au plus X. Mentionnons par exemple les travaux de Belabas, Belabas-Bhargava-Pomerance, Bhargava-Shankar-Tsimerman, Taniguchi-Thorne et Bhargava-Taniguchi-Thorne. Dans cet exposé je parlerai d'un résultat négatif, qui montre que l'hypothèse de Riemann implique une limitation sur la plus petite taille possible du terme d'erreur dans ces estimations. Nous approchons la questions à partir de la théorie des petits zéros de fonctions $L$, en particulier la philosophie de Katz-Sarnak et les articles subséquents pour la famille des fonctions zeta de Dedekind de corps cubiques. Je présenterai aussi des résultats numériques obtenus avec pari/gp et le programme «cubic» de Belabas qui indiquent que notre résultat pourrait être optimal.
  • Le 17 mai 2022 à 13:15
  • Direction
    Salle 1
    Réunion conseils conjoints
    Le prochain conseil scientifique aura lieu mardi 17 mai à 13h15 en salle de conférence.
    Le conseil de laboratoire nous rejoindra à 13h30.
    Lordre du jour est le suivant :
    1) examen des demandes d'ADT et HDR (conseil scientifique uniquement)
    2) présentation d'une demande d'intégration à l'IMB
    3) plan de gestion des emplois 2023
    4) questions diverses
  • Le 17 mai 2022 à 14:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    (BBT Seminar) Patrick Gérard (Paris Saclay) null
    On a derivative nonlinear Schrödinger equation on the Hardy space of the line
    (Ce séminaire a lieu dans le cadre du séminaire tournant Bilbao-Bordeaux-Toulouse et sera retransmis depuis Toulouse). We introduce a nonlinear Schroedinger equation on the line, with a mass critical non-local cubic nonlinearity of DNLS type, which conserves the Hardy property of a Fourier transform supported in the positive half line. We identity a Lax pair for this equation, and we use this structure for studying multisoliton solutions. This a jointwork with Enno Lenzmann (Basel).
  • Le 18 mai 2022 à 14:30
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Wessel van Woerden CWI Amsterdam
    On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices, and Cryptography
    A natural and recurring idea in the knapsack/lattice cryptography literature is to start from a lattice with remarkable decoding capability as your private key, and hide it somehow to make a public key. This is also how the code-based encryption scheme of McEliece (1978) proceeds.This idea has never worked out very well for lattices: ad-hoc approaches have been proposed, but they have been subject to ad-hoc attacks, using tricks beyond lattice reduction algorithms. On the other hand the framework offered by the Short Integer Solution (SIS) and Learning With Errors (LWE) problems, while convenient and well founded, remains frustrating from a coding perspective: the underlying decoding algorithms are rather trivial, with poor decoding performance.In this work, we provide generic realisations of this natural idea (independently of the chosen remarkable lattice) by basing cryptography on the Lattice Isomorphism Problem (LIP). More specifically, we provide:- a worst-case to average-case reduction for search-LIP and distinguish-LIP within an isomorphism class, by extending techniques of Haviv and Regev (SODA 2014).- a zero-knowledge proof of knowledge (ZKPoK) of an isomorphism. This implies an identification scheme based on search-LIP.- a key encapsulation mechanism (KEM) scheme and a hash-then-sign signature scheme, both based on distinguish-LIP.The purpose of this approach is for remarkable lattices to improve the security and performance of lattice-based cryptography. For example, decoding within poly-logarithmic factor from Minkowski's bound in a remarkable lattice would lead to a KEM resisting lattice attacks down to a poly-logarithmic approximation factor, provided that the dual lattice is also close to Minkowski's bound. Recent works have indeed reached such decoders for certain lattices (Chor-Rivest, Barnes-Sloan), but these do not perfectly fit our need as their duals have poor minimal distance.
  • Le 19 mai 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Jérémie Bigot null
    Modèles mathématiques pour les réseaux de neurones 2
    Suite du groupe de travail
  • Le 19 mai 2022 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Alexander Borichev (Marseille) null
    Annulé, reporté à une date ultérieure
    TBA
  • Le 19 mai 2022 à 15:30
  • Le Colloquium
    Salle de Conférences
    Marius Tucsnak (IMB) null
    États atteignables des systèmes dynamiques linéaires
    Cet exposé considère des systèmes contrôlés linéaires invariants en temps et il sintéresse prioritairement à une question fondamentale en automatique et dans les questions de sureté des systèmes complexes : caractériser les états qui peuvent être atteints à un certain moment lorsque la commande décrit un ensemble admissible. Après quelques rappels sur le cas classique où lespace des états est de dimension finie (théorie de Kalman), l'accent est mis sur des systèmes décrits par des équations de type chaleur. Je décrirai notamment quelques avancées récentes, établissant de nouvelles relations avec la théorie de espaces de Hilbert des fonctions holomorphes. Nous montrons que ces systèmes peuvent, en plusieurs cas d'intérêt, être considérés comme exactement contrôlables. On vous explique pourquoi ce fait assez surprenant est compatible avec l'effet régularisant pour les équations aux dérivées partielles de type parabolique.
  • Le 20 mai 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Vincent Delecroix (LaBRI) null
    A new SL(2,R)-orbit closure in the moduli space of translation surfaces of genus 8
    "The moduli space of translation surfaces in fixed genus is an orbifold endowed with a SL(2,R)-action preserving a probability measure. It was shown by Masur and Veech that the this action is ergodic on each connected component of the moduli space. As an analogue of Ratner's theorem, Eskin and Mirzakhani proved a structural result for any SL(2,R)-invariant measures and orbit closures. More precisely, they show that any SL(2,R)-orbit closure is an orbifold that supports a unique SL(2,R)-invariant probability measure. However, contrarily to Ratner's theorem, their result does not give a recipe to compute the list of all SL(2,R)-orbit closures. The construction of SL(2,R)-invariant orbifolds in the moduli space of translation surfaces is a very active line of research. In a joint work with J. Rüth and A. Wright we build a new example of such orbit closure in genus 8 which we believe is the last exceptionnal example coming from quadrilateral unfolding.In this talk I will review Eskin-Mirzakhani result in parallel to Ratner theorem, quickly mention one motivation for understanding SL(2,R)-orbit closures (dynamics of rational billiards) and finally explain our construction."
  • Le 20 mai 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Stefan Schröer (Düsseldorf) null
    Para-abelian varieties and the Albanese map
    We show that for each scheme that is separated and of finite type over a field, and whose affinization is connected and reduced, there is a universal morphism to some para-abelian variety. The latter are schemes that acquire the structure of an abelian variety after some ground field extension. This extends a classical result of Serre. The proof relies on the corresponding result in the proper case, which was obtained before in a joint work with Bruno Laurent. The open case also relies on Macaulayfication, removal of singularities by alterations, pseudo-rational singularities, and Bockstein maps.
  • Le 23 mai 2022 au 25 mai 2022
  • Manifestations Scientifiques
    Comité d'organisation :Y. Bilu\, I. Del Corso\, A. Galateau\, F. Pappalardi\, F. Pazuki\, V. Talamanca null
    Celebrating Francesco Amoroso's 60th birthday May 23-25, 2022, Università di Pisa

  • Le 23 mai 2022 au 27 mai 2022
  • Manifestations Scientifiques
    Caen
    Organisteur : Marc-Hubert NICOLE (Caen) null
    30e Rencontres arithmétiques de Caen - 23-27 mai 2022 Caen

  • Le 24 mai 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Alice Pellet-Mary CNRS/IMB
    Rigorous computation of class group and unit group
    Computing the class group and the unit group of a number field is a famous problem of algorithmic number theory. Recently, it has also become an important problem in cryptography, since it is used in multiple algorithms related to algebraic lattices.Subexponential time algorithms are known to solve this problem in any number fields, but they heavily rely on heuristics. The only non-heuristic (but still under ERH) known algorithm, due to Hafner and McCurley, is restricted to imaginary quadratic number fields.In this talk, we will see a rigorous subexponential time algorithm computing units and class group (and more generally S-units) in any number field, assuming the extended Riemann hypothesis.This is a joint work with Koen de Boer and Benjamin Wesolowski.
  • Le 24 mai 2022 à 14:00
  • Soutenance de thèse
    Leiden, Pays-Bas
    Jared ASUNCION GUISMO null
    " Titre de la thèse : "" Constructions de multiplication complexe d'extensions abéliennes de corps quantiques"". Directeur de thèse : Andreas Enge. Codirecteur : Marco Streng"

  • Le 27 mai 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Faustin Adiceam (Manchester) null
    Autour du problème de Danzer et de la construction de forêts denses
    Le problème de Danzer (1961) pose la question de savoir sil existe un ensemble de densité finie (i.e. « ne contenant pas beaucoup de points ») intersectant tout corps convexe de volume unité. Il a attiré à lui une somme considérable de travaux regroupant un large spectre des mathématiques modernes. Après avoir présenté quelques-uns dentre eux, nous nous intéresserons à une approche récente obtenue en relâchant la contrainte de volume. Ceci conduit au problème de la construction de forêts dites denses qui entretient des liens très étroits avec des problèmes géométriques de répartition densembles discrets sur certaines surfaces. Nous présenterons des constructions de telles forêts denses et, pourvu que le temps imparti le permette, des généralisations à dautres problèmes géométriques de répartition.
  • Le 31 mai 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Philippe Elbaz-Vincent Institut Fourier / Inria / IMB
    Sur quelques points, plus ou moins effectifs, de cohomologie des groupes arithmétiques
    Nous donnerons un panorama de certaines techniques et résultats pour le calcul de la cohomologie des groupes arithmétiques de rang $\ge 4$ pour des anneaux d'entiers algébriques, ainsi que leurs applications arithmétiques et K-théoriques. Nous ferons ensuite un focus sur les méthodes utilisant le modèle de Voronoi (euclidien ou hermitien), ainsi que plusieurs améliorations algorithmiques. Nous préciserons certains résultats relatifs aux complexes de Voronoi et leurs cellules (pour $\mathrm{GL}_N$ avec $N \geq 12$), ainsi qu'un travail en cours avec B. Allombert et R. Coulangeon sur les formes parfaites de rang $N$ sur $\mathcal{O}_K$ et la cohomologie de $\mathrm{GL}_N(\mathcal{O}_K)$ pour certains anneaux d'entiers avec $N=4,5,6$. Nous mentionnerons aussi plusieurs problèmes ouverts relatifs à ces modèles.
  • Le 1er juin 2022 à 11:00
  • Le séminaire des doctorant·es
    Salle de Conférences
    Clementine Laurens null
    Kameda Toyojiro and the transfer of the Western theory of probability to Japan at the beginning of the 20th century
    We will talk about the Japanese actuary and probabilist Kameda Toyojiro (1885-1944) who took a major part in the transfer of modern probabilistic technology to Japan at the beginning of the 20th century. Very familiar with contemporary English and German works, he made an early use of certain fundamental concepts of probability theory, such as characteristic functions, and was one of those who paved the way for the spectacular development of the Japanese probabilistic school in the next generation.
  • Le 1er juin 2022 à 14:30
  • Manifestations Scientifiques
    Salle de Conférences
    Sylvie Benzoni\, directrice de l'Institut Henri Poincaré\, sera la pour présenter le film. null
    Mercredi 1er juin, l'IREM vous invite a la projection du film Man Ray et les equations shakespeariennes - Salle de conférences IMB - 14h30

  • Le 2 juin 2022 à 14:00
  • Séminaire d'Analyse
    Salle 1
    2 - 3 juin 2022 null
    Conférence Hommage scientifique à Mohamed Zarrabi
    Conférence Hommage scientifique à Mohamed Zarrabi
  • Le 2 juin 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Benjamin Graille (IMO) null
    [Séminaire CSM] Des schémas de Boltzmann sur réseau pour simuler le système dEuler complet
    La méthode de Boltzmann sur réseau est très largement utilisée pour simuler les équations de la mécanique des fluides comme Navier-Stokes incompressible. Jusquà présent la prise en compte de léquation de conservation de lénergie était difficile et se limitait à une approximation de type Boussinesq. De nouvelles idées ont permis la construction de schémas capables de simuler des systèmes hyperboliques plus généraux et en particulier Euler complet. Dans cet exposé, nous décrirons quelquuns de ces nouveaux schémas en nous intéressant particulièrement à la montée en nombre de Mach (problème très sensible des schémas de Boltzmann sur réseau).
  • Le 2 juin 2022 à 14:00
  • Soutenance de thèse
    Salle de Conférences
    Lucile Laulin null
    "Titre de la thèse :""Autour de la marche aléatoire de l'éléphant"". Directeur de thèse : Bernard Bercu."

  • Le 3 juin 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Frank Gounelas (Göttingen) null
    Curves of maximal moduli on K3 surfaces
    "In joint work with Chen, we proved that on any K3 surface one can produce curves of any fixed geometric genus g, each of which deforms maximally in moduli, i.e. in a g-dimensional family of M_g. In this talk I will discuss this and some related results, and various applications, in particular to the existence of symmetric differentials on K3s. The key inputs in the proof are the existence of infinitely many rational curves on a K3 (recently obtained the remaining cases jointly with Chen-Liedtke) and the logarithmic Bogomolov-Miyaoka-Yau inequality which provides some (very weak) control of the singularities of these rational curves."
  • Le 3 juin 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle 1
    Jean-Louis Verger-Gaugry (Université Savoie Mont Blanc) null
    An attack of the Conjecture of Lehmer by the dynamical zeta function of the $beta$-shift, and the modulo $p$ problem
    "The present work proposes an attack of the Conjecture of Lehmer by the dynamical zeta function of the $\beta$-shift to prove that this Conjecture is true (math NT> arXiv:1911.10590(29 Oct 2021)). In 1933 Lehmer asked the question about the existence of integer polynomials having a Mahler measure different of one, smaller than Lehmers number (and arbitrarily close to one). The problem of Lehmer became a Conjecture, stating that there exists a universal lower bound $> 1$ to the Mahler measures of the nonzero algebraic integers which are not roots of unity. The problem of the minoration of the Mahler measure of algebraic integers is a very deep one and has been extended in the theory of heights in arithmetic geometry.The main ingredients arise from the lenticular poles of the dynamical zeta functions $\zeta_\beta(z)$ of the RényiParry arithmetical dynamical ($\beta$-shift), with $\beta> 1$ any real number tending to one, to which a lenticular measure can be associated, satisfying a Dobrowolski-type inequality with the dynamical degree of $\beta$ . When $\beta$ runs over the set of nonzero reciprocal algebraic integers, under some assumptions, the lenticular poles are identified with conjugates of $\beta$, using Kala-Vavras periodic representation theorem (2019), and this lenticular measure is identified with a minorant of the Mahler measure of $\beta$.Though expressed as hypergeometric functions (Mellin, 1915) the lenticularity of the poles only appears when using their Poincaré asymptotic expansions, in the angular sector guessed by M. Langevin, G. Rhin and C. Smyth, G. Rhin and Q. Wu.We show that the search for very small Mahler measures calls for investigating the factorization of integer polynomials in a class of lacunary polynomials canonically associated to the functions $\zeta_\beta(z)$, that this problem is linked to the number of zeroes of these polynomial in $\mathbb{F}_p$, to their asymptotic limit when $p$ tends to infinity, and questions on the existence of modular forms by the Langlands program.Whether Lehmers number is the smallest Mahler measure $>1$ of algebraic integers remains open."
  • Le 7 juin 2022 à 13:30
  • Direction
    Salle 285
    Conseil de laboratoire
    "Lordre du jour est le suivant :
    1) approbation du compte-rendu du conseil de laboratoire du 17 mai 2022 ;
    2) informations générales ;2) renouvellement du conseil scientifique ;
    3) plan de gestion des emplois 2023 ;
    4) questions diverses."
  • Le 7 juin 2022 à 14:00
  • Soutenance de thèse
    Salle de Conférences
    Charif Abdallah BENYAMINE null
    "Titre de la thèse : ""Sections finies d'inégalités multiplicatives de Hilbert et multiplicateurs de l'espace de Dirichlet"". Directeur de Thèse: Karim Kellay. Co-directeur : Michel Martin Rajoelina"

  • Le 9 juin 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Ugo Tanielian (Criteo) null
    Generative Adversarial Networks: understanding optimality properties of Wasserstein GANs
    "Generative Adversarial Networks (GANs) were proposed in 2014 as a new method efficiently producing realistic images. Since their original formulation, GANs have been successfully applied to different domains of machine learning: video, sound generation, and image editing. However, our theoretical understanding of GANs remains limited.
    In this presentation, we will first define the overall framework of GANs and illustrate their main applications. Then, we will focus on a cousin approach called Wasserstein GANs (WGANs). This formulation based on the well-known Wasserstein distance has been validated by many empirical studies and brings stabilization in the training process. Finally, motivated by the important question of characterizing the geometrical properties of WGANs, we will show that for a fixed sample size, optimality for WGANs is closely linked with connected paths minimizing the sum of the squared Euclidean distances between the sample points. "
  • Le 10 juin 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Ingrid Mary Irmer (Shenzhen) null
    The Thurston spine of the genus 2 Teichmüller space
    In the 80s, Thurston gave a controversial construction of a mapping class group equivariant deformation retraction of the Teichmueller space of a closed, compact surface onto a lower dimensional spine. This talk will review Thurston's construction and related questions. The results of a computation in genus 2 will be presented, resolving many of these questions in genus 2.
  • Le 10 juin 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Alice Bouillet (Rennes) null
    Espace de modules des $p$ algèbres de Lie.
    "Sur les corps de caractéristique p>0, l'algèbre de Lie d'un groupe ne donne pas autant d'information qu'en caractéristique 0. Cependant, une structure supplémentaire appelée""p-application"" nous permet de reconstruire au moins les noyaux de Frobenius du groupe.Dans cet exposé, nous donnerons les définitions et les propriétés essentielles pour mieux comprendre les ""p-applications"", puis nous allons décrire le lieu restreignable de l'algèbre de Lie universelle(i.e. le lieu où elle admet une p-application), et l'espace de modules des p-algèbres de Liesur la stratification applatissante de son centre (car nous verrons que ce dernier joue un rôle clé).Enfin, nous revisiterons l'exemple classique de l'espace de modules L_3 des algèbres de Lie de rang 3en montrant qu'il est représentable sur l'anneau des entiers. En utilisant la très jolie théorie de la liaison,nous montrerons qu'il est plat, de présentation finie, avec deux composantes irréductibles plates sur Z,avec des fibres géométriques intègres et Cohen-Macaulay.Grâce à cette description de L_3 et grâce à une extension de l'équivalence de catégorie classique entreles groupes de hauteur 1 et les p-algèbres de Lie, nous pourrons décrire l'espace des modules des groupes algébriques de hauteur 1 d'ordre p^3."
  • Le 14 juin 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Antoine Leudière Université de Lorraine
    An explicit CRS-like action with Drinfeld modules
    L'une des pierres angulaires de la cryptographie des isogénies est l'action (dite CRS), simplement transitive, du groupe des classes d'un ordre d'un corps quadratique imaginaire, sur un certain ensemble de classes d'isomorphismes de courbes elliptiques ordinaires.L'échange de clé non-interactif basé sur cette action (espace homogène difficile) est relativement lent (de Feo, Kieffer, Smith, 2019) ; la structure du groupe (Beullens, Kleinjung, Vercauteren, 2019) est difficile à calculer. Pour palier à cela, nous décrivons une action, simplement transitive, de la jacobienne d'une courbe hyperelliptique imaginaire, sur un certain ensemble de classes d'isomorphismes de modules de Drinfeld. Après avoir motivé l'utilisation des modules de Drinfeld en lieu et place des courbes elliptiques, nous décrirons un algorithme efficace de calcul de l'action, ainsi que la récente attaque de Benjamin Wesolowski sur l'échange de clé donné par l'action.
  • Le 14 juin 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Alexandre Baron (CRPP) null
    Méta-atomes et métamatériaux optiques
    Les métamatériaux sont des matériaux artificiels présentant des propriétés optiques qui n'existent pas dans la nature. Ils sont généralement constitués d'assemblage de résonateurs optiques (des méta-atomes) nano- ou micro-structurés aux propriétés d'absorption et de diffusion extraordinaires. La conception de métamatériaux et de méta-atomes repose en grande partie sur des principes d'homogénéisation électromagnétique. Cet exposé s'attachera à présenter des exemples remarquables de réalisations expérimentales de métamatériaux et de méta-atomes, telles qu'un matériau présentant du magnétisme à des fréquences optiques ou encore des sources de Huygens-Fresnel artificielles. Les principes physiques et mathématiques sur lesquels reposent la conception de ces structures seront également abordés. Pour finir, quelques perspectives et limites auxquelles sont typiquement confrontées les physiciens dans les modèles seront présentées. Des modèles mathématiques puissants pourraient contribuer à enrichir le champ d'exploration des métamatériaux.
  • Le 14 juin 2022 à 13:30
  • Direction
    Salle de Conférences
    Conseil Scientifique mardi 14 juin en salle de conférence à 13h30
    "Le conseil de laboratoire sera lui aussi invité.
    Ordre du jour :
    1) Présentation de Catie
    2) Nouvelles du conseil du laboratoire
    3) Prospective scientifique
    4) Demandes dinscription à lADT (uniquement le conseil scientifique)
    "
  • Le 16 juin 2022 à 15:30
  • Le Colloquium
    Salle de Conférences
    Samia Boukir (IMB) null
    Prétraitements des données dapprentissage par méthodes densemble
    "Les prétraitements constituent une étape essentielle pour lapprentissage automatique et lexploration de données. Ils incluent notamment le filtrage, léquilibrage, et la réduction de données. Cette dernière tache peut être décomposée en deux prétraitements distincts : la sélection de données (ou déchantillons) et la sélection dattributs (ou de variables). Les caractéristiques des données dapprentissage ont une influence majeure sur la conception de nimporte quel classifieur supervisé quil soit multiple ou pas. Cet exposé va aborder les mécanismes des prétraitements permettant de constituer un échantillon dapprentissage adéquat pour la construction dun classifieur plus fiable et plus efficace. Les problèmes majeurs affectant le processus dapprentissage seront investigués, notamment le bruit détiquetage, le déséquilibre et la redondance des données qui sont des enjeux majeurs dans la conception dalgorithmes dapprentissage automatique pour de nombreuses applications du monde réel. Laccent sera mis sur les méthodes densemble qui sont basées sur un paradigme dapprentissage qui construit un modèle de classification en intégrant des composants dapprentissage multiples."
  • Le 17 juin 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Joaquín Rodrigues Jacinto (Paris Saclay) null
    Représentations localement analytiques solides de groupes de Lie p-adiques
    J'expliquerai un travail en commun avec Juan Esteban Rodríguez Camargo où on reformule la théorie des représentations localement analytiques de Schneider-Teitelbaum à l'aide des mathématiques condensées de Clausen et Scholze. On appliquera ce formalisme pour généraliser des théorèmes classiques de comparaison entre différents types de cohomologie (continue, localement analytique et de l'algèbre de Lie) de telles représentations dûs à Lazard, ainsi que pour démontrer un nouveau résultat de comparaison.
  • Le 20 juin 2022 au 24 juin 2022
  • Manifestations Scientifiques
    Palais de Congrés Arcachon
    Organisateurs : JF. Aujol\, JD. Boissonat\, A. Cohen\, T. Lyche\, ML. Mazure \, Q. Mérigot\, G. Peyré null
    Curves and Surfaces 2022 - La conférence aura lieu du lundi 20 juin au vendredi 24 juin 2022 au Palais des Congrès dArcachon

  • Le 23 juin 2022
  • Manifestations Scientifiques
    Comité d'organisation : Mathieu Colin (Bordeaux INP) - David Lannes (CNRS) null
    Colloque en l'honneur de Pierre Fabrie - 23 juin - ENSEIRB-MATMECA - Amphi F

  • Le 23 juin 2022 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Ahmed Sebbar (IMB) null
    Fonctions de Nevanlinna-Pick et transformation de Darboux
    "La transformation de Darboux permet d'obtenir de nouveaux potentiels pour léquation de Schrodinger à partir d'anciens. Elle est utilisée en Géométrie Différentielle (Darboux) et en Mécanique Quantique. Le lemme de Bargmann-Schifferpermet d'obtenir de nouvelles R-fonctions (fonctions holomorphes dans le demi-plan supérieur, de partie imaginaire positive) à partir d'anciennes. C'est un opération utilisée en Analyse (théorèmes de Loewner) et aussi en Mécanique Quantique (Wigner, von Neumann...)Nous établissons une correspondance entre ces deux constructions. Les deux ingrédients fondamentauxsont les fonctions de Green (et l'effet de la transformation de Darboux sur celles-ci) et la représentation de Herglotz pour les R-fonctions et l'effet du lemme de Bargman-Schiffer sur celles-ci)."
  • Le 23 juin 2022 à 15:30
  • Le Colloquium
    Salle de Conférences
    Mireille Bousquet-Melou (Labri) null
    Dénombrement de marches confinées dans des cônes
    "The study of lattice walks confined to cones is a lively topic in enumerative combinatorics, and has witnessed rich developments in the past 20 years. Typically, one is given a finite set of steps $S$ in $Z^d$, and a cone $C$ in $R^d$. Exactly $|S|^n$ walks of length $n$ start from the origin and take their steps in $S$. But how many remain in the cone $C$?One of the motivations for studying such questions is that such walks encode many objects in discrete mathematics, statistical physics, probability theory, among other fields.In the past 20 years, several approaches have been combined to understand how the choice of the steps and of the cone influence the nature of the counting sequence $a(n)$, or of the the associated series $A(t)=\sum a(n) t^n$. Is $A(t)$ rational, algebraic, or solution of a differential equation? This is now completely understood when $C$ is the first quadrant of the plane and $S$ only consists of ""small"" steps. This ""simple"" case involves tools coming from an attractive variety of fields: algebra on formal power series, complex analysis, computer algebra, differential Galois theory. Much remains to be done, for other cones and sets of steps."
  • Le 23 juin 2022 à 17:00
  • Séminaire de Physique Mathématique - EDP
    Visioconférence
    Chris Henderson (Univ. Arizona at Tucson) null
    FKPP with nonlocal advection: pushed and pulled fronts
    "A central focus in the study of traveling wave solutions to reaction-diffusion equations is the determination of their speed, which often represents the rate of invasion of a population. In settings with rigid structure, simple formulas for the speed have been determined; however, many physical and biological systems fall outside this setting. In this talk, I will consider a model for the spread of a species in which individuals interact, creating a nonlocal drift (advection). A special case of this is the Keller-Segel-FKPP model for a reproducing population influenced by chemotaxis. We show that there is a threshold on the chemotaxis parameters (strength, length-scale) under which the nonlocal advection does *not* influence the speed and above which the nonlocal advection `pushes' the front at a faster speed.Lien zoom: https://u-bordeaux-fr.zoom.us/j/86758445364?pwd=WGppMTVVNVFiYnV4Q2dsY0tCcStpdz09"
  • Le 24 juin 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Juan Souto (Rennes) null
    Counting certain kinds of geodesics
    It is a classical result of Huber that the number of closed geodesics in a closed hyperbolic surface with length at most $L$ is asymptotic to $e^L/L$. I will discuss the asymptotic growth of the number of closed geodesics satisfying further topological conditions such as, for example, arising as the boundary of an immersed one-holed torus. This is ongoing work with Viveka Erlandsson.
  • Le 24 juin 2022 à 11:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 1
    Gwladys Toulemonde (IMAG) null
    [Séminaire CSM] Méthodes statistiques et modélisation stochastique de processus extrêmes pour l'étude du risque inondation
    Pour étudier le risque inondation, des modèles d'écoulement, conditionnés par des forçages de pluies, peuvent être utilisés. Les pluies étant l'un des processus météorologiques les plus complexes, la simulation de tels champs nécessite une caractérisation précise des variabilités spatio-temporelles et des intensités à partir des données disponibles. Les approches stochastiques classiques étant inopérantes pour les événements extrêmes, la plupart des générateurs existants tendent à les sous-estimer. Pour pallier cela, nous présenterons des approches basées sur les dépassements de seuils élevés. Plus généralement nous illustrerons l'apport de méthodes statistiques pour l'étude du risque inondation en milieu urbain.
  • Le 27 juin 2022 au 29 juin 2022
  • Manifestations Scientifiques
    Lisbonne
    Comité d'organisation : M. Arnaudon\, C. Léonard\, L. Monsaingeon null
    TA conference in honor of J.-C. Zambrini on the occasion of his 70th birthday - 27 -29 Juin à Lisbonne

  • Le 27 juin 2022 à 14:00
  • Séminaire d'Analyse
    Salle 2
    Shirshendu Chowdhury (IISER Kolkata) null
    !!! ATTENTION CRENEAU INHABITUEL !!! Boundary null-controllability of 1d linearized compressible Navier-Stokes System by one control force.
    "In the first part of the talk, we introduce the concept: Controllability of Differential Equations. Then we give some examples in finite (ODE) and infinitedimensional(PDE) contexts. We recall the controllability results of the Transport and Heat equation.In the second part of the talk, we consider compressible Navier-Stokes equations in one dimension, linearized around a constant steady state (Q_0, V_0 ) , with Q_ 0 > 0, V 0 >0 . It is a Coupled system of transport and heat type equations. We study the boundary null-controllability of thislinearized system in the interval $(0,1)$ when a Dirichlet control function is acting either only on the density or only on the velocity component at oneend of the interval. We obtain null controllability using one boundary control in the space ${H}^s_{per}(0,1)times L^2(0,1)$ for any $s>frac{1}{2}$provided the time $T>1$, where ${H}_{per}^s(0,1)$ denotes the Sobolev space of periodic functions. The proof is based on a spectral analysis and onsolving a mixed parabolic-hyperbolic moments problem and a parabolic-hyperbolic joint Ingham-type inequality. This is a recent joint work (https://arxiv.org/abs/2204.02375, 2022) with Kuntal Bhandari, Rajib Dutta and Jiten Kumbhakar. "
  • Le 28 juin 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Andreas Enge Inria/IMB
    Implementing fastECPP in CM
    FastECPP is currently the fastest approach to prove the primality of general numbers, and has the additional benefit of creating certificates that can be checked independently and with a lower complexity. It crucially relies on the explicit construction of elliptic curves with complex multiplication.I will take you on a leisurely stroll through the different phases of the ECPP and fastECPP algorithms, with explanations of their complexity. We will then see the algorithmic choices I have made when integrating a parallelised implementation of fastECPP into my CM software, which has recently been used to prove the primality of a number of record size 50000 digits
  • Le 1er juillet 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Graham Smith (IHES) null
    k-surfaces in Hadamard manifolds
    We provide a complete description of the space of constant extrinsic curvature surfaces in a general Cartan-Hadamed manifold.
  • Le 5 juillet 2022 à 14:00
  • Direction
    Salle de Conférences
    Le conseil de laboratoire et le conseil scientifique se réuniront avec le conseil d'UF le mardi 5 juillet à 14h en salle de conférence de l'IMB
    Ordre du jour :
    1) Plan de gestion des emplois 2023 : discussion et vote ;
    2) Approbation du compte-rendu du conseil joint du 7 juin 2022 ;
    3) Examen d'une demande d'ADT (conseil scientifique uniquement).
  • Le 6 juillet 2022 à 09:00
  • Soutenance de thèse
    Salle de Conférences
    Badreddine BENHELLAL null
    "Sujet : ""Analyse spectrale dopérateurs de Dirac sur des domaines bornés"". Directeur de thèse : V.Bruneau. Co-directeur : L. Vega Gonzalez."

  • Le 6 juillet 2022 à 14:00 au 8 juillet 2022 à 13:00
  • Manifestations Scientifiques
    Salle de Conférences
    Comité d'organisation: B.Benhellal\, M. Zreik\, V. Bruneau null
    The Dirac Equation 6-8 juillet - Salle de conférences IMB

  • Le 12 juillet 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Michael Monagan Simon Fraser University
    Computing with polynomials over algebraic number fields
    Let $K = \mathbb{Q}(\alpha_1,\dots,\alpha_k)$ be an algebraic number field. We are interested in computing polynomial GCDs in $K[x]$ and $K[x_1,\dots,x_n]$. Of course we also want to multiply, divide and factor polynomials over $K$. In $K[x]$ we have the Euclidean algorithm but it "blows up"; there is a growth in the size of the rational numbers in the remainders. It is faster to compute the GCD modulo one or more primes and use the Chinese remainder theorem and rational number reconstruction. This leads to computing a GCD in $R[x]$ where $R = K \pmod p$ is usually not be a field; it is a finite ring.How do Computer Algebra Systems represent elements of $K$? How do Computer Algebra Systems compute GCDs in $K[x]$? What is the best way to do arithmetic in $R$? How can we compute a polynomial GCD in $K[x_1,\dots,x_n]$? In the talk we will try to answer these questions and we will present some timing benchmarks comparing our own C library for computing GCDs in $R[x]$ with Maple and Magma.
  • Le 6 septembre 2022 à 13:30
  • Direction
    Salle de Conférences
    Le conseil de laboratoire et le conseil scientifique se réuniront le mardi 6 septembre de 13h30 à 15h30 en salle de conférence de l'IMB
    Lordre du jour est le suivant :
    1) Approbation des compte-rendus du conseil du 5 juillet
    2) Exposés des médecins candidats à l'intégration à l'IMB
    3) Demandes de ressources au CNRS (DIALOG)
    4) PGE 2023 (note de cadrage UB, et discussion sur les repyramidages)
    5) Examen d'une demande d'HdR
    6) Questions diverses
  • Le 13 septembre 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Damien Robert Inria/IMB
    Breaking SIDH in polynomial time
    SIDH/SIKE was a post quantum key exchange mechanism based on isogenies between supersingular elliptic curves which was recently selected in July 5 2022 by NIST to advance to the fourth round of the PQC competition. It was soon after broken during the summer in a series of three papers by Castryck-Decru, Maino-Martindale and myself.The attacks all use the extra information on the torsion points used for the key exchange. We first review Petit's dimension 1 torsion point attack from 2017 which could only apply to unbalanced parameters. Then we explain how the dimension 2 attacks of Maino-Martindale and especially Castryck-Decru could break in heuristic (but in practice very effective) polynomial time some parameters, including the NIST submission where the starting curve $E: y^2=x^3+x$ has explicit endomorphism $i$.Finally we explain how by going to dimension 8, we could break in proven quasi-linear time all parameters for SIKE.We will explain how the SIDH protocol worked at the beginning of the talk. We will see that the attack ultimately relies on a very simple 2x2 matrix computation! There will also be (hopefully) fun memes during the talk!
  • Le 13 septembre 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Aric Wheeler null
    Turing bifurcation in systems with conservation laws
    Generalizing results of Matthews-Cox/Sukhtayev for a model reaction-diffusion equation, we derive and rigorously justify weakly nonlinear amplitude equations governing general Turing bifurcation in the presence of conservation laws. In the nonconvective, reaction-diffusion case, this is seen similarly as in Matthews-Cox, Sukhtayev to be a real Ginsburg-Landau equation weakly coupled with a diffusion equation in a large-scale mean-mode vector comprising variables associated with conservation laws. In the general, convective case, by contrast, the amplitude equations consist of a complex Ginsburg-Landau equation weakly coupled with a singular convection-diffusion equation featuring rapidly-propagating modes with speed $\sim 1/\varepsilon$ where $\varepsilon$ measures amplitude of the wave as a disturbance from a background steady state. Applications are to biological morphogenesis, in particular vasculogenesis, as described by the Murray-Oster and other mechanochemical/hydrodynamical models. This work is joint with Kevin Zumbrun.
  • Le 14 septembre 2022 à 09:30
  • Soutenance de thèse
    Salle de Conférences
    Coralie PICOCHE null
    "Sujet : ""Modélisation à fine échelle de la dynamique des communautés phytoplanctoniques"". Directeur de thèse : Frédéric Barraquand"

  • Le 14 septembre 2022 à 16:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    En visio
    Ricardo Fukasawa\, Professor\, University of Waterloo\, Canada null
    "The vehicle routing problem with stochastic demands\n"
    "We consider a variant of the capacitated vehicle routing problem where demands are considered to be random variables whose realization will only be known after the vehicle routes are chosen. In this context, we study two possible approaches for the problem. In the chance-constrained approach, we bound the probability that the vehicle's capacity is violated. In the two-stage approach, we allow a ""recourse action"" to take place if the vehicle's capacity is exceeded. In this talk I will present some recent results on both problems. One key important feature that distinguishes this work from several others in the literature is that we allow correlation between the random variables.Zoom link : https://u-bordeaux-fr.zoom.us/j/81481860493?pwd=NE51REJqaDZ1Z0RYdS9tYWJQaENKZz09"
  • Le 15 septembre 2022 à 15:30
  • Séminaire-débat Contexte
    Salle de Conférences
    Guillaume Carbou et Florian Simatos null
    L'Atecopol
    "Présentation de l'Atelier d'écologie politique (Atecopol), et témoignage de la réorientation thématique d'un mathématicien. Le débat pourra s'articuler autour de la question de l'""engagement"" des chercheurs et la question de leur neutralité."
  • Le 20 septembre 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Fredrik Johansson Inria/IMB
    Faster computation of elementary functions
    Over a decade ago, Arnold Schönhage proposed a method to compute elementary functions (exp, log, sin, arctan, etc.) efficiently in "medium precision" (up to about 1000 digits) by reducing the argument using linear combinations of pairs of logarithms of primes or Gaussian primes. We generalize this approach to an arbitrary number of primes (which in practice may be 10-20 or more), using an efficient algorithm to solve the associated Diophantine approximation problem. Although theoretically slower than the arithmetic-geometric mean (AGM) by a logarithmic factor, this is now the fastest algorithm in practice to compute elementary functions from about 1000 digits up to millions of digits, giving roughly a factor-two speedup over previous methods. We also discuss the use of optimized Machin-like formulas for simultaneous computation of several logarithms or arctangents of rational numbers, which is required for precomputations.
  • Le 20 septembre 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Marco Inversi null
    Weak-strong uniqueness and vanishing viscosity for incompressible Euler equations in exponential spaces
    "This talk is devoted to the analysis of the Euler and the Navier--Stokes equations in the context of incompressible fluids. Despite their importance in modelling several natural phenomena, their rigorous mathematical study remains vastly incomplete. Indeed, even though these equations were proposed hundreds of years ago, mayor questions such as existence, uniqueness and smoothness of solutions presently remain extremely challenging open problems. We focus on the uniqueness of solutions to the incompressible Euler equations and on the inviscid limit of solutions to the Navier--Stokes equations. In the class of admissible weak solutions, we can prove a weak-strong uniqueness result for the incompressible Euler equations assuming that the symmetric part of the gradient belongs to $L^1_{\rm loc}([0,+\infty);L^{exp}(R^d;R^{d \times d}))$, where $L^{exp}$ denotes the Orlicz space of exponentially integrable functions. Moreover, under the same assumptions on the limit solution to the Euler system, we can obtain the convergence of vanishing-viscosity Leray--Hopf weak solutions to the Navier--Stokes equations."
  • Le 20 septembre 2022 à 14:30
  • Soutenance de thèse
    Salle Ada Lovelace, Bâ
    Giulia BELLEZZA null
    "Sujet :""Modélisation multiphysique basée images, évaluation de la durée de vie et analyse des scénarios de rupture des mini-composites à matrice céramique auto-cicatrisante sous tension"". Directeur de thèse : Mario Ricchiuto, co-directeur : Gerard Vignoles"

  • Le 22 septembre 2022 à 12:45
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Ksenia Kozhanova (AMU) null
    [Séminaire CSM] On 3D computational strategy for shock-induced bubble collapse
    "The importance of two-phase fluid flow modelling arises from many applications. However, the non-linearity of the system makes it a complicated task for the numerical methods. While a variety of numericaltechniques to solve these problems exist, these strategies can lead to spurious oscillations of the solution nearthe interface. In this talk a problem of the shock-induced bubble collapse near a wall computed based on theexplicit finite volume solver with underlying four-equation model will be discussed. The physical dynamicsinvolved into this problem are characterised by high speeds and very small spacial-temporal scales. A very finegrid and fast converging and compact high-order numerical schemes are, thus, required. The mesh stretchingmethods coupled with modified numerical schemes implemented by using Open MP and MPI paradigm areused to reduce the CPU cost. Hence, the novelty of our work is a construction of the high-order numerical toolfor solving a 3D problem of two-phase shock-interface interaction on non-uniform grid."
  • Le 22 septembre 2022 à 14:00
  • Soutenance de thèse
    salle Ada Lovelace (Inria)
    Mirco CIALLELLA null
    "Sujet : ""High order methods for hyperbolic balance laws: from embedded fronts to structure-preserving schemes"". Directeur de thèse : Mario Ricchiuto, co-directeur : Renato Paciorri"
    1
  • Le 22 septembre 2022 à 15:30
  • Le Colloquium
    Salle de Conférences
    Timothy Logvinenko (Cardiff) null
    Skein-triangulated representations of generalised braids
    "The skein relation is the relation on oriented knots used by Vaughan Jones to define his now famous polynomial invariant for oriented knots. I will begin by introducing the Jones polynomial, the skein relation and their subsequent generalisations. In particular, the skein relation is often used to construct actions of braids and tangles. I will introduce the braid group Br_n, which encodes the configurations of n non-touching vertical strands (braids) up to continious transformations. I will give some examples of its various geometrical actions, in particular the one on the full flags in C^nconstructed by Khovanov and Thomas. In the end, I will introduce a new structure: the category GBr_n of generalised braids. These are the braids whose strands are allowed to touch in a certain way. I will then explain the higher analogues of the skein relation which one needs to impose to construct actions of generalised braids. This is a joint work with Rina Anno."
  • Le 23 septembre 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Ion Grama (Université de Bretagne Sud\, Vannes) null
    Un développement dEdgeworth pour les coefficients dune marche aléatoire dans le groupe linéaire général
    Soit $(g_n)_{n\geq 1}$ une suite d'éléments aléatoires indépendants et identiquement distribués de loi $\mu$ sur le groupe linéaire général $GL(V)$, où $V=\mathbb R^d $. Considérons la marche aléatoire $G_n : = g_n \ldots g_1$, $n \geq 1$. Dans des conditions convenables sur $\mu$, nous établissons le développement d'Edgeworth de premier ordre pour les coefficients $\langle f, G_n v \rangle$ avec $v \in V$ et $f \in V^*$. Un nouveau terme supplémentaire apparaît par rapport au cas du cocycle de la norme $\|G_n v\|$.
  • Le 23 septembre 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Elena Berardini (TU Eindhoven) null
    Nombre de points rationnels des courbes sur une surface de $\mathbb{P}^3$
    "Le nombre de points rationnels dune courbe $C$ projective lisse absolument irréductible de genre $g$ définie sur le corps fini $\mathbb{F}_q$ est borné par la célèbre borne de SerreWeil, à savoir $\#C(\mathbb{F}_q) \le q + 1 + g\lfloor 2\sqrt{q}\rfloor$. Cette borne a été étendue aux courbes singulières par Aubry et Perret. Dans leur ouvrage fondamental de 1986, Stöhr et Voloch ont introduit les ordres de Frobenius dune courbe projective et les ont utilisés pour donner une borne supérieure sur le nombre de points rationnels de la courbe. Près de 30 ans plus tard, Homma a prouvé que le nombre de $\mathbb{F}_q$points sur une courbe non dégénérée de degré $\delta$ plongée dans $\mathbb{P}^n$, avec $n\ge 3$, ne dépasse pas $q(\delta  1) + 1$. Tous ces résultats améliorent la borne originale de SerreWeil pour un régime de paramètres, et traitent souvent de courbes plus générales, e.g. réductibles et/ou singulières. De telles bornes sont intéressantes en soi, et savèrent également utiles pour des applications à la théorie des codes.Dans cet exposé, nous allons montrer que le nombre de points rationnels dune courbe irréductible de degré $\delta$ définie sur un corps fini $\mathbb{F}_q$ et plongée dans une surface $S$ de $\mathbb{P}^3$ de degré $d$ est, sous certaines conditions, borné par $\delta(d+q1)/2$. Dans un certain intervalle de $\delta$ et $q$, ce résultat améliore toutes les autres bornes connues dans le contexte des courbes de $\mathbb{P}^3$. La méthode utilisée sinspire des techniques développées par Stöhr et Voloch. Après avoir rappelé quelques résultats généraux sur la théorie des ordres dune courbe de $\mathbb{P}^3$, nous allons étudier les propriétés arithmétiques des courbes plongées sur une surface de $\mathbb{P}^3$, pour ensuite prouver la borne.Il sagit dun travail en commun avec J. Nardi."
  • Le 26 septembre 2022 au 30 septembre 2022
  • Manifestations Scientifiques
    Salle de Conférences
    Comité d'organisation : Philippe Lebacque\, Cecília Salgado\, Fabien Pazuki. null
    Diophantine Geometry and L-functions: Hindry 65 - 26-30 septembre 2022 - Salle de conférences IMB

  • Le 27 septembre 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle 2
    Antoine Benoit null
    Persistance de la régularité pour les problèmes aux limites hyperboliques à coin
    "On se propose ici d'exposer de nouveaux résultats concernant le caractère fortement bien posé des problèmes aux limites hyperboliques linéaires dans les espaces de Sobolev lorsque le problème est posée dans une géométrie anguleuse. L'étude de tels systèmes d'équations aux dérivées partielles est une ancienne question qui prend racine dans les travaux de [Osher '73], [Sarason '62] et qui a connu un regain d'intérêt grâce aux travaux de [Huang-Temam '14], [Rauch-Halpern '16] ou encore [B. '16].Dans cet exposé on verra comment la persistance de la régularité (qui est une question d'importance pour traiter des problèmes non linéaires par exemple) peut-être établie en adaptant des idées développées pour traiter les problèmes aux limites dit caractéristiques voir par exemple [Rauch '80]."
  • Le 28 septembre 2022 à 17:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Visio
    Ruslan Sadykov\, CR Inria Bordeaux null
    Non-Robust Strong Knapsack Cuts for Capacitated Location-Routing and Related Problems
    The Capacitated Location-Routing Problem consists in, given a set of locations and a set of customers, determine in which locations one should install depots with limited capacity, and for each depot, design a number of routes to supply customer demands. We provide a formulation that includes depot variables, edge variables, assignment variables and an exponential number of route variables, together with some new families of valid inequalities, leading to a branch-cut-and-price algorithm. The main original methodological contribution of the article is the Route Load Knapsack Cuts, a family of non-robust cuts, defined over the route variables, devised to strengthen the depot capacity constraints. We explore the monotonicity and the superadditivity properties of those cuts to adapt the labeling algorithm, used in the pricing, for handling the additional dual variables efficiently. Computational experiments show that several Capacitated Location-Routing previously unsolved instances from the literature can now be solved to optimality. Additional experiments with hard instances of the Vehicle Routing Problem with Capacitated Multiple Depots and with instances of the Vehicle Routing Problem with Time Windows and Shifts indicate that the newly proposed cuts are also effective for those problems.
  • Le 30 septembre 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Egor Yasinsky (Ecole Polytechnique\, Paris) null
    Birational geometry of Severi-Brauer surfaces
    "A Severi-Brauer surface over a field k is an algebraic k-surface which is isomorphic to the projective plane over the algebraic closure of k. I will describe the group of birational transformations of a non-trivial Severi-Brauer surface, proving in particular that ""in most cases"" it is not generated by elements of finite order. This is already a very curious feature, since the group of birational self-maps of a trivial Severi-Brauer surface, i.e. of a projective plane, is always generated by involutions (at least over a perfect field). Then I will demonstrate how to use this result to get some insights into the structure of the groups of birational transformations of some higher-dimensional varieties."
  • Le 30 septembre 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Comité d'organisation : Philippe Lebacque\, Cecília Salgado\, Fabien Pazuki. null
    Diophantine Geometry and L-functions: Hindry 65 - 26-30 septembre 2022 - Salle de conférences IMB

  • Le 4 octobre 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Pierrick Dartois\, Fabrice Etienne et Nicolas Sarkis null
    Présentation des nouveaux doctorants de l'équipe LFANT

  • Le 4 octobre 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Mickael Latocca null
    Probabilistic Local Well-posedness for the Schrodinger equation posed for the Grushin Laplacian
    "In this talk we study the local well-posedness of the equation$ i\partial_t u +\Delta_{G} u = |u|^{2}u $ where $\Delta_G = \partial_x^2+x^2\partial_y^2$ is the Grushin Laplacian and $u(t):\mathbb{R}^2 \to \mathbb{C}$ is the solution, to be constructed with initial data $u(0)=u_0 \in H^s_G(\mathbb{R}^d)$ (the adapted Grushin-Sobolev spaces). From a deterministic perspective, the best local well-posedness theory is in $\mathcal{C}^.([0,T),H^{\frac{3}{2}^{+}}_G)$ and the proof only uses the Sobolev embedding. Our main goal is to provide a probabilistic construction of local solutions for initial data $u_0 \in H_G^s$ where $s<3/2$. This is achieved using linear and bilinear random estimates. In the first part of the talk I will introduce the random initial data which we will consider. Then I will explain why randomisation helps to lower the well-posedness threshold: this is a general argument in the study of dispersive equations with random initial data. Then I will explain how bilinear random estimates relate to our probabilistic well-posedness problem, which we will prove if time permits. We may also discuss some extensions of our result instead. This talk is based on a joint work with Louise Gassot. "
  • Le 4 octobre 2022 à 13:30
  • Direction
    Salle de Conférences
    Le conseil de laboratoire se réunira le mardi 4 octobre de 13h30 à 15h30 en salle 285 de l'IMB
    "Lordre du jour est le suivant :
    1) Approbation du compte-rendu du conseil de laboratoire du 6 septembre ;
    2) PGE 2023 : information, et poste de MCF à l'IUT ;
    3) Point budgétaire et dépenses de fin d'année ;
    4) Utilisation des salles de l'IMB ;
    5) Questions diverses. "
  • Le 5 octobre 2022 à 14:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Bonamy Parrilla\, Delande\, Laheurte\, Amarillo\, Bournissou\, Magal null
    Journée de rentrée de léquipe EDP-PhysMath
    14h30-14h50: N. Bonamy Parrilla, Schémas LBM et applications aux plasmas
    14h50-15h10: L. Delande, Hypocoercivité semiclassique et loi d'Eyring-Kramers pour des opérateurs de Fokker-Planck dégénérés
    15h10-15h30: V. Laheurte, Coût dobservabilité en hautes fréquences des systèmes hyperboliques du premier ordre
    15h30-16h: P. Jamarillo, Mean field model of single cell electroporation
    16h-16h30: M. Bournissou, Contrôlabilité de l'équation de Schrödinger
    16h30-17h: pause
    17h-18h: P. Magal, Logistic equations with non-local and non-linear convection: a model for cells motion;
    18h: apéro, TBS (to be served)
  • Le 6 octobre 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle 2
    Yiye Jiang null
    Wasserstein Multivariate Autoregressive Models for distributional time series
    "In this work, we propose a new autoregressive model for multivariate distributional time series. We consider a collection of N series of probability measures supported over a bounded interval in R, which are indexed by distinct time instants. Especially, we wish to develop such a model which can identify the dependency structure in the temporal evolution of the measures. To this end, we adopt the Wasserstein metric. We establish the regression model in the Tangent space of the Lebesgue measure by first ""centering"" all the raw measures so that their Fréchet means turn Lebesgue. The uniqueness and stationarity results are provided. We also propose a consistent estimator for the model coefficient. In addition to the simulated data, the proposed model is illustrated on two real data sets: age distribution of countries and the bike sharing network in Paris. "
  • Le 6 octobre 2022 à 13:30
  • Soutenance de thèse
    GAM rdc
    Andony ARRIEULA null
    "Sujet :""Méthodes numériques d'apprentissage pour faciliter la localisation des arythmies ventriculaires lors d'une procédure d'ablation"". Directeur de thèse Mark Potse, co-directeur : Pierre Jais"

  • Le 6 octobre 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    [Séminaire CSM] Pas de séminaire : soutenance de thèse d'Andony Arrieula
    .
  • Le 6 octobre 2022 à 14:00
  • Séminaire d'Analyse
    Salle 2
    Takéo Takahashi (Nancy) null
    "Interaction entre un fluide visqueux incompressible et une
    \nparoi élastique"
    "Nous considérons l'interaction entre un fluide visqueuxincompressible et une structure élastique localisée sur une partie dubord du domaine fluide. Le mouvement du fluide est modélisé par lesystème de Navier-Stokes et pour la structure, nous utilisons uneéquation des cordes ou des poutres.Une partie de lanalyse du système couplé correspondant porte surl'étude du système linéarisé couplant une équation de Stokes à uneéquation des ondes/des poutres. Selon les cas, le semi-groupe associéest analytique ou de classe Gevrey."
  • Le 6 octobre 2022 à 14:00
  • Séminaire d'Analyse
    Salle 2
    Equipe Analyse null
    Welcome Back équipe Analyse !
    "- 12h - 14h : buffet- 14h - 15h : 1er séminaire danalyse de lannée Takéo Takahashi (Nancy). !!! Salle 2 !!!- 15h - 15h30 : Présentation des doctorantes et doctorants, des post-docs, et des ATER de léquipe. !!! Salle 2 !!!- 15h30 - 16h : Goûter"
  • Le 6 octobre 2022 à 15:30
  • Séminaire-débat Contexte
    Salle 1
    Julien Cattiaux\, CNRS et Centre National de Recherches Météorologiques null
    Variabilité météorologique et changement climatique : apport des mathématiques
    "Dans cet exposé je parlerai de météo, de climat, et de changement climatique. Je résumerai les bases physiques du réchauffement global actuel, présenterai les évolutions déjà observées depuis l'époque pré-industrielle et celles attendues d'ici 2100 selon différents scénarios, et illustrerai certaines conséquences du changement climatique sur la variabilité météorologique et ses événements extrêmes. Sur tous ces sujets, nous verrons que l'apport des mathématiques est précieux ; je donnerai quelques exemples concernant la modélisation numérique servant à la prévision du temps et aux projections climatiques, la description statistique des fluctuations atmosphériques ou des valeurs extrêmes, et la détection et l'attribution de tendances dans les observations passées.
    Nous débattrons autour de notre coeur de métier : dans quelle mesure doit-on orienter nos recherches pour répondre aux enjeux environnementaux et sociétaux ?"
  • Le 7 octobre 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Vincent Pecastaing (Laboratoire J.A. Dieudonné\, Nice) null
    Un théorème de D'Ambra conforme
    Le groupe des isométries d'une variété riemannienne compacte est toujours un groupe de Lie compact. Cette conséquence du théorème de Myers-Steenrod n'est plus valable pour les métriques non-riemanniennes. Néanmoins, en s'appuyant sur la théorie des structures géométriques rigides de Gromov, D'Ambra a montré à la fin des années 1980 que le groupe des isométries d'une variété lorentzienne compacte, simplement connexe et analytique est toujours compact. Bien qu'il confirme un phénomène topologique général dû à Gromov et Zimmer, ce résultat n'est pas valable au-delà de la signature lorentzienne. Dans cet exposé, je présenterai une extension du théorème de D'Ambra au groupe conforme de ces variétés, confirmant par d'autres biais cette spécificité lorentzienne. Les théorèmes des structures rigides de Gromov restent exploitables, mais la grosse limitation est l'absence de forme volume invariante dans ce cadre conforme. Il s'agit d'un travail en collaboration avec Karin Melnick.
  • Le 7 octobre 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Anne Quéguiner-Mathieu (Paris 13) null
    Formes quadratiques, Groupes algébriques et équivalence motivique.
    Deux formes quadratiques sont dites motiviquement équivalentes si les quadriques projectives associées ont des motifs isomorphes. Vishik a donné une caractérisation purement algébrique de léquivalence motivique. Cette dernière montre que le motif dune quadrique encode les propriétés de déploiement de la forme quadratique sous-jacente. Dans cet exposé, nous expliquerons comment ce résultat sétend au cadre plus général des groupes algébriques. Il sagit dun travail commun avec Charles De Clercq et Maksim Zhykhovich.
  • Le 10 octobre 2022 à 14:00
  • Groupe de Travail Analyse
    Salle 1
    Karim Kellay (IMB-Univ. Bordeaux) null
    Interpolation et échantillonnage multiple de l'espace de Bergman
    Nous étudions les problèmes d'échantillonnage et d'interpolation multiples avec des multiplicités non bornées dans l'espace de Bergman $A^p(\mathbb{D})$ à la fois dans le cas hilbertien $p=2$ et dans le cas uniforme $p=\infty$.
  • Le 11 octobre 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Rémy Oudompheng -
    Computation of (3,3)-isogenies from a product of elliptic curves, in the style of 19th century geometry
    The method found by W. Castryck and T. Decru to break SIDH requires computing $(2^n,2^n)$-isogenies from a product of elliptic curves to another abelian surface (which is also a product), which are realized as degree 2 correspondences between curves.Transposing the attack to the other side of the SIDH exchange involves degree $(3,3)$-isogenies that can be evaluated using either theta functions, or divisors on genus 2 curves. Methods for the curve approach exist for the Jacobian case, but the case of a product of elliptic curves (Bröker, Howe, Lauter, Stevenhagen 2014) can be difficult to implement for cryptographically relevant field sizes due to various limitations in CAS such as SageMath/Singular.I will explain how traditional algebraic geometry can be called to the rescue to give a simple construction of the curve correspondence associated to the quotient of $E_1 \times E_2$ by an isotropic $(3,3)$-kernel. This leads to a rather fast computation method relying only on elementary field operations and 2 square roots. The journey will bring back some memories of 19th century projective geometry. Theta function experts might recognize familiar objects in the geometric construction.
  • Le 11 octobre 2022 à 13:30
  • Direction
    Salle de Conférences
    Journée de rentrée de lIMB Mardi 11 octobre - Salle de conférences à partir de 13h30
    " Programme :
    13h30: Café gourmand
    14h00: Mot d'accueil du directeur
    14h05: Présentation des nouveaux doctorants, nouvelles doctorantes et post-doc
    14h20: Exposé scientifique de Margaret Bilu
    14h50: Présentation de la mission environnement
    15h05: Exposé scientifique de Luis Fredes
    15h30: Présentation de la cellule informatique
    15h50: Pause-café
    16h10: Présentation de la bibliothèque
    16h30: Exposé scientifique de Ayse Nur
    17h00: Présentation de la mission parité
    17h15: Exposé scientifique de Jean-Philippe Furter
    17h45: Présentation de l'équipe diffusion
    18h00: Musique et apéro, le groupe TUBA&C"
  • Le 12 octobre 2022 à 16:30
  • Le séminaire des doctorant·es
    Salle de Conférences
    Lilian Saligue (IMB) null
    Caractère discret du groupe de torsion dune variété abélienne sur un corps local
    Le groupe des points de torsion est un élément central de l'étude de courbes elliptiques et des variétés abéliennes. On verra dans cet exposé comment on pourra étendre un théorème de Mattuck de 1955 affirmant que le groupe de torsion d'une variété abélienne sur un corps local de caractéristique 0 non archimédien est discret par le même résultat en retirant l'hypothèse de caractéristique nulle. Pour cela nous donnerons dans un premier temps un aperçu général de tout élément que nous utiliserons avant de définir une distance et une topologie associée. On pourra ensuite démontrer notre résultat et expliquer en quoi cela est nécessaire dans notre travail sur la conjecture de Tate et Voloch (1996) que nous expliciterons également.
  • Le 13 octobre 2022 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Salle 2
    Eduardo Uchoa\, Prof. at Universidade Federal Fluminense\, Brazil and Inria null
    From the Steiner Problem in Graphs to more complex network design problems
    The talk starts with the history of algorithms for the classic Steiner Problem in Graphs (SPG), from the first formulations to the recent advances in the thesis that just won the EURO Doctoral Dissertation Award (https://www.zib.de/node/5310). The accumulated advances in more than 40 years of research now allow the solution of typical instances with tenths of thousands of nodes and edges in less than one minute. A crucial point for that success is the fact that SPG admits a directed graph formulation. Then, it will be shown that many other network design problems that also admit directed formulations are now also well-solved. However, many more complex network design problems do not seem to admit directed formulations. The talk ends by presenting the distance-transformation technique for strengthening undirected formulations.
  • Le 13 octobre 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Guillaume Dubach null
    Une dynamique de chaises musicales sur des valeurs propres
    "Je présenterai un modèle de matrices aléatoires faiblement non-Hermitiennes dont les valeurs propres décrivent une dynamique de ""chaises musicales"": après être passées de la droite réelle au demi-plan supérieur, l'une d'entre elles s'échappe irrémédiablement, tandis que les autres s'alignent à nouveau sur la droite réelle. Nous verrons notamment après combien de temps il est possible de distinguer avec quasi-certitude la valeur propre ""perdante"". Travail en collaboration avec László Erdös."
  • Le 13 octobre 2022 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Myeongju Kang (Seoul National University) null
    "Asymptotic behavior of various synchronization models and scaling limit\n"
    "Synchronous behaviors of oscillatory complex systems are ubiquitous in many biological and chemical systems,to name a few, firing of fireflies, synchronization of metronomes, rhythmic beating of pacemaker cells, etc.Famous examples are the Kuramoto model, which is a phase-coupled model on unit circle,and the Cucker-Smale model, which is a velocity alignment model on Euclidean space.Continuum and mean-field limit is an effective approximation to describe a system with infinitely many particles.In this talk, we first study some examples of the particle models.Then, we apply time-evolutionary behavior of the particle modelsto analyze the continuum and kinetic equations obtained as a suitable limit of the particle systems."
  • Le 14 octobre 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Sanoli Gun (IMSc\, Chennai) null
    Bound of Fourier coefficients of half integer weight cusp forms
    "After a review of the known results,we will report on a work with W. Kohnen andK. Soundararajan about lower bound of Fouriercoefficients of half integral weightcusp forms at fundamental discriminants."
  • Le 18 octobre 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Èrell Gachon -
    Some Easy Instances of Ideal-SVP and Implications on the Partial Vandermonde Knapsack Problem
    In our article, we generalize the works of Pan et al. (Eurocrypt 21) and Porter et al. (ArXiv 21) and provide a simple condition under which an ideal lattice defines an easy instance of the shortest vector problem. Namely, we show that the more automorphisms stabilize the ideal, the easier it is to find a short vector in it. This observation was already made for prime ideals in Galois fields, and we generalize it to any ideal (whose prime factors are not ramified) of any number field. We then provide a cryptographic application of this result by showing that particular instances of the partial Vandermonde knapsack problem, also known as partial Fourier recovery problem, can be solved classically in polynomial time.
  • Le 18 octobre 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Billel Guelname null
    On the blow-up scenario and global weak solutions for the SerreGreenNaghdi equations with surface tension
    We consider in this talk the Serre-Green-Naghdi equations with surface tension. Those equations are locally (in time) well-posed, we present a precise blow-up criterion and we identify a class of smooth initial data such that the corresponding strong solutions develop singularities in finite time. We also show the existence of a strongly continuous semigroup of global weak dissipative solutions for any small energy initial data. The Riemann invariants of the weak solutions satisfy a one-sided Oleinik inequality.
  • Le 18 octobre 2022 à 13:30
  • Direction
    Salle 285
    Le Conseil Scientifique de lIMB aura lieu mardi 18 octobre 2022 à 13h30 en salle 285
    Ordre du jour :
    1) Nouvelles du conseil de laboratoire
    2) Profil du poste de MCF à l'IUT
    3) Questions diverses
  • Le 20 octobre 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Thomas Simon null
    Temps de passage de certaines chaînes auto-régressives
    "On considère une suite auto-régressive d'ordre 1 avec des innovations continues et symétriques, et son premier temps de passage au-dessus de zéro. On montre deux factorisations remarquables des fonctions génératrices de ce temps de passage en fonction du signe du paramètre de dérive. La première factorisation étend un résultat classique de Sparre Andersen sur les marches aléatoires symétriques et continues. Dans le cas des innovations uniformes, on établit un lien étonnant entre la loi du temps de passage et les polynômes énumérateurs de Mallows-Riordan. Travail avec Gerold Alsmeyer, Alin Bostan et Kilian Raschel."
  • Le 20 octobre 2022 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Salle 2
    Michael Khachay\, Prof. Corr. memb. of RAS\, Head of the Math. Programming at Krasovsky Institute of Mathematics and Mechanics\, Ekaterinburg\, Russia null
    Svensson-Traub Algorithm for the Asymmetric Travelling Salesman Problem and polynomial-time approximation of asymmetric routing problems within fixed ratios
    "For the first time, fixed-ratio polynomial time approximation algorithms are proposed for a series of asymmetric routing combinatorial optimization problems including the Steiner Cycle Problem (SCP), Rural Postman Problem (RPP), Generalized Traveling Salesman Problem (GTSP), Capacitated Vehicle Routing Problem with Unsplittable Customer Demands (CVRP-UCD), and Prize Collecting Traveling Salesman Problem (PCTSP). The presented results are shared the common property, all of them rely on polynomial-timel cost-preserving reduction to appropriate settings of the Asymmetric Traveling Salesman Problem (ATSP) and the seminal (22 + µ)-approximation algorithm for this classical problem proposed by O. Svensson and V. Traub in 2019."
  • Le 20 octobre 2022 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Renaud Leplaideur (Nouvelle Calédonie) null
    "Formalisme thermodynamique et analyse convexe.\n"
    " je présenterai un travail en commun avec Jérôme Buzzi et Benoit Kloeckner. Nous introduisons un formalisme thermodynamique non linéaire, qui étend le formalisme thermodynamique quadratique introduit par Leplaideur et Watbled.J'expliquerai ce qu'est le formalisme thermodynamique en systèmes dynamiques, et présenterai la question du dictionnaire entre la vision de la théorie ergodique et la vision de la mécanique statistique.J'introduirai alors le formalisme non linéaire et montrerai comment il est basé sur l'analyse convexe et la notion de transformée de Legendre."
  • Le 20 octobre 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Peter Langfield (CARMEN) null
    [Séminaire CSM] Numerical continuation approaches for computing phase response in higher-dimensional models.
    "In dynamical systems, invariant objects can be computed efficiently via numerical continuation of solutions to a suitably defined boundary-value problem. This presentation will start with a brief overview of the basic ideas behind the numerical continuation method, and some examples of typical applications.The main focus of the presentation is determining how oscillating models shift in phase in response to stimuli. I will present numerical-continuation-based approaches for computing two phase-response tools, namely, isochrons and phase transition curves. Using examples of the 4d Hodgkin-Huxley model and a 7d sino-atrial node cell, I will show how these approaches are undeterred by sensitivity that is common in biological systems, and how the (n-1)-dimensional isochrons can be computed and visualized even in models with dimension n>3."
  • Le 20 octobre 2022 à 15:30
  • Le Colloquium
    Salle de Conférences
    Thomas Simon (Lille) null
    Sur la transformée de Fourier des courbes en cloche.
    Une fonction lisse de R dans (0,oo) est dite en cloche si elle tend vers zéro aux deux infinis et si sa dérivée n-ième s'annule exactement n fois pour tout n. Cette propriété peut être vue comme un raffinement de l'unimodalité. L'exemple typique est la densité gaussienne. Dans cet exposé, on présentera une caractérisation de telles courbes par leur transformée de Fourier en établissant une formule de type Lévy-Khintchine. Travail commun avec Mateusz Kwasnicki.
  • Le 21 octobre 2022
  • Manifestations Scientifiques
    Salle de Conférences
    Comité d'organisation :A. Bouzid - IRCER - Limoges\, M. Bergmann - IMB - Bordeaux\, S. Delage Santacreu - LMAP - UPPA\, A. Falaize - LaSie - La Rochelle\, A. Franc - Biogeco - INRAE Bordeaux\, S. Glockner - I2M - Bordeaux\, M. Joliot - GIN-IMN - Bordeaux\, H. Lemaitre - GIN-IMN - Bordeaux\, R. Mereau -ISM - Bordeaux\, P. Parnaudeau - PPrime - Poitiers\, C. Proust-Lima - BPH - Bordeaux null
    JSMCIA2022 : journée scientifique 2022 du Mésocentre de Calcul Intensif Aquitain - 21 octobre 2022 - Salle de conférences de l'IMB

  • Le 21 octobre 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Anne-Edgar Wilke (IMB\, Bordeaux) null
    Covariant de Kempf-Ness et théorie de la réduction
    "Cet exposé sera motivé par une question de nature arithmétique. Etant donnée une action d'un groupe algébrique réductif $G$ sur une variété algébrique $X$, tous deux définis sur un corps de nombres $k$, on cherche à  construire une théorie de la réduction pour l'action de certains sous-groupes arithmétiques de $G(k)$ sur $X(k)$ : plus précisément, on cherche un moyen de choisir dans chaque orbite un point particulier, que l'on qualifie de réduit, de sorte qu'il soit aussi facile que possible de vérifier si un point donné est réduit, et s'il ne l'est pas, de calculer le point réduit qui lui est équivalent. Je montrerai comment ramener ce problème arithmétique à une question purement géométrique : étant donnée une action d'un groupe de Lie holomorphe réductif $G$ sur une variété holomorphe $X$, il s'agit de construire une application $G$-équivariante de $X$ dans l'espace symétrique $K \backslash G$, où $K$ est un sous-groupe compact maximal de $G$. Sous des hypothèses supplémentaires, je construirai ensuite une telle application : le covariant de Kempf-Ness. Enfin, j'étudierai en détail l'exemple de l'action de $\mathrm{SL}_n(\mathbb{C})$ sur un produit de grassmanniennes $\mathrm{Gr}_{k_i, n}(\mathbb{C})$ ; dans ce cas, un élément de $X$ peut être vu comme une distribution de masses sur le bord à  l'infini de l'espace symétrique, et le covariant de Kempf-Ness s'interprète comme le barycentre de cette distribution."
  • Le 21 octobre 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle 2
    Riccardo Brasca null
    Formalisation des mathématiques et l'assistant de preuve Lean
    "Je vais parler dans cet exposé de formalisation des mathématiques, le processus ""d'expliquer"" des théorèmes à un ordinateur. J'expliquerai comment fonctionnent les assistants de preuve et pourquoi ils peuvent être utiles pour les mathématiciens. Je raconterai aussi l'histoire d'un projet dont le but était la formalisation d'un résultat très récent de Clausen et Scholze. Je terminerai en montrant en pratique Lean, un des assistants de preuve les plus utilisés aujourd'hui. Cet exposé n'est pas à propos des fondements des mathématiques, en particulier aucune connaissance autour de la formalisation est requise."
  • Le 25 octobre 2022
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Damien Robert Inria/IMB
    Evaluating isogenies in polylogarithmic time
    We explain how the « embedding lemma » used in the recents attacks against SIDH can be used constructively. Namely we show that every $N$-isogeny between abelian varieties over a finite field admits an efficient representation allowing for its evaluation in time polylogarithmic in $N$. Furthermore, using Vélu's formula for elliptic curves, or isogenies in the theta model for dimension $g>1$, this representation can be computed in time quasi-linear in $N^g$.
  • Le 25 octobre 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Matthieu Léautaud null
    Observabilité uniforme de flots de gradient dans la limite de viscosité évanescente
    "On considère une équation de transport par un champ de gradient avec une petite perturbation visqueuse. On étudie des propriétés dobservabilité uniforme dans la limite (singulière) de viscosité évanescente. On montre avec une série dexemples que le temps minimal pour lobservabilité uniforme peut être bien plus grand que le temps minimal pour léquation limite. On montre aussi que les deux temps minimaux coïncident pour les solutions positives.Il s'agit d'un travail en collaboration avec Camille Laurent."
  • Le 25 octobre 2022 à 11:00
  • Séminaire d'Analyse
    Salle de Conférences
    Matthieu Léautaud (Paris Saclay) null
    Séminaire Commun avec Physique Mathématique et EDP
    TBA
  • Le 26 octobre 2022 au 28 octobre 2022
  • Manifestations Scientifiques
    Salle de Conférences
    "\"\nComité d'organisation
    EDP et Probabilité - 26-28 octobre - Salle de conférences IMB

  • Le 26 octobre 2022 à 17:00
  • Le séminaire des doctorant·es
    Salle 2
    Yiye Jiang (IMB) null
    Wasserstein Multivariate Autoregressive Models for distributional time series and its application in graph learning
    In this work, we propose a new autoregressive model for multivariate distributional time series. We consider a collection of $N$ series of distributions defined over a bounded interval in $\mathbb{R}$, which are indexed by distinct time instants. Especially, we wish to develop such a model which can identify the dependency structure in the temporal evolution of the measures. To this end, we extend the classical vector autoregressive model $X_t = AX_{t-1} + Z_t$, for $t$ in $\mathbb{Z}$, which resides in $\mathbb{R}^N$ to a model in Wasserstein space $W_2(\mathbb{R})$ which is a metric space of univariate distributions whose 2nd moments exist, endowed with the $L^2$-distance between their quantile functions. The model coefficients parametrize the dependency structure. We show that the proposed model is a theoretical valid time series model. In particular, we propose a method to estimate the model coefficient from a finite number of observations. We fit the proposed model on two real data sets: age distribution of countries and the bike sharing network in Paris. We visualize the corresponding estimated dependency structures on the real geographical maps, which demonstrate the effectiveness of the proposed model.
  • Le 27 octobre 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle 2
    Luis Frédès null
    Chaînes de Markov presque triangulaires sur 
    Une matrice de transition U sur  est dite presque triangulaire supérieure si U(i,j)e0Òjei-1, de sorte que les incréments des chaînes de Markov correspondantes sont au moins -1 ; une matrice de transition L sur  est dite presque triangulaire inférieure si L(i,j)e0Òjdi+1, et alors, les incréments des chaînes de Markov correspondantes sont au plus +1. Dans cet exposé, je caractériserai la récurrence, la récurrence positive et la distribution invariante pour la classe des matrices de transition presque triangulaires. Ces résultats englobent le cas des processus de naissance et de mort (BDP), qui sont des chaînes de Markov célèbres étant simultanément presque triangulaires supérieures et presque triangulaires inférieures. Leurs propriétés ont été étudiées dans les années 50 par Karlin & McGregor dont l'approche repose sur des connexions profondes entre la théorie des BDP, les propriétés spectrales de leurs matrices de transition, le problème des moments, et la théorie des polynômes orthogonaux. Notre approche est principalement combinatoire et utilise des méthodes algébriques élémentaires. Travail en commun avec J.F. Marckert.
  • Le 28 octobre 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Ronan Terpereau (Institut de Mathématiques de Bourgogne\, Dijon) null
    Formes réelles des adhérences d'orbites nilpotentes dans une algèbre de Lie semi-simple complexe
    Soit $G$ un groupe algébrique complexe semi-simple, qui agit sur son algèbre de Lie $Lie(G)$ via l'action adjointe, et soit $X$ l'adhérence d'une orbite nilpotente dans $Lie(G)$. Dans cet exposé on va s'intéresser aux formes réelles de $X$, c'est-à-dire aux variétés algébriques réelles $W$ munies d'une action d'un groupe algébrique réel $F$ telles que $F_{\mathbb{C}}$ soit isomorphe à $G$ comme groupe algébrique et $W_{\mathbb{C}}$ soit isomorphe à $X$ comme $G$-variété. Il s'agit d'un travail en commun avec Michael Bulois et Lucy Moser-Jauslin.
  • Le 28 octobre 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle 2
    Gautier Ponsinet (IMB) null
    "Groupes de Bloch-Kato, corps perfectoïdes et théorie d'Iwasawa

    \n"
    "Les groupes de Selmer de Bloch-Kato associés à une représentationgéométrique du groupe de Galois d'un corps de nombres interviennent dansles conjectures de Bloch et Kato sur les valeurs spéciales de fonctionsL. En théorie d'Iwasawa, on s'intéresse à la structure de ces groupessur des extensions de corps infinies. Pour ce faire, il est nécessaired'étudier certains groupes de Bloch-Kato locaux définis via la théoriede Hodge p-adique. Dans cet exposé, je présenterai de nouveaux résultatsconcernant ces groupes de Bloch-Kato locaux sur les corps perfectoïdes.Ces résultats locaux permettent de donner une description plus maniabledes groupes de Selmer de Bloch-Kato comme groupes de Selmer « à laGreenberg » sur de nombreuses extensions de corps infinies, et jeprésenterai quelques conséquences immédiates de cette description enthéorie d'Iwasawa."
  • Le 8 novembre 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Anne-Edgar Wilke IMB
    Énumération des corps de nombres quartiques
    Fixons un entier $n \geq 2$, et, pour $X \geq 0$, soit $C_n(X)$ l'ensemble des classes d'isomorphisme de corps de nombres de degré $n$ et de discriminant inférieur à $X$ en valeur absolue. La méthode de Hunter-Pohst permet d'énumérer $C_n(X)$ en temps $O(X^{\frac{n + 2}{4} + epsilon})$. Pour $n \geq 3$, on s'attend à ce que cette complexité ne soit pas optimale : en effet, une conjecture classique, démontrée pour $n leq 5$, prévoit qu'il existe une constante $c_n \geq 0$ telle que le cardinal de $C_n(X)$ soit équivalent à $c_n X$. En utilisant une paramétrisation des corps cubiques due à Davenport et Heilbronn, Belabas a mis au point un algorithme énumérant $C_3(X)$ en temps optimal $O(X^{1 + \epsilon})$. Je montrerai comment une paramétrisation des corps quartiques due à Bhargava permet de manière similaire d'énumérer $C_4(X)$ en temps $O(X^{\frac{5}{4} + \epsilon})$. Je présenterai ensuite des résultats numériques, ainsi que des perspectives d'amélioration et de généralisation en degré supérieur.
  • Le 8 novembre 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Mickaël Nahon null
    A free discontinuity approach to optimal profiles in Stokes flows
    We consider an incompressible Stokes fluid contained in a box $B$ that flows around an obstacle $K \subset B$ with a Navier boundary condition on $\partial K$. I will present existence and partial regularity results for the minimization of the drag of $K$ among all profiles with certain constraints on the measure and perimeter $K$, based on techniques that were developed for Griffith's fracture model in brittle materials. This is a joint work with Dorin Bucur, Antonin Chambolle and Alessandro Giacomini.
  • Le 8 novembre 2022 à 13:30
  • Direction
    Salle 285
    Le conseil de laboratoire se réunira le mardi 8 novembre de 13h30 à 15h30 en salle 285 de l'IMB
    Lordre du jour est le suivant :
    1) Approbation du compte-rendu du conseil de laboratoire du 4 octobre ;
    2) Examen et vote du règlement intérieur ;
    3) Abonnements à MathSciNet et zbMATH ;
    4) Questions diverses.
  • Le 9 novembre 2022 à 16:30
  • Le séminaire des doctorant·es
    Salle de Conférences
    Adrien Tendani Soler (IMB) null
    Résolution et propriétés qualitatives de quelques EDP: du linéaire au non-linéaire
    Lexposé portera sur trois équations aux dérivées partielles: léquation de la chaleur, léquation des ondes et léquation de Schrödinger. Dans un premier temps jexposerai certaines propriétés mathématiques de ces équations ainsi que leurs implications conceptuelles. Pour finir on s'intéressera à la version non linéaire de ces équation, aux méthodes qui interviennent et au lien avec léquation linéaire de départ.
  • Le 10 novembre 2022 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Salle 2
    Merve Bodur\, assistant professor\, University of Toronto\, Canada null
    Leveraging Decision Diagrams to Solve Two-stage Stochastic Programs with Binary Recourse and Logical Linking Constraints
    Two-stage stochastic programs (2SPs) with binary recourse are challenging to solve and efficient solution methods for such problems have been limited. Leveraging the combinatorial nature of binary programs, we convexify the second-stage problems using binary decision diagrams (BDDs) to make the problem amenable to Benders decomposition algorithm. More specifically, we first generalize an existing BDD-based approach to allow settings where logical expressions of the first-stage solutions enforce constraints in the second stage, making it applicable to a wide array of problems. We also propose a complementary problem where second-stage objective coefficients are impacted by logical expressions of the first-stage decisions, and develop a distinct BDD-based algorithm to solve this novel problem class. In the two alternative settings, while convexifying the second-stage problems, we parametrize either the arc costs or capacities of the BDDs with first-stage solutions. We further extend this work by incorporating conditional value-at-risk and we propose, to our knowledge, the first decomposition method for 2SPs with binary recourse and a risk measure. We apply these methods to a novel stochastic dominating set problem and present numerical results to demonstrate the effectiveness of the proposed methods.
  • Le 10 novembre 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Camille Male (IMB) null
    Une Introduction aux Probabilités libres

  • Le 10 novembre 2022 à 13:00
  • Séminaire-débat Contexte
    Amphi du LaBRI
    Valérie dAcremont\, Université de Lausanne null
    Santé, numérique et environnement
    "Intervention dans le cadre de l'""UE Séminaires Enjeux Sociétaux"" du Labri, https://www.labri.fr/perso/bugeau/UESeminaires.html (organisé par Aurélie Bugeau). On essaiera de faire suivre sa présentation d'un débat."
  • Le 10 novembre 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Chloé Mimeau (CNAM) null
    [Séminaire CSM] Pénalisation de Brinkman pour la simulation découlements en milieux fluide-poreux - Comparaison de deux méthodes numériques : une méthode Lattice Boltzmann et une méthode semi-lagrangienne.
    "Les parois poreuses et milieux poreux sont connus pour leur capacité à contrôler les instabilités des écoulements. En revanche les mécanismes physiques à lorigine de ces propriétés régularisantes sont encore mal compris.Dans cette étude nous considérons une approche que lon pourrait qualifier de « sub-pore scale model » (modèle de sous-pore) pour simuler numériquement des écoulements en milieu fluide-poreux; il sagit de la méthode de pénalisation de Brinkman.Cette technique, grâce à son aspect « pénalisation », peut être facilement intégrée à nimporte quelle méthode numérique en ajoutant un terme source aux équations continues que lon cherche à résoudre dans la phase fluide.Nous présenterons son implémentation au sein de deux approches numériques bien distinctes et non-canoniques : une méthode Lattice Boltzmann (LBM) (mésoscoqiue/eulérien) et une méthode Vortex avec remaillage (VM) (macroscopique/semi-lagrangien).Les résultats seront comparés et analysés dans le cadre dun écoulement autour dune sphère poreuse.Nous nous intéresserons en particulier à la relation entre la nature du régime découlement (caractérisé par le nombre de Reynolds critique) et la perméabilité de la sphère immergée (caractérisée par le nombre de Darcy).Les résultats obtenus avec les deux méthodes LBM et VM seront comparés entre eux mais également aux résultats de la littérature et une analyse physique des résultats sera proposée."
  • Le 10 novembre 2022 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Armand Koenig (Toulouse) null
    Obstructions quadratiques à la contrôlabilité locale d'un système de bac d'eau et de l'équation de KdV / Quadratic obstructions to to the local controllability of the KdV equation and a water-tank system
    "Lorsque le linéarisé d'une équation n'est pas contrôlable, il est naturel de considérer une approximation quadratique. Si cette approximation quadratique présente une forme de coercivité, cela mène à une obstruction à la contrôlabilité locale de l'équation non-linéaire. Nous présenterons deux équations pour lesquelles ceci se manifeste : l'équation de KdV lorsque la longueur est dite ""critique"", et un bac d'eau modélisé par des équations de Saint-Venant. L'équation de KdV a la particularité d'avoir un contrôle frontière, qui est plus délicat à traiter que le contrôle interne. Tandis, que notre résultat sur le bac est intéressant par la minoration du temps de contrôle que nous obtenons, deux fois supérieur à ce que la vitesse de propagation des vagues suggèrerait. Ce travail est une collaboration avec Jean-Michel Coron et Hoai-Minh Nguyen.-----When the linearization of a control system is not controlable, it is natural to consider a second-order approximation to study the local controlability. If the quadratic term enjoys a kind of coercivity, it can lead to a lack of local controllability. We will discuss two equations where this happens: the KdV equation when the length is said to be ""critical"", and a water-tank system modeled by Saint-Venant's equations. The KdV equations has a boundary control, which makes it more difficult to treat than internal control. Our result on the water-tank is interesting in the lower-bound for the time of local-controlability that we prove: twice the time the speed of the linearized waves would suggest. This is a joint work with Jean-Michel Coron and Hoai-Minh Nguyen."
  • Le 14 novembre 2022 à 09:00 au 15 novembre 2022 à 12:00
  • Manifestations Scientifiques
    Salle 1
    Organisateurs : Philippe Thieullen\, Fabien Durand\, Samuel Petite null
    Rencontre IZES Bordeaux 2022 - 14 et 15 novembre 2022 - Salle 1 de l'IMB

  • Le 14 novembre 2022 à 13:30 au 15 novembre 2022 à 17:30
  • Manifestations Scientifiques
    Salle de Conférences
    Comité d'organisation et Comité Scientifique : Mouez Dimassi et Laurent Michel null
    """Microlocal Analysis and Inverse Problems""In honor of the 80th birthday of Vesselin Petkov - 14 et 15 novembre - Salle de conférences IMB"

  • Le 15 novembre 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Henri Cohen IMB
    A Pari/GP package for continued fractions
    I will describe with numerous examples a new Pari/GP package for infinite continued fractions which can in particular compute numerically the limit, the exact asymptotic speed of convergence (almost never given in the literature), accelerate continued fractions, and especially apply the powerful Apéry acceleration technique to almost all continued fractions, leading to hundreds of new ones.
  • Le 16 novembre 2022 à 16:30
  • Le séminaire des doctorant·es
    Salle de Conférences
    Giuseppe Lamberti (IMB) null
    Introduction to interpolation and random interpolation in spaces of holomorphic functions
    The talk will be an introduction to interpolation problems in spaces of holormophic functions of one variable. I will start from the original problem, stated for bounded holomorphic functions in the unit disk, to then introduce it for reproducing kernel Hilbert spaces. The last part will be about random interpolation, in particular I will focus on Steinhaus sequences.
  • Le 17 novembre 2022 à 14:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Salle 2
    Boris Detienne\, maître de conférences\, University of Bordeaux null
    Two-stage robust optimization with objective uncertainty
    "In this work, we study optimization problems where some cost parameters are not known at decision time and the decision flow is modeled as a two-stage process within a robust optimization setting. We address general problems in which all constraints (including those linking the first and the second stages) are defined by convex functions and involve mixed-integer variables, thus extending the existing literature to a much wider class of problems. We show how these problems can be reformulated using Fenchel duality, allowing to derive an enumerative exact algorithm, for which we prove $epsilon$-convergence in a finite number of operations.An implementation of the resulting algorithm, embedding a column generation scheme, is then computationally evaluated on two different problems, using instances that are derived starting from the existing literature. To the best of our knowledge, this is the first approach providing results on the practical solution of this class of problems."
  • Le 17 novembre 2022 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    John McCarthy (Saint Louis) null
    Isometric extensions of bounded holomorphic functions
    "Let $V$ be an analytic subvariety of a domain $\Omega$ in $\mathbb{C}^n$.When does $V$ have the property that every bounded holomorphic function $f$ on$V$ has an extension to a bounded holomorphic function on $\Omega$ with the same norm?If $\Omega$ is very nice, for example the ball, then this can only happen under very rigid conditions.$V$ must be a holomorphic retract of $\Omega$, i.e. there must exact a holomorphic $r: \Omega \to V$ so that $r|_V = {\rm id}$. Being a retract is always sufficient (as $f \circ r$ gives the extension), but without some convexity condition on $\Omega$ it is not necessary.We shall discuss isometric extensions, and why convexity plays a rôle.This is joint work with Jim Agler and Lukasz Kosinski."
  • Le 17 novembre 2022 à 15:30
  • Le Colloquium
    Salle de Conférences
    Benoît Grébert (Nantes) null
    "Formes normales et EDPs hamiltoniennes\n"
    "Les solutions de petites amplitudes déquations aux dérivées partielle nonlinéaires dispersives sur un compact sans bord (par exemple un tore ou une sphère) sont soumises à deux effets concurrents :- la dispersion des ondes, conséquence du fait que les ondes planes, solutions de la partie linéaire de léquation, voyagent avec des vitesses différentes (les ondes séloignent les unes des autres).- la compacité du domaine qui incite à linteraction via la non-linéarité (les ondes sont amenées à se revoir souvent !).Qui gagne ? La dynamique en temps long va-t-elle vers la stabilité ou la turbulence ? Nous essaierons de répondre (partiellement) à ces questions à travers des méthodes de formes normales dans le cadre des EDPs Hamiltoniennes.Dans la première partie, je donnerai un aperçu du théorème de forme normale de Birkhoff en dimension finie qui permet détablir, sous certaines conditions de non résonances, la stabilité sur des temps longs dun point déquilibre elliptique. Jexpliquerai ensuite comment le passage dun tel résultat en dimension infinie conduit à des résultats de stabilité pour des EDPs hamiltoniennes, en particulier léquation de Schrödinger non linéaire."
  • Le 18 novembre 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Enrica Floris (Laboratoire de Mathématiques et Applications\, Poitiers) null
    Sous-variétés split d'un espace homogène
    Van de Ven en 1959 a démontré que les sous-variétés de l'espace projectif dont la suite normale est scindée sont des sous-espaces linéaires. Dans cet exposé j'expliquerai une généralisation partielle de ce résultat aux variétés homogènes : une sous-variété d'une variété homogène dont la suite normale est scindée est une variété rationnelle homogène.
  • Le 18 novembre 2022 à 14:00
  • Soutenance de thèse
    Salle de Conférences
    Agnès CHAN null
    "Sujet : ""Méthodes numériques innovantes pour l'aérodynamique supersonique 3D sur des maillages non-structurés"". Directeur de thèse : Raphaël loubère, co-directeur : Pierre-Henri Maire"

  • Le 18 novembre 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle 1
    Daniele Turchetti (Warwick\, ETH Zürich) null
    Modèles des courbes et géométrie analytique non-archimédienne
    La théorie des modèles sur un anneau à valuation discrète se situe au croisement de la théorie de nombres et de la géométrie algébrique, et est riche en applications Diophantiennes, aux représentations Galoisiennes et à la cryptographie, entre autres. Dans les années 60, Deligne et Mumford ont démontré quune courbe C sur un corps à valuation discrète K admet un modèle semi-stable quitte à faire une extension des scalaires finie. Létude de lextension minimale L|K qui rend C semi-stable amène naturellement à beaucoup de questions encore ouvertes. Dans cet exposé, je vais présenter des résultats sur le comportement des modèles par changement de base. Les premiers (avec Lorenzo Fantini) explorent le lien entre modèles réguliers, la géométrie de lanalytification (à la Berkovich) de C et lextension L|K. Ensuite, je parlerai dun résultat plus précis (avec Andrew Obus) consacré à létude de L|K dans le cas de réduction potentiellement multiplicative. Cela nous permet dobtenir des résultats dans un cadre de ramification sauvage.
  • Le 21 novembre 2022 au 25 novembre 2022
  • Manifestations Scientifiques
    CIRM
    Comité dorganisation : Lucie Baudouin (CNRS - LAAS)\, Franck Boyer (Institut de Mathématiques de Toulouse)\, Jérémi Dardé (Institut de Mathématiques de Toulouse)\, Sylvain Ervedoza (CNRS\, Institut de Mathématiques de Bordeaux)\, Julien Royer (Institut de Mathématiques de Toulouse) null
    Théorie spectrale, contrôle et problèmes inverses - 21 - 25 novembre 2022 - CIRM

  • Le 22 novembre 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Sulamithe Tsakou -
    Index calculus attacks on hyperelliptic curves with efficient endomorphism
    The security of many existing cryptographic systems relies on the difficulty of solving the discrete logarithm problem (DLP) in a group. For a generic group, we can solve this problem with many algorithms such as the baby-step-giant-step, the Pollard-rho or the Pohlig-Hellman algorithm. For a group with known structure, we use the index calculus algorithm to solve the discrete logarithm problem. Then, the DLP on the Jacobian of a hyperelliptic curve defined over a finite field $\mathbb{F}_{q^n}$ with $n >1$ are subject to index calculus attacks. After having chosen a convenient factor basis, the index calculus algorithm has three steps - the decomposition step in which we decompose a random point in the factor basis, the linear algebra step where we solve a matricial equation and the descent phase in which the discrete logarithm is deduced. The complexity of the algorithm crucially depends on the size of the factor basis, since this determines the probability for a point to be decomposed over the base and also the cost of the linear algebra step. Faugère et al (EC 2014) exploit the $2$-torsion point of the curve to reduce the size of the factor basis and then improve the complexity of the index calculus algorithm. In a similar manner, we exploit the endomorphism of the Jacobian to reduce the size of the factor base for certain families of ordinary elliptic curves and genus $2$ hyperelliptic Jacobians defined over finite fields. This approach adds an extra cost when performing operation on the factor basis, but our benchmarks show that reducing the size of the factor base allows to have a gain on the total complexity of index calculus algorithm with respect to the generic attacks.
  • Le 22 novembre 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Ayman Moussa (Sorbonne Université) null
    Estimée de stabilité locale et dérivation du système SKT
    "Nous commencerons par rappeler l'origine du système de réaction-diffusion "" SKT "" et les défis à ce jour non résolus concernant celui-ci. L'exposé abordera ensuite un schéma d'approximation proposé en 2019 par Daus, Desvillettes et Dietert pour construire des solutions. Nous expliquerons comment ce schéma peut, à l'aide d'une estimation de stabilité locale sur le système, conduire à un résultat partiel de dérivation reliant le système SKT à une famille de marches aléatoires répulsives sur un réseau discret. Il s'agit d'un travail en collaboration avec Vincent Bansaye et Felipe Muñoz-Hernández."
  • Le 22 novembre 2022 à 13:00
  • Direction
    Salle 285
    Le Conseil Scientifique de l'IMB se réunira le mardi 22 novembre 2022 à 13h00 en salle 285
    ORDRE DU JOUR :
    1) Nouvelles du conseil du laboratoire. Informations sur le plan de gestion des emplois 2023
    2) Approbation du compte-rendu du conseil scientifique du 18 octobre 2022 (en ligne sur Nuxéo)
    3) Prospective scientifique : équipes OptimAl, EDP-Physique Mathématique,Théorie des Nombres, Analyse
    4) Attribution des demandes de gratifications de stages


  • Le 23 novembre 2022 à 09:00
  • Manifestations Scientifiques
    Journée de l'IREM d'Aquitaine le 23 novembre de 9h à 17h - IMB - Labri A29

  • Le 23 novembre 2022 à 14:00 au 24 novembre 2022 à 18:00
  • Manifestations Scientifiques
    Salle de Conférences
    Organisateur : Stéphane BRULL null
    Schémas numériques de type Boltzmann - 23-24 novembre 2022 - Salle de conférences de l'IMB

  • Le 24 novembre 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle 1
    Guillaume Blanc null
    Propriétés fractales de la métrique aléatoire d'Aldous-Kendall
    "On considère la métrique aléatoire construite par Kendall sur $\mathbb{R}^d$ à partir d'un Processus de Poisson de routes auto-similaire, où une route est une droite avec une limitation de vitesse. Intuitivement, le processus fournit un réseau de routes dans $\mathbb{R}^d$, sur lequel on peut se déplacer en respectant les limitations de vitesse ; et cela induit une métrique aléatoire $T$ sur $\mathbb{R}^d$, pour laquelle la distance entre les points est donnée par le temps de trajet optimal.Dans cet exposé, je présenterai les propriétés fractales de l'espace métrique aléatoire $\left(\mathbb{R}^d,T\right)$. En particulier, bien que presque sûrement il soit homéomorphe à l'espace euclidien $\mathbb{R}^d$, sa dimension de Hausdorff est donnée par la constante $(\gamma-1)d/(\gamma-d)$, où $\gamma>d$ est un paramètre du modèle.Cette propriété fractale, que l'on retrouve dans d'autres modèles en géométrie aléatoire comme celui de la sphère brownienne, confirme une conjecture de Kahn.Si le temps le permet, je parlerai du caractère multifractal de l'espace métrique $\left(\mathbb{R}^d,T\right)$ muni de la mesure de Lebesgue, qui en particulier le distingue de la sphère brownienne munie de sa mesure volume."
  • Le 24 novembre 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Emmanuel Audusse (P13) null
    [Séminaire CSM] Schémas volumes finis colocalisés pour les équations de Saint-Venant avec force de Coriolis
    "Nous nous intéressons dans ce travail à la simulation numérique des écoulements océaniques ou atmosphériques aux grandes échelles. Nous considérons le système de Saint-Venant avec forces de Coriolis. Aux échelles considérées, les écoulements sont, au premier ordre, des perturbations de l'équilibre géostrophique (entre force de pression et force de Coriolis) et la précision des schémas autour de cet équilibre est donc un point crucial. Nous proposons ici un schéma numérique de type volumes finis colocalisés pour lequel nous prouvons une inégalité dénergie semi-discrète et la convergence asymptotique vers léquilibre géostrophique. Les résultats numériques montrent une très nette amélioration autour de cet équilibre, même en comparaison avec des schémas de type Godunov dordre 2."
  • Le 24 novembre 2022 à 14:00
  • Séminaire d'Analyse
    Salle 1
    Alexander Borichev (Marseille) null
    Le comportement local de zéros de séries de Taylor aux coefficients aléatoires et pseudo-aléatoires.
    Nous étudions la distribution locale de zéros de series de Taylor pour des classes différents de coefficients: aléatoires (indépendants, stationnaires, aléatoires arithmétique) et pseudo-aléatoires (exponentiel-polynomiales, Rudin-Shapiro, Thue-Morse).
  • Le 25 novembre 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Bruno Klingler (Humboldt Universität\, Berlin) null
    Sur l'algébricité des lieux de Hodge
    Etant donnée une famille de variétés algébriques sur une base complexe quasi-projective S, la conjecture de Hodge prédit que le lieu de Hodge des points de S où les fibres admettent des tenseurs de Hodge exceptionnels est une union dénombrable de sous-variétés algébriques. Cet énoncé a été démontré inconditionnellement par Cattani-Deligne-Kaplan en 1995. Dans cet exposé je discuterai de la géométrie du lieu de Hodge, en particulier la question de savoir quand il est en fait algébrique (plutôt qu'une union dénombrable de variétés algébriques). Travail en commun avec Baldi et Ullmo.
  • Le 25 novembre 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Cécile Dartyge (Université de Lorraine) null
    Valeurs polynomiales quartiques avec un grand facteur premier, les cas diédraux et cycliques.
    "Soit $P$ un polynôme à coefficients entiers, unitaire, irréductible, de degré 4 et de groupe de Galois diédral ou cyclique.Nous montrons qu'il existe $c_P >0$ tel que pour une proportion positive d'entiers $n$, $P(n)$ ait un facteur premier supérieur à $n^{1+c_P}$.Il s'agit d'un travail réalisé avec James Maynard."
  • Le 28 novembre 2022 à 11:00
  • Soutenance de thèse
    Salle de Conférences
    Nicoletta PRENCIPE null
    "Titre : ""Théorie et applications d'une nouvelle formulation de l'espace des couleurs perçues"". Directeur de thèse : Edoardo Provenzi"

  • Le 29 novembre 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Elie Bouscatié -
    Searching substrings inside an encrypted stream of data ... without decrypting !
    Outsourcing IT services has become very common worldwide for multiple reasons ranging from costs reduction to improved services. Whatever the actual reason is, the concrete consequence for the company that delegates such services is that a third party ends up with its data in clear because of the well-known limitations of standard encryption.Ideally, this third party should only learn the minimal information necessary for performing the requested processing, which has motivated the design of countless encryption schemes compatible with specific processing. Such schemes belong to the realm of functional encryption, where the third party recovers a function f(x) from an encryption of x without learning anything else about x, with minimal interaction. Of course, the function f, and hence the encryption scheme, strongly depends on the considered application, which explains the profusion of papers related to this topic. We will focus on the possibility to allow a third party to search the presence of chosen substrings of different lengths (and more !) at any position in the encryption of a stream of data. After an introduction to this problematic and to the associated security notion, we will take a look at the proof of security of one specific construction.
  • Le 29 novembre 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Marouane Assal (IMB) null
    Quelques résultats d'analyse spectrale pour des opérateurs de Schrödinger matriciels avec des croisements de trajectoires classiques
    Dans cet exposé, je présenterai quelques résultats d'analyse spectrale pour des opérateurs de Schrödinger matriciels. Ceux-ci concernent l'étude de l'influence des croisements des trajectoires classiques (dans l'espace des phases) sur la distribution asymptotique dans le régime semi-classique des valeurs propres et des résonances des systèmes d'opérateurs de Schrödinger en dimension un. Ces résultats sont issus d'une série de travaux en collaboration avec S. Fujiié (Kyoto) et K. Higuchi (Ehime).
  • Le 29 novembre 2022 à 14:00
  • Soutenance de thèse
    salle Ada Lovelace (Inria)
    Aurore CAUQUIS null
    "Sujet : ""Développement d'un modèle numérique de propagation dispersive de tsunamis"". Directeur de thèse : Mario Ricchiuto. Co-directeur :Philippe Heinrich"

  • Le 30 novembre 2022 à 16:30
  • Le séminaire des doctorant·es
    Salle de Conférences
    Margherita Pagano (Leiden) null
    Integer solutions to polynomial equations.
    A way to study integer solutions to diophantine equations is by looking at the reduction of the equation modulo prime numbers. During this talk, I will give an overview of this strategy and explain the role that the so-called Brauer-Manin obstruction can play.
  • Le 1er décembre 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Camille Male null
    Introduction aux Probabilités Libres 2
    "Dans la séance précédente, j'ai défini les variables aléatoires non commutatives ainsi que trois notions d'indépendance non commutatives. Dans la prochaine séance, je vais introduire la notion de ""cumulants"" qui permet d'avoir des expressions très similaires pour caractériser ces libertés. J'énoncerai également les théorèmes centraux limites relatifs aux différentes notions d'indépendance."
  • Le 1er décembre 2022 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Salle 2
    Joao Marcos Pereira Silva\, Universidade Federal Fluminense\, Brazil null
    "Branching on clustered instances of vehicle routing problems\n"
    The customer positioning in typical real-world vehicle routing problems (VRPs) is far from random, they are often concentrated in clusters corresponding to more populated areas. We observed that the performance of Branch-Cut-and-Price VRPs algorithms was much worse on some highly clustered instances. The problem was that the traditional branching on edges/arcs or branching on sets was ineffective, even using aggressive strong branching, leading to large search trees. We propose a new branching scheme where first a cluster analysis is performed, looking for sets of customers that are well separated from other customers. Then, we may perform branching on the aggregation of edges/arcs between clusters. The approach was tested over instances of the Capacitated VRP (CVRP), Distance-Constrained VRP (DCVRP), and VRP with Time Windows (VRPTW) and could solve several hard instances for the first time. Interestingly, the method showed positive results even in some instances with random customer positioning. We also comment on the significance of those findings for general MIPs, showing that there are models where branching over individual variables, even with the best possible strong branching, is ineffective; but branching over well-chosen aggregations of variables can be effective.
  • Le 1er décembre 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Emanuele Macca (Univ. of Catania) null
    A high-order IMEX strategy for Exner model with Grass equation for sedimentation
    "The aim of this talk is introduce an Implicit-Explicit (IMEX) strategy to compute thesediment evolution in the Exner model for sediment transport in Shallow Watersystem and improve both stability and efficiency. In this model there are several timescales. One associated with the temporal evolution of the sediment, generally very longwith a much slower velocity; one related to the velocity of free-surface waves, generallyvery fast that implies an hard restriction in the time step; and one related to the velocityof the fluid with. Unfortunately, as known, an explicit method implies a strong stabilityrestriction due to the velocity of the free-surface wave. This restriction involves in a verylong computation time that could be reduced neglecting the free-surface waves behaviourand looking at the sediment evolution. The objective is to drastically improve the efficiencyin the computation of the evolution of the sediment by treating water waves implicitly,thus allowing much larger time steps than the one allowed by standard CFL condition onexplicit schemes."
  • Le 1er décembre 2022 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Kristian Seip (Trondheim) null
    Point evaluation in PaleyWiener spaces
    We will look at the following problem on timefrequency localization: What is the norm of the point evaluation functional in the classical PaleyWiener $L^p$ spaces for $0 < p <\infty$? The central challenge in this problem is how to go beyond the power trick which allows you to relate an estimate for a given $p$ to that for $kp$ for a positive integer $k$. I will discuss some results and multiple conjectures around this problem. The talk is based on recent joint work with Ole Fredrik Brevig, Andrés Chirre, and Joaquim Ortega-Cerdà (see https://arxiv.org/abs/2210.13922).
  • Le 1er décembre 2022 à 15:30
  • Séminaire d'Analyse
    Salle de Conférences
    Mateus Costa de Sousa (BCAM - Basque Center for Applied Mathematics) null
    Recent developments in Fourier interpolation theory
    "In this talk we will discuss some problems related to the theory ofFourier interpolation. The goal is to talk about the general problem ofhow to obtain new interpolation formulas from a previously known one bysome perturbation argument, and also mention some recent developments injoint work with João Pedro Ramos (ETH Zürich). "
  • Le 2 décembre 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Olivier Mathieu (Institut Camille Jordan\, Lyon) null
    Linéarité et non-linéarité des groupes dautomorphismes du plan
    "Une question classique est de déterminer à quel point les groupes d'automorphismes de variétés ressemblent aux groupes linéaires, i.e. à des sous-groupes de GL$(n,K)$, où $K$ est un corps. Ici nous nous intéresserons aux sous-groupes des automorphismes polynomiaux du plan ${\rm Aut}~K^2$, i.e. des automorphismes de la forme $F \colon (x,y)\mapsto (f(x,y), g(x,y))$, où $f$ et $g$ sont des polynômes. Il nest guère surprenant que ${\rm Aut}~K^2$ ne soit pas linéaire lorsque $K$ est infini. En revanche, il nétait pas attendu que le sous-groupe de ""codimension 6"" ${\rm Aut}_1~K^2$ de tous les automorphismes $F$ tels que $F(0)=0$ et $dF_0 ={\rm id}$ soit linéaire. En fait, sauf pour des corps $K$ très petits, il existe une injection de ${\rm Aut}_1~K^2$ dans ${\rm SL}(2,K)$. Ce résultat est basé sur des idées de ping-pong à la Tits, ainsi que sur la théorie des groupes de Kac-Moody affines. Nous examinerons aussi la question de la linéarité des groupes contenant ${\rm Aut}_1~K^2$. Ces phénomènes sont exceptionnels a la dimension $2$. Nimporte quel sous-groupe de codimension finie de ${\rm Aut}~K^3$ nest pas linéaire."
  • Le 2 décembre 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Margaret Bilu (IMB) null
    Fonctions zêta enrichies et topologie des points réels
    La fonction zêta d'une variété $X$ sur un corps fini $\mathbf{F}_q$ est définie en termes des nombres de points de $X$ dans toutes les extensions finies de $\F_q$. Par les conjectures de Weil, elle est rationnelle et contient des informations sur la topologie des points complexes d'un relevé de $X$. Nous allons introduire une version enrichie de (la dérivée logarithmique de) la fonction zêta, à coefficients dans l'anneau de Grothendieck-Witt, définie dans le cadre de la théorie de la $\mathbf{A}^1$-homotopie stable, et nous allons présenter un résultat de rationalité pour certains types de variétés. De plus nous allons montrer comment cette nouvelle fonction zêta permet de récupérer des informations sur la topologie des points réels. C'est un travail en collaboration avec W. Ho, P. Srinivasan, I. Vogt et K. Wickelgren.
  • Le 5 décembre 2022 à 08:30
  • Manifestations Scientifiques
    Salle de Conférences
    Comité d'organisation : Céline Baranger (Cesta)\, Raphaël Loubère (IMB)\, Pierre-Henri Maire (Cesta) null
    Journée du LRC Anabase - 5 décembre 2022 - Salle de conférences de l'IMB

  • Le 5 décembre 2022 à 13:30
  • Soutenance de thèse
    INRIA, Talence.
    Xavier BLANCHOT null
    "Titre : ""Résolution de problèmes doptimisation stochastique de grande taille : application a des problèmes dinvestissement dans les réseaux électriques"". Directeur de thèse : François Clautiaux"

  • Le 5 décembre 2022 à 14:00
  • Soutenance de thèse
    Salle 1
    Amaury DURAND null
    "Titre : ""Duaux des codes Reed-Solomon linéarisés"". Directeur de thèse : Xavier Caruso"
    1
  • Le 6 décembre 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Léo Poyeton -
    Admissibility of filtered $(\varphi,N)$-modules
    Filtered $(\varphi,N)$-modules over a $p$-adic field $K$ are semi-linear objects which are easy to define and can be implemented on a computer. The modules $D_{st}(V)$ defined by $p$-adic Hodge theory, where $V$ is a $p$-adic representation of the absolute Galois group of $K$, provide examples of filtered $(varphi,N)$-modules. When $V$ is nice enough (semi-stable), the data of $D_{st}(V)$ is sufficient to recover $V$. A necessary and sufficient condition for a filtered $(\varphi,N)$-module $D$ to be written as $D_{st}(V)$ for some semi-stable representation $V$ is the condition of "admissibility" which imposes conditions on the way the different structures of the $(varphi,N)$-module interact with each other.In a joint work with Xavier Caruso, we try to provide an algorithm which takes a filtered $(\varphi,N)$-module as an input and outputs whether it is admissible or not. I will explain how we can implement filtered $(\varphi,N)$-modules on a computer and why this question is well posed. I will then present an algorithm which answers the question if the $(\varphi,N)$-module is nice enough and explain the difficulties we are facing both in this nice case and in the general case.
  • Le 6 décembre 2022 à 12:00
  • Direction
    Repas de Noël de lIMB le mardi 6 décembre à partir de 12h00 dans la salle de détente et dans le hall de lIMB, suivi de l'AG de l'IMB à 14h en salle de conférences

  • Le 7 décembre 2022 à 15:30
  • Soutenance de thèse
    Salle de Conférences
    Yiye JIANG null
    "Sujet :""Analyse statistique de données spatio-temporelles et multidimensionnelles issues d'un réseau de capteurs"". Directeurs de thèse : Jérémie Bigot, Sofian Maabout"

  • Le 7 décembre 2022 à 17:00
  • Le séminaire des doctorant·es
    Salle 1
    Giulia Sambataro null
    Component-based model order reduction procedure for large scales thermo-hydro-mechanical systems
    TBA
  • Le 8 décembre 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Céline Bonnet null
    "Impact d'une dynamique de ""rescue""(sauvetage) sur la répartition de mutations neutres dans une population cellulaire branchante."
    "On s'intéresse à un processus de branchement bitype. Le premiertype représente une population de cellule sensible à un traitement(processus souscritique initialement en grande population, d'ordreN>>1). Chaque cellule sensible a une probabilité, d'ordre 1/N, dedevenir résistante à chaque division.De plus à chaque division les cellules sensibles et résistantes héritentdes mutations neutres de leur mère et d'un nombre aléatoire de mutationsneutres supplémentaires.Dans cette dynamique dite de rescue (initialement on suppose qu'il n'y aque des cellules sensibles), on décrit l'espérance du site frequencyspectrum de la population de résistantes à un temps d'ordre log(N).(Ps : Le site frequency spectrum décrit le nombre de mutations portéespar i cellules à un certain temps. Mutations neutres désignent desmutations qui n'influencent pas la dynamique de la population.)"
  • Le 8 décembre 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Jason Bayer (IMB/IHU) null
    [Séminaire CSM] Developing cardiac electrotherapies with virtual heart models
    Virtual heart models are multiscale computational tools for studying cardiac function from the cell to organ level. They are particularly useful for simulating the electrical activity of the heart, which is essential for triggering the muscle contractions necessary to pump life-sustaining blood throughout the body. Since studying 3D electrical activity within the heart of a patient is invasive, expensive, and time-consuming, virtual heart models can circumvent these limitations to more thoroughly investigate both normal and abnormal cardiac electrical function. This computational platform is also ideal for testing and developing cardiac electrotherapies in a safe, efficient, and cost-effective manner. This seminar will focus on the use of virtual heart models to develop safer and less painful electrotherapies for terminating ventricular fibrillation, a lethal electrical disturbance in the heart. 
  • Le 9 décembre 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Julien Marché (Sorbonne Université\, Paris) null
    Invariants de Toledo des représentations quantiques
    "La ""topologie quantique"" fournit beaucoup de représentations des groupes modulaires dans des groupes PU(p,q). On peut se demander si ces représentations sont reliées à des structures géométriques sur les espaces de modules de courbes. Avec Bertrand Deroin, on a trouvé quelques exemples où c'est le cas, et la preuve passe par le calcul explicite des invariants de Toledo. Je vais expliquer que ces invariants ont la structure d'une théorie cohomologique des champs, ce qui permet leur calcul explicite."
  • Le 9 décembre 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Loïs Faisant (Institut Fourier\, Grenoble) null
    « Comptage » de courbes rationnelles de grand degré
    "En géométrie diophantienne, le principe de Batyrev-Manin-Peyre décrit conjecturalement le comportement du nombre de points rationnels de hauteur bornée dune variété de Fano définie sur un corps de nombres, lorsque ladite borne tends vers linfini. Étant donnée une variété de Fano sur C(t), un analogue géométrique de ce principe consiste à considérer lespace de modules des courbes rationnelles de « grand degré » dans un modèle propre de cette variété. Un cadre naturel pour une telle étude est celui de lintégration motivique ; il sagit alors de questionner la convergence, après une normalisation adéquate dans un anneau dintégration motivique, de la classe de lespace de module des courbes de degré arbitrairement grand. Il est de plus attendu que son hypothétique limite puisse être décrite par un produit eulérien motivique, jouant ainsi le rôle du nombre de Tamagawa défini par Peyre dans le cadre arithmétique. Dans cet exposé, on énoncera un tel principe, en donnant notamment une description de la limite attendue et des exemples pour lesquels des résultats sont connus. Puis on montrera quil est commode d'affiner ce principe, en introduisant une notion déquidistribution de courbes. Cette notion permet de saffranchir du choix dun modèle et d'exhiber ainsi de nouveaux exemples de variétés satisfaisant un principe de Batyrev-Manin-Peyre motivique."
  • Le 13 décembre 2022 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Samuel Le Fourn -
    Points de torsion d'une variété abélienne dans des extensions d'un corps fixé
    Pour une variété abélienne A sur un corps de nombres K, on sait que pour toute extension finie L/K, le nombre c(L) de points de torsion de A(L) est fini par le théorème de Mordell-Weil.
    En fait, un résultat de Masser prédit que c(L) est polynomial en [L:K] (si on fixe A et K) avec un exposant g=dim A, et une conjecture de Hindry et Ratazzi de 2012 donne l'exposant optimal (plus petit que g en général) en fonction d'une certaine structure de la variété abélienne (liée à son groupe dit de Mumford-Tate)Dans cet exposé, je parlerai d'un travail commun avec Lombardo et Zywina dans lequel nous démontrons une forme inconditionnelle de cette conjecture (et cette conjecture en admettant la conjecture de Mumford-Tate), en insistant sur les résultats intermédiaires qui peuvent être d'intérêt indépendant pour la compréhension des représentations galoisiennes associées à des variétés abéliennes.
  • Le 13 décembre 2022 à 11:00
  • Soutenance de thèse
    Salle de Conférences
    Valentin AYOT null
    "Titre : ""Méthodes cinétiques appliquées à l'étude de certains comportements collectifs"". Directeur de thèse : Philippe Thieullen. Co-directeur : Stéphane Brull"

  • Le 13 décembre 2022 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Pas de séminaire (Soutenance de thèse de Valentin Ayot)

  • Le 13 décembre 2022 à 14:00
  • Soutenance de thèse
    Salle 2
    Amandine CROMBE présentera son exposé en vue de son Habilitation à Diriger des Recherches null
    "Titre des travaux : ""Approches radiomics en oncologie : quantifier, comprendre et intégrer le phénotype des cancers en imagerie médicale pour améliorer la prise en charge des patients"""
    a
  • Le 13 décembre 2022 à 16:00
  • Soutenance de thèse
    Salle de Conférences
    Giulia SAMBATARO null
    Directeur de thèse : Angelo Iollo. Co-directeur : Tommaso Taddei

  • Le 15 décembre 2022 à 09:45
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Ulugbek Kamilov (Washington University in St Louis) null
    Plug-and-Play Models for Large-Scale Computational Imaging
    Computational imaging is a rapidly growing area that seeks to enhance the capabilities of imaging instruments by viewing imaging as an inverse problem. Plug-and-Play Priors (PnP) is one of the most popular frameworks for solving computational imaging problems through integration of physical and learned models. PnP leverages high-fidelity physical sensor models and powerful machine learning methods to provide state-of-the-art imaging algorithms. PnP models alternate between minimizing a data-fidelity term to promote data consistency and imposing a learned image prior in the form of an artifact reducing deep neural network. This talk presents a principled discussion of PnP under inexact physical and learned models. Inexact models arise naturally in computational imaging when using approximate physical models for efficiency or when test images are from a different distribution than images used for training the image prior. We present several successful applications of our theoretical and algorithmic insights in bio-microscopy, computerized tomography, and magnetic resonance imaging.
  • Le 15 décembre 2022 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Salle 2
    Mathieu Dahan\, Prof.\, Georgia Institute of Technology\, US null
    Resource Coordination for Network Flow Interdiction
    This work considers a generic network security game on flow networks. In this game, a routing entity sends its (illegal) flow through the network while facing transportation costs, and an interdictor simultaneously interdicts multiple edges while facing interdiction costs. We first derive a combinatorial algorithm to prove the existence of a probability distribution on a partially ordered set (poset) that satisfies a set of constraints involving marginal probabilities of the posets elements and maximal chains. We then utilize this existence result to show that the Nash equilibria of the security game can be fully described using primal and dual solutions of a minimum-cost circulation problem. Our analysis leads to a polynomial-time approach for equilibrium computation and provides a new characterization of the critical network components in strategic flow interdiction problems. This work is joint with Saurabh Amin and Patrick Jaillet.
  • Le 15 décembre 2022 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Magalie Bénéfice null
    Couplages de mouvements browniens en géométries sous-riemanniennes
    "La construction de couplages sur différents types de variétés est un outil permettant d'obtenir de nombreux résultats en analyse, probabilité et géométrie. Les couplages de mouvements browniens permettent par exemple des estimations de gradients pour le semi-groupe de la chaleur et des inégalités de type Poincarré et Sobolev. On peut notamment recenser deux types de couplages pouvant amener à de telles inégalités: - Les couplages (X_t,Y_t) de diffusions partant de x et y respectivement vérifiant des inégalités du type $E[d(X_t,Y_t)]<= C(t) d(x,y)$;- Les couplages dits ""avec succès"" qui se rencontrent en un temps presque surement fini. Dans cet exposé je me concentrerai sur les couplages avec succès. Après une présentation des couplages de bases sur $R^n$, je présenterai la structure sous-riemanienne du groupe d'Heisenberg, ainsi que de $SU(2,\mathbb{C})$ et $SL(2,\mathbb{R}$. Je présenterai ensuite une méthode de couplages avec succès proposée ces dernières années sur le groupe d'Heisenberg. Enfin, j'expliquerai comment ce modèle peut s'étendre (ou pas) à d'autres variétés sous-riemanniennes."
  • Le 15 décembre 2022 à 13:00
  • Soutenance de thèse
    Salle de Conférences
    Théo JEANNEAU null
    "Titre : ""Etude et validation d'une approche cinétique couplée pour la modélisation du transfert multimodal et multi-échelle de chaleur en milieu hétérogène"". Directeur de thèse : Rodolphe Turpault. Co-directeurs : Bruno Dubroca et Gérard Louis Vignoles"
    1
  • Le 15 décembre 2022 à 14:00
  • Séminaire d'Analyse
    Salle 1
    Mégane Bournissou (IMB) null
    Problèmes de moments trigonométriques avec estimations simultanées
    Dans cet exposé, on s'intéressera aux problèmes de moments dont une problématique générale peut être énoncée de la manière suivante : comment reconstruire une fonction à partir de ces moments ? On se demandera également si les constructions fournies permettent de contrôler la norme de la fonction par la norme de ces moments, et plus particulièrement, on cherchera à obtenir des estimations simultanément dans différents cadres fonctionnels. Cette théorie sera illustrée au travers de problématique de contrôlabilité sur des EDP : peut-on, au moyen d'une action sur un système, le contraindre à atteindre n'importe quelle cible ?
  • Le 15 décembre 2022 à 15:30
  • Séminaire-débat Contexte
    Salle 1
    Romain Couillet (Grenoble) null
    Pourquoi et comment démanteler l'IA et le numérique ?
    "L'orateur sera en visio, mais nous nous réunirons en Salle 1 pour l'écouter et poursuivre avec un débat.
    La civilisation occidentale est engagée depuis 10,000 ans dans un processus technicien, aujourd'hui verrouillé par une ontologie naturaliste (cette vision du monde qui fait de la ""nature"" le grand supermarché de l'humanité) qui entraîne dans son sillon les dynamiques exponentielles de l'idéologie productiviste, consumériste, extractiviste et coloniale. La conséquence immédiate en est la destruction des écosystèmes (6e extinction de masse, 30x plus rapide que l'extinction du Crétacé et s'accélérant) et le dérèglement des dynamiques géophysiques planétaires (réchauffement, déplétions minérales). De gré ou de force (pic pétrolier, pénuries de ressources, chocs environnementaux et alimentaires), la société occidentale telle que nous la connaissons s'effondrera, vraisemblablement au cours de notre génération. Les technologies numériques, dont le point d'orgue est l'intelligence artificielle (IA), contribuent tout à la fois à la destruction socio-environnementale mais surtout à la perte massive d'outils de résilience (interpénétration de tous les domaines techniques, dépendance au pétrole, dépendance aux machines, dépendance aux décisions automatiques) en vue de la transition post-industrielle (retour à la terre et à l'artisanat), comme l'illustre parfaitement le cas de Cuba en 1990. Dans cette présentation, je ferai un état des lieux de la situation du numérique et de l'IA, vus par Alexandre Monnin comme des technologies ""zombie"" (vivantes aujourd'hui mais de fait déjà mortes), et questionnerai les pistes de leur démantèlement nécessaire, de mon point de vue un axe prioritaire de la recherche numérique aujourd'hui. J'évoquerai ensuite la question anthropologique de l'ontologie naturaliste occidentale, absolument unique dans l'histoire de l'humanité, et en conflit avec les connaissances ethnographiques, de psychologie sociale et cognitive modernes: en un mot, nous n'avons pas besoin d'un nouveau récit pour le monde, mais de retisser les liens animistes avec le vivant qui sont une partie intégrante de notre ADN, aujourd'hui masquée par notre culture et nos tabous auto-destructeurs. Ce travail écopsychologique est, selon moi, la clé de voûte de l'engagement de tou·tes les chercheur·ses-ingénieur·es vers la transition nécessaire, enthousiaste, collective et interspécifique que nous devons mener."
  • Le 16 décembre 2022 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Amandine Escalier (Université de Münster) null
    Construire des équivalences orbitales à intégrabilité prescrite
    On dit que deux groupes sont orbitalement équivalents (OE) si tous deux agissent sur un même espace de probabilité en partageant les mêmes orbites. Un célèbre résultat dOrnstein et Weiss stipule que tout groupe moyennable infini, de type fini est OE à ${\mathbb Z}$. Autrement dit : léquivalence orbitale ne tient pas compte de la géométrie des groupes. Cest pourquoi dans un récent article Delabie, Koivisto, Le Maître et Tessera proposent daffiner cette relation avec une version quantitative de léquivalence orbitale. Ils obtiennent en outre des obstructions à lexistence de telles équivalences à laide du profil isopérimétrique. Nous nous intéresserons dans cet exposé au problème inverse de la quantification, à savoir : peut-on trouver un groupe qui est OE à un groupe prescrit avec quantification prescrite ? En utilisant les produits diagonaux introduits par Brieussel et Zheng, nous proposerons une réponse dans le cas dune OE avec ${\mathbb Z}$ et discuterons loptimalité du théorème de monotonie du profil isopérimétrique.
  • Le 16 décembre 2022 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Emanuele Tron (IMB) null
    Soutenance de Thèse : Problèmes d'intersections improbables en arithmétique
    Dans cette thèse on considère quelques problèmes provenant de la théorie des intersections improbables qui peuvent être résolus avec des méthodes principalement arithmétiques. Dans le premier chapitre, on considère un problème de type André-Oort dont la preuve non-effective a été donnée par Pila et Tsimerman. Ici on démontre le cas n=3 effectif de leur théorème en bornant les triplets de modules singuliers qui sont multiplicativement dépendants. La démonstration combine une analyse détaillée des propriétés archimédiennes du j-invariant avec des arguments galoisiens pour établir une relation linéaire entre les exposants. Dans le deuxième chapitre, on donne une borne de type Bugeaud-Corvaja-Zannier pour le groupe algébrique G_a x G_m dont la preuve est élémentaire. Dans le troisième chapitre, on continue l'étude des problèmes de PGCD pour les groupes algébriques, et on montre la propriété d'Ailon-Rudnick forte pour G_a x G_m. On considère ensuite le groupe G_a x E où E est une courbe elliptique, pour lequel on peut définir une suite de PGCD indexée par les idéaux de l'anneau de multiplication complexe. On démontre une propriété de Ailon-Rudnick analogue pour cette suite généralisée. La preuve combine des arguments élémentaires de crible avec l'étude des réductions de E.
  • Le 16 décembre 2022 à 14:00
  • Soutenance de thèse
    Salle de Conférences
    Emanuele TRON null
    "Titre : ""Intersections improbables effectives"". Directeur de thèse: Yuri Bilu"

  • Le 3 janvier 2023 à 13:30
  • Direction
    Salle 285
    "Le prochain conseil de laboratoire aura lieu le 03/01/2023.
    L'ordre du jour est le suivant :
    1) Informations générales
    2) Approbation du compte-rendu du conseil de laboratoire du 8 novembre 2022
    3) Présentation du budget 2023. Pérennisation des financements de stages de M2
    4) Discussion sur les abonnements de la BMI
    5) Règlement intérieur. Discussion sur les jours ""télétravaillables""
    6) Questions diverses
    Pensez à vos procurations pour les votes !"
    ""
  • Le 5 janvier 2023 à 15:30
  • Le Colloquium
    Salle de Conférences
    Bertrand Rémy (ENS Lyon) null
    Sur la difficulté de faire simple quand on est de type fini (en théorie des groupes)
    Quand on prépare l'agrégation, une des figures imposées en algèbre est de disposer d'un stock de groupes simples à placer dans la conversation. Ces groupes sont souvent finis ou alors, quand ce n'est pas le cas, ils se présentent sous forme de gros groupes de matrices. Ce n'est pas un hasard, et le premier but de l'exposé sera d'expliquer qu'il n'est pas possible d'espérer produire des groupes simples infinis, mais quand même engendrés par une partie finie, sous forme de groupes dits linéaires ; c'est la partie négative de l'histoire. La partie positive consistera ensuite à exposer quelques ruses de théorie géométrique des groupes pour arriver à produire des groupes simples infinis, mais de taille en quelque sorte minimale. Les techniques à mobiliser sont alors très variées (mesures, représentations unitaires, espaces métriques singuliers).
  • Le 6 janvier 2023 à 10:45
  • Séminaire de Géométrie
    Salle 2
    David Tewodrose (Nantes) null
    Structure des limites de variétés à courbure de Ricci dans une classe de Kato uniforme
    Une borne inférieure sur la courbure de Ricci dune variété riemannienne lisse fournit de nombreuses propriétés analytico-géométriques. Sur la base de cette observation, à la fin des années 1990, Jeff Cheeger et Tobias Colding ont développé une célèbre théorie de structure pour les espaces limites de variétés riemanniennes lisses à courbure de Ricci uniformément minorée. Dans cet exposé, je présenterai des travaux récents obtenus avec Gilles Carron (Nantes Université) et Ilaria Mondello (Université Paris-Est Créteil) dans lesquels nous montrons que cette théorie de structure reste essentiellement la même si on suppose que la courbure de Ricci satisfait une hypothèse analytique plus faible, à savoir que la partie négative de sa borne inférieure optimale se trouve dans une classe de Kato uniforme. Jexpliquerai notamment comment nous obtenons nos derniers résultats sur la stabilité torique des variétés riemanniennes fermées à constante de Kato petite.
  • Le 6 janvier 2023 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Thibault Poiret -
    Jacobiennes compactifiées, courbes logarithmiques et modèles de Néron
    À toute courbe lisse, on peut naturellement associer une variété abélienne, sa Jacobienne.L'espace de modules des courbes lisses de genre fixé peut être compactifié en un espace de modules de courbes nodales. Cela soulève la question d'étendre la définition de Jacobienne aux courbes nodales, en préservant au mieux ses propriétés et sa modularité. Nous discuterons des difficultés que cela présente, et d'outils permettant de les affronter.
  • Le 10 janvier 2023 à 11:00
  • Séminaire d'Analyse
    Salle de Conférences
    Chenmin Sun (Créteil) null
    Séminaire Commun avec Physique Mathématique et EDP: Décroissance d'énergie optimale pour l'équation d'onde amortie sur le tore
    "On considère les équations des ondes amorties sur le tore bidimensionnelle où la région amortie ne satisfait pas la condition de contrôle géométrique. Il s'avère que le taux de décroissance d'énergie dépend à la fois l'ordre d'annulation de l'amortissement $a(x)$ et la courbure de ${a=0}$. En particulier, avec le même ordre d'annulation, l'amortissement convexe nous permet de mieux stabiliser les ondes que l'amortissement rectangulaire. La preuve repose sur la méthode de moyennisation (forme normale) de Sjöstrand et Hitrick. Comme un sous-produit, on retrouve aussi un théorème d'Anantharaman-Léautaud (APDE 2014) avec une démonstration différente (sous l'hypothèse légèrement plus forte). "
  • Le 10 janvier 2023 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Chenmin Sun\, CNRS LAMA (UMR 8050)\, Université Paris-Est Créteil null
    "Décroissance d'énergie optimale pour l'équation d'onde amortie sur le tore
    \n"
    "On considère les équations des ondes amorties sur le tore bidimensionnel où la région amortie ne satisfait pas la condition de contrôle géométrique. Il s'avère que le taux de décroissance d'énergie dépend à la fois l'ordre d'annulation de l'amortissement $a(x)$ et la courbure de ${a=0}$. En particulier, avec le même ordre d'annulation, l'amortissement convexe nous permet de mieux stabiliser les ondes que l'amortissement rectangulaire. La preuve repose sur la méthode de moyennisation (forme normale) de Sj""ostrand et Hitrick. Comme un sous-produit, on retrouve aussi un théorème d'Anantharaman-Léautaud (APDE 2014) avec une démonstration différente (sous l'hypothèse légèrement plus forte). (séminaire commun avec l'équipe Analyse)"
  • Le 11 janvier 2023 à 16:30
  • Le séminaire des doctorant·es
    Salle de Conférences
    Agathe Beaugrand (IMB) null
    Cryptography using class groups of quadratic fields
    In this talk, I will give an introduction to cryptography based on class groups of quadratic fields, and in particular to the CL encryption scheme. After a brief introduction to asymmetric encryption, I will explain how to construct class groups of quadratic fields for cryptography. Finally I will present the CL encryption scheme and its advantages with respect to other encryption schemes.
  • Le 12 janvier 2023 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Hippolyte Labarriere null
    Automatic FISTA restart
    We propose a restart scheme for FISTA (Fast Iterative Shrinking-Threshold Algorithm). This method which is a generalization of Nesterov's accelerated gradient algorithm is widely used in the field of large convex optimization problems and it provides fast convergence results under a strong convexity assumption. These convergence rates can be extended for weaker hypotheses such as the Lojasiewicz property but it requires prior knowledge on the function of interest. In particular, most of the schemes providing a fast convergence for non-strongly convex functions satisfying a quadratic growth condition involve the growth parameter which is generally not known. Recent works show that restarting FISTA could ensure a fast convergence for this class of functions without requiring any knowledge on the growth parameter. We improve these restart schemes by providing a better asymptotical convergence rate and by requiring a lower computation cost. We present numerical results emphasizing the efficiency of this method.
  • Le 13 janvier 2023 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Michel Vaquié (Institut de Mathématiques de Toulouse) null
    Valuation augmentée, paire minimale et valuation approchée
    "Soit $(K,v)$ un corps valué. Les notions de valuation augmentée, de valuation augmentée limite et de famille admise de valuations permettent de donner une description de toute valuation $\mu$ de $K[x]$ prolongeant $v$. Dans le cas où le corps $K$ est algébriquement clos cette description est particulièrement simple et nous pouvons la réduire aux notions de paire minimale et de famille pseudo-convergente. Soient $(K,v )$ un corps valué hensélien et $v'$ lunique extension de $v$ à la clôture algébrique $\overline{K}$ de $K$ et soit $\mu$ une valuation de $K[x]$ prolongeant $v$. Nous étudions les extensions $\overline{\mu}$ de $\mu$ à $\overline{K} [x]$ et nous donnons une description des valuations $\overline{\mu}_i$ de $\overline{K} [x]$ qui sont les extensions des valuations $\mu_i$ appartenant à la famille admise associée à $\mu$."
  • Le 13 janvier 2023 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Wouter Castryck Louvain
    Scrollar invariants, syzygies and representations of the symmetric group

  • Le 16 janvier 2023 à 13:15
  • Direction
    Salle de Conférences
    Assemblée générale IMB/UFMI
    Ordre du jour : retour sur RIPEC 3

  • Le 17 janvier 2023 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Wouter Castryck -
    Radical isogeny formulas
    In several applications one is interested in a fast computation of the codomain curve of a long chain of cyclic $N$-isogenies emanating from an elliptic curve E over a finite field $\mathbb F_q$, where $N = 2, 3, \ldots$ is some small fixed integer coprime to $q$. The standard approach proceeds by finding a generator of the kernel of the first $N$-isogeny, computing its codomain via Vélu's formulas, then finding a generator of the kernel of the second $N$-isogeny, and so on. Finding these kernel generators is often the main bottleneck.In this talk I will explain a new approach to this problem, which was studied in joint work with Thomas Decru, Marc Houben and Frederik Vercauteren. We argue that Vélu's formulas can be augmented with explicit formulas for the coordinates of a generator of the kernel of an $N$-isogeny cyclically extending the previous isogeny. These formulas involve the extraction of an $N$-th root, therefore we call them "radical isogeny formulas". By varying which $N$-th root was chosen (i.e., by scaling the radical with different $N$-th roots of unity) one obtains the kernels of all possible such extensions. Asymptotically, in our main cases of interest this gives a speed-up by a factor 6 or 7 over previous methods.I will explain the existence of radical isogeny formulas, discuss methods to find them (the formulas become increasingly complicated for larger N), and pose some open questions.
  • Le 17 janvier 2023 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Théotime Girardot (Aarhus university\, Danemark) null
    A LIEB-THIRRING INEQUALITY FOR EXTENDED ANYONS
    We derive a Pauli exclusion principle for extended fermion-based anyons of any positive radius and any non-trivial statistics parameter. We consider N 2D fermionic particles coupled to magnetic flux tubes of non-zero radius, and prove a Lieb-Thirring inequality for the corresponding many-body kinetic energy operator. The implied constant is independent of the radius of the flux tubes, and proportional to the statistics parameter.
  • Le 17 janvier 2023 à 14:00
  • Soutenance de thèse
    Salle de Conférences
    Dang Phuong Lan NGUYEN null
    "Titre : ""Super résolution multi-échelle d'images 3D en sciences des matériaux"". Directeurs de thèse : Jean-François Aujol, Yannick Berthoumieu"

  • Le 18 janvier 2023 à 14:30
  • Séminaire de Calcul Scientifique et Modélisation
    Batiment Inria, salle Grace Hopper 2
    Jose Daniel Galaz Mora null
    [Séminaire CSM] Towards a stable coupling of Green-Naghdi and Nonlinear Shallow water equations using domain decomposition methods
    "The coupling of Green-Naghdi and Nonlinear Shallow water equations provides an attractive parameter-free formulation for dispersive water-wave propagation and wave breaking. However, so far, instabilities have been observed in current formulations, as the numerical resolution is increased.In this talk I will present how we can study this issue from the perspective of domain decomposition methods (DDM).For that I will introduce DDM by using the coupling of the BBM and transport equations as an example.We will discuss the importance of using the right boundary conditions for the coupling, most importantly the so called absorbing or transparent boundary conditions, and what we can learn from this ""toy"" model that can be useful for coupling dispersive and nondipersive (hyperbolic) models in more complex settings."
  • Le 19 janvier 2023 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Camille Male (IMB) null
    "Introduction aux Probabilités libres part III\n"

  • Le 19 janvier 2023 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Xavier Buff (Toulouse) null
    Domaines spiralants en dimension 2
    Je présenterai un travail en cours avec Jasmin Raissy, dans lequel nous étudions la dynamique d'endomorphimes polynomiaux de ${\mathbb C}^2$ de la forme $f(x,y)=(x+y^2 + ax(x-y),y+x^2+ay(x-y))$ avec $a\in {\mathbb R}\setminus\{0\}$. Il s'agit de montrer qu'il y a une infinité de composantes de Fatou invariantes dans lesquelles les orbites convergent vers l'origine non tangentiellement à une droite passant par l'origine. Il y a un lien avec la dynamique des champs de vecteurs homogènes et hamiltoniens de ${\mathbb C}^2$, la dynamique des billards triangulaires ainsi que l'étude des surfaces de Riemann munies d'une structure affine complexe.
  • Le 20 janvier 2023 à 10:45
  • Séminaire de Géométrie
    Salle 2
    David Burguet (Ecole Polytechnique\, Paris) null
    Mesures SRB pour les difféomorphismes de surface
    Pour un difféomorphisme $C^r$ de surface avec $r>1$, Lebesgue presque tout point $x$ satisfaisant $\limsup\frac{\log \|d_xf^n\|}{n}>\frac{\log \|df\|_\infty}{r}$ est dans le bassin d'une mesure SRB.
  • Le 20 janvier 2023 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Adrien Morin IMB
    Valeurs spéciales de fonctions L pour les faisceaux Z-constructibles en dimension 1
    La cohomologie Weil-étale est une théorie cohomologique (en partie conjecturale) pour les schémas arithmétiques, qui se comporte mieux que la cohomologie étale et a des liens conjecturaux aux valeurs spéciales de fonctions zêta. Dans cet exposé, j'expliquerai comment on peut définir en dimension 1 la cohomologie Weil-étale à support compact à coefficients un faisceau Z-constructible, et j'établirai un lien avec la valeur spéciale en s=0 d'une fonction L naturellement associée aux coefficients considérés. Il y a 3 cas particuliers intéressants : on obtient une formule cohomologique pour la valeur spéciale en s=0 de la fonction zêta du spectre d'un ordre dans un corps de nombres, ce qui généralise la formule analytique du nombre de classes; on obtient aussi une formule pour la valeur spéciale en s=0 des fonctions L d'Artin associées à une représentation rationnelle du groupe de Galois d'un corps global; et enfin la formule pour un faisceau constructible permet de retrouver la formule de Tate pour la caractéristique d'Euler d'un corps de nombres.
  • Le 23 janvier 2023 à 14:00
  • Groupe de Travail Analyse
    Salle de Conférences
    A.Hartmann\, S.Golénia et E.Strouse null
    Réunion d'information
    Planification du programme et des attentes du groupe de travail
  • Le 24 janvier 2023 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Razvan Barbulescu CNRS/IMB
    The particular case of cyclotomic fields whencomputing unit groups by quantum algorithms
    The computation of unit and class groups in arbitrary degree number field is done in polynomial time in a similar fashion to the Shor's factoring algorithm. Contrary to the fixed degree case which was solved in 2001 by Hallgren and a follow-up paper of Schmidt and Vollmer (2005), the arbitrary degree case requires errors estimations and is solved by the conjunction of two papers, Eisenträger et al. (2014) and de Boer et al. (2020).In the particular case of cyclotomic fields we propose a version of the algorithm which makes use of cyclotomic units. Indeed, the Shor-like procedure of Eisenträger et al.'s algorithm produces random approximations of vectors in the dual of the lattice of units. In order to guarantee the correction of the algorithm, they have to do the computations in high precision and hence require a large amount of qubits. Thanks to the lattice of cyclotomic units, one can do the computations in smaller precision and reduce the number of qubits.
  • Le 24 janvier 2023 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Louis Garrigue (U. Stuttgart) null
    Dérivation de modèles de graphène à deux couches tournées
    " Le graphène est constitué d'atomes de carbone répartis sur un réseau bidimensionnel en nid d'abeille. Le TBG (twisted bilayer graphene) est constitué de deux couches de graphène superposées, et tournées l'une par rapport à l'autre. En 2017, une équipe d'expérimentateurs a découvert que ce système était supraconducteur à haute température, déclenchant un grand intérêt dans la communauté de la physique de la matière condensée. La richesse de cet objet quantique provient de ses symétries particulières et de son caractère multi-échelles. Nous introduirons la très récente littérature mathématique portant sur le modèle standard du TBG, puis nous présenterons une nouvelle manière de dériver ce type de systèmes, à partir d'un travail effectué conjointement avec Éric Cancès et David Gontier."
  • Le 25 janvier 2023 à 16:30
  • Le séminaire des doctorant·es
    Salle de Conférences
    Julien Granet null
    Modélisation mathématique et assimilation de données de la dynamique dune Cellule Tumorale Circulante dans le flux sanguin
    Dans cette présentation, on sintéressera au comportement dune cellule tumorale après quelle se soit détachée de sa tumeur dorigine pour rejoindre la circulation sanguine. On appelle alors cette dernière une cellule tumorale circulante. Déterminer sa dynamique est fondamental pour la compréhension de la répartition des métastases dans un organisme. Un accent sera mis sur les méthodes déployées pour relier les données expérimentales au modèle mathématique.
  • Le 26 janvier 2023 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle 1
    Vanessa Piccolo (ENS Lyon) null
    Asymptotic spectral density of nonlinear random matrix model via cumulant expansion
    In this talk we will study the asymptotic spectral density of a nonlinear random matrix model M=YY* with Y=f(WX), where W and X are random rectangular matrices with iid entries and f is a non-linear smooth function. We will derive a self-consistent equation for the Stieltjes transform of the limiting eigenvalue distribution using the resolvent approach via the cumulant expansion. This is based on a joint work with Dominik Schröder.
  • Le 26 janvier 2023 à 13:00 au 27 janvier 2023 à 13:00
  • Manifestations Scientifiques
    Salle de Conférences
    Organisateurs : Bernhard Haak et El Maati Ouhabaz null
    "Rencontre du projet ANR ""RAGE"" (Real Analysis and Geometry) - Salle de conférences - 26 et 27 janvier"

  • Le 26 janvier 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Victor Peron (Univ. Pau) null
    [Séminaire CSM] Quelques développements multi-échelles et leurs applications pour la résolution de problèmes de perturbation
    Dans cet exposé, nous présentons des développements multi-échelles qui permettent de simplifier la résolution numérique de problèmes de perturbation en électromagnétisme ou en sismologie à l'aide de la méthode des éléments finis. Dans une première partie, nous présentons des modèles asymptotiques associés à des conditions dimpédance pour la résolution de problèmes de couche mince ou de couche limite. Dans une seconde partie, nous nous intéressons à un problème de courant de Foucault dans des matériaux magnétiques. Nous présentons une méthode de paramétrisation pour le potentiel magnétique relativement à un petit paramètre complexe inversement proportionnel au produit de la perméabilité magnétique relative par l'épaisseur de peau qui représente une profondeur de pénétration du champ électromagnétique. Cette méthode est bien adaptée à la résolution du problème pour une gamme de fréquences assez large et sans adaptation de maillage relativement à l'épaisseur de peau. Cette méthode a l'avantage de fournir à moindre coût de calcul le même ordre d'approximation qu'une méthode d'impédance de surface. La performance des modèles présentés dans cet exposé est illustrée par différents tests numériques.
  • Le 26 janvier 2023 à 15:00
  • Séminaire de Théorie des Nombres
    Salle 2
    François Hennecart Saint-Etienne
    Le théorème de Kneser dans les groupes abéliens $\sigma$-finis.
    Résoudre un problème inverse en théorie additive des nombres consiste à fournir une description fine de la structure d'ensembles satisfaisant une condition contraignante portant sur la taille de leur somme. Cette description sera d'autant plus fine que la contrainte est proche de l'optimal. Par exemple la somme $A+B$ de deux ensembles finis non vides de nombres réels a pour taille (ici le cardinal) minimale la sommes des cardinaux moins un : $|A+B|\geq |A|+|B|-1$.Le problème inverse associé consiste à décrire les paires $(A,B)$ telle que l'égalité a lieu. L'environnement générique est celui d'un groupe $G$ (ou d'un semi-groupe) abélien fini ou non. Il faut y définir la notion de taille d'une partie et comparer les tailles de $A$, $B$ et $A+B$ afin de poser un problème inverse susceptible d'être résolu. Si $\tau(A)$ désigne la taille d'une partie $A$ de $G$, on dit que $(A,B)$ est une paire critique si $\tau(A+B)<\tau(A)+\tau(B)$. Le théorème de Kneser (1953) dans les groupes abéliens affirme que si $(A,B)$ est une paire critique (pour le cardinal), alors il existe un sous-groupe $H$ tel que $A+B=A+B+H$ et $|A+B|=|A+H|+|B+H|-|H|$.L'autre fameux théorème de Kneser porte sur les paires critiques de suites d'entiers que l'on mesure à travers leur densité asymptotique inférieure. Kneser (1956) a ensuite établi un énoncé qui porte sur les sous-ensembles de groupes abéliens localement compacts munis de leur mesure de Haar. Beaucoup plus récemment Jin (2006, 2007, 2010) et Griesmer (2013) ont démontré des résultats en termes de densité, notamment dans les groupes abéliens dénombrables.Le long de cet exposé, je donnerai des éléments historiques plus ou moins récents sur ces questions et traiterai un cas du théorème de Kneser qui se situe à l'interface des résultats initiaux de Kneser et ceux de Griesmer, à savoir celui des groupes abéliens $\sigma$-finis. Ce travail a été conduit en collaboration avec P-Y. Bienvenu (Dublin).
  • Le 27 janvier 2023 à 09:00
  • Direction
    Salle 285
    Dialogue Objectifs Ressources

  • Le 27 janvier 2023 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Simon André (Université de Münster) null
    Groupes simplement 2-transitifs infinis, simples, de type fini
    Fixons un entier $n$ au moins égal à $2$. Une action d'un groupe $G$ sur un ensemble $X$ contenant au moins $n$ éléments est dite simplement $n$-transitive si, pour tous $n$-uplets $(x_1,\dots,x_n)$ et $(y_1,\dots,y_n)$ de points distincts de $X$, il existe un unique élément de $G$ envoyant $x_i$ sur $y_i$ pour tout $i$. Un tel groupe $G$ est dit simplement $n$-transitif. Par exemple, le groupe affine ${\rm GA}(K)$ est simplement $2$-transitif (pour son action naturelle sur $K$) et ${\rm PGL}_2(K)$ est simplement $3$-transitif (pour son action sur la droite projective). Jusqu'à récemment, on ne savait pas s'il existait d'autres groupes simplement $2$ ou $3$-transitifs. Les premiers exemples de groupes simplement $2$-transitifs différents du groupe affine ont été construits par Rips, Segev et Tent il y a quelques années seulement. Dans mon exposé, jexpliquerai comment construire des groupes simplement $2$-transitifs infinis, simples, et de type fini, et qui sont donc radicalement différents des groupes affines (travaux en collaboration avec Katrin Tent et avec Vincent Guirardel).
  • Le 31 janvier 2023 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Wessel van Woerden IMB
    An Algorithmic Reduction Theory for Binary Codes, LLL and more
    We will discuss an adaptation of the algorithmic reduction theory of lattices to binary codes. This includes the celebrated LLL algorithm (Lenstra, Lenstra, Lovasz, 1982), as well as adaptations of associated algorithms such as the Nearest Plane Algorithm of Babai (1986). Interestingly, the adaptation of LLL to binary codes can be interpreted as an algorithmic version of the bound of Griesmer (1960) on the minimal distance of a code.
  • Le 2 février 2023 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Imene Djebour (Nancy) null
    Stabilisation par observateur dune classe de problèmes paraboliques
    "On considère le système : z'=Az+Bv avec la mesure y=Cz, on suppose dans un premier temps que A est le générateur d'un semigroupe analytique de résolvante compacte, B est l'opérateur de contrôle et C est l'opérateur d'observation qui peuvent être non bornés. On montre que si (A,B) et (A,C) vérifient une propriété de continuation unique, alors on montre quil existe un contrôle de dimension supérieure ou égale au maximum des multiplicités géométriques des modes instables de A, basé sur un observateur de dimension infinie qui stabilise le système. Par ailleurs, si A est auto-adjoint de résolvante compacte, B non borné, C une observation bornée, et si (A,B) et (A,C) vérifient une propriété de continuation unique ou le critère d'Hautus-Fattorini, alors on démontre l'existence d'un contrôle de dimension finie (de dimension supérieure ou égale au maximum des multiplicités géométriques des modes instables de A) basé sur un observateur de dimension ""finie"" et ""assez grande"" qui stabilise exponentiellement l'état du système z . Ce travail rentre dans le cadre de mon postdoc et est actuellement en cours."
  • Le 2 février 2023 à 16:00
  • Séminaire-débat Contexte
    Salle de Conférences
    Robin GIRARD (Mines Paris-PSL) null
    Le miracle de lélectrification et ses limites dans la transition vers la neutralité carbone (Attention : décalé à 16h !)
    Nos sociétés cherchent aujourdhui à se réorganiser pour parvenir à limiter les effets du dérèglement climatique. Des scénarios de neutralité carbone émergent dans lesquels la transformation du lien que nous entretenons avec lénergie joue un rôle important. Dans cette remise en question de nos modes de production et de consommation, laugmentation de la place de lélectricité dans nos systèmes énergétiques fait consensus au sein de la communauté scientifique. Pour autant, le système électrique et ses usages sont aussi à lorigine de difficultés nouvelles et de controverses assez profondes qui semblent parfois nous empêcher davancer collectivement. Lobjectif de cette présentation sera den introduire quelques unes. Après avoir rappelé la place particulière de lénergie électrique vis à vis de la transition nécessaire je mattacherai à décrire et discuter à la fois ses limites et celle et de ses alternatives. Ce sera loccasion d'aborder certains enjeux autour de lhybridation dans la transition énergétique mais peut-être aussi de contribuer à dépasser certains clivages.
  • Le 3 février 2023 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Fathi Ben Aribi (Université catholique de Louvain) null
    La conjecture du volume de la TQFT de Teichmüller pour les nSuds twist
    En 2011, Andersen et Kashaev ont défini une TQFT de dimension infinie à partir de la théorie de Teichmüller quantique. Cette TQFT de Teichmüller fournit un invariant des 3-variétés triangulées, et notamment des complémentaires de nSuds. La conjecture du volume associée affirme que la TQFT de Teichmüller du complémentaire dun nSud hyperbolique contient le volume hyperbolique de ce nSud comme un certain coefficient asymptotique, et Andersen et Kashaev ont démontré cette conjecture pour les deux premiers nSuds hyperboliques.
    Dans cet exposé, après un historique des invariants quantiques des nSuds et des conjectures du volume, je présenterai la construction de la TQFT de Teichmüller et comment nous avons démontré sa conjecture du volume pour la famille infinie des nSuds twist. Pour ce faire nous avons construit de nouvelles triangulations des complémentaires de ces nSuds, appelées triangulations géométriques car elles encodent la structure hyperbolique de la 3-variété sous-jacente.
    Aucun prérequis en topologie quantique n'est nécessaire.
    (en collaboration avec E. Piguet-Nakazawa et F. Guéritaud)
  • Le 3 février 2023 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Paul Péringuey Nancy
    Une généralisation de la conjecture d'Artin parmi les presque premiers
    La conjecture d'Artin stipule que l'ensemble des nombres premiers pour lesquels un entier a différent de -1 ou un carré parfait est racine primitive admet une densité asymptotique parmi tous les premiers. En 1967 C.Hooley démontra cette conjecture sous l'hypothèse de Riemann généralisée. La notion de racine primitive peut être étendue modulo un entier quelconque en considérant alors les éléments du groupe multiplicatif engendrant des sous-groupes de tailles maximales. Je parlerai de l'ensemble des presque premiers pour lesquels un nombre a est racine primitive généralisée, et montrerai que l'on obtient, sous GRH, des résultats similaires à la conjecture d'Artin pour les racines primitives.
  • Le 7 février 2023 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Andrea Lesavourey Irisa
    Calcul de racines de polynômes dans un corps de nombres
    Computing roots of elements is an important step when solving various tasks in computational number theory. It arises for example during the final step of the General Number Field Sieve~(Lenstra et al. 1993). This problem also intervenes during saturation processes while computing the class group or $S$-units of a number field (Biasse and Fieker). It is known from the seminal paper introducing the LLL algorithm that one can recover elements of a given number field $K$ given approximations of one of their complex embeddings. This can be used to compute roots of polynomials. In the first part of this presentation, I will describe an extension of this approach that take advantage of a potential subfield $k$, which replace the decoding of one element of $K$ by the decoding $[K:k]$ elements of $k$, to the cost of search in a set of cardinality $d^{[K:k]}$ where $d$ is the degree of the targetted polynomial equation. We will also describe heuristic observations that are useful to speed-up computations.In the second part of the presentation, we will describe methods to compute $e$-th roots specifically. When $K$ and $e$ are such that there are infinitely many prime integers $p$ such that $\forall mathfrak{p} \mid p, p^{f(\mathfrak{p}\mid p)} ot equiv1 \pmod e$, we reconstruct $x$ from $x \pmod {p_1}, dots, x \pmod {p_r} $ using a generalisation of Thomé's work on square-roots in the context of the NFS~(Thomé). When this good condition on $K$ and $n$ is not satisfied, one can adapt Couveignes' approach for square roots (Couveignes) to relative extensions of number fields $K/k$ provided $[K:k]$ is coprime to $e$ and infinitely many prime integers $p$ are such that each prime ideal $\mathfrak{p}$ of $\mathcal{O}_k$ above $p$ is inert in $K$.
  • Le 8 février 2023 à 12:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Timothée Crin Barat (Université d'Erlangen) null
    Approximation hyperbolique : Hypocoercivité et espaces de Besov hybrides
    "Dans cet exposé je traite de l'aspect globalement bien posé de systèmes hyperboliques dits partiellement dissipatifs ainsi que leurs limites de relaxation associées. Ces systèmes interviennent en tant qu'approximation hyperbolique de systèmes paraboliques et permettent d'apporter un élément de réponse au paradoxe de vitesse de propagation infinie qui survient en mécanique des fluides. Dans de récents travaux en collaboration avec Raphaël Danchin, nous démontrons la convergence forte des solutions du système d'Eulercompressible amorti vers les solutions de l'équation des milieux poreux lorsque le coefficient d'amortissement tend vers l'infini et dans une grande échelle de temps. Pour cela, nous associons des techniques provenant de la théorie de l'hypocoercivité et une décomposition fréquentielle précise des solutions via la théorie de Littlewood-Paley.Pour conclure, je discuterai d'une extension de ces résultats pour traiter une version hyperbolique du système de Navier-Stokes compressible."
  • Le 8 février 2023 à 16:30
  • Le séminaire des doctorant·es
    Salle de Conférences
    Eloïse Inacio null
    Little dictionary of artificial neural networks
    This presentation aims at providing a good starting point for understanding convolutional neural networks. I'll first give a brief overview of artificial intelligence and artificial neural networks before focusing on 2nd generation neural networks and more specifically, their applications in computer vision. All the vocabulary necessary to understand most articles in the field will be tackled.
  • Le 9 février 2023 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Sofia Tarricone null
    Sur les densités de Janossy du processus ponctuel déterminantal d'Airy ''aminci''
    Dans cet exposé, nous montrerons que les densités de Janossy d'un processus ponctuel déterminantal d'Airy convenablement aminci sont décrites par les équations de Schrodinger et de KdV (cylindrique), liées aussi à certaines analogues intégro-différentielles d'équations de type Painlevé. Tout d'abord, nous reverrons les résultats connus pour la ''gap probability'' du même processus d'Airy aminci, coincidant avec le déterminant de Fredholm du noyau d'Airy à temperature finie, puis nous les utiliserons pour enfin caractériser les densités de Janossy aussi. Le séminaire se base sur un travail (presque terminé) avec des collaborateurs de l'Université Catholique de Louvain-la-Neuve : T. Claeys, G. Glesner, G. Ruzza.
  • Le 9 février 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Jean-Rene Poirier (Lab. Laplace\, Univ. Toulouse 3) null
    [Séminaire CSM] Méthodes intégrales pour les équations de Maxwell et accélération par des méthodes de compression
    "Dans cet exposé, nous présenterons tout dabord trois applications différentes des équations de Maxwell en domaine non borné ainsi que leur déclinaison en terme de problème aux limites. A chacune de ces applications correspond une formulation intégrale et une problématique différente pour la résolution du système linéaire plein qui en résulte.Dans un second temps nous présenterons 2 méthodes accélération basées sur des techniques de compression ainsi que la déclinaison que cela implique sur chacune de ces applications.La méthode des matrices hiérarchiques (H-Matrix) est maintenant bien connue. Elle consiste en une subdivision de la matrice en bloc divisés de façon hiérarchiques de telle façon que les blocs correspondant à des interactions lointaines comportent une déficience de rang et admettent donc une représentation de rang faible. La matrice ainsi comprimée admet alors une «sorte» de représentation creuse que lon peut exploiter une résolution rapide.La méthode « Tenseur-Train » utilise un principe assez similaire pour résoudre le système linéaire qui doit alors être écrit avec une représentation tensorielle. Une des difficultés est alors de choisir la fonction de mapping permettant de transformer la matrice en un tenseur ayant les bonnes propriétés. Cette option plus propecpective donne dexcellents résultats sur des problématiques en 1D mais reste pour le moment moins performante que les outils usuels sur des applications 3D à visée industrielle."
  • Le 9 février 2023 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Paul Alphonse (Lyon) null
    Contrôlabilité à zéro d'équations paraboliques dégénérées de type hypoelliptique.
    Dans cet exposé, on sintéressera aux propriétés de contrôlabilité à zéro de trois équations diffusives, posées sur $\mathbb R^n$ ou $\mathbb R^n\times\mathbb T^n$. On commencera par présenter le cas parabolique de l'équation de la chaleur fractionnaire, dont les propriétés de contrôlabilité à zéro sont liées à la notion d'épaisseur. On sintéressera ensuite à deux équations paraboliques dégénérées de type hypoelliptique présentant des phénomènes nouveaux par rapport au cas parabolique (existence de temps minimaux notamment). La première est associée à un opérateur de type Baouendi-Grushin (un laplacien dégénéré autoadjoint). L'étude de ce modèle nécessite notamment d'obtenir des inégalités spectrales précises pour les oscillateurs anharmoniques, que l'on présentera. On considérera ensuite l'équation de Kolmogorov, dont le caractère non-autoadjoint influe sur la géométrie des supports de contrôle à considérer, comme on le verra. Ces résultats sont issus dune série de travaux avec J. Bernier (LMJL), J. Martin (LJLL), A. Koenig (IMT) et A. Seelmann (TU Dortmund).
  • Le 10 février 2023 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Florestan Martin-Baillon (Rennes) null
    Courants de bifurcation pour les familles de représentations de groupes en rang supérieur
    "Les groupes de type fini agissant linéairement sur les espaces projectifs sont des systèmes dynamiques holomorphes qui exhibent une grande variété de comportements.
    Nous introduirons la notion de stabilité proximale, qui mesure une certaine forme de stabilité dynamique de laction dune famille holomorphe de sous-groupes et nous expliquerons comment cette propriété est détectée par un courant de bifurcation, un objet qui vient de la théorie du potentiel, sur lespace des paramètres de la famille.
    Ce courant de bifurcation mesure la pluriharmonicité du plus grand exposant de Lyapunov de la famille de sous-groupes, associé à une marche aléatoire. Nous expliquerons comment cet objet permet d'utiliser des techniques de théorie du pluripotentiel en géométrie complexe pour étudier la dynamique des groupes."
  • Le 10 février 2023 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Kevin Destagnol Paris-Saclay
    Moyennes de fonctions arithmétiques évaluées en des polynômes et applications
    On expliquera comment estimer la moyenne d'une fonction arithmétique évaluée en des polynômes pourvu que la fonction arithmétique se comporte bien dans les progressions arithmétiques et que le nombre de variables des polynômes soit suffisamment grand. On donnera alors quelques applications au problème de Loughran--Smeets qui étudie la probabilité avec laquelle une équation diophantienne choisie au hasard au sein d'une famille possède une solution rationnelle. Il s'agit d'un travail en commun avec Efthymios Sofos et Leonard Hochfilzer.
  • Le 14 février 2023 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Maxime Plançon IBM Zürich
    Exploiting algebraic structure in probing security
    The so-called $\omega$-encoding, introduced by Goudarzi, Joux and Rivain (Asiacrypt 2018), generalizes the commonly used arithmetic encoding. By using the additionnal structure of this encoding, they proposed a masked multiplication gadget (GJR) with quasilinear (randomness and operations) complexity. A second contribution by Goudarzi, Prest, Rivain and Vergnaud in this line of research appeared in TCHES 2021. The authors revisited the aforementioned multiplication gadget (GPRV), and brought the IOS security notion for refresh gadgets to allow secure composition between probing secure gadgets.In this paper, we propose a follow up on GPRV. Our contribution stems from a single Lemma, linking algebra and probing security for a wide class of circuits, further exploiting the algebraic structure of $\omega$-encoding. On the theoretical side, we weaken the IOS notion into the KIOS notion, and we weaken the usual $t$-probing security into the RTIK security. The composition Theorem that we obtain by plugging together KIOS, RTIK still achieves region-probing security for composition of circuits.To substantiate our weaker definitions, we also provide examples of competitively efficient gadgets verifying our weaker security notions. Explicitly, we give 1) a refresh gadget that uses $d-1$ random field elements to refresh a length $d$ encoding that is KIOS but not IOS, and 2) multiplication gadgets asymptotically subquadratic in both randomness and complexity. While our algorithms outperform the ISW masked compiler asymptotically, their security proofs require a bounded number of shares for a fixed base field.
  • Le 20 février 2023 à 14:00
  • Groupe de Travail Analyse
    Salle de Conférences
    Marius Tucsnak (IMB) null
    Contrôle en temps optimal pour des systèmes linéaires en dimension finie
    Nous rappelons quelques résultats fondamentaux sur ce problème classique : existence des contrôle optimaux, principe du maximum, propriété de bang-bang, unicité. On choisit un formalisme permettant un passage relativement aisé à la dimension infinie.
  • Le 21 février 2023 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Floris Vermeulen KU Leuven
    Arithmetic equivalence and successive minima
    Two number fields are said to be arithmetically equivalent if they have the same Dedekind zeta function. The central question about arithmetic equivalence is to determine how "similar" arithmetically equivalent number fields are. That is, we would like to determine which arithmetic invariants, such as the degree, discriminant, signature, units, class number, etc., are the same, and which ones can differ. A key result about arithmetic equivalence is Gassmann's theorem, which allows one to answer such questions using Galois theory and representation theory.I will give a general introduction to arithmetic equivalence, discussing some of the main results such as Gassmann's theorem and giving examples. I will then introduce the successive minima of a number field, and show that arithmetically equivalent number fields have approximately the same successive minima. "
  • Le 21 février 2023 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Florian Lavigne (Université Rouen) null
    Evolution d'une population sous Sélection & Mutations : Quelques généralisations de l'équation replicator-mutator
    "Lors de ces dernières années, nous avons beaucoup entendu parler de mutations, de vagues épidémiques, etc. Cependant, qu'est-ce que cela signifie ? Un individu comme les virus ou les bactéries se reproduisent de façon asexuée : un parent va copier son information génétique pour donner naissance à une copie de lui-même ... mais avec des erreurs de retranscription de l'information, ce qu'on appelle des mutations. Ces mutations permettent une évolution pouvant être assez complexe d'une population.Pour cela, nous nous intéresserons à un modèle déterministe, basé sur l'équation replicator-mutator, représentant une population dans un unique environnement, mais subissant la sélection naturelle et ayant une chance de survie via les mutations. Nous commencerons par une construction/explication de chacun des termes pour ensuite nous attaquer à la question : la population va-t-elle s'adapter ou pas ? Le but de cette présentation va être d'alléger les hypothèses du modèle (environnement changeant temporellement ou spatialement) pour voir les difficultés mais aussi certaines simplicités de ce modèle."
  • Le 22 février 2023 à 17:00
  • Le séminaire des doctorant·es
    Salle de Conférences
    Issa Dabo (IMB) null
    Etude de Réseaux de neurones à l'aide des Probabilités libres
    "La théorie des probabilités libres vise à étudier des variables aléatoires non-commutative, dans ce but elle se distingue des probabilités classiques en s'appuyant sur un formalisme algébrique. Cette nouvelle construction s'est avérée très utile dans l'étude des matrices aléatoires et en particulier leur spectre.Dans cet exposé, après une brève introduction aux probabilités libres, nous nous intéresserons à des réseaux de neurones, qui peuvent être construits grâce à des matrices aléatoires et nous les étudierons du point de vue des probabilités libres."
  • Le 23 février 2023 à 15:30
  • Le Colloquium
    Salle de Conférences
    Nuria Fagella (Barcelona) null
    Dynamical systems on the complex plane: order and chaos
    "In this talk we shall introduce the particular aspects of dynamical systemsgenerated by the iteration of holomorphic maps. After describing the dynamical partition into the stable set (Fatou) and the chaotic one (Julia), we will establish relations with the inner functions of the unit disk and the Denjoy-Wolff Theorem.With these tools, we can describe a classification of all possible periodic componentsof the stable set, and also of the dynamics in theory boundaries. We will conclude withsome recent results on wandering domains, the great unknowns of complex dynamics."
  • Le 24 février 2023 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Valentina Disarlo (Heidelberg) null
    Géométrie des complexes des arcs et des connexions de selles
    Étant donnée une surface avec cusps S, son arc complexe A(S) est un complexe simplicial qui codifie la combinatoire des arcs simples idéaux. Le complexe des arcs est apparu dans les travaux fondamentaux de Harer, Mosher, Penner dans les années 90. Le complexe des arcs A(S) est Gromov-hyperbolique et donne un invariant de la topologie de la surface. Dans cet exposé on parlera de l'analogue du complexe des arcs pour les surfaces de (demi-)translation, c'est-à-dire le complexe des connexions de selles. On montrera que la combinatoire de ce complexe est un invariant complet de l'orbite SL$_2({\mathbb R})$ d'une différentielle quadratique dans l'espace des modules. On parlera aussi de sa géométrie grossière et de son bord de Gromov. Cet exposé sera basé sur mes travaux avec H. Pan, A. Randecker, R. Tang.
  • Le 24 février 2023 à 11:00
  • Groupe de Travail EDP et Théorie Spectrale
    Salle de Conférences
    Laurent Michel null
    Asymptotiques optimales pour le temps de sortie de processus non réversibles
    On considère le problème du temps de sortie dun ouvert pour des processus stochastiques non reversibles metastables. On établit une correspondance entre lespérance du temps de sortie et linverse de la valeur principale du générateur. Dans un cadre géométrique adapté, on prouve ensuite une formule dEyring-Kramers pour cette valeur propre. Travail en commun avec D. Le Peutrec et B. Nectoux
  • Le 24 février 2023 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Daniel Kriz Sorbonne Université
    Les conjectures principales supersingulières, la conjecture de Sylvester et la conjecture de Goldfeld
    Je présenterai un théorème « p-converse » à rang 0 et 1 pour les courbes elliptiques sur les rationnels à multiplication complexe (CM) dans le cas où le nombre premier p est ramifié dans le corps CM. Ce théorème a des applications à deux problèmes classiques d'arithmétique: il vérifie la conjecture de Sylvester de 1879 sur les nombres premiers exprimables comme une somme de deux cubes rationnels et établit la conjecture de Goldfeld pour la famille des nombres congruents. La démonstration répose sur la formulation et la preuve d'une nouvelle conjecture principale d'Iwasawa, qui à leur tour utilisent de nouvelles méthodes issues des interactions entre les objets théoriques d'Iwasawa et la théorie de Hodge p-adique relative sur les courbes de Shimura à niveau infini.
  • Le 27 février 2023 à 14:00
  • Groupe de Travail Analyse
    Salle 2
    Marius Tucsnak (IMB) null
    Contrôles en temps optimal en dimension infinie. Applications aux systèmes de type Schrödinger ou chaleur.
    Nous montrons que certaines méthodes issues du contrôle linéaire en dimension finie (notamment le principe du maximum) sadaptent pour des systèmes décrits pas des équations de type Schrödinger. Nous discutons ensuite brièvement le cas, bien plus compliqué, des systèmes décrits par des équations de type parabolique.
  • Le 27 février 2023 à 14:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Salle 285
    Mathieu Besançon\, Zuse Institute Berlin null
    "Analytic Centers for Cutting Plane Selection and Mixed-Integer Nonlinear Optimization with First-Order Methods
    \n"
    "Nonlinear and mixed-integer optimization have long remained separate fields with their own techniques, representations, and algorithms.I will present two lines of work linking the two domains and opening promising questions on their interactions.In the first part, we will see a use of analytic centers for cutting plane selection.Cutting planes are a crucial component of state-of-the-art mixed-integer programming solvers, with the choice of which subset of cuts to add being vital for solver performance.We propose new distance-based measures to qualify the value of a cut by quantifying the extent to which it separates relevant parts of the relaxed feasible set.For this purpose, we use the analytic centers of the relaxation polytope or of its optimal face, as well as alternative optimal solutions of the linear programming relaxation.We assess the impact of the choice of distance measure on root node performance and throughout the whole branch-and-bound tree, comparing our measures against those prevalent in the literature.In the second part, we will cover a new algorithm for mixed-integer convex problems using Frank-Wolfe.First-order methods are the usual choices for large-scale smooth optimization but are typically not prime candidates in branch-and-bound algorithms.Conditional gradient algorithms additionally allow the integration of convex constraints in a flexible manner through linear minimization oracles.We will provide an overview of Frank-Wolfe and detail how we designed a convex mixed-integer algorithm leveraging convex optimization and mixed-integer techniques."
  • Le 28 février 2023 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Julien Royer (U. Toulouse) null
    Décroissance de l'énergie locale et asymptotique basse fréquence pour l'équation de Schrödinger
    On s'intéresse à la décroissance de l'énergie locale pour l'équation de Schrödinger dans un cadre asymptotiquement Euclidien. Pour cela, on s'intéresse plus précisément au comportement de la résolvante pour les basses fréquences. Après un détour par les ondes amorties, on verra comment obtenir le profil asymptotique pour la résolvante, puis celui de la solution en temps grand. Ce sera l'occasion d'appliquer la méthode de Mourre dissipative à un problème purement autoadjoint.
  • Le 28 février 2023 à 13:15
  • Direction
    Salle de Conférences
    "Ordre du Jour des conseils de laboratoire et scientifique conjoints.
    1)Uniquement le Conseil Scientifique : classement des gratifications de stages de M2 (vote)
    2) Validation des comptes-rendus du conseil de laboratoire du 03/01 et du conseil scientifique du 24/01 (votes)
    3) Présentation d'un ""Projet pour notre image"" présenté par Camille Male (vote)
    4) Révision du document de sensibilisation et de la charte pour les comités de sélection (vote)
    5) Modification du RI à propos des Commissions Consultatives, cf. ci-dessous (vote)
    6) Retour sur le DOR, notamment la discussion des doctorants de l'IMB avec la direction de l'INSMI et les actions proposées
    7) Informations et questions diverses
    Pensez à donner votre procuration"

  • Le 1er mars 2023 à 16:30
  • Le séminaire des doctorant·es
    Salle de Conférences
    Ishak Tifouti null
    A brief introduction to linear model reduction
    "The reduced basis method was specifically developed in the context of parameterized equations. It makes use of the parametric dependency of the solution to build an approximation space of the solutions manifold (""the graph of the parametric mapping""). We will outline the notion of manifold's ""reducibility"" by introducing the so-called Kolmogorov n-width and see how to justify our reduction with accurate error estimates. "
  • Le 2 mars 2023 à 11:00
  • Soutenance de thèse
    University of Zaragoza
    Syed Hassaan Ahmed BUKHARI null
    "Titre de la thèse : ""Estimation des niveaux de potassium et calcium dans le sérum par caractérisation des formes d'onde de dépolarisation et de repolarisation de l'électrocardiogramme"".
    Directeur de thèse : Mark Potse. Co-directrice : Esther Pueyo"

  • Le 2 mars 2023 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Emmanuel Gobet (CMAP) null
    Estimation of extreme quantiles with neural networks, application to extreme rainfalls
    "We propose new parametrizations for neural networks in order to estimate extreme quantiles for both non-conditional and conditional heavy-tailed distributions. All proposed neural network estimators feature a bias correction based on an extension of the usual second-order condition to an arbitrary order. We establish convergence rates in terms of the neural network complexity. The finite sample performances of the non-conditional neural network estimator are compared to other bias-reduced extreme-value competitors on simulated data: our method outperforms them in difficult heavy-tailed situations where other estimators almost all fail. Finally, the conditional neural network estimators are implemented to investigate the behavior of extreme rainfalls as functions of their geographical location in the southern part of France."
  • Le 2 mars 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Li-Lian Wang (Nanyang Technological University) null
    [Séminaire CSM] Efficient Spectral and High-Order Methods for Wave Scattering Problems
    It is believed that high-order methods have significant advantages in simulating wave propagations. In this talk, we shall propose efficient computational techniques which can be integrated with spectral and spectral-element solvers for time-harmonic wave scattering problems. One important building block is to introduce a truly exact perfect absorbing layer (PAL) for domain truncation of the scattering problem in an unbounded domain with a bounded scatterer. This technique is based on a compression coordinate transformation (including complex and real transformations) in radial direction, and a suitable substitution of the unknown field in the artificial layer. Compared with the widely-used perfectly matched layer (PML) methods, the distinctive features of PAL lie in that (i) it is truly exact in the sense that the PAL-solution is identical to the original solution in the bounded domain reduced by the truncation layer; (ii) with the substitution, the PAL-equation is free of singular coefficients and the substituted unknown field is essentially non-oscillatory in the layer; and (iii) the construction is valid for general star-shaped domain truncation. By formulating the variational formulation in Cartesian coordinates, the implementation of this technique using standard spectral-element or finite-element methods can be made easy as a usual coding practice. We provide ample numerical examples to demonstrate that this method is highly accurate and robust for very high wavenumbers and thin layers. Then we demonstrate various applications e.g., invisibility cloaking in metamaterials.
  • Le 2 mars 2023 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Pascal Lefevre (Lens) null
    Opérateurs de composition sur les espaces de Hardy à poids.
    "Nous nous intéresserons à la caractérisation des suites $\beta = (\beta_n)$ telles que tous les opérateurs de composition $f\to C_\varphi(f)=f\circ \varphi$ soient bornés sur l'espace $H^2 (\beta)$ des fonctions analytiques $f$ sur le disque unité vérifiant $\sum_{n = 0}^\infty |a_n|^2 \beta_n < + \infty$ où $f (z) = \sum_{n = 0}^\infty a_n z^n$.Il s'agit d'un travail en collaboration avec Daniel Li, Hervé Queffélec et Luis Rodriguez-Piazza."
  • Le 2 mars 2023 à 15:30
  • Séminaire-débat Contexte
    Salle de Conférences
    Frédéric Barraquand null
    Crise de la biodiversité : tendances, méthodes, et inconnues
    La crise de la biodiversité est moins médiatique que celle du climat, mais elle fait néanmoins régulièrement lactualité. Nous devenons familiers avec les rapports alarmants de lIPBES, les indices des populations de vertébrés à la berne, et des médias ou personalités qui affirment un déclin phénoménal des populations dinsectes, à grand renfort de chiffres. Si la crise est bien réelle, la majorité des chiffres qui font les manchettes des journaux sont fantaisistes ou mal interprétés, et il peut être difficile dy voir clair. Dans cette présentation, jexpliquerai les différentes manières utilisées pour déterminer létat des populations sauvages et les tendances de celles-ci. Nous couvrirons notamment les résultats de lIPBES (1 espèce sur 8 menacée dextinction) et la méthodologie des listes rouges. Jexpliquerai ensuite les limites du Living Planet Index (et ses variantes), un indice populaire dans les medias mais hautement controversé dans la littérature écologique, ainsi que ce que nous disent les alternatives plus raisonnables. Enfin nous regarderons de plus près plusieurs études et controverses sur les tendances en biomasse des insectes, une classe très diverse dans laquelle les tendances sont particulièrement incertaines. En somme, si nous avons suffisamment dinformation pour dire quun pourcentage beaucoup trop grand despèces se dirige vers lextinction et nommer les causes de lérosion du vivant, mesurer précisément la vitesse du déclin en biomasse ou diversité est un champ actif de recherche dans lequel le consensus scientifique est assez faible. Les biais détude et de publication suggèrent également la possibilité perturbante qualors que les études dans les pays développés sur des animaux bien connus sont parfois trop alarmistes, pour les zones du globe et les espèces les moins étudiées, qui sont majoritaires, le déclin pourrait être plus fort quil nest évalué.
  • Le 3 mars 2023 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Claire Burrin (Zurich) null
    Orbites de réseaux et surfaces de Veech
    "Un réseau dans $G=$ SL$(2,{\mathbb R})$ est un sous-groupe discret dont le quotient admet une mesure de Haar finie et $G$-invariante. Il est naturel de considérer l'action linéaire du groupe $G$ sur le plan euclidien. Pour un réseau de $G$, cette action donne lieu à la dichotomie suivante : toute orbite forme un ensemble soit dense soit discret. C'est ce second cas qui m'intéresse. Dans mon exposé, je décrirai
    (1) en quoi la distribution des points de cet ensemble discret permet d'étudier des surfaces de translations,
    (2) les phénomènes qui rendent ce problème difficile (et intéressant !), et
    (3) certains résultats récents obtenus avec Samantha Fairchild et Jon Chaika."
  • Le 3 mars 2023 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Andrés Jaramillo Puentes Essen
    Intersections Tropicales Enrichies Quadratiquement
    La géométrie tropicale est un outil calculatoire puissant en géométrie énumérative réelle et complexe. Les résultats récents de la théorie homotopique motivique nous permettent d'étudier des questions de géométrie énumérative sur un corps arbitraire k. Dans cet exposé, on présente un des premiers exemples d'utilisation de la géométrie tropicale afin de résoudre des questions de la géométrie énumérative sur k : un théorème de Bézout enrichi quadratiquement. On expliquera les notions nécessaires de la géométrie énumérative valuée dans l'anneau de Grothendieck-Witt des formes quadratiques sur k. On définira une multiplicité d'intersection motivique valuée sur cet anneau et on prouve comment la calculer de façon combinatoire.Finalement, on utilisera ces idées pour prouver le théorème de Bézout enrichi quadratiquement. Si le temps le permet, on expliquera comment généraliser cette preuve pour montrer un analogue du théorème de Bernstein-Kushnirenko et sa correspondance avec l'intersectiondes hypersurfaces dans les variétés toriques.
  • Le 6 mars 2023 à 13:30
  • Séminaire d'Analyse
    Salle de Conférences
    Jérémy Martin (U. Paris Sorbonne) null
    Séminaire Commun avec Physique Mathématique et EDP ATTENTION Horaires GT Analyse Lundi 14h:
    Observabilité de léquation de Schrödinger avec potentiel périodique
    Dans cet exposé, nous nous intéresserons à lobservabilité déquations de Schrödinger avec potentiels périodiques posées sur lespace euclidien de dimension 2. Nous insisterons notamment sur la régularité de lobservable. La transformée de Floquet-Bloch nous amènera à étudier une famille déquations de Schrödinger posées sur le tore de dimension 2. Nous expliquerons comment obtenir des inégalités dobservabilité uniformes grâce à la notion de mesures semi-classiques. Ce travail est en collaboration avec Kévin Le Balch (Université Paris Sorbonne).
  • Le 6 mars 2023 à 13:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Jérémy Martin (Laboratoire JL Lions) null
    Observabilité de léquation de Schrödinger avec potentiel périodique
    "Attention : horaire inhabituel Dans cet exposé, nous nous intéresserons à lobservabilité déquations de Schrödinger avec potentiels périodiques posées sur lespace euclidien de dimension 2. Nous insisterons notamment sur la régularité de lobservable. La transformée de Floquet-Bloch nous amènera à étudier une famille déquations de Schrödinger posées sur le tore de dimension 2. Nous expliquerons comment obtenir des inégalités dobservabilité uniformes grâce à la notion de mesures semi-classiques. Ce travail est en collaboration avec Kévin Le Balch (Université Paris Sorbonne).(séminaire commun avec l'équipe d'Analyse)"
  • Le 8 mars 2023 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Ross Paterson University of Bristol
    Elliptic Curves over Galois Number Fields
    As E varies among elliptic curves defined over the rational numbers, a theorem of Bhargava and Shankar shows that the average rank of the Mordell-Weil group $E(\mathbb Q)$ is bounded. If we now fix a Galois number field K, how does the Mordell-Weil group E(K) behave on average as a Galois module? We will report on progress on this question, which is obtained by instead studying the associated p-Selmer groups of E/K as Galois modules.We construct some novel Selmer groups which describe certain invariants of these modules, and go on to study the behaviour of these new Selmer groups. This in turn allows us to give bounds for certain behaviour for the Mordell-Weil groups.
  • Le 9 mars 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Jing-Rebecca Li (École Polytechnique) null
    [Séminaire CSM] [Reporté] Modeling the diffusion MRI signal by a PDE
    The MRI signal (diffusion weighted) is the sum of the magnetization in a volume of cell tissue (a voxel). The magnetization at the scale of the cell microstructure can be modeled by a partial differential equation called the Bloch-Torrey equation. What makes the numerical solution of this equation difficult is the presence of complex interfaces (i.e., cell membranes) over which the solution is discontinuous. I will discuss the numerical solution of the direct problem of the Bloch-Torrey equation, and briefly mention some ideas for the inverse problem.
  • Le 9 mars 2023 à 14:00
  • Groupe de Travail Analyse
    Salle 1
    A. Hartmann (IMB) null
    Autour du d-bar (partie 1)
    "In certain problems in analysis one is interested in finding analyticfunctions with certain properties. The idea of the d-bar scheme is tofirst construct a smooth (not analytic) solution to the initial problemwith the required properties - which in general is an easy task - andthen to correct the solution maintaining the main properties of theproblem : if $f$ is the smooth solution to the initial problem and if$u$ is a suitable solution to $\overliner{\partial}u=g$ where$g=\overliner{\partial}f$, then $F=f-u$ satisfies$\overliner{\partial}F=0$ so that $F$ is analytic. The challenge here isthat the correction does not destroy the properties required by theinitial problem (for instance values in given points, norms, etc.). Themethod will be illustrated on 3 examples : interpolation, coronatheorem, separation of singularities. It should be mentioned that theseproblems are related with different applications such as for instancesignal and control theory.The talk is aimed at an elementary level."
  • Le 10 mars 2023 à 10:45
  • Séminaire de Géométrie
    Salle de Conférences
    Rencontre ANR FRACASSO : Nicolas Perrin (Ecole Polytechnique\, Paris) null
    VMRT des compactifications magnifiques des espaces symétriques
    (Travail en commun avec M. Brion et S. Kim) Le but de cet exposé sera de décrire les VMRT des compactifications magnifiques des espaces symétriques. Bien que ces compactifications magnifiques aient un nombre de Picard plus grand que 1, on verra, qu'en général, elles ont une unique famille minimale et que la VMRT associée est toujours homogène. Un outil important est le système de racines restreint qui contient beaucoup d'informations sur la géométrie des compactifications magnifiques.
  • Le 10 mars 2023 à 11:00
  • Groupe de Travail EDP et Théorie Spectrale
    Salle 285
    Fabio Pizzichillo null
    Keller estimates of the eigenvalues in the gap of Dirac operators
    "This talk aims to present estimates on the lowest eigenvalue in the gap of a Dirac operator in terms of a Lebesgue norm of the potential. Domain, self-adjointness, optimality and critical values of the norms are addressed, while the optimal potential is given by a Dirac equation with a Kerr nonlinearity. A new critical bound appears, which is the smallest value of the norm of the potential for which eigenvalues may reachthe bottom of the gap in the essential spectrum. Most of our result are established in the Birman-Schwinger reformulation of the problem. This is a collaboration work with Jean Dolbeault and David Gontier (UniversityParis-Dauphine), and Hanne Van Den Bosch (University of Chile)."
  • Le 10 mars 2023 à 13:30
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Rencontre ANR FRACASSO : Marta Pieropan (Utrecht) null
    On rationally connected varieties over $C_1$ fields of characteristic 0
    In the 1950s Lang studied the properties of $C_1$ fields, that is, fields over which every hypersurface of degree at most n in a projective space of dimension n has a rational point. Later he conjectured that every smooth proper rationally connected variety over a $C_1$ field has a rational point. The conjecture is proven for finite fields (Esnault) and function fields of curves over algebraically closed fields (GraberHarrisde JongStarr), but it is still open for the maximal unramified extensions of $p$-adic fields. I use birational geometry in characteristic 0 to reduce the conjecture to the problem of finding rational points on Fano varieties with terminal singularities, and I provide some evidence in dimension 3.
  • Le 13 mars 2023 à 14:00
  • Groupe de Travail Analyse
    Salle 1
    Marius Tucsnak (IMB) null
    Contrôle en temps optimal 3 : le cas des EDP paraboliques
    A ce jour on ne connait pas de principe du maximum pour le contrôle optimal des systèmes décrits par des EDP paraboliques avec une cible ponctuelle. Néanmoins, on peut obtenir la propriété de bang-bang des contrôles optimaux en utilisant un principe général introduit par Mizel et Seidman . Nous donnerons une preuve de ce principe et nous montrerons que lapplication de ce principe à léquation de la chaleurs implique lutilisation des techniques très fines danalyse.
  • Le 14 mars 2023 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Leonardo Colô Université Aix-Marseille
    Oriented Supersingular Elliptic Curves and Class Group Actions
    We recently defined an OSIDH protocol with Kohel (OSIDH) for oriented supersingular isogeny Diffie-Hellman by imposing the data of an orientation by an imaginary quadratic ring $\mathcal{O}$ on the category of supersingular elliptic curves. Starting with an elliptic curve $E_0$ oriented by a CM order $\mathcal{O}_K$ of class number one, we push forward the class group action along an $\ell$-isogeny chains, on which the class group of an order $\mathcal{O}$ of large index $\ell^n$ in $\mathcal{O}_K$ acts. The map from $\ell$-isogeny chains to its terminus forgets the structure of the orientation, and the original base curve $E_0$. For a sufficiently long random $ell$-isogeny chain, the terminal curve represents a generic supersingular elliptic curve.One of the advantages of working in this general framework is that the group action by $\mathrm{Cl}(\mathcal{O})$ can be carried out effectively solely on the sequence of moduli points (such as $j$-invariants) on a modular curve, thereby avoiding expensive generic isogeny computations or the requirement of rational torsion points.The proposed attacks of Onuki (2021) and Dartois-De Feo (2021) and their analyses motivate the idea of enlarging the class group without touching the key space using clouds. In this talk we propose two approaches to augment $\mathrm{Cl}(\mathcal{O}_n(M))$ in a way that no effective data is transmitted for a third party to compute cycle relations. In both cases, it comes down to an extension of the initial chain by the two parties separately. In particular, while the original OSIDH protocol made exclusive use of the class group action at split primes in $\mathcal{O}$, we extend the protocol to include descent in the eddies at non-split primes (inert or ramified) or at large primes which are not cost-effective for use for longer isogeny walks. "
  • Le 14 mars 2023 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Alexis Leculier (Agen\, U. Bordeaux) null
    "Analysis of two ""Rolling carpet"" strategies to repulse an invasive species"
    In order to prevent the propagation of human diseases transmitted by mosquitoes, one possible solution is to act directly on the mosquito population. In this talk, we consider an invasive species (the mosquitoes) and we study two strategies to eradicate the population. The dynamics of the population is modeled through a bistable reaction diffusion equation in an one-dimensional setting and both strategies are based on the same idea: we act on a moving interval. The action of the first strategy is to kill as many individuals as we can in this moving interval. The action of the second strategy is to release sterile males in this moving interval. The first part of the talk focus on the efficiency of the strategies. For both strategies, we manage to generate traveling waves that propagate in the opposite direction than the natural invasive traveling wave, thus we succeed in repulsing the invasive species. All the results are illustrated by numerical simulations. In a second part, we present briefly ongoing extensions of the first part of the talk. These extensions aim to minimize the cost of both strategies, adapt the strategy to monostable dynamics and treat the 2D case. This talk is based on joint works with Luis Almeida, Grégoire Nadin, Nga Nguyen, Yannick Privat and Nicolas Vauchelet.
  • Le 15 mars 2023 à 16:30
  • Le séminaire des doctorant·es
    Salle de Conférences
    Francesco Viganò (Imperial College London) null
    Binomial Cayley Graphs and Applications to Dynamics of Finite Spaces
    This talk is about binomial Cayley graphs. Cayley graphs are graphs on groups (with extra conditions). The edge weight function of a Cayley graph induces new weight functions, obtained by considering the binomial coefficient of the original weight function and a natural number. We refer to graphs arising from this construction as binomial Cayley graphs. We will present two families of binomial Cayley graphs, associated with symmetric groups and powers of cyclic groups. Interesting combinatorial properties arise through the spectral analysis of their adjacency matrices. For example, in the symmetric group case, a relation between the multiplicity of the null eigenvalue and longest increasing sub-sequences of permutations can be obtained through the celebrated RSK correspondence. An application to n-point motion in discrete dynamical systems will be presented.
  • Le 16 mars 2023 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Guy Gilboa (Technion) null
    The Underlying Correlated Dynamics in Neural Training
    "Training of neural networks is a computationally intensive task. The significance of understanding and modeling the training dynamics is growing as increasingly larger networks are being trained. We propose a model based on the correlation of the parameters' dynamics, which dramatically reduces the dimensionality. We refer to our algorithm as Correlation Mode Decomposition (CMD). It splits the parameter space into groups of parameters (modes) which behave in a highly correlated manner through the epochs. We achieve a remarkable dimensionality reduction with this approach, where a network of 11M parameters like ResNet-18 can be modeled well using just a few modes. We observe each typical time profile of a mode is spread throughout the network in all layers. Moreover, retraining the network using our dimensionality reduced model induces a regularization which yields better generalization capacity on the test set.This is a joint work with Rotem Turjeman, Tom Berkov and Ido Cohen."
  • Le 16 mars 2023 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    En Visio
    François Clautiaux (IMB) null
    Synergies between dynamic programming and mixed integer programming
    "In this talk, we describe the strong relationship between mixed-integer programming (MIP) and dynamic programming (DP). We show two case studies. In the first one (a variant of knapsack problem) valid inequalities are used to improve a method based on DP. In the second one (a variant of vehicle routing problem) a DP is used to produce a stronger MIP formulation, which is solved using an iterative method inspired from techniques used for DP.Zoom link : https://u-bordeaux-fr.zoom.us/j/81481860493?pwd=NE51REJqaDZ1Z0RYdS9tYWJQaENKZz09"
  • Le 16 mars 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Xavier Claes (lab. Jacques-Louis Lions\, Paris 6) null
    "[Séminaire CSM] Généralisation des Méthodes de Schwarz Optimisées pour le\ntraitement robuste des points de croisement"
    "Dans le cadre de la propagation d'ondes en régime harmonique, les Méthodes deSchwarz Optimisées (OSM) sont parmi les stratégies de décomposition de domaineles plus populaires.Dans le cas d'une partition en sous-domaines sans recouvrement arbitraire (comme lorsqu'on a recours à un partitionneur de graphe) la présence de points de croisement, c'est-à-dire des points où trois sous-domaines ou plus sont adjacents, avait jusqu'à présent soulevé de sérieuses difficultés tant surle plan pratique que théorique.Nous décrirons une nouvelle variante d'OSM qui fournit un traitement systématique et robuste des points de croisement ainsi qu'une analyse théorique complète incluant des estimations de convergence.Un ingrédient important et nouveau de cette approche est un opérateur d'échange non-local pour imposer les conditions de transmission et maintenir le couplage entre sous-domaines.Si la théorie associée couvre plusieurs variantes pré-existantes d'OSM, y compris l'algorithme original de Després, elle conduit également à de nouvelles méthodes aux propriétés de convergence accrues.Nous présenterons des résultats numériques en acoustique et en électromagnétisme."
  • Le 16 mars 2023 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Tom ter Elst (Oakland) null
    The Dirichlet problem without the maximum principle
    "The maximum principle plays an important role for the solution of the Dirichlet problem.Now consider the Dirichlet problem with respect to an elliptic operator$$A = - \sum_{k,l=1}^d \partial_k \, a_{kl} \, \partial_l - \sum_{k=1}^d \partial_k \, b_k + \sum_{k=1}^d c_k \, \partial_k + c_0$$on a sufficiently regular open set $\Omega \subset \mathbb{R}^d$,where $a_{kl}, c_k \in L_\infty(\Omega,\mathbb{R})$ and $b_k,c_0 \in L_\infty(\Omega,\mathbb{C})$.Suppose that the associated operator on $L_2(\Omega)$ with Dirichlet boundary conditions is invertible.Note that in general this operator does not satisfy the maximum principle.Nevertheless, we show that for all $\varphi \in C(\partial \Omega)$ there exists a unique $u \in C(\overline \Omega) \cap H^1_{\rm loc}(\Omega)$ such that $u|_{\partial \Omega} = \varphi$ and $A u = 0$.In the case when $\Omega$ has a Lipschitz boundary and $\varphi \in C(\overline \Omega) \cap H^{1/2}(\overline \Omega)$, then we show that $u$ coincides with the variational solution in $H^1(\Omega)$.This is joint work with Wolfgang Arendt."
  • Le 16 mars 2023 à 15:30
  • Séminaire d'Analyse
    Salle de Conférences
    Somnath Ghosh null
    Density of exponentials and Perron-Frobenius operators
    "In this talk, we shall discuss the weak-star density of the linear span of the trigonometric system$$\left\{e_{m,n}(x,y)=e^{\pi i(mx+ny)},~e_{m,n}^{<\beta>}(x,y)=e^{\pi i \beta(m/x+n/y)};~m,n \in \mathbb{Z}\right\}$$in a ``part'' of $\mathbb{R}^2,$ for $\beta>0.$ This has a natural connection with theHeisenberg uniqueness pair. A two-dimensional Gauss-type map and its corresponding Perron-Frobenius operatoris in the centre part of our analysis. (Joint work with Dr. Debkumar Giri)."
  • Le 17 mars 2023 à 09:30
  • Séminaire de Géométrie
    Salle 2
    Polyxeni Spilioti (Göttingen) null
    Resonances and residue operators for pseudo-Riemannian hyperbolic spaces
    In this talk, we present some recent results about resonances and residue operators for pseudo-Riemannian hyperbolic spaces. In particular, we show that for any pseudo-Riemannian hyperbolic space X, the resolvent of the Laplace-Beltrami operator can be extended meromorphically as a family of operators. Its poles are called resonances and we determine them explicitly in all cases. For each resonance, the image of the corresponding residue operator forms a representation of the isometry group of X, which we identify with a subrepresentation of a degenerate principal series. Our study includes in particular the case of even functions on de Sitter and Anti-de Sitter spaces.
    This is joint work with Jan Frahm.
  • Le 17 mars 2023 à 11:00
  • Séminaire de Géométrie
    Salle 2
    Florent Ygouf (Tel Aviv) null
    Le flot horocyclique dans lespace de module
    Le flot géodésique pour la métrique de Teichmüller sur lespace de modules des courbes induit une action du groupe SL(2,R) sur lespace de modules des surfaces de translation. Je discuterai de la dynamique du flot horocylique correspondant à laction du sous-groupe des matrices triangulaires supérieures avec valeur propre 1. Par analogie avec la théorie de Ratner sur la dynamique des flots unipotents dans les espaces homogènes, il est naturel de se demander si les adhérences dorbites et les mesures invariantes correspondant à cette action admettent une classification. Je présenterai des résultats positifs allant dans cette direction et jexpliquerai en particulier comment certains arguments de dynamique homogène dus à Ratner, Dani et Margulis peuvent être adaptés à ce cadre géométrique. Il sagit de résultats en collaboration avec J. Chaika, J. Smillie, P. Smillie et B. Weiss.
  • Le 17 mars 2023 à 11:00
  • Groupe de Travail EDP et Théorie Spectrale
    Salle de Conférences
    Rachid Mohamad null
    The Narrow escape problem in the unit disk
    In this talk, we investigate the Narrow escape problem in the unit disk, which is to find the first exit time and exit point for a Brownian particle confined within the unit disk with a reflecting boundary, except for small disjointed windows through which it can escape. This problem has practical applications in various fields. To solve this problem, we study the eigenvalue problem for the Laplacian operator with a Dirichlet boundary condition on a small absorbing part of the boundary and a Neumann boundary condition on the remaining reflecting part. We obtain rigorous asymptotic expansions of the first eigenvalue and the normal derivative of the associated eigenfunction.
  • Le 17 mars 2023 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Veronika Ertl Ratisbonne
    Un approche rigide à la cohomologie de Hyodo--Kato
    La cohomologie de Hyodo-Kato joue un rôle important dans la géométrie arithmétique, en particulier dans la théorie de Hodge p-adique. Elle permet de munir la cohomologie de de Rham d'un schéma (propre de réduction sémistable) sur un anneau de valuation discrète complet avec un structure de (Æ,N)-module. Je vais présenter une approche à la théorie de Hyodo-Kato fondée sur des méthodes rigides analytique, qui permet d'étudier des schémas plus généraux (en particulier non-nécessairement propre). Dans un cas particulier, je vais expliquer comment cette construction permet de comprendre la relation entre la cohomologie rigide de Berthelot et la cohomologie de Hyodo-Kato. (Travail en cours en commun avec Kazuki Yamada, Keio University.)
  • Le 20 mars 2023 à 11:00
  • Soutenance de thèse
    Salle de Conférences
    Nacer AARACH null
    "Titre de la thèse : ""Étude de quelques approximations hydrostatiques de modèles de la mécanique des fluides"".
    Directeur de thèse : Marius-Gheorghe Paicu"

  • Le 20 mars 2023 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Emmanuel Zongo Paris Saclay
    "ATTENTION LES CRENEAUX DU SEMINAIRE ET DU GT SONT EXCEPTIONNELLEMENT INVERSES:\nStabilization of the damped plate equation under general boundary condition\n"
    Dans cet exposé, je présenterai un résultat de stabilisation de l'équation des plaques amorties. Le terme terme d'amorissement de l'équation agit sur une région interne et aucune condition géométrique n'est imposée. Nous déterminons le taux de décroissance minimal que l'on puisse obtenir pour les solutions fortes de l'équation des plaques amorties. La preuve de ce résultat est réalisée au moyen dune estimation de Carleman pour les opérateurs elliptiques d'ordre quatre avec les conditions au bord dites de Lopatinskii-Sapiro et d'une estimation de la résolvante pour le générateur du semigroupe des plaques amorties associé à ces conditions aux limites.
  • Le 20 mars 2023 à 14:00
  • Soutenance de thèse
    Salle Contensou - Chatillon
    Benjamin CONSTANT null
    "Titre de la thèse : ""Amélioration dune méthode de frontières immergées pour la simulation découlements turbulents autour de géométries complexes"".
    Directrice de thèse : Héloise Beaugendre. Co-directrice : Stephanie Peron"

  • Le 21 mars 2023 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Mathieu Dutour Institute Rudjer Boskovic\, Croatia
    High dimensional computation of fundamental domains
    We have developed open-source software in C++ for computing with polyhedra, lattices, and related algebraic structures. We will shortly explain its design. Then we will explain how it was used for computing the dual structure of the $W(H_4)$ polytope.Then we will consider another application to finding the fundamental domain of cocompact subgroups $G$ of $\mathrm{SL}_n(\mathbb{R})$. The approach defines a cone associated with the group and a point $x\in \mathbb{R}^n$. It is a generalization of Venkov reduction theory for $\mathrm{GL}_n(\mathbb{Z})$. We recall the Poincaré Polyhedron Theorem which underlies these constructions.We give an iterative algorithm that allows computing a fundamental domain. The algorithm is based on linear programming, the Shortest Group Element (SGE) problem and combinatorics. We apply it to the Witte cocompact subgroup of $\mathrm{SL}_3(\mathbb{R})$ defined by Witte for the cubic ring of discriminant $49$.
  • Le 21 mars 2023 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Alessandro Olgiati (U. Zurich) null
    Reduced fluctuations for bosons in a double well
    " I will discuss the ground state properties of a system of interacting bosons trapped by a double-well potential, in a joint limit of large inter-well separation and high potential barrier. The leading-order physics of the model is governed by a Bose-Hubbard Hamiltonian coupling two one-body modes, each supported in the bottom of one well. Fluctuations beyond these two modes are described by Bogoliubov's theory.Our main result is that, when the system is in the ground state, the variance of the number of particles occupying the low-energy modes is suppressed. This is a violation of the central limit theorem that typically holds in the occurrence of Bose-Einstein condensation, and therefore a signature of the emergence of strong correlations in the ground state. We achieve this result by proving a precise ground state energy expansion in terms of Bose-Hubbard and Bogoliubov energies.Joint work with Nicolas Rougerie (ENS Lyon) and Dominique Spehner (Universidad de Concepciòn)."
  • Le 21 mars 2023 à 13:30
  • Direction
    Salle de Conférences
    Ordre du jour des conseils de laboratoire et scientifique conjoints :
    1) Validation des comptes-rendus des conseils de laboratoire et scientifique du 28/02 (vote)
    2) Informations générales
    3) Validation des compositions des CC25 et CC26 (vote)
    4) Discussions préliminaires sur le PGE 2024. Présentation de fiches de postes (liens à venir)
    5) Questions diverses
    Pensez à donner votre procuration

  • Le 23 mars 2023 à 09:30
  • Séminaire Images Optimisation et Probabilités
    Salle 1
    Journée thématique (organisée par Yann Traonmilin) null
    Problèmes inverses en imagerie - régularisation, modèles de faible dimension et applications
    "L'approche variationnelle de résolution des problèmes inverses en imagerie a connu beaucoup de développements lors des trente dernières années. Son cadre mathématique flexible a permis de montrer des résultats garantissant leurs succès sous des hypothèses sur les paramètres du modèle (parcimonie, nombre de mesures, nature du bruit, etc). De nombreuses questions restent ouvertes dans ce domaine, résolution de problèmes inverses dans des espaces de mesures (ex: super-résolution), régularisation adaptée à de nouveaux modèles de faibles dimension, garanties pour les méthodes de résolution basées sur l'apprentissage profond, etc. Nous proposons pendant cette journée d'aborder les dernières avancées aussi bien pratiques que théoriques dans ce domaine. $$\href{https://gdr-mia.math.cnrs.fr/events/journee_problemes_inverses2023/}{\text{Site de l'événement}}$$"
  • Le 23 mars 2023 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Salle 2
    Komlanvi Parfait Ametana (IMB) null
    Risk-averse models for earthquake preparedness and response
    "Disasters can be classified into several categories, namely natural, man-made and industrial disasters. When addressed from an operations research point-of-view, disaster management is often split into two phases. The preparation phase consists of building the most resilient system to face a disaster, anticipating the random disaster and the way the infrastructure will be optimally used to assist the victims in the so-called response phase.This work focuses on the case of earthquakes. In the short term, one of the most important issues for areas affected by an earthquake is the emergency treatment of injured victims. Treating the severe wounds implied by such an event requires large amounts of blood, typically more than the regular stock at hospitals.In the purpose of placing the risk incurred by human lives at the heart of our study, we propose to address the blood supply chain design problem using two risk-averse optimization models. They are based on a set of discrete scenarios and optimize the unmet blood demands. We perform a numerical comparison of these approaches against a method of the literature, in the objective of evaluating their relevance for minimizing the unmet blood demands when human lives are at stake."
  • Le 23 mars 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Nina Aguillon (Sorbonne Univ.) null
    [Séminaire CSM] Quantification a posteriori de la diffusion numérique
    "Les solutions des systèmes hyperboliques contiennent des discontinuités.Ces solutions faibles vérifient non seulement les EDP de départ, mais aussi une inégalité d'entropie qui agit comme un critère de sélection déterminant si une discontinuité est physique ou non.Il est très important d'obtenir une version discrète de ces inégalités d'entropie lorsqu'on approxime numériquement les solutions, sans quoi le schéma est susceptible de converger vers des solutions non physiques ou pire d'être instable.Obtenir une inégalité d'entropie discrète est en général un travail difficile, souvent inatteignable pour des schémas d'ordre élevé.Dans cet exposé, je présenterai une approche où ces inégalités sont obtenues a posteriori en minimisant une fonctionnelle bien choisie.La difficulté principale est de prendre en compte la notion de consistance.Cette méthode permet d'obtenir des ""cartes de diffusion numérique"" pour des schémas d'ordre quelconque.Elle permet aussi de trouver, par une autre procédure d'optimisation, la pire donnée initiale vis à vis de l'entropie.C'est un travail en collaboration avec Emmanuel Audusse, Vivien Desveaux et Julien Salomon."
  • Le 24 mars 2023 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Ilia Smilga Oxford
    Critères d'actions affines propres pour les groupes anosoviens
    Je vais présenter quelques critères (nécessaires ou suffisants) pour que l'action d'un groupe $\Gamma$ de transformations affines sur l'espace affine soit propre. Il s'agit d'un travail commun avec Fanny Kassel.
    Le principal de ces critères lie la propreté de l'action à la divergence d'un paramètre qui s'appelle l'invariant de Margulis. Cet invariant mesure en gros la partie de translation d'une transformation affine, mais d'une manière qui soit invariante par conjugaison.Ce lien était déjà connu dans certains cas particuliers (où il a été exploité pour construire des actions propres). Nous l'établissons dans un cadre général où $\Gamma$ est ce qu'on appelle un groupe anosovien. Cette notion, introduite par Labourie et Guichard-Wienhard et beaucoup étudiée ces dernières années, peut se voir comme une généralisation en rang supérieur de groupes convexes cocompacts.J'évoquerai également d'autres invariants similaires à l'invariant de Margulis, qui pourraient donner lieu à des critères valables dans des cadres encore plus généraux.
  • Le 24 mars 2023 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Dino Lorenzini Georgia
    Torsion and Tamagawa numbers
    Associated with an abelian variety A/K over a number field K is a finite set of integers greater than 1 called the local Tamagawa numbers of A/K. Assuming that the abelian variety A/K has a K-rational torsion point of prime order N, we can ask whether it is possible for none of the local Tamagawa numbers to be divisible by N. The ratio (product of the Tamagawa numbers)/|Torsion in E(K)| appears in the conjectural leading term of the L-function of A in the Birch and Swinnerton-Dyer conjecture, and we are thus interested in understanding whether there are oftencancellation in this ratio.We will present some finiteness results on this question in the case of elliptic curves. More precisely, let d>0 be an integer, and assume that there exist infinitely fields K/Q of degree d with an elliptic curve E/K having a K-rational point of order N. We will show that for certain such pairs (d,N), there are only finitely many fields K/Q of degree d such that there exists an elliptic curve E/K having a K-rational point of order Nand none of the local Tamagawa numbers are divisible by N. The lists of known exceptions are surprisingly small when d is at most 7."
  • Le 27 mars 2023 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    "\"14
    "Journée ""Analyse harmonique et EDP"""
    "14:00 - Emmanuel Russ, Univ. Grenoble Alpes.
    Inégalités de Riesz inverses dans les variétés riemaniennes.
    Le résumé:
    cf.https://plmbox.math.cnrs.fr/f/1ee58b7344e140ab8fb7/
    15:00-15:30 Pause café
    15:30 Dmitry Ponomarev, INRIA Nice.
    Constructive aspects related to the inverse magnetisation problem.
    Le résumé:
    The process of extraction of relict magnetic information from georocks and meteorites is a challenging task. Due to the weak intensity of the field produced by the remanent magnetisation of a rock, the measurements have to be performed in direct vicinity of the sample and using highly sensitive magnetometric devices such as SQUID and QDM. The basic quantity of interest is the net magnetisation (magnetisation moment vector). Reconstruction of this quantity hinges on effective processing of the experimental data, with the main challenges being the limited measurement area and the noise contamination. Motivated by the concrete experimental settings, I will focus on some constructive issues related to asymptotic estimation of the net magnetisation, field extrapolation and denoising. I will also show some numerical results illustrating the proposed computational strategies. "
  • Le 28 mars 2023 à 09:30
  • Soutenance de thèse
    Salle de Conférences
    Masimba NEMAIRE null
    "Titre de la thèse : ""Problèmes inverses de potentiel et applications à l'éléctromagnétique quasi-statique"".
    Directeur de thèse : Stanislav Kupin. Co-directrice : Juliette Leblond"

  • Le 28 mars 2023 à 09:30
  • Séminaire d'Analyse
    Salle de Conférences
    Masimba Nemaire\, IMB Université de Bordeaux - INRIA Sophia-Antipolis null
    Problèmes inverses de potentiel et applications à l'éléctromagnétique quasi-statique.
    Cf. https://plmbox.math.cnrs.fr/f/a27ae398a960411ab098/
  • Le 28 mars 2023 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Shane Gibbons CWI\, Netherlands
    Hull attacks on the Lattice Isomorphism Problem
    The lattice isomorphism problem (LIP) asks one to find an isometry between two lattices. It has recently been proposed as a foundation for cryptography in independent works. This problem is the lattice variant of the code equivalence problem, on which the notion of the hull of a code can lead to devastating attacks. In this talk I will present the cryptanalytic role of an adaptation of the hull to the lattice setting, which we call the s-hull. Specifically, we show that the hull can be helpful for geometric attacks, for certain lattices the minimal distance of the hull is relatively smaller than that of the original lattice, and this can be exploited. The attack cost remains exponential, but the constant in the exponent is halved.
    Our results suggests that one should be very considerate about the geometry of hulls when instantiating LIP for cryptography. They also point to unimodular lattices as attractive options, as they are equal to their own hulls. Remarkably, this is already the case in proposed instantiations, namely the trivial lattice $\mathbb{Z}^n$ and the Barnes-Wall lattices.
  • Le 28 mars 2023 à 14:00
  • Soutenance de thèse
    Salle de Conférences
    Paul FREULON null
    "Titre de la thèse :""Transport optimal régularisé pour l'estimation des poids dans des modèles de mélange, et application à la cytométrie en flux"".
    Directeur de thèse : Jérémie Bigot"

  • Le 29 mars 2023 à 16:30
  • Le séminaire des doctorant·es
    Salle 1
    Niami Nasr null
    Méthode numérique pour la Tomographie par Impédance Electrique
    "La tomographie par impédance électrique (EIT) est une technique non-invasive de reconstruction de conductivités à partir de mesures électriques à la surface du corps. Un courant alternatif est injecté au travers plusieurs électrodes et des mesures de potentiel électrique sont effectuées. Pour résoudre numériquement le problème inverse associé à l'EIT, nous utilisons une méthode numérique de frontière immergée. Nous aborderons les deux points suivants :- En quoi consiste exactement ce problème inverse ?- Qu'est-ce que la méthode des frontières immergées ?"
  • Le 30 mars 2023 à 11:00
  • Séminaire Optimisation Mathématique Modèle Aléatoire et Statistique
    Salle 2
    Boris Detienne IMB\, Université de Bordeaux
    Research ideas on combinatorial min-max regret with decision diagrams
    Open discussion about min-max regret combinatorial optimization problems with objective interval uncertainty.
  • Le 30 mars 2023 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle 1
    Simon Vary null
    Extensions of principal component analysis: limited data, sparse corruptions, and efficient computation
    Principal component analysis (PCA) is a fundamental tool used for the analysis of datasets with widespread applications across machine learning, engineering, and imaging. The first part of the talk is dedicated to solving Robust PCA from subsampled measurements, which is the inverse problem posed over the set that is the additive combination of the low-rank and the sparse set. Here we develop guarantees using the restricted isometry property that show that rank-r plus sparsity-s matrices can be recovered by computationally tractable methods from p=O(r(m+n-r)+s)log(mn/s) linear measurements. The second part of the talk is focused on finding an efficient way to perform large-scale optimization constrained to the set of orthogonal matrices used in PCA and for training of neural networks. We propose the landing method, which does not enforce the orthogonality exactly in every iteration, instead, it controls the distance to the constraint using computationally inexpensive matrix-vector products and enforces the exact orthogonality only in the limit. We show the practical efficiency of the proposed methods on video separation, direct exoplanet detection, online PCA, and for robust training of neural networks.
  • Le 30 mars 2023 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Grzegorz Swiderski\, Université de Wroclaw\, Pologne null
    Asymptotic distribution of zeros of orthogonal polynomials.
    We consider vague limit of properly normalized zero counting measures of orthogonal polynomials on the real line corresponding to measures with unbounded support. One important feature is that we do not scale the argument of the polynomials and as a consequence we have to deal with lack of tightness of the corresponding sequence of measures. The limiting measure turns out to be an infinite Radon measure (for Hermite polynomials it is a constant multiple of the Lebesgue measure). This is a joint work with Bartosz Trojan (Polish Academy of Science).
  • Le 31 mars 2023 à 09:30
  • Séminaire de Géométrie
    Salle 2
    Pablo Portilla Cuadrado (Lille) null
    Polyèdres évanescents pour les singularités des courbes planes
    Le problème de la construction d'une épine à l'intérieur d'une fibre de Milnor qui réalise la topologie évanescente d'une application d'effondrement, remonte au moins à René Thom. Nous exploitons une idée de A'Campo pour construire explicitement de telles épines pour les fibres de Milnor de singularités de courbes planes f, via l'étude des lignes intégrales du gradient complexe de f qui convergent vers l'origine. Il s'agit d'un travail conjoint avec Baldur Sigurdsson.
  • Le 31 mars 2023 à 11:00
  • Séminaire de Géométrie
    Salle 2
    Léo Bénard Göttingen
    Torsion de Reidemeister et variétés des caractères
    La torsion de Reidemeister est un invariant topologique, célèbre entre autres pour avoir permis de distinguer des quotients finis de la sphère $S^3$, les espaces lenticulaires, qui ont le même type d'homotopie mais qui ne sont pas homéomorphes. L'étude de la torsion est intimement liée à celles des variétés des caractères: des variétés algébriques dont les points sont des classes de conjugaison de représentations de groupes fondamentaux. Je survolerai quelques résultats que j'ai obtenus dans ma thèse sur ce sujet, et aborderai un travail en cours, en collaboration avec Ryoto Tange, Anh Tran et Jun Ueki, où nous étudions le diviseur induit par la torsion sur ces variétés.
  • Le 31 mars 2023 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Quentin Gazda École Polytechnique
    Cohomologie motivique en arithmétique des corps de fonctions
    Des valeurs zêta intéressantes apparaissent en arithmétique des corps de fonctions comme valeur spéciales de fonctions L de A-motifs d'Anderson. Je réfléchis actuellement à l'analogue d'une conjecture de Beilinson dans ce cadre, liant ces valeurs spéciales au déterminant d'un régulateur. Dans cet exposé, je présenterai mes premiers pas dans ce programme : après un rappel général sur les A-motifs et leur théorie, j'expliquerai comment définir une « cohomologie A-motivique ». On définira ensuite un régulateur, et je conclurai sur quelques calculs récents obtenus avec Andreas Maurischat dans le cas des twists de Carlitz.
  • Le 4 avril 2023 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Jean Gillibert Université de Toulouse 2
    Finite subgroups of $mathrm{PGL}_2(mathbb{Q})$ and number fields with large class groups
    For each finite subgroup $G$ of $\mathrm{PGL}_2(\mathbb{Q})$, and for each integer $n$ coprime to $6$, we construct explicitly infinitely many Galois extensions of $\mathbb{Q}$ with group $G$ and whose ideal class group has $n$-rank at least $#G-1$. This gives new $n$-rank records for class groups of number fields.
  • Le 4 avril 2023 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Angeliki Menegaki (IHES) null
    Spectral gap for long-range interactions in harmonic chain of oscillators
    We consider one-dimensional chains and multi-dimensional networks of harmonic oscillators coupled to two Langevin heat reservoirs at different temperatures. Each particle interacts with its nearest neighbours by harmonic potentials and all individual particles are confined by harmonic potentials, too. In previous works we investigated the sharp N-particle dependence of the spectral gap of the associated generator in different physical scenarios and for different spatial dimensions. In this talk I will present new results on the behaviour of the spectral gap when considering longer-range interactions in the same model. In particular, depending on the strength of the longer-range interaction, there are different regimes appearing where the gap drastically changes behaviour but even the hypoellipticity of the operator breaks down. This is a joint work with Simon Becker (ETH).
  • Le 5 avril 2023 à 16:30
  • Le séminaire des doctorant·es
    Salle de Conférences
    Han Chen Göttingen
    An introduction to the Nagell-Ljunggren equation
    "The Diophantine equation of Nagell-Ljunggren $\frac{x^{n}-1}{x-1}=y^{q}$ has six known solutions in integers with exponents larger than one.It is conjectured that these are the only solutions. In this talk, I will briefly introduce the history of N-L equation and its connection with the famous equation of Catalan. I will also show some results under the condition that $q$ does not divide $h_p^-$, the minus part of the class number."
  • Le 7 avril 2023 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Timothée Bénard Cambridge
    Théorèmes limites sur les groupes nilpotents
    Je présenterai des théorèmes limites pour les marches aléatoires sur les groupes de Lie nilpotents, obtenus lors d'un travail récent en collaboration avec Emmanuel Breuillard. La plupart des travaux sur le sujet supposaient la loi d'incrément centrée dans l'abélianisation du groupe. Notre contribution essentielle est d'autoriser une loi d'incrément non centrée. Dans ce cas, des phénomènes nouveaux apparaissent: la géométrie à grande échelle de la marche dépend de l'incrément moyen, et la mesure limite dans le théorème central peut n'être pas supportée par tout le groupe.
  • Le 7 avril 2023 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Adel Betina Copenhague
    La conjecture des zéros exceptionnels pour les fonctions L p-adiques de Katz.
    Dans un travail commun avec M.L. Hsieh, on démontre une variante de la conjecture de Gross-Stark pour les fonctions L p-adiques de Katz associées à des corps CM, i.e. on donne une formule pour la dérivée en s = 0 le long de la direction cyclotomique. Notre méthode est basée sur l'étude des congruences entre des familles P-adiques de type CM et non-CM via la méthode de Rankin-Selberg p-adique. On construit une famille de Hida non-CM qui est congruente à une famille de Hida CM pour la spécialisation 1+µ en dehors des coefficients en p, et telle que les coefficients en p sont explicitement liées à la dérivée en s = 0 de la fonction L p-adique anticyclotomique de Katz. On détermine les coefficients en p infinitésimalement via une variante très générale du lemme de Ribet en déformations Galoisiennes qu'on démontre (la représentation résiduelle est scalaire localement en p !)
  • Le 11 avril 2023 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    -
    Henry Bambury ENS Ulm
    An inverse problem for isogeny volcanoes
    Supersingular isogeny graphs are very complicated and intricate, and are used extensively by cryptographers. On the other side of things, the structure of ordinary isogeny graphs is well understood connected components look like volcanoes. Throughout this talk we will explore the ordinary $\ell$-isogeny graph over $\mathbb{F}_p$ for various prime numbers $\ell$ and $p$, and answer the following question, given a volcano-shaped graph, can we always find an isogeny graph in which our volcano lives as a connected component?
  • Le 13 avril 2023 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Davide Barilari (Padoue) null
    On the regularity of length-minimizers in sub-Riemannian geometry.
    The regularity of length-minimizers is one of the main open problem in sub-Riemannian geometry. In this talk I will introduce the question through examples and give a survey of the known results, from classical to the most recents.
  • Le 13 avril 2023 à 14:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Davide Barilari (Padoue) null
    On the regularity of length-minimizers in sub-Riemannian geometry (séminaire commun avec Analyse)
    The regularity of length-minimizers is one of the main open problem in sub-Riemannian geometry. In this talk I will introduce the question through examples and give a survey of the known results, from classical to the most recents.
  • Le 14 avril 2023 à 10:15
  • Séminaire de Géométrie
    Salle 2
    Baptiste Louf Bordeaux
    Surfaces discrètes et hyperboliques en grand genre
    Dans cet exposé (inspiré par des travaux notamment en commun avec Thomas Budzinski et Svante Janson), je présenterai les cartes combinatoires, qui sont un modèle de surfaces discrètes crées par recollement de polygones. En particulier, je m'intéresserai à l'étude de grandes cartes prises au hasard, quand le genre tend vers l'infini. Je présenterai quelques résultats en ce sens, ainsi que les outils combinatoires impliqués, et je ferai le lien (conjectural) avec un modèle de surfaces hyperboliques aléatoires, le modèle de Weil-Petersson.
  • Le 14 avril 2023 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Ratko Darda Bâle
    Une nouvelle classe de hauteurs sur les champs et conjecture de Manin
    La conjecture de Manin prédit le comportement asymptotique du nombre de points rationnels de hauteur bornée sur les variétés de Fano. Plus précisément, pour une variété de Fano lisse, nous attendons que, en dehors d'un ensemble mince, le nombre de points rationnels de hauteur moins que $B$ soit asymptotique à $C B^{a}\log(B)^b$ pour certains $C, a, b>0$. Cette prédiction est (formellement) très similaire à la prédiction de Malle sur le nombre d'extensions galoisiennes ayant le groupe de Galois fixe et le discriminant borné. Les deux conjectures sont concernées par des points rationnels sur les champs de Deligne-Mumford. Nous présentons une nouvelle classe de hauteurs sur ces champs. Nous les utilisons pour donner une version de la conjecture de Manin pour les champs (de Deligne-Mumford), plus forte que celle d'Ellenberg, Satriano et Zureick-Brown, ayant les conjectures de Manin et de Malle comme conséquences. C'est un travail en commun avec T. Yasuda.
  • Le 24 avril 2023 à 14:00
  • Groupe de Travail Analyse
    Salle de Conférences
    Michel Bonnefont (IMB) null
    "Inégalité de Poincaré avec constantes explicites pour des mesures de \nprobabilités sur R^d"
    TBA
  • Le 25 avril 2023 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    online
    Alessandro Languasco University of Padova\, Italy
    Computing $L'(1,chi)/L(1,chi)$ using special functions, their reflection formulae and the Fast Fourier Transform
    We will show how to combine the Fast Fourier Transform algorithm with the reflection formulae of the special functions involved in the computation of the values of $L(1,chi)$ and $L'(1,chi)$, where $chi$ runs over the Dirichlet characters modulo an odd prime number $q$. In this way, we will be able to reduce the memory requirements and to improve the computational cost of the whole procedure. Several applications to number-theoretic problems will be mentioned, like the study of the distribution of the Euler-Kronecker constants for the cyclotomic field and its subfields, the behaviour of $min_{chie chi_0} | L'(1,chi)/L(1,chi) |$, the study of the Kummer ratio for the first factor of the class number of the cyclotomic field and the ``Landau vs. Ramanujan`` problem for divisor sums and coefficients of cusp forms. Towards the end of the seminar we will tackle open problems both of theoretical and implementative nature.
  • Le 25 avril 2023 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Nicolas Frantz (U. Lorraine) null
    Théorie de la diffusion pour des opérateurs non-auto-adjoints
    Dans cet exposé, nous nous intéressons à la théorie de la diffusion pour un modèle abstrait d'opérateurs non-auto-adjoints agissant sur un espace de Hilbert. L'opérateur non-auto-adjoint H est donné par une perturbation relativement compacte V d'un opérateur auto-adjoint H_0. Sous des hypothèses de principe d'absorption limite, nous expliquerons comment les opérateurs d'ondes non-unitaires associés à H et H_0 peuvent être définis et présenterons leurs propriétés. Finalement nous définirons la notions de complétude asymptotique pour ces opérateurs d'ondes et ferons le lien avec la notion de singularité spectrale. Nos résultats s'appliquent à des opérateurs de Schrödinger avec des potentiels à valeurs complexes.
  • Le 26 avril 2023 à 16:30
  • Le séminaire des doctorant·es
    Salle de Conférences
    GUNNING Dean The Open University
    Compact Riemann surfaces
    Compact Riemann surfaces are compact 2-manifolds that locally look like the complex plane. Not only do such surfaces guarantee a conformal structure, but these surfaces can be identified with complex projective curves and give rise to important results central to complex geometry, such as the Riemann-Roch theorem. We give an introduction to these structures, as well as their broader applications.
  • Le 27 avril 2023 à 09:30
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Journées de probabilités et statistique en Nouvelle Aquitaine null
    27 Avril de 9h30 à 17h30 + tapas à 19h30 ----- 28 Avril de 9h00 à 12h30 + repas à 12h30
    "Trouvez toute l'info sur le lien: https://indico.math.cnrs.fr/event/8848/"
  • Le 27 avril 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Jing-Rebecca Li (École Polytechnique) null
    [Séminaire CSM] Modeling the diffusion MRI signal by a PDE
    The MRI signal (diffusion weighted) is the sum of the magnetization in a volume of cell tissue (a voxel). The magnetization at the scale of the cell microstructure can be modeled by a partial differential equation called the Bloch-Torrey equation. What makes the numerical solution of this equation difficult is the presence of complex interfaces (i.e., cell membranes) over which the solution is discontinuous. I will discuss the numerical solution of the direct problem of the Bloch-Torrey equation, and briefly mention some ideas for the inverse problem.
  • Le 27 avril 2023 à 15:30
  • Le Colloquium
    Salle de Conférences
    Paolo Cascini (Imperial College - Londres) null
    On the Minimal Model Program
    The Minimal Model Program aims to extend the classification of complex projective surfaces, which was established in the early 20th century, to higher dimensional varieties. In addition to providing a historical introduction, we will cover recent results and new aspects of the Program in relation to the study of varieties in positive characteristic, mixed characteristic, and algebraic foliations.
  • Le 28 avril 2023 à 11:00
  • Séminaire de Géométrie
    Salle 2
    Xavier Caruso Bordeaux
    Codes géométriques en métrique somme-rang (ou pas)
    La majeure partie de cet exposé sera consacrée à des (r)appels sur les codes correcteurs d'erreurs, en métrique de Hamming et en métrique rang.Je présenterai notamment la construction classique de Reed-Solomon, qui consiste à évaluer des polynômes de petit degré en de nombreux points. J'expliquerai ensuite une généralisation de nature géométrique où les polynômes sont remplacés par des fonctions rationnelles à pôles prescrits sur une courbe projective lisse.Viendra ensuite le contexte de la métrique rang : cette fois-ci, à la place des polynômes, je considèrerai des polynômes dits tordus dont les évaluations fournissent naturellement des matrices et non plus des scalaires.
    Enfin, si le temps le permet, j'évoquerai le sujet dont il est question dans le titre de l'exposé qui combine, en un certain sens, les deux extensions précédentes en faisant intervenir des fonctions rationnelles tordues sur des courbes.(Travail en commun avec Elena Berardini.)
  • Le 28 avril 2023 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Francesco Lemma IMJ Paris
    Cycles algébriques et fonctorialité de Langlands de $G_2$ à $PGSp(6)$.
    On considérera la composante de la cohomologie d'une variété de Siegel de dimension 6 correspondant à une représentation automorphe cuspidale de $PGSp(6)$ qui provient du groupe exceptionnel $G_2$. Gross et Savin ont conjecturé que la droite Galois invariante qu'on y trouve est engendrée par la classe de cohomologie d'une sous-variété de Hilbert. On présentera un travail en commun avec Cauchi et Rodrigues Jacinto permettant de ramener la démonstration de la conjecture à la non-nullité d'une intégrale archimédienne (arXiv:2202.09394).
  • Le 2 mai 2023 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    salle 2
    Sorina Ionica Université de Picardie
    Computing bad reduction for genus 3 curves with complex multiplication
    Goren and Lauter studied genus 2 curves whose Jacobians are absolutely simple and have complex multiplication (CM) by the ring of integers of a quartic CM-field, and showed that if such a curve has bad reduction to characteristic p then there is a solution to a certain embedding problem. An analogous formulation of the embedding problem for genus 3 does not suffice for explicitly computing all primes of bad reduction. We introduce a new problem called the Isogenous Embedding Problem (IEP), which we relate to the existence of primes of bad reduction. We propose an algorithm which computes effective solutions for this problem and exhibits a list of primes of bad reduction for genus 3 curves with CM. We ran this algorithm through different families of curves and were able to prove the reduction type of some particular curves at certain primes that were open cases in the literature.
  • Le 2 mai 2023 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Guillaume Ferrière (Université de Strasbourg) null
    Théorie de Cauchy et ondes progressives pour l'équation de Gross-Pitaevskii logarithmique
    "On s'intéresse dans cet exposé à l'équation de Gross-Pitaevskii logarithmique (logGP), qui n'est autre que l'équation de Schrödinger non-linéaire logarithmique (logNLS) dans le contexte de solutions dont le module tend vers 1 à l'infini. La première partie concerne le problème de Cauchy, pour lequel les techniques classiques pour Gross-Pitaevskii avec non-linéarité polynomiale mais également celles utilisées pour logNLS se sont révélées infructueuses. Pour obtenir une bonne théorie de Cauchy, notre preuve de l'existence d'une solution adapte la méthode par compacité utilisée par Ginibre et Velo pour NLS. L'unicité découle du caractère lipschitzien du flot dans L^2 comme pour logNLS. Dans un deuxième temps, on s'intéresse aux ondes progressives, et en particulier au cas 1d, pour lequel plusieurs conclusions similaires au cas avec non-linéarité polynomiale découlent : au-delà d'une certaine vitesse critique explicite, aucune onde progressive n'existe; en deçà, les ondes progressives non-constantes sont uniques à invariants près.Ce travail a été réalisé en collaboration avec R. Carles."
  • Le 4 mai 2023 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Guillaume Lauga ENS Lyon
    Multilevel proximal methods for Image Restoration
    "Solving large scale optimization problems is a challenging task and exploiting their structure can alleviate its computational cost. This idea is at the core of multilevel optimization methods. They leverage the definition of coarse approximations of the objective function to minimize it. In this talk, we present a multilevel proximal algorithm IML FISTA that draws ideas from the multilevel optimization setting for smooth optimization to tackle non-smooth optimization. In the proposed method we combine the classical accelerations techniques of inertial algorithm such as FISTA with the multilevel acceleration. IML FISTA is able to handle state-of-the-art regularization techniques such as total variation and non-local total-variation, while providing a relatively simple construction of coarse approximations. The convergence guarantees of this approach are equivalent to those of FISTA. Finally we demonstrate the effectiveness of the approach on color images reconstruction problems and on hyperspectral images reconstruction problems."
  • Le 4 mai 2023 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Laurent Bétermin (Lyon) null
    TBA
    TBA
  • Le 4 mai 2023 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Karine Fouchet-Isambard (Marseille) null
    Tba
    Tba
  • Le 4 mai 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Sergei Chernyshenko (Imperial College London\, UK) null
    [Séminaire CSM] Bounding time averages: a road to solving the problem of turbulence
    The problem of turbulence is the greatest unsolved problem of classical physics. It is encountered in dynamical systems so complicated that numerical calculations are too expensive. In practice it is often suffcient to know only a few time-averaged quantities, such as the mean drag and lift. The problem of turbulence is the problem of establishing methods of obtaining this limited information at a significantly smaller cost than the cost of getting the complete solution. Even finding good upper and lower bounds for the quantity of interest might be enough. The talk will cover the basics of how this can be done, then move on to new developments related to the recent advances in computer-assisted semi-algebraic optimisation, and finish with unsolved problems.
  • Le 4 mai 2023 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Laurent Bétermin Lyon
    "Fonctions thêtas des réseaux et preuve de la conjecture de Born
    \n"
    Dans son article Über elektrostatische Gitterpotentiale, publié en 1921, Max Born posa la question suivante à propos des cristaux ioniques : Comment peut-on distribuer des charges positives et négatives sur un réseau cubique simple de telle sorte que l'énergie électrostatique du système soit minimal ? Il conjectura qu'une distribution alternée de charges +1 et -1 devrait être la structure ionique optimale.Dans cet exposé, j'expliquerai le lien entre les fonctions thêtas des réseaux et la distribution optimale de charges sur un réseau fixé, quand l'énergie d'interaction est complètement monotone. Je montrerai ensuite comment, en collaboration avec Hans Knüpfer (Université de Heidelberg) nous avons démontré la conjecture de Born ainsi que ses généralisations pour certains types de réseaux. De plus, un résultat de polarisation 2d concernant le maximum parmi les réseaux du minimum parmi les distributions de charges, obtenu récemment avec Markus Faulhuber (Université de Vienne) et Stefan Steinerberger (Université de Washington), et donnant une nouvelle caractérisation du réseau triangulaire, sera présenté. Les techniques utilisées pour démontrer cette conjecture vont de l'Analyse de Fourier à la formule sommatoire d'Ewald en passant par les propriétés des fonctions thêtas.
  • Le 4 mai 2023 à 15:30
  • Séminaire d'Analyse
    Salle de Conférences
    Karine Fouchet-Isambard Marseille
    Coefficients de Fourier de puissances de facteurs de Blaschke et de produits de Blaschke - Applications
    Dans cet exposé, nous présenterons les formules asymptotiques, lorsque n tend vers l'infini, des k-ièmes coefficients de Fourier de la puissance n-ième d'un facteur de Blaschke $b_\lambda$ associé à un point $\lambda$ arbitrairement fixé dans le disque unité ouvert. Notant $b^n_\lambda(k)$ ces coefficients, nous prolongeons et nous affinons les résultats existants dans la littérature en utilisant des outils classiques de l'analyse asymptotique. A titre d'application de nos formules asymptotiques, nous construisons des fonctions fortement annulaires, dont les coefficients de Taylor satisfont certaines propriétés de sommation, ce qui généralise et affine des résultats de D.D. Bonar, F.W. Carroll et G. Piranian (1977).
  • Le 5 mai 2023 à 11:00
  • Leçons de Mathématiques et d'Informatique d'Aujourd'hui
    Salle de Conférences
    Hajer Bahouri Directrice CNRS au LJLL\, Sorbonne université
    "Titre :""Analyse de Fourier sur les groupes de Heisenberg et de Engel et applications"" "
    "L'objectif de ce cours est de présenter dans un contexte le moins technique possible la transformée de Fourier sur des groupes de Lie stratifiés et d'illustrer l'efficacité de cette notion dans l'étude d'inégalités fonctionnelles et dans l'analyse des solutions de certaines équations aux dérivées partielles. A travers cette présentation, on soulignera les remarquables différences et similitudes entre ces groupes et $R^n$.Pour expliciter cette présentation, on va considérer dans ce cours les groupes de Heisenberg et de Engel qui sont les groupes de Lie stratifiés les plus célèbres respectivement d'ordre 2 et 3."
  • Le 5 mai 2023 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Séverin Philip Kyoto
    Groupes de monodromie finie et variétés abéliennes CM
    Après un peu de contexte sur les variétés abéliennes et la semi-stabilité j'introduirai les groupes de monodromie finie ainsi que leur lien avec la réduction semi-stable. Je présenterai sans détails un résultat de type local-global relatif pour ces groupes. On verra ensuite comment utiliser la théorie CM pour produire des gros groupes de monodromie, ce qui passera par la résolution de problèmes de Grunwald pour certains produits en couronne. Avec le principe local-global précédent cette construction permet de borner le degré de semi-stabilité en fonction de la dimension.
  • Le 9 mai 2023 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    salle 2
    Sabrina Kunzweiler IMB
    Isogeny-based PAKE protocols
    The passwords that we use in our everyday life are often chosen to be easily memorable which evidently makes them vulnerable to attacks. This problem is addressed by password-authenticated key exchange (PAKE). The general idea of such a protocol is to enable two parties who share the same (potentially weak) password to establish a strong session key. Most PAKE protocols used today are based on Diffie-Hellman key exchange in prime order groups, hence they are not secure against quantum attackers. A promising candidate for replacing Diffie-Hellman key exchange in a post-quantum world is the Commutative-Supersingular-Isogeny-Diffie-Hellman (CSIDH) key exchange. In this talk, we introduce two novel PAKE protocols based on CSIDH.
  • Le 9 mai 2023 à 13:30
  • Direction
    Salle de Conférences
    - IMB
    Assemblée Générale (AG) le mardi 9 mai de 13h30 à 15h30.
    Cette AG se tiendra en salle de conférences et pourra être suivie en visio.
    L'ordre du jour sera le suivant :
    1) Présentation des enjeux de la recherche liés aux Transitions Environnementales et Sociétales
    2) Présentation de la charte des Transitions Environnementales et Sociétales de l'Université de Bordeaux
    3) Discussion de la charte et de son adaptation aux spécificités de l'IMB.


  • Le 10 mai 2023 à 17:15
  • Le séminaire des doctorant·es
    salle de conférence
    Beatrice Battisti IMB
    Numerical Modelling of Wave Energy Converter Farms
    As the demand for renewable energy resources becomes urgent in the energy sector, wave energy plays a key role because of its untapped potentiality. Different kinds of Wave Energy Converter (WEC) at different levels of technology readiness are being developed to extract energy from waves. They all have in common their deployment in farms, as an essential step for wave energy to reach commercial scale and be comparable to other renewable energy sources. Numerical simulations of WEC farms are a necessary step before installation in real sea sites, but are also computationally expensive. Motivated by the intrinsic necessity of high-fidelity, yet computationally efficient, dynamical models for WEC farms, a versatile multi-fidelity model based on domain decomposition is presented, coupling a CFD solver for the near-field, in the vicinity of the WEC, and a lower fidelity solver based on Model Order Reduction for the far-field.
  • Le 11 mai 2023 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Florentin Coeurdoux Toulouse INP
    Plug-and-Play Split Gibbs Sampler: embedding deep generative priors in Bayesian inference
    Statistical inference problems arise in numerous machine learning and signal/image processing tasks. Bayesian inference provides a powerful framework for solving such problems, but posterior estimation can be computationally challenging. In this talk, we present a stochastic plug and play sampling algorithm that leverages variable splitting to efficiently sample from a posterior distribution. The algorithm draws inspiration from the alternating direction method of multipliers (ADMM), and subdivides the challenging task of posterior sampling into two simpler sampling problems. The first problem is dependent on the forward model, while the second corresponds to a denoising problem that can be readily accomplished through a deep generative model. Specifically, we demonstrate our method using diffusion-based generative models. By sampling the parameter to infer and the hyperparameters of the problem efficiently, the generated samples can be used to approximate Bayesian estimators of the parameters. Unlike optimization methods, the proposed approach provides confidence intervals at a relatively low computational cost. To evaluate the effectiveness of our proposed samplers, we conduct simulations on four commonly studied signal processing problems and compare their performance to recent state-of-the-art optimization and MCMC algorithms.
  • Le 11 mai 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Marcella Bonazzoli Inria Saclay
    [Séminaire CSM] On the convergence analysis of one-shot inversion methods
    When an inverse problem is solved by a gradient-based optimization algorithm, the corresponding forward and adjoint problems, which are introduced to compute the gradient, can be also solved iteratively. The idea of iterating at the same time on the inverse problem unknown and on the forward and adjoint problem solutions yields to the concept of one-shot inversion methods. We are especially interested in the case where the inner iterations for the direct and adjoint problems are incomplete, that is, stopped before achieving a high accuracy on their solutions. Here, we focus on general linear inverse problems and generic fixed-point iterations for the associated forward problem. We analyze variants of the so-called multi-step one-shot methods, in particular semi-implicit schemes with a regularization parameter. We establish sufficient conditions on the descent step for convergence, by studying the eigenvalues of the block matrix of the coupled iterations. Several numerical experiments are provided to illustrate the convergence of these methods in comparison with the classical gradient descent, where the forward and adjoint problems are solved exactly by a direct solver instead. We observe that very few inner iterations are enough to guarantee good convergence of the inversion algorithm, even in the presence of noisy data.
  • Le 11 mai 2023 à 15:30
  • Séminaire-débat Contexte
    Salle de Conférences
    Charles Boubel Strasbourg
    Traiter des enjeux environnementaux en B.U.T. chimie : souhaitable, possible (mais non trivial), fonctionne bien quand c'est fait sérieusement
    "Depuis deux ans je contribue à mettre en place des apports sur des sujets environnement/climat au département chimie de l'IUT Robert Schuman (Illkirch) où j'enseigne.
    C'est mon initiative et j'ai été rejoint par des collègueset soutenu par mon département. Cette action s'inscrit parmi de nombreuses semblables, et de teneurs diverses, dans différentes filières du supérieur en France et ailleurs. Elle rejoint aussi deux rapports récemment remis au ministère (ici le deuxième, février 2022 https://www.enseignementsup-recherche.gouv.fr/fr/former-aux-enjeux-de-la-transition-ecologique-dans-le-superieur-83888). À l'IUT la réflexion et la mise en place d'autres éléments sont toujours en cours. C'est un chantier long. Il s'agit là d'un départementde chimie mais l'introduction de tels enseignements pose un certain nombre de questions communes à toutes disciplines.
    Une réflexion se tient aussi à l'UFR maths-info de mon université.
    J'exposerai mon expérience à l'IUT, le premier retour d'expérience (voir le titre), je pourrai répondre à vos questions si vous en avez."
  • Le 12 mai 2023 à 10:45
  • Séminaire de Géométrie
    Salle 2
    Charles Boubel Strasbourg
    Endomorphismes parallèles d'un germe de métrique pseudo-riemannienne
    Une métrique kählerienne est une métrique riemannienne admettant un champ d'endomorphismes parallèle $J$ (c'est-à-dire une section de End(T$M$) ) tel que $ J^2= -I$. Pour une métrique riemannienne qui n'est pas un produit, il est facile de voir que c'est le seul type possible d'endomorphisme parallèle non trivial. Ce n'est plus vrai pour les métriques pseudo-riemanniennes
  • Le 12 mai 2023 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Relâche

  • Le 15 mai 2023 à 14:00
  • Groupe de Travail Analyse
    Salle de conférences
    Martin Rathmair IMB
    Cheeger's inequality: Linking Poincaré's inequality to an isoperimetric problem
    Following up on the last session, we again discuss Poincaré inequalities.Recall that given an open set $\Omega\subseteq \mathbb{R}^n$ and a non-negative weight $w$ the Poincaré constant is the smallest constant $C>0$such that$$\inf_{c\in\mathbb{R}} \|f-c\|_{L^2(\Omega,w dx)} \le C \|abla f\|_{L^2(\Omega, w dx)}$$for all $f\in L^2(\Omega, w dx)$ smooth.Clearly, if $\Omega$ consists of two (or more) connected componentsplugging in a piecewise constant function yields that the Poincaré constant is $+\infty$.More generally, domains with weak connectivity allow construction of similar functions and therefore have large Poincaré constants.We will discuss and prove a result attributed to Cheff Cheeger, which relates the Poincaré constant to an isoperimetric quantity known as the Cheeger constant.The result may be understood as a converse statement to the above observation and becausally summarized by 'for the Poincaré constant to be large, the domain must have necessarily disconnected geometry'.
  • Le 16 mai 2023 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    salle 2
    Wessel van Woerden IMB
    Perfect Quadratic Forms -- an Upper Bound and Challenges in Enumeration
    In 1908 Voronoi introduced an algorithm that solves the lattice packing problem in any dimension in finite time. Voronoi showed that any lattice with optimal packing density must correspond to a so- called perfect (quadratic) form and his algorithm enumerates the finitely many perfect forms up to similarity in a fixed dimension. However, the number of non-similar perfect forms and the comlexity of the algorithm grows quickly in the dimension and as a result Voronoi’s algorithm has only been completely executed up to dimension 8. We discuss an upper bound on the number of perfect forms and the challenges that arise for completing Voronoi's algorithm in dimension 9.
  • Le 16 mai 2023 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    Giorgia Ciavolella IMB
    Derivation of membrane conditions for a model of tumour invasion
    Studying tumour evolution, a crucial and challenging scenario is represented by cancer cells invasion through thin membranes. In particular, one of the most difficult barriers for cells to cross is the basement membrane. In this talk, we study a porous-medium type equation where the density of the cell population evolves under Darcy's law, assuming continuity of both the density and flux velocity on the thin membrane which separates two domains. The drastically different scales and mobility rates between the membrane and the adjacent tissues lead to consider the limit as the thickness of the membrane approaches zero. We present the main tools to recover the rigorous limit problem which is called effective problem and the transmission conditions on the limiting zero-thickness membrane, formally derived by Chaplain et al. (2019), which are compatible with nonlinear generalized Kedem-Katchalsky ones.
  • Le 17 mai 2023 à 16:30
  • Le séminaire des doctorant·es
    Salle de conférence
    Lois Delande IMB
    Petit catalogue des différents modes de convexités
    Vous connaissez probablement les fonctions convexes, mais savez vous ce qu'est une fonction fortement convexe ? Et une fonction quasiconvexe ? Si oui, bien joué à vous (: sinon c'est pas grave je vous pardonne, mais venez découvrir cet univers plus complexe que vous ne le soupçonnez avec des notions plus étranges les unes que les autres, mais toujours avec une motivation sous-jacente (enfin il me semble).
  • Le 19 mai 2023 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Relâche

  • Le 23 mai 2023 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    bâtiment Inria, salle Sophie Germain (304)
    Boris Fuoutsa EPFL\, Switzerland
    Beyond the SIDH Countermeasures
    During summer 2022, a series of three cryptanalysis papers lead to a
    polynomial time attack on SIKE, which was in the fourth round of the NIST
    standardisation process. In a recent work, we explored countermeasures
    avenue to the SIDH attacks, M-SIDH and MD-SIDH.
    These countermeasures, despite being slow and less compact (when compared
    to SIDH and other post-quantum schemes), come with new insights that may be
    of independent interest. In this talk, we will discuss an on-going work in
    which we use M-SIDH together with the SIDH attacks to design a trapdoor one
    way function. This trapdoor one way function can be leveraged to obtain a
    public key encryption scheme, most importantly, it can be used to design an
    Identity Based Encryption scheme. The main drawback is that the design is
    purely theoretical at the moment, since inverting the one way function
    requires computing isogenies in higher dimension of prime degree up to
    5000 or even higher.


  • Le 23 mai 2023 à 11:00
  • Séminaire de Physique Mathématique - EDP
    Salle 2
    Rayan Fahs U. d'Angers
    Edge States of the Robin Magnetic Laplacian
    This talk tackles the spectral analysis of the Robin Laplacian on a smooth bounded two-dimensional domain in the presence of a constant magnetic field. In the semi-classical limit, a uniform description of the spectrum located between the Landau levels is obtained. The corresponding eigenfunctions, called edge states, are exponentially localized near the boundary. By means of a microlocal dimensional reduction, our unifying approach allows to refine simultaneously old results about the low-lying eigenvalues in the Robin case and recent ones about edge states in the Dirichlet case.


  • Le 25 mai 2023 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle 1
    Nicolas Nadisic
    Beyond separability in nonnegative matrix factorization
    "Nonnegative matrix factorization (NMF) is a commonly used low-rank model for identifying latent features in nonnegative data. It became a standard tool in applications such as blind source separation, recommender systems, topic modeling, or hyperspectral unmixing. Essentially, NMF consists in finding a few meaningful features such that the data points can be approximated as linear combinations of those features. NMF is generally a difficult problem to solve, since it is both NP-hard and ill-posed (meaning there is no unique solution). However, under the separability assumption, it becomes tractable and well-posed. The separability assumption states that for every feature there is at least one pure data point, that is a data point composed solely of that feature. This is known as the 'pure-pixel' assumption in hyperspectral unmixing.In this presentation I will first provide an overview of separable NMF, that is the family of NMF models and algorithms leveraging the separability assumption. I will then detail recent contributions, notably (i) an extension of this model with sparsity constraints that brings interesting identifiability results; and (ii) new algorithms using the fact that, when the separability assumption holds, then there are often more than one pure data point. I will illustrate the models and methods presented with applications in hyperspectral unmixing."
  • Le 25 mai 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Marien-Lorenzo Hanot Montpellier
    [Séminaire CSM] Le complexe de Stokes discret
    L'utilisation des complexes différentiels dans la discrétisation des équations aux dérivées partielles a été récemment popularisée au travers des éléments finis de calcul extérieur.
    Initialement employés pour l'électromagnétisme ils ont ensuite été appliqués à de nombreux autres systèmes d'équations, tel que les équations de Navier-Stokes.
    Ces méthodes visent à préserver la structure des équations au travers des complexes, et profitent généralement d'une grande stabilité, de robustesse ainsi que d'une préservation exacte de certaines quantités.
    L'objectif est de présenter l'application des complexes différentiels à la discrétisation des équations de Navier-Stokes incompressibles avec les avantages qu'ils peuvent apporter.
    L'utilisation des complexes discrets demande cependant un certain travail au niveau de la création des espaces. Bien que de nombreuses constructions existent pour les complexes les plus simples, la création de complexes plus avancés reste compliquée en 3 dimensions. Ainsi nous présenterons dans un second temps la construction de tels complexes discrets.


  • Le 25 mai 2023 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Sandrine Grellier Orléans
    Cascades turbulentes pour une famille d'équations de Szegö
    L’ étude des ”cascades turbulentes” pour les solutions des équations d’ évolution suscite un intérêt croissant depuis une vingtaine d’années chez les edp-istes. L’outil utilisé pour détecter ce phénomène se fait via l’ ́etude de la croissance des normes Sobolev. En collaboration avec P. Gérard, nous avons introduit l’équation de Szegö cubique comme exemple d’équation d’évolution sans dispersion. Cette équation présente des phénomènes de cascades vers les hautes et les basses fréquences pour un ensemble dense de données initiales. Nous poursuivons l’ ́etude de ce phénomène et l’objet du travail exposé a pour objectif de comprendre l’influence de l’amortissement sur l’existence de cascades.
    Le contenu mathématique de l’exposé se voudra centré sur les outils d’analyse fine (analyse spectrale des opérateurs de Hankel, outils élémentaires d’EDO) qui permettent cette étude. Malgré le contexte, aucune connaissance spécifique en EDP n’est requise.


    Il s’agit de travaux en collaboration avec Patrick Gérard.


  • Le 26 mai 2023 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Luca Tasin Milan
    Sasaki-Einstein metrics on spheres
    It is a classical problem in geometry to construct interesting metrics on spheres. Sasaki-Einstein metrics are the analogous of Kähler-Einstein metrics for odd dimensional real manifolds. I will report on a joint work with Yuchen Liu and Taro Sano in which we construct infinitely many Sasaki-Einstein metrics on odd-dimensional spheres that bound parallelizable manifolds, proving in this way conjectures of Boyer-Galicki-Kollár and Collins-Székelyhidi. The construction is based on showing the K-stability of certain Fano weighted orbifold hypersurfaces.
  • Le 30 mai 2023 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    salle 2
    Sarah Arpin University of Leiden\, Netherlands
    Adding Level Structure to Supersingular Elliptic Curve Isogeny Graphs
    The classical Deuring correspondence provides a roadmap between supersingular elliptic curves and the maximal orders which are isomorphic to their endomorphism rings. Building on this idea, we add the information of a cyclic subgroup of prime order N to supersingular elliptic curves, and prove a generalisation of the Deuring correspondence for these objects. We also study the resulting ell-isogeny graphs supersingular elliptic curve with level-N structure, and the corresponding graphs in the realm of quaternion algebras. The structure of the supersingular elliptic curve ell-isogeny graph underlies the security of a new zero-knowledge proof of isogeny knowledge.



  • Le 2 juin 2023 à 10:45
  • Séminaire de Géométrie
    Salle 2
    François BERNARD Angers
    Quelques variantes de normalisation pour des variétés affines réelles
    Dans cet exposé, je présenterai quelques variantes de la normalisation de variétés affines réelles : la seminormalisation, la R-seminormalisation et la normalisation birégulière. Comme pour la normalisation, elles peuvent être obtenues par un procédé algébrique, elles possèdent des singularités bien particulières en codimension 1 et elles vérifient une propriété universelle. Cependant, ces variantes sont plus proches de la variété de départ que ne l'est la normalisation. Après avoir identifié leurs anneaux de coordonnées comme des anneaux de fonctions rationnelles possédant une certaine régularité, nous les comparerons entre elles et présenterons la façon dont elles modifient les singularités réelles et complexes de la variété.

  • Le 2 juin 2023 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Eknath Ghate TIFR Bombay et IHES
    Zig-zag holds for Galois representations
    I will give a survey of recent work on the description of the explicit shape of the reductions of two-dimensional local Galois representations, concentrating on our recent proof of the zig-zag conjecture.

  • Le 5 juin 2023 à 15:00
  • Groupe de Travail Analyse
    Salle de conférence
    Michel Bonnefont IMB
    [Attention 15h !] Inégalité de Poincaré avec constantes explicites pour des mesures de probabilités sur R^d (2)
    TBA



  • Le 6 juin 2023 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    salle 2
    Daan van Gent (University of Leinden\, Netherlands
    The Closest Vector Problem for the lattice of algebraic integers
    Any number field comes with a natural inner product as in the theory of the geometry of numbers, so that any order becomes a lattice.
    We extend the definition of the inner product to $\overline{\mathbb{Q}}$, the algebraic closure of the rationals, and consider its maximal order $\overline{\mathbb{Z}}$, which has infinite rank, as an intrinsically interesting `lattice'.
    We will compute several lattice invariants and attempt to solve the Closest Vector Problem through proofs inspired by capacity theory.
    Adjacent to CVP is the problem of finding the Voronoi-relevant vectors, and we pose the challenge to compute all such vectors of degree 3.

  • Le 6 juin 2023 à 11:15
  • Séminaire de Physique Mathématique - EDP
    Visioconférence depuis Toulouse (BBT)
    Jean-Michel Coron LJLL\, Sorbonne Université
    Stability and Boundary stabilization of 1-D hyperbolic systems
    Hyperbolic systems in one-space dimension appear in various
    real-life applications (navigable rivers and irrigation channels, heat
    exchangers, chemical reactors, gas pipes, road traffic,
    chromatography, ...). This presentation will focus on the
    stabilization of these systems by means of boundary control.
    Stabilizing feedback laws will be constructed. This includes explicit
    feedback laws that have been implemented for the regulation of the
    rivers La Sambre and La Meuse. The presentation will also cover
    robustness issues, the case where source terms exist and the case
    where optimal time stabilisation is considered.


  • Le 7 juin 2023 à 16:30
  • Le séminaire des doctorant·es
    Salle de conférence
    Jean Prost IMB
    Image restoration with deep generative models
    Image restoration problems, such as deblurring, inpainting or super-resolution, can be formulated as inverse-problems, where the goal is to recover the clean signal from its degraded observation.Those inverse problems are typically ill-posed, and it is therefore necessary to introduce some form of regularization to produce a satisfying solution. In a Bayesian framework, the regularization is related to the prior distribution of the natural images.

    In this talk, I will present how we can use recent deep generative models (DGM) as a prior to regularize image inverse problems. DGM provide a strong prior on natural images, but using them to regularize inverse problem is a difficult task because of their complex architecture. I will present a new algorithm based on alternate optimization, which exploits variational autoencoders, a specific instance of DGM. I will show how this method can solve image inverse problems efficiently, while providing theoretical convergence guarantees under reasonable assumptions.

  • Le 8 juin 2023 à 14:00
  • Séminaire d'Analyse
    Salle de conférences
    Reza Mohammadpour Sweden
    Restricted variational principle of Lyapunov exponents for typical cocycles
    The variational principle states that the topological entropy of a compact dynamical system is a supremum of measure-theoretic entropies of invariant measures supported on this system. Therefore, one may ask whether we can get a similar formula for the topological entropy of a dynamical system restricted to the level sets, which are usually not compact. In several cases it was then possible to prove the so-called restricted variational principle formula: For every possible value $\alpha$ of the Lyapunov exponent, the topological entropy of the set of points with the Lyapunov exponent α is equal to the supremum of measure-theoretic entropies of invariant measures with Lyapunov exponent $\alpha$.

    In this talk, I will investigate the structure of the level sets of all Lyapunov exponents for typical cocycles. I will show that the restricted variational principle formula for a vector of Lyapunov exponents holds for typical cocycles. This generalizes the works of Barreira-Gelfert, and Feng-Huang.


  • Le 8 juin 2023 à 14:00