IMB > Recherche > Séminaires

Séminaire Calcul Scientifique et Modélisation

Responsables : Christele Etchegaray et Martin Parisot

  • Le 19 janvier 2017 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Thibault Bourgeron
    Dynamique adaptative de population sexuée, structurée en âge, induite par un changement d'environnement
    On présentera des équations aux dérivées partielles modélisant l'adaptation d'une population sexuée à un (changement d')environnement par recombinaison et sélection. La reproduction sexuée est modélisée par l'opérateur infinitésimal, qui n'est ni linéaire ni monotone. On montrera l'existence d'éléments propres sans la théorie de Krein-Rutman (qui n'est pas applicable à ce problème). Ensuite on expliquera comment la méthodologie de l'approximation WKB peut être adaptée à ces équations. Dans un certain rapport des échelles phénotypiques elle permet d'obtenir un développement de la densité de population à l'équilibre par rapport à la variance génétique créée à chaque génération. La structure en âge fait apparaître des effets non linéaires (mur de mortalité). Les résultats seront illustrés par des simulations numériques.
  • Le 2 février 2017 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Florian Blachère
    Schémas numériques d'ordre élevé et préservant l'asymptotique pour l'hydrodynamique radiative
    Le but de ce travail est de construire un schéma volumes finis explicite d'ordre élevé pour des systèmes de lois de conservation avec terme source qui peuvent dégénérer vers des équations de diffusion sous des conditions de compatibilités. Cette dégénérescence est observée en temps long et/ou lorsque le terme source devient prépondérant. Par exemple, ce comportement peut être observé sur le modèle d'Euler isentropique avec friction, ou sur le modèle M1 pour le transfert radiatif ou encore avec l'hydrodynamique radiative. On propose une théorie générale afin de développer un schéma d'ordre un préservant l'asymptotique (au sens de Jin) pour suivre la dégénérescence. On montre qu'il est stable et consistant sous une condition CFL hyperbolique classique dans le régime de transport comme proche de la diffusion pour tout maillage 2D non structuré. De plus, on justifie qu'il préserve aussi l'ensemble des états admissibles, ce qui est nécessaire pour conserver des solutions physiquement et mathématiquement valides. Cette construction se fait en utilisant le schéma non-linéaire de Droniou et Le Potier pour discrétiser l'équation de diffusion limite. Des résultats numériques sont présentés pour valider le schéma dans tous les régimes.
  • Le 16 février 2017 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Julien Dambrine
    The Dirichlet-to-Neumann operator with a level-set representation of the interface
    The motion of surfaces with a velocity depending on the Dirichlet-to-Neumann operator for a given elliptic problem appear in various practical applications ranging from the motion of cells to the geometrical optimisation of mechanical structures. The level-set framework is particularly interesting in this context of moving surfaces. In this work we focus on the computation of the Dirichlet-to-Neumann operator calculation for the Laplace equation, following the ideas developed by C.Kublik et. al. in [1] for the computation of the bulk solution. [1] Catherine Kublik, Nicolay M. Tanushev, Richard Tsai, An implicit interface boundary integral method for Poisson's equation on arbitrary domains, JCP, 2013.
  • Le 9 mars 2017 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    salle Ada Lovelace (Inria)
    George Tzagkarakis
    Compressive sensing: Chasing information in shadows
    In recent years, compressive sensing (CS) has attracted considerable attention in areas of applied mathematics, computer science, and electrical engineering by suggesting that it may be possible to surpass the traditional limits of sampling theory. CS is based on the fundamental fact that many natural signals can be represented using only a few non-zero coefficients in a suitable basis or dictionary. Nonlinear optimization can then enable accurate recovery of such signals from a highly reduced set of measurements. In this talk, we overview the basic theory underlying CS, and demonstrate its efficiency in emerging applications (e.g., medical image processing). Specifically, we focus on the key concepts of sparsity and other low-dimensional signal models, in order to treat the central question of how to accurately recover a high-dimensional signal from a small set of measurements, whilst providing performance guarantees for a variety of sparse recovery algorithms.
  • Le 23 mars 2017 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Daniele Di Petrio
    An introduction to Hybrid High-Order methods
    Hybrid High-Order (HHO) methods are a class of new generation numerical schemes for PDEs with several advantageous features, including: (i) support of general polytopal meshes in arbitrary space dimension; (ii) arbitrary approximation order; (iii) compliance with the physics, including robustness with respect to the variations of physical coefficients and reproduction of key continuous properties at the discrete level; (iv) reduced computational cost thanks to hybridization, static condensation, and compact stencil. This presentation contains an introduction as well as examples of applications to nonlinear problems. [1] D. A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Meth. Appl. Mech. Engrg., 2015, 283:1–21. DOI: 10.1016/j.cma.2014.09.009. [2] D. A. Di Pietro and R. Tittarelli, An introduction to Hybrid High-Order methods, arXiv preprint arXiv:1703.05136, March 2017. [3] D. A. Di Pietro and J. Droniou, A Hybrid High-Order method for Leray–Lions elliptic equations on general meshes, Math. Comp., 2017. Published online. DOI: 10.1090/mcom/3180. [4] D. A. Di Pietro and J. Droniou, Ws,p-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Leray–Lions problems, Math. Models Methods Appl. Sci., 2017. Published online. DOI: 10.1142/S0218202517500191. [5] D. A. Di Pietro and S. Krell, A Hybrid High-Order method for the steady incompressible Navier–Stokes problem, arXiv preprint arXiv:1607.08159, July 2016.
  • Le 6 avril 2017 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Marion Darbas
    Ondes électromagnétiques et deux applications en imagerie cérébrale: modélisation et résolution numérique.
    Je présenterai dans cet exposé des résultats liés à deux applications en imagerie cérébrale qui utilisent la propagation des ondes électromagnétiques. Chacune d'entre elles nous amène à résoudre un problème inverse. La première concerne l'électroencéphalographie chez le nouveau-né et la localisation de sources épileptiques. La seconde pose la question du diagnostic d'accidents vasculaires cérébraux par imagerie micro-ondes. Les équations mises en jeu sont les équations de Maxwell. J'aborderai des questions de modélisation, d'analyse de sensibilité des mesures et la résolution numérique des problèmes direct et inverse.
  • Le 27 avril 2017 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Philippe Moireau
    Observer strategies for inverse problems associated with wave-like equations
    In this talk, we present the theory of asymptotic observers on the exemplary case of wave-like equations. We show how this approach allows to use heterogeneous types of data in order to reconstruct a trajectory, estimate the initial conditions or identify some parameters. We present a complete analysis and numerical analysis of the strategy. The question of the data sampling and the impact of noise is also studied. Finally, we illustrate the approaches on various practical cases, from the wave equation in bounded of unbounded domain to elastodynamics models.
  • Le 11 mai 2017 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Jean-Pierre Croisille
    Numerical approximation of propagation problems on the sphere
    In this talk, we present recent progress on the design of a compact scheme for convective equations on the sphere. In numerical climatology, the simplest system consists of the shallow water equations on the rotating earth, in linear or nonlinear form. We show that a centered eulerian scheme presents attractive properties for this purpose. This kind of scheme can be considered as a discrete counterpart of the equations with a minimal numerical diffusion. This property is essential to preserve the accuracy of the approximation in space after a large number of time iterations. We will present the main properties of the spatial and temporal approximation as well as numerical results obtained with this approach on a series of tests cases of the literature.
  • Le 1er juin 2017 à 11:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Cécile Carrère
    Sans titre

  • Le 15 juin 2017 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    salle Ada Lovelace (Inria)
    Adrien Loseille
    A unified framework for advanced mesh generation and adaptation
    This presentation gives a unified framework to address many issues in mesh generation and mesh adaptation from surface, volume to anisotropic meshing. After reviewing the design of so-call metric-based error estimates to control and prescribe strechings and orientations from solutions of PDEs, we will show how to recast all classical meshing operators (insertion, collapse, swaps, …) to a unique cavity-based operator. We will demonstrate that this methodology addresses efficiently surface (re)meshing, non-manifold geometry, adaptive anisotropic (re)meshing, structured boundary layer (re)meshing, hybrid mesh generation, ...These concepts will be illustrated on CFD simulations.
  • Le 29 juin 2017 à 11:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    George Klonaris
    Morphodynamics in a beach with submerged breakwaters
    The main scope of this work is to contribute to the understanding of the complex hydrodynamic and morphodynamic processes that take place in coastal zones protected by single or multiple submerged breakwaters. The morphological response of such a system was studied both numerically and experimentally. In particular, a compound numerical model was developed in order to simulate the wave propagation, the wave-induced currents, the coastal sediment transport, the bed erosion and accretion, and finally describe the cross-shore profile and the coastline evolution in the lee of a system of permeable submerged breakwaters. The behaviour of such a system has not been described so far in a general and quantitatively consistent manner. The integrated model includes the combination of a higher order Boussinesq-type wave model with a sediment transport and a geomorphological model. Laboratory experiments were also performed focusing on measuring the morphology evolution of a sandy sloping beach in the lee of a permeable submerged breakwater. A thorough validation of the model is presented in order to check the efficiency of its various modules. Finally, the effect of some significant geometric and wave parameters was studied numerically in order to draw some guidelines for the optimal design of the aforementioned structures.
  • Le 7 juillet 2017 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    salle Ada Lovelace (Inria)
    Guglielmo Scovazzi
    The shifted Nitsche method: A new approach to embedded boundary conditions
    Embedded boundary methods obviate the need for continual re-meshing in many applications involving rapid prototyping and design. Unfortunately, many finite element embedded boundary methods for incompressible flow are also difficult to implement due to the need to perform complex cell-cutting operations at boundaries. We present a new, stable, and simple embedded boundary method, which we call “the shifted Nitsche method.” The proposed method eliminates the need to perform cell cutting, and demonstrate it on large-scale incompressible flow problems, solid mechanics, shallow water flows.
  • Le 6 octobre 2017 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Kevin Santugini
    Two-Dimensionnal Runge-Kutta Methods of order $3$ or above
    Runge Kutta methods are well known high order methods for ODEs. In scalar advection problems with a single family of characteristics, any high order Runge-Kutta method can be used to compute high order solutions that don't diffuse by following characteristics. This is known as the method of lines. When the advection equation is no longer scalar, two (or more) families of characteristics may appear. By putting the unknowns at the intersection between the characteristics of these two different families, designing a Two-Dimensional Runge-Kutta method of order $2$ is hardly more difficult. But going beyond order $2$, designing Two-Dimensional Runge-Kutta methods of order $3$ or above is far more difficult.
  • Le 19 octobre 2017 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Fabien Marche
    En eaux peu profondes: modélisation et simulations numériques
    Je ferai un tour d'horizon de travaux récents effectués en collaboration avec A. Duran et D.Lannes concernant la modélisation, l'analyse numérique et la simulation des ondes de surfaces à partir des asymptotiques shallow water pour écoulements à surface libre. Je vous présenterai des modèles « optimisés » récents (faiblement dispersifs fortement non-linéaires) ainsi que les formulations discrètes associées en éléments finis discontinus qui ont été proposées récemment. J'évoquerai la possibilité de surmonter l'hypothèse classique d'irrotationalité des écoulements.
  • Le 9 novembre 2017 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Ulrich Razafison
    Simulations numériques de lois de conservations avec contraintes non locales sur le flux : application au trafic piéton
    Dans cet exposé, nous nous placerons dans le cadre du trafic piéton et nous présenterons un modèle permettant de décrire la chute de capacité (c'est-à-dire le flux de piétons maximal par unité de temps) d'une sortie de salle lors d'une évacuation. Le modèle repose sur une loi de conservation et la capacité de la sortie est décrite par une contrainte sur le flux, qui est supposée non locale dans le sens où cette contrainte dépend de la solution du modèle elle-même. La chute de capacité se produit pour les hautes densités de piétons exprimant la congestion de la sortie. Par des simulations numériques, nous montrerons que le modèle est capable de reproduire deux effets liés à la chute de la capacité et qui ont déjà été observés et reproduits expérimentalement : l'effet ''Faster-Is-Slower" qui stipule qu'une augmentation de la vitesse des piétons peut entraîner une augmentation du temps d'évacuation, et une variante du "paradoxe de Braess" qui indique que placer un obstacle avant la sortie peut faire diminuer la pression des piétons sur la sortie et entraîner une diminution du temps d'évacuation.
  • Le 23 novembre 2017 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Pas de séminaire Modélisation et Analyse des phénomènes dispersifs\, 70 ans de J.-C. Saut
    Sans titre

  • Le 30 novembre 2017 à 11:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Birte Schmidtmann
    Reconstruction Techniques and Riemann Solvers for Finite Volume Methods / Techniques de Reconstructions et Solveurs de Riemann pour les Méthodes de Type Volumes Finis
    We are interested in the numerical solution of hyperbolic conservation laws on the most local compact stencil consisting of only nearest neighbors. In the Finite Volume setting, in order to obtain higher order methods, the main challenge is the reconstruction of the interface values. These are crucial for the definition of the numerical flux functions, also referred to as the Riemann solver of the scheme. Often, the functions of interest contain smooth parts as well as discontinuities. Treating such functions with high-order schemes may lead to undesired oscillations. However, what is required is a solution with sharp discontinuities while maintaining high-order accuracy in smooth regions. One possible way of achieving this is the use of limiter functions in the MUSCL framework which switch the reconstruction to lower order when necessary. Another possibility is the third-order variant of the WENO family, called WENO3. In this work, we will recast both methods in the same framework to demonstrate the relation between Finite Volume limiter functions and the way WENO3 performs limiting. We present a new limiter function, which contains a decision criterion that is able to distinguish between discontinuities and smooth extrema. Our newly-developed limiter function does not require an artificial parameter, instead, it uses only information of the initial condition. We compare our insights with the formulation of the weight-functions in WENO3. The weights contain a parameter ε, which was originally introduced to avoid the division by zero. However, we will show that ε has a significant influence on the behavior of the reconstruction and relating the WENO3 weights to our decision criterion allows us to give a clarifying interpretation. In a second part, we will review some well-known Riemann solvers and introduce a family of incomplete Riemann solvers which avoid solving the eigensystem. Nevertheless, these solvers still reproduce all waves with less dissipation than other methods such as HLL and FORCE, requiring only an estimate of the globally fastest wave speeds in both directions. Therefore, the new family of Riemann solvers is particularly efficient for large systems of conservation laws when no explicit expression for the eigensystem is available. Joint work with: M. Torrilhon (RWTH Aachen University), B. Seibold (Temple University, Philadelphia), Rémi Abgrall (University of Zurich), Pawel Buchmüller (Universität Düsseldorf )
  • Le 7 décembre 2017 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Simon Labarthe
    A mathematical model of the human gut microbiota in its environment
    The human gut harbors a complex bacterial community that maintains a symbiotic relationship with its host. An increasing number of studies highlight its implication in the maintain of the host's health, but also in various disorders such as inflammatory bowel disease, allergic or metabolic disorders. We propose to integrate in the same model different micriobiological or biophysical informations related to the microbiota structure and functions and to the gut environment. A population dynamics model of functional microbial populations involved in fibre degradation is coupled to a fluid mechanic model of the intestinal fluids. This model is simplified through asymptotic analysis and is used to study the mechanisms that impact the spatial structure of the gut microbiota.
  • Le 21 décembre 2017 à 11:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Tommaso Taddei
    Model order reduction methods for Data Assimilation: simulation-based approaches for state estimation, and damage identification
    I present work toward the development of Model Order Reduction (MOR) techniques to integrate (i) parameterized mathematical models, and (ii) experimental observations, for prediction of engineering Quantities of Interest (QOIs). More in detail, I present two Simulation-Based approaches — the PBDW approach to state estimation, and the SBC approach for damage identification — that map observations to accurate estimates of the QOI, without estimating the parameters of the model. PBDW and SBC rely on recent advances in MOR to speed up computations in the limit of many model evaluations, and/or to compress prior knowledge about the system coming from the parameterized model into low-dimensional and more manageable forms. In the last part of the talk, motivated by the extension of PBDW and SBC to Fluid Mechanics problems, I present a MOR technique for long-time integration of parameterized turbulent flows. The approach corrects the standard Galerkin formulation by incorporating prior information about the attractor, and relies on an a posteriori error indicator to estimate the error in mean flow prediction.
  • Le 11 janvier 2018 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Luca Gerardo Giorda
    Patient-specific modeling and simulation of Cortical Spreading Depression
    Migraine is a prevailing disease in present day population. Cortical spreading depression (CSD) - a depolarisation wave that originates in the visual region and propagates across the cortex to the peripheral areas - has been deemed, by several studies, a correlate of visual aura, a neurological phenomenon preceding migraine and causing perceptual disturbance. As of today, little is known about the mechanisms that can trigger or stop such phenomenon. However, the complex and highly individual characteristics of the brain cortex suggest that the geometry might have a significant impact in supporting or contrasting the propagation of CSD. Accurate patient-specific computational models are thus fundamental to cope with the high variability in cortical geometries among individuals, but also with the anisotropies induced in a given cortex by the complex neuronal organisation in the grey matter. The most accepted assumption to explain CSD propagation is that of a progressive wave of extracellular potassium, which is presumed to follow ordinary diffusion law. Following this assumption, we present a distributed model for the extracellular potassium propagation, coupled with patient-specific conductivity tensors derived locally from Diffusion Tensor Imaging (DTI) data. We also discuss our simulation results highlighting significant differences in the propagation traveling patterns of CSD, both intra and inter-hemispherically, as well as some preliminary application to clinical case studies. This is a joint work with JM Kroos and I. Marinelli from BCAM (Bilbao), JM Cortes and I. Diez from BioCruces Health Research Institute (Bilbao), and S. Stramaglia from University of Bari.
  • Le 25 janvier 2018 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Elie Bretin
    Utilisation de l'énergie de Willmore pour la reconstruction d'un volume à partir de coupes
    Nous nous intéressons dans ce travail à la reconstruction d'un ensemble volumique à partir d'informations partielles de ce dernier sur plusieurs coupes planaires. Une motivation concerne notamment la segmentation 3D en application à l'imagerie par résonance magnétique. Ce problème inverse est naturellement mal posé et l'idée est d'exploiter la régularité de l'ensemble reconstruit en minimisant l'énergie de Willmore sous contrainte de satisfaire les données. Nous présenterons alors une approximation numérique de ce problème d'optimisation basée sur une approche champs de phase ainsi que des expériences numériques qui montreront l"efficacité d'une telle méthode. Ce travail est en collaboration avec François Dayrens et Simon Masnou.
  • Le 8 février 2018 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Yannick Privat
    Optimisation des ressources dans un enclos
    Dans ce travail, on s'intéresse à des configurations optimales de ressources (typiquement des denrées alimentaires) nécessaires à la survie d'une espèce, dans un espace fermé. A cette fin, nous utilisons un modèle dit logistique pour décrire l'évolution de la densité d'individus constituant cette population. Cette équation fait intervenir une fonction représentant la répartition hétérogène (en espace) des ressources. La question principale traitée dans cet exposé peut se formuler ainsi : comment répartir de façon optimale des ressources dans un habitat ? Elle est reformulée comme un problème extremal de valeur propre, dans lequel on cherche à minimiser la valeur propre principale d'un opérateur par rapport au domaine occupé par les ressources. Nous présenterons dans cet exposé de nouveaux résultats complétant l'analyse de ces problèmes, tels que la caractérisation complète des solutions en dimension 1 ou pour des formes d'habitat particulières en dimension supérieure, ainsi que de nombreuses propriétés qualitatives. Il s'agit de travaux en cours, en collaboration avec Jimmy Lamboley (univ. Paris Dauphine), Antoine Laurain (univ. Sao Paulo), Grégoire Nadin (univ. Paris 6).
  • Le 1er mars 2018 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Juliette Venel
    Inclusions différentielles et applications
    Dans cet exposé, nous parlerons d'inclusions différentielles. De tels problèmes d'évolution apparaissent lorsque les variables d'état sont soumises à des contraintes et doivent rester dans un ensemble dit admissible. Nous présenterons quelques résultats théoriques concernant ces inclusions différentielles du premier et du second ordre en mettant en évidence les hypothèses géométriques de l'ensemble admissible. Enfin, nous appliquerons ces derniers à la modélisation des mouvements de foule d'une part et aux écoulements granulaires d'autre part.
  • Le 29 mars 2018 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Andrés Castillo
    Using reduced models for severe confinement in turbulent Rayleigh-Bénard convection
    We consider Rayleigh-Bénard convection inside slim rectangular cells of transversal aspect ratio Γ. In such configurations, a change of regime is observed as the depth becomes comparable to the size of thermal plumes, going from an unconfined regime I, to a plume-controlled regime II, and to a confined regime III. For the latter, we developed a reduced model, which improves the Hele-Shaw approximation by taking into account inertial corrections terms. This is done in the spirit of similar work inside Hele-Shaw cells by [Gondret and Rabaud (1997)], then extended by [Ruyer-Quil, (2001)]. The reduced model is validated against 3D DNS results. We take advantage of the lower computational cost of the model to perform a parametric study for different (Ra,Pr) in the range 1/256 < Γ < 1/32. We identify a new, severely confined regime, noted IV, and compare it to theoretical predictions. This transition is related to changes in flow structure, as well as in the relative thickness of thermal and viscous boundary layers.
  • Le 12 avril 2018 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    Sans titre

  • Le 26 avril 2018 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Laurent Seppecher
    Direct linear inversion for discontinuous elastic parameters recovery from internal displacements
    In this talk, I will present a study of the invertibility and the corresponding stability for the elastography problem from internal data. In medical imaging, it is possible to track the inner fast displacement field of a living tissue using MRI, Optical Coherence Tomography or Ultrafast Ultrasound Imaging. From this data a major problem is to provide a stable and fast method to recover elastic properties of the biological tissue. The displacement field can be generated either by static or dynamic (in time regime or time harmonic regime) solicitations or even by natural sources (heart beats, breathing,...). Most of the time these external forces are not accurately known. In order to avoid iterative inversion procedure, we propose a direct local and linear approach in looking for the inversion the stiffness-to-force operator. If u(x) is the inner displacement field, the associated stiffness-to-force operator is given by A_u : C -> -div(C:grad^s u). I will present a general approach to numerically invert this kind of linear operators without neither smoothness hypothesis on the unknown tensor C, nor boundary knowledge. I will then discuss the general stability question linked to the closed range property of the linear operator A_u. In a second time, I will focus on the most useful question that is the shear modulus reconstruction. In this case, I will show that under non restrictive piecewise smoothness hypothesis, the inversion is possible with only one measurement. I will then give corresponding stability results in L2.
  • Le 17 mai 2018 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Jeffrey Harris
    Combining nonlinear wave models with CFD using overlapping domains : applications to offshore structures and tsunamis
    While Navier-Stokes modeling (e.g., LES, RANS) is often needed for modeling the physics of turbulent flow close to a body, far-field wave propagation can often be considered inviscid, and Navier-Stokes solvers can be computationally expensive and too numerically dissipative to model waves over long distances. As a result, it is useful -- if not necessary -- to consider a hybrid approach ; in this talk, results will be presented for coupled viscous-inviscid computations, with applications to tsunami propagation and wave-impact to offshore structures (e.g., naval ships, offshore wind turbine foundations). Particular attention will be given to the solution of the inviscid flow with the boundary element method (BEM), based on fully nonlinear potential flow theory, and the developments necessary to improve the accuracy and speed required for large-scale problems. Examples showing the improved accuracy / speed will be shown, as well as the numerical and physical details to resolve for the hybrid approach.
  • Le 31 mai 2018 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Nastassia Pourpier Duteil CEREMADE
    L'EDP développementale
    Le développement d'un organisme est régi par des morphogènes, des molécules qui entrainent la différenciation des cellules selon la concentration à laquelle les cellules en sont exposées. Les morphogènes sont à la fois responsables de la croissance de l'organisme et affectées par cette même croissance lors de leur diffusion. Croissance et diffusion sont ainsi intimement liées par un couplage bidirectionnel. Nous proposons un nouveau cadre mathématique pour traiter ce couplage. L'organisme est modélisé par une variété riemannienne qui est transportée par un champ de vecteur. La densité de morphogènes est représentée par une mesure supportée sur la variété, et sa diffusion dépend de l'évolution de la variété par l'opérateur de Laplace-Beltrami. A son tour, le champ de vecteurs régissant l'évolution de la variété dépend de la mesure à chaque instant. L'évolution dans le temps de la mesure est ainsi décrite par une équation de transport-diffusion qui couple les deux mécanismes, que nous dénommons EDP développementale. Cet exposé présente les résultats d'existence et d'unicité de la solution de cette équation. Nous démontrons la non-commutativité de la diffusion et du transport grâce à l'introduction d'un « crochet de Lie » entre les deux opérateurs. Enfin, nous étudions la possibilité de contrôler l'évolution d'une variété par la source du signal s'y diffusant et l'illustrons par des résultats numériques.
  • Le 7 juin 2018 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Yannick Privat LJLL
    Optimisation des ressources dans un enclos
    Dans ce travail, on s'intéresse à des configurations optimales de ressources (typiquement des denrées alimentaires) nécessaires à la survie d'une espèce, dans un espace fermé. A cette fin, nous utilisons un modèle dit logistique pour décrire l'évolution de la densité d'individus constituant cette population. Cette équation fait intervenir une fonction représentant la répartition hétérogène (en espace) des ressources. La question principale traitée dans cet exposé peut se formuler ainsi : comment répartir de façon optimale des ressources dans un habitat ? Elle est reformulée comme un problème extremal de valeur propre, dans lequel on cherche à minimiser la valeur propre principale d'un opérateur par rapport au domaine occupé par les ressources. Nous présenterons dans cet exposé de nouveaux résultats complétant l'analyse de ces problèmes, tels que la caractérisation complète des solutions en dimension 1 ou pour des formes d'habitat particulières en dimension supérieure, ainsi que de nombreuses propriétés qualitatives. Il s'agit de travaux en cours, en collaboration avec Jimmy Lamboley (univ. Paris Dauphine), Antoine Laurain (univ. Sao Paulo), Grégoire Nadin (univ. Paris 6).
  • Le 14 juin 2018 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Florian De Vuyst - reporté
    Sans titre

  • Le 28 juin 2018 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Laurent Monasse Inria COFFEE
    Un schéma de couplage explicite et conservatif pour l'interaction fluide-structure compressible
    Dans cet exposé, nous présenterons un schéma de couplage pour la simulation de l'effet d'ondes de chocs aériennes sur des structures déformables pouvant se fragmenter. Nous utilisons une méthode de frontières immergées de type cut-cells en trois dimensions d'espace. Le schéma développé a comme principales caractéristiques d'être totalement explicite (un seul calcul fluide et solide par pas de temps), de conserver la masse fluide et la quantité de mouvement et l'énergie du système couplé. Nous montrerons des résultats numériques qui permettent de valider la méthode, et discuterons des développements futurs envisagés.
  • Le 20 septembre 2018 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Patrick Fischer IMB
    NUMERICAL SIMULATIONS OF THERMAL TWO DIMENSIONAL HEMISPHERICAL TURBULENCE
    The two-dimensional Navier Stokes equations are often used as a model for describing turbulence in the atmosphere. Indeed, atmospheric phenomena are confined in a layer of fluid whose dimensions are only a few kilometers in the vertical direction and thousands of kilometers in the horizontal directions. Even if this model cannot completely describe the complexity of the atmosphere, two dimensional simulations can still be used to mimic large-scale structures motion in the atmosphere. Quite recently H. Kellay et. al designed a new physical experiment: a thermal convection cell composed by a half soap bubble heated at the equator. This device allowed them to study thermal convection and the movement of vortices on the surface of the bubble. The purpose of this talk is to present the mathematical model and the numerical simulations of this hemispherical bubble heated at the equator and to compare the results to known behavior in classical Rayleigh-Benard convection in three (or two) dimensional containers.
  • Le 27 septembre 2018 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Mădălina Petcu LMA\, Poitiers
    Sur les équations de Cahn-Hilliard-Navier-Stokes visqueuses avec des conditions dynamiques aux bords
    Le but de cette présentation est d'étudier du point de vue théorique et numériques les équations de Cahn-Hilliard-Navier-Stokes visqueuses avec différentes conditions dynamiques aux bords. Ce modèle est utilisé dans le but de décrire la dynamique d'un mélange de deux fluides immiscibles et incompressibles. Le choix des conditions aux bords est important, nous permettant de prendre en compte l'interaction entre l'interface des deux fluides et les murs du domaine physique.
  • Le 4 octobre 2018 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Nicolas Barral Imperial College
    Sans titre

  • Le 15 novembre 2018 à 10:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 385
    Thomas Richter Uni Magdeburg
    [Séminaire CSM] Efficient Simulation of Temporal Multiscale Problems
    The coupling of different temporal scales is common in many application problems. A classical example is the weathering of mechanical structures like bridges. This process takes decades, it is however affected by short term influences such as traffic, wind or stretching by daily and yearly temperature alteration. The problem is two-way coupled as material change could cause a shift of resonance regimes with a drastic influence on the fast scale. Another example is the growth of athereosclerotic plaques in blood vessels, a bio/chemical mechanism that causes material transformation and growth in the vessel walls in the time-span of months but that is strongly affected by the mechanical forces arising from the pulsating blood flow in a fluid-solid interaction system. Narrowing of the blood vessel will naturally also affect the fast scale by changing the overall flow pattern. These slow-scale / fast-scale problems have in common that they are two-way coupled processes and that we are usually interested in the slowly evolving scale only. A resolved simulation of all scales is not feasible. A year comprises 30 million heart cycles, a corresponding resolved fluid-solid simulation is out of bounds. Based on the replacement of the fast-scale problem by equations with periodic solutions we describe and analyze temporal multiscale schemes for the efficient simulation of such problems. An important ingredient is the quick approximation of these periodic problems for which we present some acceleration schemes. Test cases inspired by the athereosclerotic plaque growth problem demonstrate the possible benefits by such multiscale methods.
  • Le 22 novembre 2018 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Florian de Vuyst LMAC
    [Séminaire CSM] Aspects H-theorem pour les schémas de Boltzmann sur réseau de type LBGK
    Les méthodes Lattice Boltzmann (LBM) permettent de traiter un large ensemble de problèmes de Mécanique des fluides avec des propriétés de précision numérique reconnues. Leur caractère hautement parallélisable est aussi un point fort. Dans cet exposé, on parle d'aspects plus théoriques, notamment des propriétés de théorème-H et d'entropie au niveau discret pour les modèles les plus simples de type LBGK sur un modèles mésoscopique d'advection-diffusion linéaire.
  • Le 29 novembre 2018 à 15:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Elena Gaburro Univ. Trento
    [Séminaire CSM] Méthodes volumes finis et Galerkine discontinue d'ordre arbitraire sur maillages en mouvement ..
    Dans cet exposé, je présente des nouvelles méthodes arbitrairement lagrangiennes-eulériennes (ALE) directes pour la solution d'équations hyperboliques non linéaires écrites sous forme conservative ou pas. Les caractéristiques principales de ces schémas sont d'abord la haute performance garantie par une implémentation parallèle efficace avec Fortran MPI et CUDA ; ensuite la qualité élevée du maillage, même pour des temps longs et des phénomènes vorticiaux, maintenue grâce à des mouvements atypiques des grilles polygonales et à une formulation conservative en espace-temps de l'EDP assez général pour gérer aussi des cellules espace-temps dégénérées. Enfin l'ordre arbitrairement élevé de nos algorithmes volumes finis (avec ADER-CWENO) et Galerkine discontinue (équipé d'un limiteur volume finis a posteriori), et l'utilisation de méthodes chemin-conservatives bien équilibrées, tous dans le cadre ALE, nous permet d'obtenir une dissipation numérique extrêmement faible et même précision machine pour des solutions stationnaires. Pendant l'exposé je montrerai un grand nombre des résultats numériques qui prouvent la précision et la robustesse des nouvelles méthodes en utilisant en particulier les équations d'Euler avec et sans terme de gravité, la magnétohydrodynamique, et une simplification du modèle Baer-Nunziato.
  • Le 6 décembre 2018 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Rémi Tesson Inria MONC
    Modélisation mathématiques de l'impact de la dynamique des microtubules sur la migration cellulaire
    La migration cellulaire est un processus biologique complexe qui intervient de façon importante lors du développement de pathologies comme le cancer. Son étude constitue un enjeu de santé publique majeur permettant, à terme, d'envisager de nouveaux types de thérapies ciblées ainsi qu'une meilleure compréhension de la maladie. Le travail que je vais présenter se concentre sur la compréhension du rôle des microtubules, éléments dynamiques du cytosquelette, dans ce processus. Notre approche se concentre sur une description de la migration 2D des cellules à travers un modèle décrivant la déformation membranaire subie par une cellule lors de la migration. Ce modèle se base sur une approche de type fluide classique pour la modélisation cellulaire, couplée à des équations de réaction-diffusion décrivant l'état biochimique de la cellule. Des schémas de type DDFV ont été utilisés et développés pour la simulation numérique. J'aborderai en particulier le traitement d'équations de réaction-diffusion sur domaine mobile et d'équations de transport qui en constituent les difficultés principales. Enfin, je présenterai les travaux et premiers résultats numériques concernant le mécanisme d'action sur le comportement migratoire des cellules d'un agent antimicrotubule, la vincristine.
  • Le 13 décembre 2018 à 15:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Clémentine Courtès Toulouse
    Estimation d'erreur d'un schéma aux différences finies pour l'équation de Korteweg-de Vries et le système abcd
    L'équation de Korteweg-de Vries et le système abcd de type Boussinesq sont deux modèles hyperboliques-dispersifs utilisés notamment en hydrodynamique pour la description d'ondes de surface pour les vagues de faible amplitude en eau peu profonde. Nous discrétisons ces deux modèles au moyen d'un schéma numérique aux différences finies et étudions sa convergence. Une attention particulière sera donnée à l'étude de stabilité L^2 du schéma pour laquelle les termes non linéaires hyperboliques et les termes dispersifs doivent être pris en compte simultanément. Cette analyse fine nous permet de quantifier l'ordre de convergence du schéma par rapport à la régularité de Sobolev de la donnée initiale. Ce travail est en collaboration avec Cosmin Burtea, Frédéric Lagoutière et Frédéric Rousset.
  • Le 20 décembre 2018 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Inria Sud-Ouest, Salle Ada Lovelace.
    Antoine Rousseau Inria LEMON
    Conditions aux limites transparentes en géophysique : aspects continu et discret
    L'objectif principal de ce travail est la recherche de méthodes de décomposition de domaine ou de couplage en océanographie côtière (ou pour des fluides géophysiques en général). Les techniques utilisées, dans le but d'être non intrusives (au sens des codes de calcul), s'appuient sur des modifications des conditions aux limites via un processus itératif (méthode de Schwarz). On verra que l'on peut travailler sur le problème continu, puis discréditer le système ainsi obtenu en temps et en espace, ou bien au contraire commencer par choisir son schéma numérique préféré avant de travailler sur les conditions aux limites (discrètes) qu'il convient de mettre en place aux interfaces. Les deux techniques ont leurs avantages et leurs inconvénients. On illustrera le propos sur des exemples.
  • Le 10 janvier 2019 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Dena Kazerani
    [Séminaire CSM] Une méthode numérique adaptatif pour écoulements incompressibles à surface libre
    Ce travail consiste au développement d'un nouvel algorithme basé sur la formulation level set et sur une adaptation de maillage anisotrope pour le problème de Navier-Stokes incompressible à surface libre. Cet algorithme est ensuite appliqué à des cas test et est comparé avec des résultats existants.
  • Le 17 janvier 2019 à 15:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Gaspard Jankowiak Uni Vienne
    [Séminaire CSM] Cell motility modeling in structured environments without focal adhesion
    Although it has been a subject of research for years (e.g. biophysict Victor Small) mechanisms allowing living cells to move around the body are not completely understood. These differ between cell type and a given cell can be sport several of them. For example leukocytes can move on a surface by sticking to it at several locations (focal adhesion) and rolling forward, similarly as bulldozer tracks. Concerning this particular mechanism, recent experiments at the IST (Reversat & Sixt), leukocytes were engineered and stripped from their adhesion capabilities. When placed in appropriately structured media, these cells are still able to move around the environment. I will discuss the experiments and two distinct variants of a new mechanical model describing this behavior, based on simple physical considerations. The two key ingredients that we consider are the renewal of the actin cortex through polymerization and cortex internal viscosity, which when combined, create motion. The resulting system of parabolic equations is of integro-differential type and involves high-order in space differential operators. It can be analyzed partially, and existence results will be given in simple situations. I will also discuss some numerical experiments and an extension of the model which includes the mechanical contribution of the cell's nucleus. This is a joint work with C. Schmeiser, D. Peurichard, L. Preziosi and C. Giverso
  • Le 31 janvier 2019 à 15:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Cécile Taing Inria MONC
    [Séminaire CSM] Dynamique de concentration dans un modèle de population structuré en âge et en phénotype
    Pour illustrer la sélection d'individus les plus adaptés à un environnement donné à partir d'un modèle de population structurée par une variable de trait, on peut étudier la convergence de la distribution de population vers une masse de Dirac concentrée en ce trait adapté. Dans cet exposé, je présenterai des résultats sur le comportement asymptotique de la solution d'une équation structurée en âge et en trait. Dans un premier temps, j'introduirai un modèle simplifié en supposant qu'il n'y pas de mutation. L'analyse de ce modèle repose sur l'étude d'un problème aux valeurs propres paramétré par la variable de trait. Ensuite, je présenterai le modèle avec mutations qui fait apparaître une équation de Hamilton-Jacobi sous contraintes. Il s'agit d'un travail fait en collaboration avec Samuel Nordmann et Benoît Perthame.
  • Le 7 février 2019 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Cesare Corrado KCLondon
    [Séminaire CSM] Towards the treatment of atrial arrhythmias with personalised computer models
    Atrial fibrillation (AF) is the most common arrhythmia affecting more than 1.1M in the UK and is associated with an increased incidence of cardiovascular disease, stroke and premature death. AF is a characterised by rapid and chaotic activation of the upper two chambers of the heart. Radiofrequency catheter ablation of the pulmonary veins is a routinely applied therapy to treat drug-refractory patients. However, its effectiveness is moderate (only 50-75% long-term maintenance of the sinus rhythm) and many patients require multiple procedures to achieve sinus rhythm, with a consequent increased risk for the patient and cost of care. Local tissue properties and a heterogeneous tissue substrate have been proposed to play a role in the induction and maintenance of AF. However, quantifying these tissue properties and predicting their effect of patient pathophysiology remain a challenge. Computational models encode known physics and physiology to provide a common framework for interpreting multi-modality clinical data, can identify fundamental mechanisms responsible for arrhythmias and have the potential to enable predictions of the patient response to treatment. Build personalised computational models of the left atrium, simulating the therapy outcome in a clinical time scale and quantify the level of uncertainty remains an open challenge. In this presentation, I introduce a robust and clinically tractable method to quantify local tissue properties and a workflow for personalising the anatomical, cellular and tissue properties of the atria from clinical imaging and diagnostic measurements to create personalised and validated models for analysing patient data and predicting the outcome of treatments. I will then introduce the sources of uncertainty and propose some methods to its quantification.
  • Le 14 février 2019 à 10:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Christele Etchegaray Inria MONC
    [Séminaire CSM] A stochastic model for cell trajectories..
    Cell migration is a fundamental process involved in many physiological and pathological processes such as the immune response and tumor metastasis. As a consequence, the ability of cells to ensure these functions is closely related to their long time migration behaviour. For cells crawling on a flat adhesive substrate, observed trajectories show a great diversity, ranging from brownian-like to very directional. This results from the complexity of the self-organized internal activity, involving physical and chemical interactions on several time and space scales. Understanding the long time cell behaviour is therefore challenging. In this talk, I will introduce a stochastic particle model for cell trajectories based on the observable cell dynamics. The model writes as a stochastic birth and death process for the dynamics of membrane deformations. Several scalings lead to either deterministic or stochastic models, that allow to characterize the diversity and efficiency of trajectories. Finally, I will discuss how the model con be confronted to experimental data, and how it can be enriched to take into account the interaction of cells with their environment.
  • Le 21 février 2019 à 15:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Maria Kazakova ENSTA
    Nouvelle approche pour modélisation de déferlement: Ondes solitaires
    L'exposé est consacré à une nouvelle approche pour la modélisation de la propagation des vagues côtières. Un modèle moyenné sur la profondeur est obtenu sous l'hypothèse d'eau peu profonde. Les effets turbulents de grandes échelles sont pris en compte à travers l'équation de vorticité et sont résolus explicitement. L'hypothèse de viscosité turbulente permet de modéliser les effets turbulents de petites échelles. Un algorithme numérique est construit pour la validation et des comparaisons avec des résultats expérimentaux sont proposées. Les tests a permis d'établir des lois empiriques pour les trois paramètres du modèle, qui donnent au modèle un caractère prédictif. (en collaboration avec Gaël Richard (Université de Grenoble).
  • Le 28 février 2019 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Victor Michel-Dansac IMT
    [Séminaire CSM] Consistent section-averaged shallow water equations with bottom friction
    In this work, we present a general framework to construct section-averaged models when the flow is constrained – e.g. by topography – to be almost one-dimensional (1D). These models are consistent with the two-dimensional (2D) shallow water equations. By introducing relevant scaling parameters, we consider the quasi-1D regime of the 2D shallow water equations. Then, this 2D system is averaged over the width of the channel. Afterwards, we expand the water elevation and velocity field in the spirit of the diffusive wave equations, and we establish a set of one-dimensional equations, close to the ones usually used in hydraulic engineering. Out of these configurations, there is an O(1) deviation of our model from the classical models found in the literature. We prove that the 1D model thus derived is consistent with the 2D shallow water equations in the quasi-1D regime. Finally, we present the main mathematical properties of our model and carry out numerical simulation as validation of our approach with comparison to the full two-dimensional shallow water equations. This is a joint work with Pascal Noble (IMT & INSA Toulouse) and Jean-Paul Vila (IMT & INSA Toulouse).
  • Le 7 mars 2019 à 15:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Léo Nouveau
    [Séminaire CSM] The Shifted Boundary Method: a tool for high order immersed computations on unstructured grids.
    In this talk, some recent features on the immersed/embedded boundary method named Shifted Boundary Method (SBM) are presented. This new embedded approach intends to tackle some well known problems associated to immersed/embedded methods such as loss of accuracy and/or ill-conditioning of the associated algebraic system. After an introduction on immersed methods, we will discuss the basic formulation of the SBM, relying on two main ingredients: the combination of weak BC (Nitsche-type) and one sided extrapolation for high order accuracy. We will then discuss two recent developments. The first one consists in an improved formulation for elliptic PDEs exploring mixed finite element formulation. The availability of the solution derivatives as main unknowns is exploited to enrich the solution representation. Thus, while remaining in the context of a P1 finite element method, we obtain in the immersed case second order accuracy for both the solution and its derivatives, and a third order for the solution if only Dirichlet conditions are embedded. The second development shows the application of the SBM to free surface flows. In this case, the SBM is used to improve the embedding of the free surface interface.
  • Le 14 mars 2019 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Khaled Saleh ICJ
    Analyse et approximation numérique d'un modèle multiphasique compressible
    Un écoulement multiphasique est un écoulement mettant en jeu des espèces qui se trouvent dans différents états de la matière (gazeux, liquide, solide) ou des espèces qui sont dans le même état mais aux propriétés chimiques différentes (mélanges liquide-liquide non miscibles par exemple). La simulation numérique de tels écoulements a de nombreuses applications industrielles: industrie pétrolière, industrie chimique, industrie nucléaire. Dans l'industrie nucléaire, de nombreuses configurations industrielles font intervenir des écoulements multiphasiques. C'est le cas par exemple du phénomène de l'explosion de vapeur: suite à un défaut d'évacuation de chaleur dans le cœur d'un réacteur, celui-ci peut entrer en fusion créant un magma métallique appelé corium, composé de combustible nucléaire et d'éléments fondus issus de la structure du cœur. Lorsque les particules de corium entrent en contact avec l'eau du circuit primaire, originellement à l'état liquide, un phénomène d'évaporation violente de l'eau (flashing) peut se produire, s'accompagnant d'une augmentation soudaine de la pression et de la propagation d'ondes de choc et de détente pouvant endommager la structure du réacteur. La compréhension d'un tel phénomène nécessite de travailler avec des modèles d'écoulements compressibles faisant intervenir plus de trois phases. Dans cet exposé, je considérerai un modèle dit multi-fluide introduit par Jean-Marc Hérard (EDF R&D) en 2007 pour le cas de 3 phases puis en 2016 pour le cas plus général de N phases, N étant arbitraire. Pensé comme une extension du fameux modèle diphasique de Baer-Nunziato, le modèle à N phases consiste en N systèmes d'Euler couplés par des termes non conservatifs ainsi que des termes sources de relaxation dont le rôle est d'amener les phases en présence vers un équilibre mécanique et thermodynamique. Dans un premier temps, je présenterai une méthode de dérivation du modèle, ainsi que ses principales propriétés (hyperbolicité, inégalité d'entropie, symétrisabilité), puis je présenterai un schéma dit de relaxation à la Suliciu, pour l'approximation des solutions du modèle. Nous verrons que ce schéma permet une approximation relativement précise des solutions bien qu'il soit d'ordre 1. Nous verrons aussi qu'il vérifie au niveau discret des propriétés de stabilité similaires à celles du modèle continu: positivité des masses volumiques et des taux de présence statistiques des phases, inégalités d'entropie discrète.
  • Le 11 avril 2019 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Vanessa Lleras U. Montpellier
    Etude préliminaire pour des problèmes liés aux tissus mous en biomécanique
    Les erreurs dans les simulations biomécaniques proviennent de la modélisation et de la discrétisation. La génération de maillages à partir d'images médicales est une source majeure d'erreurs de discrétisation, qui reste l'un des principaux inconvénients dans le développement de modèles d'éléments finis personnalisés, fiables, précis, automatiques et efficaces, en biomécanique. Nous considérons dans une premiere partie la méthode des éléments finis sur des maillages endommagés localement admettant une ou plusieurs cellules déformées qui sont isolées les unes des autres. Dans le cas simple de l'équation de Poisson nous montrerons que les estimations d'erreur a priori usuelles restent valables sur ces mailles. Nous proposerons également un autre schéma d'éléments finis convergent de manière optimale et, de plus, bien conditionné. Ces résultats seront illustrés numériquement. La seconde partie se concentrera sur des estimations a posteriori de type DWR pour une quantité d'intérêt définie par l'utilisateur. Ceci permet de quantifier l'impact de la qualité et de la densité du maillage sur la précision de la solution éléments finis. Nous testerons ses estimations d'erreur dans deux situations, correspondant à des calculs pour une langue et une artère.
  • Le 2 mai 2019 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle de Conférences
    -
    [Séminaire CSM] Créneau libre

  • Le 16 mai 2019 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Reporté]

  • Le 13 juin 2019 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 385
    Maria González Taboada Universidade da Coruña
    Adaptive stabilised mixed methods for the Oseen equation
    The problem of computing the flow of a viscous and incompressible fluid at small Reynolds numbers is described by the Oseen equations. In this talk we will present a stabilized mixed method for the Oseen problem based on the pseudostress-velocity variables. We will describe a new augmented dual-mixed variational formulation of the problem. Then, we will analyze the corresponding Galerkin scheme, and provide the rate of convergence when each row of the pseudostress is approximated by Raviart-Thomas or Brezzi-Douglas-Marini elements and the velocity is approximated by continuous piecewise polynomials. Moreover, we will derive an a posteriori error indicator, which is reliable and locally efficient, and show the performance of the corresponding adaptive algorithm through some numerical examples. This is a joint work with Tomas P. Barrios (Universidad Catolica de la Santsima Concepcion, Chile) and J. Manuel Cascon (Universidad de Salamanca, Spain).
  • Le 27 juin 2019 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Agnès Druchon
    [Séminaire CSM] Ecoulement du sang en sortie du coeur: calculs et simulations dans deux contextes différents
    Le séminaire pourra comporter deux parties: i) la simulation, grâce à un modèle basé sur l'analogie entre l'hydraulique et l'électricité, des flux et pressions dans les artères coronaires chez des patients qui présentent des coronaropathies très sévères. Ces simulations prennent en compte la sévérité des sténoses sur chaque coronaire, la présence éventuelle de flux collatéraux et l'influence de la revascularisation par des pontages. ii) l'effet magnétohydrodynamique lors de l'écoulement du sang en présence d'un champ magnétique externe constant B0: potentiel électrique induit par effet Hall, influence sur la vitesse du fluide, sur la célérité de propagation de l'onde de pouls, ... Jusqu'à quelle valeur du champ B0 ces phénomènes sont-ils négligeables?
  • Le 3 octobre 2019 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Houman BOROUCHAKI UT Troyes
    [Séminaire CSM] Erreurs et métriques d'interpolation
    Une nouvelle approche pour majorer l'erreur d'interpolation d'une fonction polynomiale de degré n quelconque par une fonction polynomiale de degré n−1 est proposée. Cette majoration permet l'obtention d'une métrique dite d'interpolation afin de contrôler cette erreur. L'approche repose sur les propriétés géométriques et algébriques des métriques d'éléments, métriques dans lesquelles les éléments sont réguliers et unitaires. La métrique d'interpolation intervient dans un calcul avancé basé sur l'adaptation de maillages. La méthode combine une écriture avec des fonctions de forme et des développements de Taylor permettant de contrôler l'erreur sur chaque élément à partir d'un contrôle portant sur ses arêtes.
  • Le 17 octobre 2019 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    François Vilar U. Montpellier\, IMAG
    [Séminaire CSM] Correction "a posteriori" des méthodes Galerkin Discontinu par formulation Volumes Finis de sous-mailles et reconstruction de flux..
    Dans cette présentation, nous présenterons une nouvelle façon de corriger les méthodes Galerkin Disontinu (GD) dans le cadre des lois de conservation hyperboliques. Cette correction repose sur une formulation Volumes Finis (VF) de sous-mailles, ce qui rend cette technique très simple à appréhender, tout en préservant la très grande précision des méthodes GD à l'intérieur des mailles. À cette fin, il nous faudra tout d'abord réécrire les schémas GD comme des schémas VF sur un sous maillage sous réserve de la définition de flux numériques très spécifiques que l'on nommera "flux reconstruits". Cette partie théorique nous fournira tous les éléments nécessaires à la construction de notre correction. En pratique, à chaque pas de temps, une solution non-limitée GD candidate est calculée, puis analysée pour savoir si cette dernière est admissible au vu de certains critères à définir (positive, non-oscillante, entropique, ...). Si c'est le cas, nous avançons en temps. Dans le cas contraire, la solution numérique serait recalculée localement à l'intérieur de la maille et seulement dans les sous-mailles problématiques, par l'utilisation de flux reconstruits corrigés. Cette technique nous permet de modifier la solution numérique localement à l'échelle de la sous-maille sans impacter la solution ailleurs dans la maille; ce qui rend cette correction extrêmement précise. Nous présenterons, dans le cas 1D et 2D sur maillages cartésiens, des résultats numériques illustrant la très grande performance de la technique développée.
  • Le 21 novembre 2019 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Simon Peluchon CEA
    Simulation numérique de l'ablation liquide
    Lors de sa rentrée dans l'atmosphère d'une planète, un engin spatial subit un échauffement important dû aux frottements des gaz atmosphériques sur la paroi. Cette élévation de température conduit à une dégradation physico-chimique du bouclier thermique de l'objet constitué de matériaux composites. Un composite est constitué de divers matériaux qui s'ablatent différemment. Dans ces travaux, nous nous intéressons essentiellement à la fusion d'un matériau durant sa phase de rentrée atmosphérique. Nous sommes donc en présence de trois phases : solide, liquide et gaz. Pour simuler ce phénomène, des méthodes numériques robustes ont été mises au point pour calculer l'écoulement diphasique compressible autour de l'objet. Le couplage entre le solide et l'écoulement fluide a aussi été étudié. Les méthodes numériques développées sont basées sur une approche volumes finis. Une stratégie de décomposition d'opérateurs est utilisée pour résoudre le modèle diphasique à cinq équations avec les termes de dissipation modélisant l'écoulement fluide. L'idée principale de cette décomposition d'opérateurs est de séparer les phénomènes acoustiques et dissipatifs des phénomènes de transport. Un traitement implicite de l'étape acoustique est réalisé tandis que l'étape de transport est résolue explicitement. Le schéma semi-implicite global est alors très robuste, conservatif et préserve les discontinuités de contact. Les conditions d'interface entre les domaines fluide et solide sont déduites des bilans de masse et d'énergie à la paroi. Le front de fusion est suivi explicitement grâce à une formulation ALE des équations. La robustesse de l'approche et l'apport de la formulation semi-implicite sont finalement démontrés grâce à des expériences numériques mono et bidimensionnelles sur maillages curvilignes mobiles.
  • Le 5 décembre 2019 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM] Créneau libre

  • Le 19 décembre 2019 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Diane Peurichard
    [Séminaire CSM] A new model for the emergence of vascular networks
    The generation of vascular networks is a long standing problem which has been the subject of intense research in the past decades, because of its wide range of applications (tissue regeneration, wound healing, cancer treatments etc). The mechanisms involved in the formations of vascular networks are complex and despite the vast amount of research devoted to it there are still many mechanisms involved which are poorly understood. Our aim is to bring insight into the study of vascular networks by defining heuristic rules, as simple as possible, and to simulate them numerically to test their relevance in the vascularization process. We introduce a hybrid agent-based/continuum model coupling blood flow, oxygen flow, capillary network dynamics and tissues dynamics. We provide two different, biologically relevant geometrical settings and numerically analyze the influence of each of the capillary creation mechanism in detail. All mechanisms seem to concur towards a harmonious network but the most important ones are those involving oxygen gradient and sheer stress
  • Le 9 janvier 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Rémi Abgrall
    [Séminaire CSM]

  • Le 23 janvier 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Jérôme Fehrenbach
    [Séminaire CSM] Tumor growth and mechanical behavior: coupling experiments and mathematical models
    Nous présenterons des travaux d'estimation de paramètres dans différents modèles de croissance tumorale prenant en compte les aspects mécaniques. Différents modèles sont envisagés selon l'échelle de temps considérée. Dans chaque cas des mesures expérimentales permettent de calibrer les paramètres du modèle. Ces travaux ont été réalisés dans le cadre du projet MIMMOSA.
  • Le 6 février 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Thomas Milcent
    [Séminaire CSM] Analytic approach for Moment-of-Fluid interface reconstruction in 3D
    Simuler numériquement de manière précise l'évolution des interfaces séparant différents milieux est un eujeu crucial dans de nombreuses applications (multi-fluides, fluide-structure, etc). La méthode MOF (moment-of-fluid) est une extension récente de la méthode VOF (volume-of-fluid) qui permet de suivre plusieurs matériaux évoluant au cours du temps. Elle utilise une reconstruction affine des interfaces par cellule basée sur f'information des fractions volumiques et les centroïdes de chaque matériau. La position de l'interface dans chaque cellule est solution d'un problème de minimisation sous contrainte de volume. Les algorithmes utilisés dans la littérature sont basés sur des calculs géométriques sur des polyèdres et ont un coût important en 3D. On propose dans cet exposé une approche complètement analytique de l'expression de la fonction à minimiser et de ses dérivées dans le cadre de cellules cubiques en 3D. Les résultats numériques montrent que l'approche proposée est bien plus rapide (plusieurs ordres de grandeurs) et aussi robuste que les approches géométriques.
  • Le 20 février 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Paul Vigneaux ENS Lyon
    [Séminaire CSM] Variations autour des fluides de Bingham : équations naturelles ou intégrées
    Dans cet exposé, nous ferons un panorama de méthodes et simulations numériques pour les fluides à seuil, basées sur des méthodes de dualité. Dans un premier temps, nous présenterons le problème des équations de type Bingham dans un canal en expansion-contraction qui permet d'obtenir des couches limites viscoplastiques. Nous revisiterons la théorie asymptotique d'Oldroyd (1947) dans le cas où les nombres caractéristiques sont modérés. Cette étude mélange simulations HPC et allers-retours avec des expériences physiques d'IRSTEA. Une seconde partie traitera ensuite d'un modèle original de Saint-Venant-Bingham pour ces fluides viscoplastiques, en lien avec des applications géophysiques. Nous proposons un nouveau schéma volumes-finis qui couple dualité et techniques équilibrées. Ses propriétés sont illustrées sur un prototype d'avalanche de neige dense dans le couloir de Taconnaz (massif du Mont-Blanc).
  • Le 12 mars 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM] Créneau libre

  • Le 26 mars 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle de Conférences
    -
    [Séminaire CSM]

  • Le 26 mars 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Bochra Mejri
    [Séminaire CSM] REPORTÉ - Topological sensitivity analysis for identification of voids under Navier's boundary conditions in linear elasticity
    This talk is concerned with a geometric inverse problem related to the two-dimensional linear elasticity system. Thereby, voids under Navier's boundary conditions are reconstructed from the knowledge of partially over-determined boundary data. The proposed approach is based on the so-called energy-like error functional combined with the topological sensitivity method. The topological derivative of the energy-like misfit functional is computed through the topological-shape sensitivity method. Firstly, the shape derivative of the corresponding misfit function is presented briefly from previous work. Then, an explicit solution of the fundamental boundary-value problem in the infinite plane with a circular hole is calculated by the Muskhelishvili formulae. Finally, the asymptotic expansion of the topological gradient is derived explicitly with respect to the nucleation of a void. Numerical tests are performed in order to point out the efficiency of the developed approach.
  • Le 16 avril 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Bertrand Michel
    [Séminaire CSM] REPORTÉ

  • Le 30 avril 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Solène Bulteau Maison de la simulation
    [Séminaire CSM] REPORTÉ

  • Le 14 mai 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Maelle Nodet
    [Séminaire CSM] REPORTÉ - Quelques contributions à l'assimilation de données images
    "Assimiler des données" est un problème inverse qui consiste à combiner diverses informations sur un système physique donné en vue d'effectuer des prévisions de l'évolution de ce système. Par exemple, en météorologie, on combine l'information contenue dans 1/ les mesures et observations de l'atmosphère, 2/ les équations de la mécanique des fluides et 3/ les statistiques sur les erreurs de mesure, en vue de prévoir le temps futur. Dans cet exposé, je présenterai l'assimilation de données puis je donnerai un exemples de problème d'assimilation dans le cas où les observations du système sont des images (comme des images satellites, des photos, etc.), autrement dit des données denses en espace.
  • Le 28 mai 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM] Créneau libre

  • Le 11 juin 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM] Créneau libre

  • Le 25 juin 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM] Créneau libre

  • Le 15 octobre 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Isabelle Cheylan
    [Séminaire CSM] Optimisation de forme avec la méthode adjointe appliquée aux équations de Lattice-Boltzmann en aérodynamique
    Le travail présenté a pour objectif le développement d'un solveur adjoint dans ProLB, un logiciel de mécanique des fluides basé sur la méthode de Lattice-Boltzmann. Ce solveur adjoint, basé sur les multiplicateurs de Lagrange, permet de calculer les sensibilités surfaciques des efforts aérodynamiques d'un obstacle par rapport à la forme de celui-ci. Dans un premier temps, l'étude de cas 2D laminaires permet de détailler le développement du solveur adjoint étape par étape. Les complexités apportées par l'étude d'un cas 3D turbulent à grandes échelles sont ensuite expliquées, puis les modifications apportées au solveur adjoint sont détaillées afin de pouvoir l'utiliser dans un contexte industriel. Les différentes hypothèses retenues pour le développement du solveur adjoint sont justifiées et documentées, afin d'arriver à un solveur adjoint opérationnel en industrie. Le solveur adjoint permet ainsi de savoir où déformer un véhicule afin de le rendre plus performant en terme d'aérodynamique. L'objectif final est de déformer, par des techniques de morphing, la forme d'un véhicule afin d'améliorer la force de traînée agissant sur celui-ci.
  • Le 5 novembre 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Bochra Mejri
    [Séminaire CSM] Identification of geometric flaws and elastic properties in linear elasticity
    This talk presents a panorama of my research related to the two-dimensional linear elasticity system. The first part is concerned with a geometric inverse problem: the identification of voids under Navier's boundary conditions (i.e. the elastic solid can slide in tangential direction while in the normal direction the displacement is clamped) from the knowledge of partially over-determined boundary data. Sensitivity analysis methods (shape derivative, topological derivative) are developed to spot numerically the flaws. Secondly, a parametric inverse problem is studied: the reconstruction of interface stiffness parameter (i.e. the interface tractions are continuous while the displacement is discontinuous across the debonded region and proportional to the interface traction). Lipschitz stability estimate is established and based on a new Carleman's inequality with suitable weight functions. Finally, I am interested in quantifying the elastic properties of intensely fractured rocks around tectonic faults. The density and complexity of the natural fracture networks over a wide range of spatial scales is modeled by a statistical scaling model calibrated with field observations and measurements. The effective parameters of the medium are estimated by the stochastic homogenization method.
  • Le 19 novembre 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Solene Bulteau
    [Séminaire CSM] Développement et analyse de schémas numériques préservant les régimes asymptotiques de diffusion linéaire et non linéaire
    L'objectif de ces travaux est de construire et analyser des schémas numériques capables de discrétiser les solutions de systèmes de lois de conservation hyperboliques avec terme source. La propriété principale recherchée dans ces travaux est la préservation de l'asymptotique, c'est-à-dire que les schémas développés doivent rester précis en régime de diffusion, à savoir en temps long et terme source raide. La première partie de cet exposé est consacrée à la présentation d'un résultat de convergence numérique rigoureux pour un schéma discrétisant les solutions du p-système. Le taux de convergence ainsi obtenu est exprimé explicitement et est en accord avec les résultats déjà connus dans les cadres continu et semi-discret. La seconde partie de cet exposé est dédiée à la présentation de deux schémas préservant l'asymptotique pour les équations de Saint-Venant avec terme source de friction de Manning. A la différence du p-système, l'opérateur de dérivation intervenant dans la limite de diffusion est non linéaire, ce qui rend plus difficile le développement de schémas capables de la préserver. La première méthode exposée est développée à partir d'une discrétisation HLL dans laquelle de la viscosité numérique bien choisie a été ajoutée pour que, à la limite, celle-ci discrétise l'asymptotique correcte. Le deuxième schéma présenté est, lui, construit de sorte à ce que tous les états stationnaires soient préservés. Je montrerai qu'une simple modification dans la discrétisation du terme source permet également à ce schéma de préserver la limite de diffusion. Ce travail exhibe un lien entre la préservation des états stationnaires et celle de l'asymptotique de diffusion qui sont, à la base, deux propriétés de natures très différentes.
  • Le 26 novembre 2020 à 15:30
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Davide Torlo
    High order IMEX deferred correction residual distribution schemes for stiff kinetic problems.
    In this talk we study a class of kinetic models presented by Aregba-Driollet and Natalini, whose macroscopic limits are hyperbolic conservation laws. These models contain stiff relaxation terms which may produce spurious unphysical results. We present a high order scheme that can be used over the complete range of the relaxation parameter and, moreover, that can preserve the asymptotic limit of the physical model. To deal with stiff terms, it is natural to use an implicit time discretization. To get a high order scheme, we recast a (DeC) Deferred Correction approach. The spatial discretization comes from the Residual Distribution (RD) framework, a Finite Element based class of schemes that can recast many finite element, finite volume and discontinuous Galerkin schemes. Through these models, we can simulate, for instance Euler's equation, and we present an idea of an extension in the shallow water case. We have tested some example with different schemes, reaching the asymptotic preserving properties and the correct order of convergence for 1D and 2D.
  • Le 3 décembre 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Bertrand Michel
    [Séminaire CSM] Une approche statistique de l'analyse topologique des données
    L'analyse topologique des données (TDA) désigne un ensemble de méthodes et d'algorithmes dont l'objectif est l'estimation et l'exploitation des propriétés topologiques d'une forme géométrique. Dans une première partie de l'exposé, je proposerai une introduction aux principales méthodes de l'analyse topologique des données. Je présenterai en particulier la persistance homologique. Je donnerai ensuite quelques résultats et méthodes statistiques pour la TDA. Je présenterai enfin quelques exemples d'application de la TDA.
  • Le 17 décembre 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Victor Péron
    [Séminaire CSM] Développement de modèles asymptotiques d'ordre élevé pour la résolution numérique de problèmes de perturbation en électromagnétisme et en sismologie
    Les développements asymptotiques multi-échelles permettent de résoudre des problèmes de perturbation à l'aide de la méthode des éléments finis sans rencontrer le problème de l'adaptation de maillage relativement à un petit paramètre caractéristique du problème à résoudre. C'est le cas notamment pour certains problèmes de transmission en présence de couches minces ou de couches limites. Dans cet exposé, nous présentons des modèles asymptotiques d'ordre élevé pour des problèmes d'ondes acoustiques et élastiques en régime harmonique en temps ainsi que pour les équations de Maxwell harmoniques. La précision et la stabilité de modèles obtenus sont illustrées par des résultats numériques.
  • Le 7 janvier 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM] Créneau libre

  • Le 14 janvier 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Laurent Boudin
    [Séminaire CSM] Méthode de moments pour un modèle cinétique de mélange gazeux
    Je commencerai par quelques considérations sur l'équation de Boltzmann pour les mélanges. Puis je reviendrai sur deux applications de la méthode de moments de Levermore, notamment pour discrétiser cette équation de Boltzmann dans l'asymptotique diffusive. C'est un travail en collaboration avec Andrea Bondesan et Bérénice Grec.
  • Le 28 janvier 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Pierre Sochala
    [Séminaire CSM] Méthodes de propagation des incertitudes en géosciences numériques
    La quantification des incertitudes paramétriques est désormais incontournable en calcul scientifique pour estimer la fiabilité des prédictions issues des simulations. Les méthodes de type Monte-Carlo ont un coût de calcul prohibitif pour les modèles numériques complexes; il est alors nécessaire de construire des modèles de substitution statistiques s'appuyant sur un nombre limité de simulations. Nous présentons plusieurs approches de type polynômes de chaos pour construire des modèles de substitution de champs aléatoires et de processus stochastiques. Les méthodes de préconditionnement stochastiques sont particulièrement efficaces pour améliorer l'approximation de la quantité d'intérêt grâce à une transformation qui absorbe une large part des non-linéarités stochastiques. La décomposition sur des bases de fonctions orthogonales empiriques (associées à la variable physique) combinée à une représentation fonctionnelle des coordonnées dans cette base permet également de réduire significativement la complexité de représentation. Ces diverses approches ont été implémentées dans plusieurs applications en géosciences numériques, incluant les écoulements en milieux poreux, les écoulements océaniques et la propagation des ondes sismiques. Nous présentons en particulier l'impact de paramètres de modèles incertains sur la dynamique de fronts d'infiltration, la surcote cyclonique induite par un ouragan aux caractéristiques incertaines, et les accélérations du sol générées par un séisme se propageant dans un milieu aléatoire. Les perspectives d'extension des différentes méthodes proposées sont discutées.
  • Le 4 février 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Mejdi Azaiez
    [Séminaire CSM] A variant of scalar auxiliary variable approaches for some non linear problems
    In this talk, we present and analyze some class of schemes based on a variant of the scalar auxiliary variable (SAV) approaches (Shen et al. (2018)) for some nonlinear problems. Precisely, we construct robust first and second order unconditionally stable schemes by introducing a new defined auxiliary variable to deal with nonlinear terms in gradient flows. The approach consists in splitting the gradient flow into decoupled linear systems with constant coefficients, which can be solved using existing fast solvers for the Poisson equation. We end the talk by given some results for the incompressible Navier-Stokes equations.
  • Le 11 février 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Astrid Decoene
    [Séminaire CSM] Modélisation et simulation numérique de systèmes ciliés
    Dans cet exposé je présenterai des travaux autour de la modélisation mathématique de fluides complexes actifs dans lesquels l'activité provient de structures fines appelées cils. C'est le cas par exemple du mucus bronchique, mis en mouvement par le battement coordonné de cils nappant les parois des bronches. Ce mécanisme, appelé transport mucociliaire, est nécessaire à l'évacuation des impuretés inhalées et de nombreuses pathologies - asthme, bronchite chronique - résultent de son dysfonctionnement. L'étude de ce mécanisme comporte des aspects de modélisation, d'analyse et de calcul, en lien avec des applications potentielles en médecine. Notre objectif est de proposer un outil d'analyse et de simulation numérique permettant d'étudier l'impact sur ces fluides biologiques du battement des cils et la dépendance de certains paramètres comme leur densité ou la viscosité du fluide. Étant donné que nous souhaitons pouvoir faire des simulations à grand nombre de cils, il nous faut considérer un modèle d'interaction fluide-structure impliquant un coût de résolution réduit, mais suffisamment complet pour permettre de reproduire les mouvements collectifs émergeant dans ces fluides. Je présenterai des modèles de différente complexité, ainsi que différentes stratégies numériques pour les résoudre, et je montrerai les dynamiques collectives reproduites par nos simulations.
  • Le 25 février 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM]

  • Le 11 mars 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM] Créneau libre

  • Le 25 mars 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Martin Parisot
    [Séminaire CSM] On the time-discrete Green-Naghdi model
    The Green-Naghdi model is a reduced model, nonlinear and dispersive, for free surface flows. We are interested in the structure of the time-discrete model. It will be shown that the model has a projection structure similar to models of incompressible flows. This result allows us to propose efficient and robust numerical schemes, as well as to define a class of boundary conditions.
  • Le 8 avril 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM] Indisponible

  • Le 13 avril 2021 à 11:30
  • Séminaire de Calcul Scientifique et Modélisation
    Salle de Conférences
    Jean-François Coulombel IMT
    Séminaire commun EDP-CSM

  • Le 29 avril 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Edie Miglio
    [Séminaire CSM] Finite element approximation for high performance simulation of the Post Glacial Rebound
    From the mechanical point of view the interior of the Earth can be considered as composed of four main layers: the inner and outer core, the mantle and the lithosphere. The lithosphere can be assumed to be elastic and the solid mantle beneath behaves as a viscous fluid. The long term equilibrium pressure at a given depth in the Earth is due to the weight of the material above this depth. Deviations from this equilibrium state lead to material transport from regions of higher pressure towards lower pressure. If left undisturbed over time the mantle and the lithosphere reach an equilibrium, in which the depth of the base of the lithosphere will mainly depend on the thickness of the lithosphere. The growth of ice sheets during a glacial period concentrates mass on the Earth's surface to glaciated areas; this fact increases the pressure in the layers below, resulting in a sinking of the lithosphere and in a transport of mantle material away from the region. At the end of the glacial period, when the ice sheets melt away, the pressure on the lithosphere is reduced and the material will flow back causing the surface to uplift. In this talk I will present a discontinuous Galerkin finite element parallel approximation for forward modelling of the viscoelastic response of a three dimensional elastically compressible Earth to an arbitrary surface load. The code is able to perform global simulation of the rebound process, with more refined results on a selected geographical region.
  • Le 20 mai 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Online
    Simon Girel
    [Séminaire CSM] Modèles multi-échelles de la réponse immunitaire T CD8
    Lorsqu'un organisme est infecté par un pathogène intra-cellulaire, les lymphocytes T-CD8 sont activés. Il s'ensuit un programme complexe de prolifération/différenciation au cours duquel les lymphocytes développent des phénotypes hétérogènes, associés à des contenus moléculaires hétérogènes. Les mécanismes qui organisent cette hétérogénéité restent largement incompris. Je présenterai deux modèles mathématiques et les pistes soulevées par ces derniers. Le premier est une équation différentielle ordinaire bistable avec des impulsions associées au partage inégal du contenu moléculaire lors des divisions cellulaires. Je discuterai l'influence du degré d'inégalité sur l'évolution possible de telles équations. Le second est un modèle computationnel à base d'agents de la réponse T CD8. Il couple la description d'une population cellulaire discrète à celle, continue, de l'activité d'un réseau de gène intégré à chaque cellule. Je montrerai comment nous avons étudié, à partir de ce modèle, les possibles conséquences de l'hétérogénéité cellulaire sur l'évolution de la réponse immunitaire. Ces deux travaux suggèrent que certains des aspects incompris de la réponse immunitaire pourraient s'expliquer par l'augmentation, puis la diminution, de l'hétérogénéité des phénotypes des lymphocytes T CD8.
  • Le 3 juin 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Elena Gaburro
    [Séminaire CSM] Diffuse interface approach for compressible flows around moving solids of arbitrary shape (and a brief overview of SuPerMan, my Marie Curie research project)
    In this seminar, I will present a new diffuse interface model for the numerical simulation of inviscid compressible flows around fixed and moving solid bodies of arbitrary shape assumed to be moving rigid bodies without any elastic properties. The mathematical model is a nonlinear system of hyperbolic conservation laws with non-conservative products, obtained as a simplified case of the seven-equation Baer-Nunziato model of compressible multi-phase flows. In particular, the geometry of the solid bodies is specified via a scalar field that represents the volume fraction of the fluid present in each control volume and allows the discretization of arbitrarily complex geometries on simple uniform Cartesian meshes. Due to the diffuse interface nature of the model, the volume fraction function can assume any value between zero and one in mixed cells that are occupied by both, fluid and solid. Moreover it is also possible to proof that at the material interface the normal component of the fluid velocity assumes the value of the normal component of the solid velocity. The numerical solution is computed via a high order path-conservative ADER discontinuous Galerkin (DG) finite element method with a posteriori sub-cell finite volume (FV) limiter and the effectiveness of the proposed approach is tested on a set of different numerical test problems, including 1D Riemann problems as well as supersonic flows over fixed and moving rigid bodies. I will also take this occasion to briefly introduce my MSCA-IF research project SuPerMan “Structure Preserving schemes for conservation laws on space-time Manifolds” (Grant No 101025563).
  • Le 17 juin 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Masayuki Yano
    [Séminaire CSM] reliable and efficient model reduction of parametrized nonlinear PDEs: error estimation, adaptivity, and application to aerodynamics
    Many engineering tasks, such as parametric study and uncertainty quantification, require rapid and reliable solution of partial differential equations (PDEs) for many different configurations. In this talk, we consider goal-oriented model reduction of parametrized nonlinear PDEs with an emphasis on aerodynamics problems. The key ingredients are as follows: the discontinuous Galerkin (DG) method, which provides stability for convection-dominated flows; adaptive mesh refinement, which controls DG spatial error; reduced basis (RB) spaces, which provide rapidly convergent approximations of the parametric manifolds; the dual-weighted residual (DWR) method, which provides effective error estimates for quantities of interest; the empirical quadrature procedure (EQP), which provides hyperreduction of the nonlinear residual and error estimates; and adaptive greedy algorithms, which simultaneously trains the DG spaces, RB spaces, and EQP to meet the user-specified output error tolerance. We demonstrate the framework for parametrized aerodynamics problems modeled by the compressible Euler and Reynolds-averaged Navier-Stokes equations, including unsteady flows and geometry transformation problems with high-dimensional parameter spaces. In the offline stage, the adaptive greedy algorithm trains reduced models in a fully automated manner. In the online stage, the reduced models accelerate the computation by several orders of magnitude and provide the associated error estimate for the quantities of interest.
  • Le 7 octobre 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Ilya Peshkov University of Trento
    Symmetric Hyperbolic equations for dissipative continuum mechanics
    We discuss a class of first-order symmetric hyperbolic thermodynamically compatible (SHTC) equations for continuum mechanics. Many continuum models can be cast into the SHTC class of equations, e.g. classical models such as Euler equations, elasticity, and MHD equations, but also non-classical models for viscous fluids, multi-phase flows, poroelasticity, heat conduction, resistive, electrodynamics, etc. The dissipation is modeled via relaxation-type source terms which allows us to stay in the class of hyperbolic equations. I will discuss some aspects of the SHTC equations and present some numerical results for problems historically covered by the parabolic-type equations such as Fourier-Navier-Stokes equations.
  • Le 14 octobre 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Andrea Thomann University of Mainz
    [Séminaire CSM] Low Mach schemes based on Jin-Xin relaxation
    Low Mach problems arise in fluid dynamics when the local speed of the material is much smaller than the one of acoustic or shear waves. In these regimes, a full resolution of all the waves present in the model requires very small time steps, while usually one is mainly interested in the dynamics of the slow wave. Here, we use a Jin-Xin relaxation approach to develop a general framework for the construction of low Mach schemes for hyperbolic problems. Due to the relaxation procedure, the flux of the resulting model is linear which allows the use of implicit solvers without a restriction on the time step. The time-semi discrete scheme is written in elliptic form which reduces the number of variables to be updated. The relaxation source term is treated by projection on relaxation equilibrium resulting into a generic scheme independent of the relaxation rate. The scheme is applied on the Euler equations and the equations of non-linear elasticity.
  • Le 18 novembre 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Stéphanie Salmon Université de Reims
    [Séminaire CSM] Modèles et simulations numériques des écoulements veineux cérébraux
    L'intérêt des simulations numériques pour le vivant n'est plus à démontrer. Elles donnent accès à des informations impossibles à obtenir in vivo ou de manière non invasive chez l'homme. Dans cet exposé, nous présentons des modèles et simulations numériques développés lors de projets récents visant à étudier différents aspects du fonctionnement du cerveau. En particulier, dans le projet ANR HANUMAN, nous nous intéressons à une modélisation numérique du système cérébro-spinal pour l'humain et pour un modèle animal, le marmouset. L'objectif est d'obtenir des informations sur la pression intra-crânienne, qui constitue un paramètre vital assurant le bon fonctionnement de notre cerveau, à l'aide de mesures de flux et de modèles numériques des écoulements de liquide cérébro-spinal et de son interaction avec les écoulements sanguins. Pour cela, dans un premier temps, nous simulons des écoulements sanguins dans les réseaux veineux cérébraux à une échelle macroscopique, ces écoulements étant de plus en plus mis en cause dans des pathologies de la pression intracrânienne. Ces réseaux réalistes sont reconstruits à partir d'images angiographiques, en l'occurrence, des images IRM (Imagerie par Résonance Magnétique). Des maillages adéquats pour la simulation sont ensuite construits à partir de la segmentation de ces images. Les équations de la dynamique des fluides incompressibles sont alors résolues dans ces maillages par des méthodes d'éléments finis. Chacune de ces étapes est réalisée à l'aide de logiciels libres, permettant la reproductibilité et une possible diffusion de ces outils.
  • Le 25 novembre 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Philippe Helluy Univ. Strasbourg
    [Séminaire CSM] Schémas Galerkin Discontinu explicites inconditionnellement stables
    Il est possible de construire des représentations cinétiques de tous les systèmes de lois de conservation hyperboliques. Dans ce type de représentation, des équations cinétiques, en petit nombre, sont couplées par un terme de relaxation non linéaire. L'approche cinétique est très intéressante en pratique, car la résolution numérique est ramenée à la résolution d'étapes de transport à vitesse constante, alternant avec des étapes de relaxations locales. Pour résoudre les étapes de transports, plusieurs approches sont possibles. Il est bien sûr envisageable de s'appuyer sur la méthode des caractéristiques. Sur une grille régulière, cela conduit à la méthode Lattice-Boltzmann. Il est aussi possible de résoudre le transport par une méthode de type Galerkin Discontinu. Cela permet d'utiliser des maillages déstructurés et de construire des schémas explicites inconditionnellement stables. Je rappellerai les principes de l'approche cinétique, puis je montrerai des applications en mécanique des fluides et en électromagnétisme.
  • Le 2 décembre 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Walter Boscheri
    Modeling and simulating the spatial spread of an epidemic through multiscale kinetic transport equations
    In this work we propose a novel space-dependent multiscale model for the spread of infectious diseases in a two-dimensional spatial context on realistic geographical scenarios. The model couples a system of kinetic transport equations describing a population of commuters moving on a large scale (extra-urban) with a system of diffusion equations characterizing the noncommuting population acting over a small scale (urban). The modeling approach permits to avoid unrealistic effects of traditional diffusion models in epidemiology, like infinite propagation speed on large scales and mass migration dynamics. A construction based on the transport formalism of kinetic theory allows to give a clear model interpretation to the interactions between infected and susceptible in compartmental space-dependent models. In addition, in a suitable scaling limit, our approach permits to couple the two populations through a consistent diffusion model acting at the urban scale. A discretization of the system based on finite volumes on unstructured grids, combined with an asymptotic preserving method in time, shows that the model is able to describe correctly the main features of the spatial expansion of an epidemic. An application to the initial spread of COVID-19 is finally presented.
  • Le 16 décembre 2021 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Hugo Martin Inserm
    [Séminaire CSM] Glioblastoma cell variability and circadian rhythms control temozolomide efficacy: from cellular pharmacokinetics-pharmacodynamics to heterogeneous cancer cell population models
    Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults, and is currently associated with a dismal prognosis despite intensive treatments combining surgery, radiotherapy and temozolomide-based chemotherapy. Clinical trials over the last two decades testing various multi-agent pharmacotherapies have failed demonstrating any significant patient survival improvement so far. Chronotherapy, that consists in administering antitumor drug according to the patient's 24h-rhythms is considered as a promising therapeutic approach to improve treatment tolerability and efficacy. Interestingly, recent clinical and preclinical studies have highlighted the dependency of temozolomide (TMZ) efficacy on administration timing. Median overall survival (OS) of GBM patients receiving TMZ in the morning was equal to 1.43 years as compared to 1.13 for patients taking the same drug dose in the evening. In a subgroup of patients whose tumor presented methylated promoter of MGMT DNA repair enzyme (resulting in decreased MGMT protein expression and increased sensitivity to TMZ), the difference in survival was even higher as the median OS was 6 months longer for AM patients as compared to evening patients. In order to obtain quantitative predictions on the mechanisms underlying temozolomide chronoefficacy, we designed a systems pharmacology model at the cell population level as follows. A simplified ODE-based model of TMZ pharmacokinetics-pharmacodynamics (PK-PD) was connected to a model representing the cancer cell population dynamics though a PDE structured in the amount of DNA damage in a cell and sensitivity to damage. The PK part of the ODE model was fully designed and calibrated to data, whereas the remaining elements of this combined model were inferred from cell culture circadian datasets. To properly fit all datasets, we had to include in the model an inter-cell variability accounting, standing either for different rates of DNA damage formation or repair. This addition allowed a successful model calibration, in contrast to the model in which population heterogeneity came solely from the initial damage distribution, prior any drug exposure. In the talk, I will present the data available, on which we tailored our model on. Then I shall introduce a simplified version of the PDE model, that suggested the need of inter-cell variability, and afterwards the complete model, that covers more datasets and includes more biological assumptions. I will conclude on the first conclusions of this work in progress, and say a few words on the dataset that is not yet included.
  • Le 6 janvier 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Nicolas Meunier Univ. Évry
    [Séminaire CSM] Modelling of Cell Motility, mathematical analysis and numerical simulations
    In this talk, I will present a new model to describe some aspects of cell migration. Cell migration plays a key role in many physiological processes, such as embryogenesis, wound repair or metastasis formation. It is the result of a complex activity that involves different time and space scales. I will first detail the construction of the model and then present rigorous results and numerical simulations. Keywords: complex and multiscale processes; active fluid; free boundary problem; surface tension; traveling-wave solution; bifurcation.
  • Le 3 février 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Zoom
    Antoine Zurek Université de Technologie de Compiègne
    [Séminaire CSM] Existence of traveling wave solutions for the Diffusion Poisson Coupled Model: a computer-assisted proof
    In France one option under study for the storage of high-level radioactive waste is based on an underground repository. More precisely, the waste shall be confined in a glass matrix and then placed into cylindrical steel canisters. These containers shall be placed into micro-tunnels in the highly impermeable Callovo-Oxfordian claystone layer at a depth of several hundred meters. The Diffusion Poisson Coupled Model (DPCM) aims to investigate the safety of such long term repository concept by describing the corrosion processes appearing at the surface of carbon steel canisters in contact with a claystone formation. It involves drift-diffusion equations on the density of species (electrons, ferric cations and oxygen vacancies), coupled with a Poisson equation on the electrostatic potential and with moving boundary equations. So far, no theoretical results giving a precise description of the solutions, or at least under which conditions the solutions may exist, are avalaible in the literature. However, a finite volume scheme has been developed to approximate the equations of the DPCM model. In particular, it was observed numerically the existence of traveling wave solutions for the DPCM model. These solutions are defined by stationary profiles on a fixed size domain with interfaces moving at the same velocity. The main objective of this talk is to present how we apply a computer-assisted method in order to prove the existence of such traveling wave solutions for the system. This approach allows us to obtain for the first time a precise and certified description of some solutions. This work is in collaboration with Maxime Breden and Claire Chainais-Hillairet.
  • Le 3 mars 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Wasilij Barsukow
    [Séminaire CSM] Active Flux: a new numerical method for hyperbolic conservation laws
    A conservation laws generically develops discontinuities in finite time. For convergence to its weak solution, a numerical method needs to be conservative. A popular way to derive such methods (due to Godunov) is to introduce discontinuities at every cell interface (reconstruction step), and to evolve such step-wise data over a short period of time. Godunov's approach thus introduces discontinuities everywhere in the solution. In view of the big effort associated with grid refinement (particularly in multi-d), efforts are ongoing to guarantee properties of numerical solutions for coarse grids already. It is not surprising that flow phenomena different from shocks (low Mach limit, vortices, ...) are not well approximated by standard Godunov methods on coarse grids. This observation has sparked the development of Active Flux, a numerical method whose degrees of freedom are cell averages and, additionally, point values located at cell interfaces and shared by adjacent cells. The evolution of the averages is conservative, and the method is able to resolve shocks correctly, despite a globally continuous reconstruction. Its centerpiece is a short-time evolution of continuous data. The talk will describe this numerical method, in particular its application to nonlinear conservation laws, as well as recent developments.
  • Le 17 mars 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Annabelle Collin (Bordeaux INP) & Mélanie Prague (Inria)
    [Séminaire CSM] Using population based Kalman estimator to model COVID-19 epidemic in France: estimating the effects of non-pharmaceutical interventions on the dynamics of epidemic
    The COVID-19 pandemic is a global pandemic of coronavirus disease caused by SARS-CoV-2. Governments are taking a wide range of non-pharmaceutical interventions (NPIs) in response to the COVID-19 outbreak. These measures include interventions as stringent as strict lockdown to school closings, bars and restaurants closings, curfews and barrier gesture such as masks wearing and social distanciation. Distinguish the effectiveness of each NPI is crucial to inform future preparedness response plans. We propose an approach which focuses on French data and combines estimation of epidemics dynamics models and estimation of NPIs effectiveness. We develop a multi-level model of the French COVID-19 epidemic at the regional level relying on a global extended Susceptible-Exposed-Infectious-Recovered (SEIR) model as a simplified representation of the average epidemic process. We estimate the transmission rate with a population Kalman filter using hospitalization data from the SIVIC database over a period of one year (March 2020 to 2021). Then we infer the linear relationship between transmission rate and NPIs introduction allowing to estimate the effect of non-pharmaceutical interventions adjusting for weather, vaccination and apparition of more transmissible variants.
  • Le 25 mars 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Alessia Del Grosso Univ Versailles
    [Séminaire CSM] On implicit-explicit well-balanced Lagrange-projection schemes for two-layer shallow water equations
    This work concerns the study of well-balanced Lagrange-projection schemes applied to the two-layer shallow water system. In particular, a formulation of the mathematical model in Lagrangian coordinates is proposed. Based on the acoustic-transport splitting interpretation, we describe an approximate Riemann solver for the acoustic-Lagrangian step. Then, both an explicit and an implicit-explicit method are proposed, where the latter can allow fast simulations in subcritical regimes. Indeed, since the Lagrange-projection splitting entails a decomposition of the (fast) acoustic and (slow) material waves of the model, an implicit approximation of the acoustic equations allows us to neglect the corresponding CFL condition on the time step.
  • Le 2 juin 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Benjamin Graille (IMO) null
    [Séminaire CSM] Des schémas de Boltzmann sur réseau pour simuler le système dEuler complet
    La méthode de Boltzmann sur réseau est très largement utilisée pour simuler les équations de la mécanique des fluides comme Navier-Stokes incompressible. Jusquà présent la prise en compte de léquation de conservation de lénergie était difficile et se limitait à une approximation de type Boussinesq. De nouvelles idées ont permis la construction de schémas capables de simuler des systèmes hyperboliques plus généraux et en particulier Euler complet. Dans cet exposé, nous décrirons quelquuns de ces nouveaux schémas en nous intéressant particulièrement à la montée en nombre de Mach (problème très sensible des schémas de Boltzmann sur réseau).
  • Le 24 juin 2022 à 11:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 1
    Gwladys Toulemonde (IMAG) null
    [Séminaire CSM] Méthodes statistiques et modélisation stochastique de processus extrêmes pour l'étude du risque inondation
    Pour étudier le risque inondation, des modèles d'écoulement, conditionnés par des forçages de pluies, peuvent être utilisés. Les pluies étant l'un des processus météorologiques les plus complexes, la simulation de tels champs nécessite une caractérisation précise des variabilités spatio-temporelles et des intensités à partir des données disponibles. Les approches stochastiques classiques étant inopérantes pour les événements extrêmes, la plupart des générateurs existants tendent à les sous-estimer. Pour pallier cela, nous présenterons des approches basées sur les dépassements de seuils élevés. Plus généralement nous illustrerons l'apport de méthodes statistiques pour l'étude du risque inondation en milieu urbain.
  • Le 22 septembre 2022 à 12:45
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Ksenia Kozhanova (AMU) null
    [Séminaire CSM] On 3D computational strategy for shock-induced bubble collapse
    "The importance of two-phase fluid flow modelling arises from many applications. However, the non-linearity of the system makes it a complicated task for the numerical methods. While a variety of numericaltechniques to solve these problems exist, these strategies can lead to spurious oscillations of the solution nearthe interface. In this talk a problem of the shock-induced bubble collapse near a wall computed based on theexplicit finite volume solver with underlying four-equation model will be discussed. The physical dynamicsinvolved into this problem are characterised by high speeds and very small spacial-temporal scales. A very finegrid and fast converging and compact high-order numerical schemes are, thus, required. The mesh stretchingmethods coupled with modified numerical schemes implemented by using Open MP and MPI paradigm areused to reduce the CPU cost. Hence, the novelty of our work is a construction of the high-order numerical toolfor solving a 3D problem of two-phase shock-interface interaction on non-uniform grid."
  • Le 6 octobre 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    [Séminaire CSM] Pas de séminaire : soutenance de thèse d'Andony Arrieula
    .
  • Le 20 octobre 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Peter Langfield (CARMEN) null
    [Séminaire CSM] Numerical continuation approaches for computing phase response in higher-dimensional models.
    "In dynamical systems, invariant objects can be computed efficiently via numerical continuation of solutions to a suitably defined boundary-value problem. This presentation will start with a brief overview of the basic ideas behind the numerical continuation method, and some examples of typical applications.The main focus of the presentation is determining how oscillating models shift in phase in response to stimuli. I will present numerical-continuation-based approaches for computing two phase-response tools, namely, isochrons and phase transition curves. Using examples of the 4d Hodgkin-Huxley model and a 7d sino-atrial node cell, I will show how these approaches are undeterred by sensitivity that is common in biological systems, and how the (n-1)-dimensional isochrons can be computed and visualized even in models with dimension n>3."
  • Le 10 novembre 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Chloé Mimeau (CNAM) null
    [Séminaire CSM] Pénalisation de Brinkman pour la simulation découlements en milieux fluide-poreux - Comparaison de deux méthodes numériques : une méthode Lattice Boltzmann et une méthode semi-lagrangienne.
    "Les parois poreuses et milieux poreux sont connus pour leur capacité à contrôler les instabilités des écoulements. En revanche les mécanismes physiques à lorigine de ces propriétés régularisantes sont encore mal compris.Dans cette étude nous considérons une approche que lon pourrait qualifier de « sub-pore scale model » (modèle de sous-pore) pour simuler numériquement des écoulements en milieu fluide-poreux; il sagit de la méthode de pénalisation de Brinkman.Cette technique, grâce à son aspect « pénalisation », peut être facilement intégrée à nimporte quelle méthode numérique en ajoutant un terme source aux équations continues que lon cherche à résoudre dans la phase fluide.Nous présenterons son implémentation au sein de deux approches numériques bien distinctes et non-canoniques : une méthode Lattice Boltzmann (LBM) (mésoscoqiue/eulérien) et une méthode Vortex avec remaillage (VM) (macroscopique/semi-lagrangien).Les résultats seront comparés et analysés dans le cadre dun écoulement autour dune sphère poreuse.Nous nous intéresserons en particulier à la relation entre la nature du régime découlement (caractérisé par le nombre de Reynolds critique) et la perméabilité de la sphère immergée (caractérisée par le nombre de Darcy).Les résultats obtenus avec les deux méthodes LBM et VM seront comparés entre eux mais également aux résultats de la littérature et une analyse physique des résultats sera proposée."
  • Le 24 novembre 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Emmanuel Audusse (P13) null
    [Séminaire CSM] Schémas volumes finis colocalisés pour les équations de Saint-Venant avec force de Coriolis
    "Nous nous intéressons dans ce travail à la simulation numérique des écoulements océaniques ou atmosphériques aux grandes échelles. Nous considérons le système de Saint-Venant avec forces de Coriolis. Aux échelles considérées, les écoulements sont, au premier ordre, des perturbations de l'équilibre géostrophique (entre force de pression et force de Coriolis) et la précision des schémas autour de cet équilibre est donc un point crucial. Nous proposons ici un schéma numérique de type volumes finis colocalisés pour lequel nous prouvons une inégalité dénergie semi-discrète et la convergence asymptotique vers léquilibre géostrophique. Les résultats numériques montrent une très nette amélioration autour de cet équilibre, même en comparaison avec des schémas de type Godunov dordre 2."
  • Le 1er décembre 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Emanuele Macca (Univ. of Catania) null
    A high-order IMEX strategy for Exner model with Grass equation for sedimentation
    "The aim of this talk is introduce an Implicit-Explicit (IMEX) strategy to compute thesediment evolution in the Exner model for sediment transport in Shallow Watersystem and improve both stability and efficiency. In this model there are several timescales. One associated with the temporal evolution of the sediment, generally very longwith a much slower velocity; one related to the velocity of free-surface waves, generallyvery fast that implies an hard restriction in the time step; and one related to the velocityof the fluid with. Unfortunately, as known, an explicit method implies a strong stabilityrestriction due to the velocity of the free-surface wave. This restriction involves in a verylong computation time that could be reduced neglecting the free-surface waves behaviourand looking at the sediment evolution. The objective is to drastically improve the efficiencyin the computation of the evolution of the sediment by treating water waves implicitly,thus allowing much larger time steps than the one allowed by standard CFL condition onexplicit schemes."
  • Le 8 décembre 2022 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Jason Bayer (IMB/IHU) null
    [Séminaire CSM] Developing cardiac electrotherapies with virtual heart models
    Virtual heart models are multiscale computational tools for studying cardiac function from the cell to organ level. They are particularly useful for simulating the electrical activity of the heart, which is essential for triggering the muscle contractions necessary to pump life-sustaining blood throughout the body. Since studying 3D electrical activity within the heart of a patient is invasive, expensive, and time-consuming, virtual heart models can circumvent these limitations to more thoroughly investigate both normal and abnormal cardiac electrical function. This computational platform is also ideal for testing and developing cardiac electrotherapies in a safe, efficient, and cost-effective manner. This seminar will focus on the use of virtual heart models to develop safer and less painful electrotherapies for terminating ventricular fibrillation, a lethal electrical disturbance in the heart. 
  • Le 18 janvier 2023 à 14:30
  • Séminaire de Calcul Scientifique et Modélisation
    Batiment Inria, salle Grace Hopper 2
    Jose Daniel Galaz Mora null
    [Séminaire CSM] Towards a stable coupling of Green-Naghdi and Nonlinear Shallow water equations using domain decomposition methods
    "The coupling of Green-Naghdi and Nonlinear Shallow water equations provides an attractive parameter-free formulation for dispersive water-wave propagation and wave breaking. However, so far, instabilities have been observed in current formulations, as the numerical resolution is increased.In this talk I will present how we can study this issue from the perspective of domain decomposition methods (DDM).For that I will introduce DDM by using the coupling of the BBM and transport equations as an example.We will discuss the importance of using the right boundary conditions for the coupling, most importantly the so called absorbing or transparent boundary conditions, and what we can learn from this ""toy"" model that can be useful for coupling dispersive and nondipersive (hyperbolic) models in more complex settings."
  • Le 26 janvier 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Victor Peron (Univ. Pau) null
    [Séminaire CSM] Quelques développements multi-échelles et leurs applications pour la résolution de problèmes de perturbation
    Dans cet exposé, nous présentons des développements multi-échelles qui permettent de simplifier la résolution numérique de problèmes de perturbation en électromagnétisme ou en sismologie à l'aide de la méthode des éléments finis. Dans une première partie, nous présentons des modèles asymptotiques associés à des conditions dimpédance pour la résolution de problèmes de couche mince ou de couche limite. Dans une seconde partie, nous nous intéressons à un problème de courant de Foucault dans des matériaux magnétiques. Nous présentons une méthode de paramétrisation pour le potentiel magnétique relativement à un petit paramètre complexe inversement proportionnel au produit de la perméabilité magnétique relative par l'épaisseur de peau qui représente une profondeur de pénétration du champ électromagnétique. Cette méthode est bien adaptée à la résolution du problème pour une gamme de fréquences assez large et sans adaptation de maillage relativement à l'épaisseur de peau. Cette méthode a l'avantage de fournir à moindre coût de calcul le même ordre d'approximation qu'une méthode d'impédance de surface. La performance des modèles présentés dans cet exposé est illustrée par différents tests numériques.
  • Le 9 février 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Jean-Rene Poirier (Lab. Laplace\, Univ. Toulouse 3) null
    [Séminaire CSM] Méthodes intégrales pour les équations de Maxwell et accélération par des méthodes de compression
    "Dans cet exposé, nous présenterons tout dabord trois applications différentes des équations de Maxwell en domaine non borné ainsi que leur déclinaison en terme de problème aux limites. A chacune de ces applications correspond une formulation intégrale et une problématique différente pour la résolution du système linéaire plein qui en résulte.Dans un second temps nous présenterons 2 méthodes accélération basées sur des techniques de compression ainsi que la déclinaison que cela implique sur chacune de ces applications.La méthode des matrices hiérarchiques (H-Matrix) est maintenant bien connue. Elle consiste en une subdivision de la matrice en bloc divisés de façon hiérarchiques de telle façon que les blocs correspondant à des interactions lointaines comportent une déficience de rang et admettent donc une représentation de rang faible. La matrice ainsi comprimée admet alors une «sorte» de représentation creuse que lon peut exploiter une résolution rapide.La méthode « Tenseur-Train » utilise un principe assez similaire pour résoudre le système linéaire qui doit alors être écrit avec une représentation tensorielle. Une des difficultés est alors de choisir la fonction de mapping permettant de transformer la matrice en un tenseur ayant les bonnes propriétés. Cette option plus propecpective donne dexcellents résultats sur des problématiques en 1D mais reste pour le moment moins performante que les outils usuels sur des applications 3D à visée industrielle."
  • Le 2 mars 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Li-Lian Wang (Nanyang Technological University) null
    [Séminaire CSM] Efficient Spectral and High-Order Methods for Wave Scattering Problems
    It is believed that high-order methods have significant advantages in simulating wave propagations. In this talk, we shall propose efficient computational techniques which can be integrated with spectral and spectral-element solvers for time-harmonic wave scattering problems. One important building block is to introduce a truly exact perfect absorbing layer (PAL) for domain truncation of the scattering problem in an unbounded domain with a bounded scatterer. This technique is based on a compression coordinate transformation (including complex and real transformations) in radial direction, and a suitable substitution of the unknown field in the artificial layer. Compared with the widely-used perfectly matched layer (PML) methods, the distinctive features of PAL lie in that (i) it is truly exact in the sense that the PAL-solution is identical to the original solution in the bounded domain reduced by the truncation layer; (ii) with the substitution, the PAL-equation is free of singular coefficients and the substituted unknown field is essentially non-oscillatory in the layer; and (iii) the construction is valid for general star-shaped domain truncation. By formulating the variational formulation in Cartesian coordinates, the implementation of this technique using standard spectral-element or finite-element methods can be made easy as a usual coding practice. We provide ample numerical examples to demonstrate that this method is highly accurate and robust for very high wavenumbers and thin layers. Then we demonstrate various applications e.g., invisibility cloaking in metamaterials.
  • Le 9 mars 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Jing-Rebecca Li (École Polytechnique) null
    [Séminaire CSM] [Reporté] Modeling the diffusion MRI signal by a PDE
    The MRI signal (diffusion weighted) is the sum of the magnetization in a volume of cell tissue (a voxel). The magnetization at the scale of the cell microstructure can be modeled by a partial differential equation called the Bloch-Torrey equation. What makes the numerical solution of this equation difficult is the presence of complex interfaces (i.e., cell membranes) over which the solution is discontinuous. I will discuss the numerical solution of the direct problem of the Bloch-Torrey equation, and briefly mention some ideas for the inverse problem.
  • Le 16 mars 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Xavier Claes (lab. Jacques-Louis Lions\, Paris 6) null
    "[Séminaire CSM] Généralisation des Méthodes de Schwarz Optimisées pour le\ntraitement robuste des points de croisement"
    "Dans le cadre de la propagation d'ondes en régime harmonique, les Méthodes deSchwarz Optimisées (OSM) sont parmi les stratégies de décomposition de domaineles plus populaires.Dans le cas d'une partition en sous-domaines sans recouvrement arbitraire (comme lorsqu'on a recours à un partitionneur de graphe) la présence de points de croisement, c'est-à-dire des points où trois sous-domaines ou plus sont adjacents, avait jusqu'à présent soulevé de sérieuses difficultés tant surle plan pratique que théorique.Nous décrirons une nouvelle variante d'OSM qui fournit un traitement systématique et robuste des points de croisement ainsi qu'une analyse théorique complète incluant des estimations de convergence.Un ingrédient important et nouveau de cette approche est un opérateur d'échange non-local pour imposer les conditions de transmission et maintenir le couplage entre sous-domaines.Si la théorie associée couvre plusieurs variantes pré-existantes d'OSM, y compris l'algorithme original de Després, elle conduit également à de nouvelles méthodes aux propriétés de convergence accrues.Nous présenterons des résultats numériques en acoustique et en électromagnétisme."
  • Le 23 mars 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Nina Aguillon (Sorbonne Univ.) null
    [Séminaire CSM] Quantification a posteriori de la diffusion numérique
    "Les solutions des systèmes hyperboliques contiennent des discontinuités.Ces solutions faibles vérifient non seulement les EDP de départ, mais aussi une inégalité d'entropie qui agit comme un critère de sélection déterminant si une discontinuité est physique ou non.Il est très important d'obtenir une version discrète de ces inégalités d'entropie lorsqu'on approxime numériquement les solutions, sans quoi le schéma est susceptible de converger vers des solutions non physiques ou pire d'être instable.Obtenir une inégalité d'entropie discrète est en général un travail difficile, souvent inatteignable pour des schémas d'ordre élevé.Dans cet exposé, je présenterai une approche où ces inégalités sont obtenues a posteriori en minimisant une fonctionnelle bien choisie.La difficulté principale est de prendre en compte la notion de consistance.Cette méthode permet d'obtenir des ""cartes de diffusion numérique"" pour des schémas d'ordre quelconque.Elle permet aussi de trouver, par une autre procédure d'optimisation, la pire donnée initiale vis à vis de l'entropie.C'est un travail en collaboration avec Emmanuel Audusse, Vivien Desveaux et Julien Salomon."
  • Le 27 avril 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Jing-Rebecca Li (École Polytechnique) null
    [Séminaire CSM] Modeling the diffusion MRI signal by a PDE
    The MRI signal (diffusion weighted) is the sum of the magnetization in a volume of cell tissue (a voxel). The magnetization at the scale of the cell microstructure can be modeled by a partial differential equation called the Bloch-Torrey equation. What makes the numerical solution of this equation difficult is the presence of complex interfaces (i.e., cell membranes) over which the solution is discontinuous. I will discuss the numerical solution of the direct problem of the Bloch-Torrey equation, and briefly mention some ideas for the inverse problem.
  • Le 4 mai 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Sergei Chernyshenko (Imperial College London\, UK) null
    [Séminaire CSM] Bounding time averages: a road to solving the problem of turbulence
    The problem of turbulence is the greatest unsolved problem of classical physics. It is encountered in dynamical systems so complicated that numerical calculations are too expensive. In practice it is often suffcient to know only a few time-averaged quantities, such as the mean drag and lift. The problem of turbulence is the problem of establishing methods of obtaining this limited information at a significantly smaller cost than the cost of getting the complete solution. Even finding good upper and lower bounds for the quantity of interest might be enough. The talk will cover the basics of how this can be done, then move on to new developments related to the recent advances in computer-assisted semi-algebraic optimisation, and finish with unsolved problems.
  • Le 11 mai 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Marcella Bonazzoli Inria Saclay
    [Séminaire CSM] On the convergence analysis of one-shot inversion methods
    When an inverse problem is solved by a gradient-based optimization algorithm, the corresponding forward and adjoint problems, which are introduced to compute the gradient, can be also solved iteratively. The idea of iterating at the same time on the inverse problem unknown and on the forward and adjoint problem solutions yields to the concept of one-shot inversion methods. We are especially interested in the case where the inner iterations for the direct and adjoint problems are incomplete, that is, stopped before achieving a high accuracy on their solutions. Here, we focus on general linear inverse problems and generic fixed-point iterations for the associated forward problem. We analyze variants of the so-called multi-step one-shot methods, in particular semi-implicit schemes with a regularization parameter. We establish sufficient conditions on the descent step for convergence, by studying the eigenvalues of the block matrix of the coupled iterations. Several numerical experiments are provided to illustrate the convergence of these methods in comparison with the classical gradient descent, where the forward and adjoint problems are solved exactly by a direct solver instead. We observe that very few inner iterations are enough to guarantee good convergence of the inversion algorithm, even in the presence of noisy data.
  • Le 25 mai 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Marien-Lorenzo Hanot Montpellier
    [Séminaire CSM] Le complexe de Stokes discret
    L'utilisation des complexes différentiels dans la discrétisation des équations aux dérivées partielles a été récemment popularisée au travers des éléments finis de calcul extérieur.
    Initialement employés pour l'électromagnétisme ils ont ensuite été appliqués à de nombreux autres systèmes d'équations, tel que les équations de Navier-Stokes.
    Ces méthodes visent à préserver la structure des équations au travers des complexes, et profitent généralement d'une grande stabilité, de robustesse ainsi que d'une préservation exacte de certaines quantités.
    L'objectif est de présenter l'application des complexes différentiels à la discrétisation des équations de Navier-Stokes incompressibles avec les avantages qu'ils peuvent apporter.
    L'utilisation des complexes discrets demande cependant un certain travail au niveau de la création des espaces. Bien que de nombreuses constructions existent pour les complexes les plus simples, la création de complexes plus avancés reste compliquée en 3 dimensions. Ainsi nous présenterons dans un second temps la construction de tels complexes discrets.


  • Le 8 juin 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Daniela Capatina Univ. Pau
    [Séminaire CSM] Reconstruction de flux conservatifs et analyse d’erreur a posteriori pour des problèmes elliptiques d’interface
    On s'intéresse la reconstruction de flux (i.e., d'un vecteur de H(div)) satisfaisant
    une propriété de conservation locale et calculé par un post-process local à partir de
    la solution éléments finis d'un problème donné. Une des applications importantes de
    tels flux est dans l'analyse d'erreur a posteriori et le raffinement adaptatif de maillage,
    puisque la norme L2 de la différence entre le flux numérique et le flux reconstruit
    constitue un estimateur d’erreur a posteriori, qui majore l'erreur avec une constante
    de fiabilité égale à 1.

    Dans cet exposé, on présentera une méthode de construction basée sur une
    formulation mixte équivalente à la formulation de départ et dont le
    multiplicateur, défini sur les arêtes du maillage, est utilisé pour définir de manière
    naturelle le flux dans l'espace de Raviart-Thomas. D'une part, cette approche
    fournit un cadre unifié  pour les méthodes d'éléments finis classiques (conformes,
    non-conformes et de Galerkin discontinues) d'ordre quelconque et permet
    d'établir des liens entre ces divers flux. D'autre part, contrairement aux méthodes
    existantes, elle ne nécessite la résolution d'aucun problème mixte (local ou global).

    Après avoir décrit l'approche pour l'opérateur de Laplace, on présentera son
    extension à d'autres problèmes-modèle : diffusion avec coefficients discontinus
    dûs à la présence d'interfaces, problème de Poisson où la frontière
    ne suit pas le maillage et l'approximation est réalisée à l’aide de la méthode CutFEM,
    problème de contact où la condition de bord est non-linéaire.
    On illustrera les résultats théoriques par des tests numériques.

  • Le 15 juin 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Jan Nordström Linköping University
    [Séminaire CSM] Nonlinear Boundary Conditions for Initial Boundary Value Problems with Applications in Computational Fluid Dynamics
    We derive new boundary conditions and implementation procedures for nonlinear initial boundary
    value problems (IBVPs) that lead to energy and entropy bounded solutions. The new boundary
    procedure is applied to nonlinear IBVPs on skew-symmetric form. For easy of presentation, the
    analysis focus on the nonlinear IBVPs part involving first derivatives. However, the boundary
    procedure is general in the sense that it can be used to also bound dissipative IBVPs involving
    second derivatives, present for example in the Navier-Stokes equations, and we show how that is
    done. The complete procedure has two main ingredients. In the first part (published in [1, 2]),
    the energy and entropy rate in terms of a surface integral with boundary terms was produced. In
    this second part we shortly reiterate the previous analysis for completeness and complement it by
    adding second derivative dissipative terms.
    This main part of this paper deals with the boundary terms, which are controlled using a new
    nonlinear boundary procedure which generalise the well known characteristic boundary procedure
    for linear problems. Both strong and weak imposition of the nonlinear boundary conditions are
    discussed. We stress that the second part in itself does not depend on the first part. It only
    requires that an energy rate in terms a surface integral with boundary terms exist. The new
    boundary procedure is exemplified on three important IBVPs in computational fluid dynamics: the
    incompressible Euler equations, the shallow water equations and the compressible Euler equations
    (all on skew-symmetric form). We also discuss how to formally extend the analysis to the NavierStokes equations. Finally we show that stable semi-discrete approximations follow promptly if
    summation-by-parts operators in combination with weak boundary conditions are used.
    References
    [1] J. Nordström (2022). Nonlinear and linearised primal and dual initial boundary value problems:
    When are they bounded? How are they connected?. Journal of Computational Physics, vol 455,
    no 111001.
    [2] J. Nordström (2022). A skew-symmetric energy and entropy stable formulation of the compressible Euler equations. Journal of Computational Physics, vol 470, no 111573.



  • Le 21 septembre 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Vadim Maltsev Cranfield
    [Séminaire CSM] Hybrid high-order framework for compressible multi-species flows
    We present the application of a family of hybrid Discontinuous Galerkin/ Finite Volume (DG/FV) methods for the solution of multi-species problems involving gas-gas and gas-liquid systems, and using a five-equation interface capturing model. The numerical scheme achieves higher accuracy in smooth flow regions thanks to the DG discretisation, yet avoiding oscillations at material interfaces and shocks thanks to a CWENOZ FV type reconstruction of the same discretisation order of the underlying DG method. This strategy, as typically represented in literature, make use of the so-called troubled cell
    indicators for the detection of numerical oscillations generated by an unlimited high-order scheme in presence of discontinuities, enabling in the troubled cells only, a more dissipative scheme in order to suppress spurious oscillations. As will be shown in a series of increasingly challenging test-cases, when applied to multi-species flows in the context of diffuse-interface models, the hybrid framework is able to limit the excessive material interface dissipation, characteristic of these interface-capturing methods, allowing at the same time a control over the amount of dissipation necessary to solve stiffer problems. The implementation is performed in the UCNS3D open-source CFD solver.
  • Le 28 septembre 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Bérénice Grec Paris-Cite MAP5
    [Séminaire CSM] Modélisation d’un fluide diphasique à faible nombre de Mach avec forts transferts de chaleur
    Dans cet exposé, nous nous intéressons à la modélisation de l’écoulement du fluide caloporteur (eau) dans un coeur de réacteur nucléaire.
    Pour cela, je présenterai tout d’abord un modèle simplifié à faible nombre de Mach « à 3 équations » (obtenu comme limite asymptotique à bas nombre de Mach d’un modèle compressible, le modèle HEM), qui repose sur la décomposition du champ de pression en une pression thermodynamique (qui intervient dans l’équation d’état) et une pression dynamique (dans l’équation de quantité de mouvement). Cette décomposition présente de nombreux avantages, à la fois du point de l’obtention de solutions exactes et asymptotiques, mais aussi du point de vue numérique.
    Par la suite, nous étudions un nouveau modèle (« à 4 équations ») décrivant le comportement d’un fluide diphasique à faible nombre de Mach, qui peut être obtenu comme la limite asymptotique à bas nombre de Mach du modèle HRM. Après avoir décrit quelques propriétés du modèle, nous montrons la convergence formelle de ce modèle vers le modèle précédent « à 3 équations » dans le régime de relaxation instantanée. Nous introduisons un schéma préservant l’asymptotique permettant des simulations numériques du couplage spatial entre deux régions présentant des temps caractéristiques de relaxation différents.
    Il s’agit de travaux en collaboration avec Stéphane Dellacherie, Gloria Faccanoni et Yohan Penel.
  • Le 5 octobre 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Vincent Martin LMAC
    [Séminaire CSM] Quelques étapes vers la preuve formelle en Coq de la méthodes des éléments finis
    La méthode des éléments finis est largement répandue pour résoudre des gammes d'équations aux dérivées partielles. Elle est basée sur un cadre mathématique bien connu et est implémentée dans de nombreux codes numériques. Notre objectif à relativement long terme est double : d'une part, prouver formellement en Coq que la méthode mathématique des éléments finis est "correcte", et d'autre part prouver, toujours en Coq et avec l'aide d'autres outils formels, que des parties de bibliothèques d'éléments finis en C++ sont "correctes". Le sens du mot "correct" est à préciser. Le but est d'avoir la plus grande confiance possible dans la méthode et son implémentation, en précisant/explicitant par exemple quelles sont les hypothèses nécessaires.
    On commencera par une explication succincte, par un non spécialiste, de ce qu'un assistant de preuve (comme Coq) peut faire pour aider à prouver un théorème ou un programme. Ensuite, on illustrera brièvement la démarche, avec la preuve complète --mathématique et programme, faite par d'autres-- de l'équation des ondes 1D en différences finies. Enfin, on présentera quelques étapes vers la preuve de la méthode des éléments finis : la preuve du théorème de Lax--Milgram, la
    construction de l'intégrale de Lebesgue et le théorème de Tonelli, pour finir sur la preuve en cours de l'unisolvance pour les éléments finis de Lagrange de degré k, sur un simplexe en dimension d.
    Ce travail résulte d'une collaboration avec des informaticiennes, Sylvie Boldo (INRIA Saclay) et Micaela Mayero (LIPN, Paris 13) et un numéricien-informaticien François Clément (INRIA Paris). Florian Faissole (Mitsubishi Electric) et Houda Moucine (thèse en cours) ont contribué également.
  • Le 26 octobre 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Ludovic Godard-Cadillac IMB
    [Séminaire CSM] Micro-magnetism modeling for nano-particles and nano-wires
    This talk will be about a series of works concerning the modeling of micro-magnetism for thin geometries. This presentation is the occasion to present the general properties of micro-magnetism physics and more specifically the phenomenons arising in small geometries and mainly the two case where the domain is a nano-particle (small sphere or small ellipse) or a nano-wire (cylinder or quasi-cylinder with small cross-section). In a second time I will present the contributions I made on these problems and models with P-A. Hervieux, G. Manfredi (physicists) and with R. Côte, C. Courtès, G. Ferrière, Y. Privat (mathematicians) in Strasbourg. The main focus of these works is the study of emergent meta-stable structures that are created on a short time-scale and their evolution in long time with or without external effects (temperature, external force,...). This include both theoretical analysis and numerical simulations.
  • Le 9 novembre 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Vanessa Lleras Univ. Montpellier
    [Séminaire CSM] $\phi$-FEM, une nouvelle méthode éléments finis non conformes
    \phi-FEM est une méthode éléments finis sur des maillages réguliers qui partage des similitudes avec les méthodes classiques aux frontières immergées et des approches plus récentes comme CutFEM. L'innovation de notre méthode consiste à intégrer une fonction Level Set décrivant la géométrie de la structure ou de la particule dans le schéma éléments finis lui-même. Dans l’exposé, je présenterai le principe de la méthode pour différentes conditions aux bords en mettant en avant sa précision et sa rapidité comparée à la méthode des éléments finis classiques puis nous verrons l’application à des problèmes variés (mécanique des structures, Stokes, couplage avec réseaux de neurones).
  • Le 16 novembre 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Joyce Ghantous Université de Pau
    [Séminaire CSM] Numerical analysis of a diffusion equation with Ventcel boundary conditions on curved meshes
    In this talk, we consider a diffusion problem, referred to as the Ventcel problem, involving a second order term on the domain boundary (the Laplace-Beltrami operator).
    The focus is on obtaining error estimations expressed with respect to the finite element degree k >= 1 and to the mesh order r >= 1. Indeed a crucial point concerns the construction of high order curved meshes for the discretization of the physical domain and on the definition of the lift operator, which is aimed to transform a function defined on the mesh domain into a function defined on the physical one. This lift is defined in a way as to satisfy adapted properties on the boundary, relatively to the trace operator. Once the theoretical a priori error estimates depending on the two parameters k and r have been obtained, we perform numerical experiments which validate these results. Lastly, an eigenvalue problem with Ventcel boundary conditions is introduced. A similar procedure is used to estimate the eigenvalues and eigenvectors errors. Numerical experiments in 2d and 3d are presented validating the theoretical estimations.
  • Le 23 novembre 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Thibault Malou Inrae
    [Séminaire CSM] Pest detection from a biology-informed inverse problem and pheromone sensors
    One third of the annual world's crop production is directly or indirectly damaged by insects. Early detection of invasive insect pests is key for optimal treatment before infestation. Existing detection devices are based on pheromone traps: attracting pheromones are released to lure insects into the traps, with the number of captures indicating the population levels. As part of the Pherosensor project (https://pherosensor.inrae.fr/), promising new sensors are on development to directly detect pheromones produced by the pests themselves and dispersed in the environment. Inferring the pheromone emission would allow locating the pest's habitat, before infestation. This early detection enables to perform pesticide-free elimination treatments, in a precision agriculture framework.
    In order to identify the sources of pheromone emission from signals produced by sensors spatially positioned in the landscape, the inference of the pheromone emission (inverse problem) is performed. Classical inference is conducted by combining the data and the so-called direct model. In the present case, this entails combining the data from the pheromone sensors and the pheromone concentration dispersion that is a 2D reaction-diffusion-convection model. In the proposed method, the inference involves not only the coupling of the pheromone dispersion model with the pheromone sensors data but also incorporates a priori biological knowledge on pest behaviour (favourite habitat, insect clustering for reproduction, population dynamic behaviour...). This information is introduced to constrain the inverse problem towards biologically relevant solutions. Different biology-informed constraints are tested, and the accuracy of the solutions of the inverse problems is assessed on simulated noisy data.
  • Le 30 novembre 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Emmanuel Franck INRIA NANCY GRAND EST
    [Séminaire CSM] Représentation neural implicite pour des méthodes numériques Hybride
    Dans une première partie, nous introduiront les méthodes numériques basées sur des représentations neurales implicites que sont les PINNs et la méthode Neural Galerkin. Nous tenterons de montrer, que ces méthodes bien qu'ayant des propriétés bien différentes
    des méthodes numériques usuelles pour les EDP, elles restent proche dans l'esprit des méthodes classiques. Après avoir discuter les forces et les faiblesses de ses nouvelles approches, on introduira des méthodes hybrides combinant PINNs d'un coté
    et méthodes élément finis ou Galerkin Discontinu de l'autre. Nous discuterons rapidement la convergence de ses approches, qu'on illustrera numériquement
  • Le 14 décembre 2023 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Coquerelle Mathieu I2M
    [Séminaire CSM] Des avancées récentes des méthodes numériques d’ordre élevé pour les écoulements diphasiques : modèles one-fluid et level set. Applications aux vagues et gouttes d'eau dans le code de calcul massivement parallèle Notus
    Les codes de calcul sur maillages structurés bénéficient de l'avantage majeur de permettre, et nécessiter l'utilisation de schémas numériques d'ordres élevés. Pour les écoulements diphasiques, notamment pour les vagues, la présence d'une interface franche où les sauts de masse volumique, viscosité et pression, dû à la tension superficielle, sont souvent très grands requiert un soin particulier et des méthodes idoines. L'approche eulérienne basée sur le modèle one-fluid (OF) est simple à mettre en place et donne des résultats tout à fait satisfaisants... jusqu'à un certain niveau de discrétisation, aujourd'hui rapidement atteint par les maillages très fins nécessaires pour des applications pointues. Nous verrons qu'en revisitant l'intégration des équations de Navier-Stokes, les approches récentes basées sur le transport cohérent de la masse et de la quantité de mouvement sont indispensables pour réduire les erreurs numériques de transferts d'une phase à l'autre, cause d'instabilités, voire de divergence des calculs.
    Autre ingrédient fondamental, le modèle de représentation de l'interface est crucial pour capter la richesse de la dynamique de la surface libre. Parmi les familles de méthodes existantes, les Level Set (LS) sont couramment employées, notamment pour les écoulements impliquant des phénomènes capillaires non négligeables. Elles souffrent toutefois d'un problème récurent : le besoin de réinitialiser régulièrement le champ LS pour garantir sa qualité sur les longs temps. La paramétrisation des stratégies basées sur les équations d'Hamilton-Jacobi (HJ) reste encore très sensible à la paramétrisation, aux conditions de bord, et garantit difficilement la stabilité. Nous proposons une approche originale, géométrique, basée sur le principe des closest-points, qui, a l'avantage de pouvoir être appliquée à chaque pas de temps, tout en offrant la même précision que les méthodes HJ+WENO5. Nous en profiterons pour présenter, en aparté, une discussion sur la nécessité d'user des schémas d'ordre élevé pour calculer la courbure de l'interface pour les forces de tension superficielle, critère rarement atteint par les méthodes de type VOF ou MOF.
    Nous présenterons l'application de ces travaux à des simulations de vagues et de gouttes de pluie, permettant de reproduire des phénomènes très fins, du déferlement à la capture de poches et bulles d'air sous la surface, participant aux échanges océan-atmosphère. Ces résultats ont été obtenus grâce au code volumes-finis massivement parallèle Notus CFD développé à l'I2M, plate-forme commune de développement de méthodes et d'expérimentation numérique.
  • Le 18 janvier 2024 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Lorenzo Audibert ENSTA Paris
    [Seminaire CSM] An unexpected role of transmission eigenvalues in imaging algorithms
    Transmission eigenvalues are frequencies . Appearing naturally in the study of inverse scattering problems for inhomogeneous media, the associated spectral problem has a deceptively simple formulation but presents a puzzling mathematical structure, in particular it is a non-self-adjoint eigenvalue problem. It triggered a rich literature with a variety of theoretical results on the structure of the spectrum and also on applications for uniqueness results.
    For inverse shape problems, these special frequencies were first considered as bad values (for some imaging algorithms, e.g., sampling methods) as they are associated with non injectivity of the measurement operator. It later turned out that transmission eigenvalues can be used in the design of an imaging algorithm capable of revealing density of cracks in highly fractured domains, thus exceeding the capabilities of traditional approaches to address this problem. This new imaging concept has been further developed to produce average properties of highly heterogeneous scattering media at a fixed frequency (not necessarily a transmission eigenvalue) by encoding a special spectral parameter in the background that acts as transmission eigenvalues.
    While targeting this unexpected additional value of transmission eigenvalues in imaging algorithms, the talk will also provide an opportunity to highlight some key results and open problems related to this active research area.
    This is a joint work with Houssem Haddar, Fioralba Cakoni, Lucas Chesnel, Kevish Napal and Fabien Pourre.
  • Le 25 janvier 2024 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Thomas Bellotti IRMA (Strasbourg)
    [Séminaire CSM] Analyse numérique des schémas de Boltzmann sur réseau : des questions fondamentales aux méthodes adaptatives efficientes et précises
    L'exposé se veut un résumé de mes travaux de thèse, qui portent une attention particulière aux schémas de Boltzmann sur réseau. Cette classe de schémas est utilisée depuis la fin des années '80, en particulier en mécanique des fluides, et se caractérise par sa grande rapidité. Cependant, les méthodes de Boltzmann sur réseau sont très gourmandes en termes d'espace mémoire et conçues pour des maillages Cartésiens uniformes. De plus, nous manquons d'outils théoriques généraux qui permettent d'en analyser la consistance, la stabilité et enfin la convergence. Le travail s'articule autour de deux axes principaux. Le premier consiste à proposer une stratégie permettant d'appliquer les méthodes de Boltzmann sur réseau à des grilles de calcul non-uniformes adaptées dynamiquement en temps, afin de réduire le coût de calcul et de stockage. Le fait de pouvoir contrôler l'erreur commise et d'être en mesure d'employer la méthode quel que soit le schéma de Boltzmann sous-jacent sont des contraintes supplémentaires à prendre en compte. Pour cela, nous proposons d'adapter dynamiquement le réseau ainsi que d'ajuster toute méthode de Boltzmann à des maillages non-uniformes en nous appuyant sur la multirésolution. Cela a permis de proposer un cadre innovant pour des maillages mobiles en respectant les contraintes posées. Le second axe de recherche consiste à donner un cadre mathématiquement rigoureux aux méthodes de Boltzmann sur réseau, lié en particulier à leur consistance vis-à-vis des EDPs visées, leur stabilité et donc leur convergence. Pour cela, nous proposons une procédure, basée sur des résultats d'algèbre, pour éliminer les moments non-conservés de n'importe quel schéma de Boltzmann sur réseau, en le transformant en un schéma aux différences finies multi-pas sur les moments conservés. Les notions de consistance et stabilité pertinentes pour les méthodes de Boltzmann sur réseau sont donc celles des schémas aux différences finies. En particulier, tous les résultats concernant ces derniers, entre autres le théorème de Lax, se transpose naturellement aux schémas de Boltzmann sur réseau. Une étape ultérieure consiste à étudier la consistance et la stabilité directement sur le schéma de départ sans devoir calculer sa méthode aux différences finies ``correspondante''. Cela permet d'en obtenir les équations modifiées et de montrer le bien-fondé des analyses de stabilité à la von Neumann couramment utilisées au sein de la communauté.
  • Le 1er février 2024 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Madji Azaiez IPB
    [Séminaire CSM] Least-squares pressure recovery in Reduced Order Methods for incompressible flows
    We introduce a method to recover the reduced pressure for Reduced Order Models (ROMs) of incompressible flows. The pressure is obtained as the least-squares minimum of the residual of the reduced velocity with respect to a dual norm. We prove that this procedure provides a unique solution whenever the full-order pair of velocity-pressure spaces is inf-sup stable.
    We also prove that the proposed method is equivalent to solving the reduced mixed problem with reduced velocity basis enriched with the supremizers of the reduced pressure gradients.
    Optimal error estimates for the reduced pressure are obtained for general incompressible flow equations and specifically, for the transient Navier-Stokes equations. We also perform some numerical tests for the flow past a cylinder and the lid-driven cavity flow which confirm the theoretical expectations, and show an improved convergence with respect to other pressure recovery methods.
  • Le 8 février 2024 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Julien Moatti Technische Universität Wien
    [Séminaire CSM] Schémas volumes finis préservant la structure pour des modèles de semi-conducteurs anisotropes
    Les modèles mathématiques des semi-conducteurs décrivent l'évolution des densités de charges électriques dans les composants électroniques. Dans l'industrie, le modèle le plus couramment utilisé est un système couplé de deux équations de convection-diffusion avec une équation de Poisson. Les méthodes numériques couramment employées sont basées sur des schémas volumes finis à deux points, robustes et garantissant la positivité des densités calculées.

    Dans cet exposé, je vais m'intéresser à une situation où le semi-conducteur est plongé dans un champ magnétique externe, induisant une rotation des charges. Dans ce cas, les équations de convection-diffusion deviennent anisotropes, et les schémas à deux points ne permettent plus d'obtenir une approximation correcte.

    Pour obtenir une approximation fiable, permettant de gérer à la fois l'anisotropie et des maillages polytopaux généraux, j'introduis un schéma non-linéaire basé sur la méthode des volumes finis hybrides. Le schéma est conçu pour préserver une structure d'entropie au niveau discret, assurant :
    i) l'existence de solutions et la positivité des densités ;
    ii) le comportement en temps long des solutions ;
    iii) la robustesse du schéma par rapport aux paramètres physiques et au maillage utilisé.

    Les résultats numériques obtenus corroborent ces garanties théoriques.

    Dans un second temps, je discuterai de l'intérêt d'utiliser des maillages généraux pour produire des raffinements locaux. En particulier, je m'intéresserai à l'exemple fondamental du calcul de courbes courant-tension.
  • Le 15 février 2024 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Hendrik Ranocha Mayence
    [Séminaire CSM] Structure-preserving numerical methods for nonlinear dispersive wave equations
    The numerical simulation of tsunami propagation is often based on the classical shallow water equations. However, there are several regimes where the assumptions used to derive this model are not satisfied. In this case, higher-order effects need to be taken into account, leading to nonlinear dispersive wave equations. Several variants of such models exist and are used in practice. In this talk, we will review some recent developments of structure-preserving numerical methods. In particular, we will consider invariants such as the total energy and study efficient numerical methods yielding qualitative and quantitative improvements compared to standard schemes. The numerical methods will use the framework of the method of lines. Thus, we will discuss both spatial semidiscretizations and time integration methods. To develop structure-preserving schemes, we make use of the general framework of summation-by-parts (SBP) operators in space, unifying the analysis of finite difference, finite volume, finite element, discontinuous Galerkin, and spectral methods. Finally, we combine structure-preserving spatial discretizations with relaxation methods in time to obtain fully-discrete, energy-conservative schemes.
  • Le 15 février 2024 à 15:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Saray Busto Santiago de Compostela
    [Seminaire CSM] Well-balanced divergence-free semi-implicit hybrid finite volume - finite element scheme for magnetohydrodynamics
    We present a novel exactly divergence-free and well-balanced hybrid finite volume / finite element scheme for the numerical solution of the incompressible viscous and resistive magnetohydrodynamics (MHD) equations on staggered unstructured mixed-element meshes. The algorithm is based on the splitting the equations into several subsystems so that each of them can be discretized with a particular scheme to preserve some fundamental structural features of the MHD system at the discrete level.
    The use of face-based staggered grids allows to account for the divergence-free conditions of the velocity and magnetic fields in a rather natural manner. The non-linear convective and the viscous terms in the momentum equation are solved at the aid of an explicit finite volume scheme. Then, the magnetic field is evolved in an exactly divergence-free manner via an explicit finite volume method based on a discrete form of the Stokes law stabilized by the proper choice of the numerical resistivity in the computation of the electric field in the edges. To achieve higher order of accuracy, a piecewise linear polynomial is reconstructed for the magnetic field, which is guaranteed to be exactly divergence-free via a constrained L^2 projection. Finally, a classical continuous finite element approach is employed to compute the pressure. Besides, we account for the known equilibrium solution at each step of the new algorithm so that the method becomes exactly well-balanced.
    Validation of the methodology includes a MHD lid-driven cavity benchmark and long-time simulations of Soloviev equilibrium solutions in simplified 3D tokamak configurations which show the capability of the method to maintain stationary equilibria exactly over very long integration times in general grids.
  • Le 22 février 2024 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Léopold Trémant Strasbourg
    [Séminaire CSM] Learning non-canonical Hamiltonian dynamics
    Neural networks can fit data to learn unknown functions in a process called machine learning. Naturally, as numericists, we want to study this tool in its use for differential equations. Specifically here, we will be interested in non-canonical Hamiltonian problems, i.e. vector fields characterized by a symplectic form (non-canonical) and an invariant energy (Hamiltonian). Such problems include many plasma particle models and planar point vortices. Should the structure be
    hard-coded in neural networks? How important is the structure for long-time simulation? What are some differences between continuous and discrete dynamics? These are the questions that will guide this talk.
  • Le 7 mars 2024 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Salah-Eddine ZERROUQ Ensam
    [Seminaire CSM] Une méthode quasi-Newton pour le calcul de carènes optimales basée sur la formule de Michell pour des vitesses aléatoires
    Dans cet exposé on propose une discrétisation de la méthode de Newton pour l’optimisation de forme de carènes de bateaux, partie du navire sous l’eau, basé sur la résistance de Michell avec une vitesse "aléatoire". La théorie de Michell pour les bateaux à coque fine donne une formule explicite pour la résistance des vagues pour une vitesse donnée du navire. La question de trouver la carène optimale qui minimise la résistance des vagues de Mitchell pour une vitesse donnée a été examinée dans ref{2} pour un support fixe, et ensuite dans ref{1} pour un support variable. Suite au succès des résultats numériques, qui se rapprochent des formes utilisées dans l’industrie. il est naturel de se poser la question sur la forme de carène optimale pour des vitesses aléatoires. L’idée, donc, est de calculer la forme optimale qui minimise l’espérance de la résistance de Michell pour une distribution de vitesse donnée. Pour ce faire, le problème est réécrit comme un problème d’optimisation de forme : trouver le domaine optimal pour minimiser l’énérgie de Dirichlet avec un terme source f considéré comme l’éspérance du noyau de la résistance de Michell. Ce problème est bien étudié dans la littérature, et on dispose de nombreux résultats sur l’existence de solutions, sur les dérivées de forme ainsi que leur régularité qu’on peut exploiter pour effectuer une méthode de descente en faisant varier le domaine. Ces méthodes de variation du domaine, nécéssitent en général un nombre élevé d’itérations pour converger, ce problème, coupler avec le fait qu’on doit à chaque itération calculer une approximation de l’espérance du noyau de la résistance de Michell, dont la qualité dépendra de notre échantillonage des vitesses, fait qu’on se retrouve avec des temps de calcul trop élevé pour trouver une solution. D’où notre interêt à utiliser une méthode de Newton pour minimiser le nombre d’itérations de notre algorithme. Cette méthode a été étudiée dans ref{3}, et il est connu que beaucoup d’obstacle empêchent son utilisation pour l’optimisation de forme :
    1. Les formules pour la deuxième dérivée de forme d’une fonctionnelle J(Ω) sont complexes et nécessitent souvent la résolution de problèmes adjoints.
    2. Avoir une expression de cette dérivée sur le bord du domaine nécessitent une grande régularité du domaine considéré.
    3. À priori La matrice Hessienne n’a aucune raison d’être inversible.
    Dans ce travail on propose une discrétisation qui permet de contourner ces problèmes de régularité du bord et des dérivées de forme, et donc permet de trouver une solution avec, ou sans contrainte, même dans des situations où la deuxième dérivée n’est pas bien définie.

    - ref{1}: J. Dambrine, M. Pierre. Continuity with respect to the speed for optimal ship forms based on
    michell’s formula. Mathematical Control Related Fields, 0, –, 2021.
    - ref{2}: D. J., P. M., R. G. A theoretical and numerical determination of optimal ship forms based on michell’s wave resistance. ESAIM - Control, Optimisation and Calculus of Variations, 22(1), 88 – 111, 2016.
    - ref{3}: J.-L. Vie. Second-order derivatives for shape optimization with a level-set method. Ph.D. thesis, 2016. Thèse de doctorat dirigée par Cancès, Eric et Allaire, Grégoire Mathématiques Paris Est 2016.
  • Le 14 mars 2024 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Saale 2
    Xiaoqiu He IMB
    [Séminaire CSM] la bulle de savon, un nouveaux modèle de la convection thermique
    La convection thermique est un phénomène très ubiquitaire dans le monde physique. Il est aussi très important pour la vie de la sociale humaine : les écoulements d’air dans l’atmosphère ou des fluides dans les océans ont très grande influence au climat global. Afin de connaitre les mécanismes physiques profondes de la convection thermique, les physiciens ont proposés beaucoup de modèle de la convection thermique comme la convection de Rayleigh-Bénard très connue. Dans ce séminaire, je voudrais présenter un nouveau modèle de la convection : la bulle de savon qui est chauffée au fond. Ce modèle est premièrement réalisé dans les expérimentes par Prof. Hamid Kellay de LOMA. Par la méthode des simulations numériques directes (DNS), nous avons obtenues les champs complète de l’écoulement sur la bulle de savon. Nous avons trouvé que les tourbillons de grande taille sur la bulle ont beaucoup de ressemblance avec les cyclones dans l’atmosphères. Les traces des grands tourbillons et des cyclones respectent le même règlement. La structure des grands tourbillons et des cyclones aussi rassemblent beaucoup. De plus, la bulle de savon est aussi un modèle pour étudier la turbulence de deux dimensions. Nous avons trouvé le phénomène de la cascade d’énergie inverse qui engendre les grands tourbillons. Nous avons aussi vérifié que la loi d’échelle pour le statistique de perturbation coïncide la prédiction de théorie de BO59.
    En conclusion, la bulle est très riche des phénomènes physiques et nous offre les bonnes opportunités pour découvrir les nouvelles perspectives physiques de la convection thermique et aussi de la turbulence.
  • Le 21 mars 2024 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Mathieu Rigal IMB
    [Séminaire CSM] Boundary conditions for the Boussinesq-Abbott model with varying bottom
    In the littoral area, mechanisms behind the formation of extreme waves remain poorly understood despite their great socio-economic impact. In order to model these phenomena, it is especially important to take into account nonlinear and dispersive effects, which makes the Boussinesq-Abbott model a pertinent choice. However the presence of high order derivatives impedes the good handling of boundary conditions, which is crucial if one wishes to generate and evacuate waves from the computational domain. In order to raise this difficulty, an equivalent reformulation of this model has recently been proposed in the literature for the case of a flat bottom. This rewriting consists to get rid of the dispersive operator in exchange of a nonlocal flux and a dispersive boundary layer, and allows to efficiently prescribe the elevation of the free surface at the borders of the domain.
    The goal of this work is to extend this approach to the case of a varying bottom, while allowing to enforce more general boundary conditions. Once the nonlocal formulation of the model is established, numerical schemes of order 1 and 2 are proposed and validated through numerical experiments. The impact of different boundary conditions on the solutions is also investigated.
  • Le 4 avril 2024 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Lorenzo Audibert (EDF)
    [Séminaire CSM] An unexpected role of transmission eigenvalues in imaging algorithms
    Transmission eigenvalues are frequencies. Appearing naturally in the study of inverse scattering problems for inhomogeneous media, the associated spectral problem has a deceptively simple formulation but presents a puzzling mathematical structure, in particular it is a non self-adjoint-eigenvalue problem. It triggered a rich literature with a variety of theoretical results on the structure of the spectrum and also on applications for uniqueness results.
    For inverse shape problems, these special frequencies were first considered as bad values, for some imaging algorithms, e.g., sampling methods, as they are associated with non injectivity of the measurement operator. It later turned out that transmission eigenvalues can be used in the design of an imaging algorithm capable of revealing density of cracks in highly fractured domains, thus exceeding the capabilities of traditional approaches to address this problem. This new imaging concept has been further developed to produce average properties of highly heterogeneous scattering media at a fixed frequency, not necessarily a transmission eigenvalue, by encoding a special spectral parameter in the background that acts as transmission eigenvalues.
    While targeting this unexpected additional value of transmission eigenvalues in imaging algorithms, the talk will also provide an opportunity to highlight some key results and open problems related to this active research area.
    This is a joint work with Houssem Haddar, Fioralba Cakoni, Lucas Chesnel, Kevish Napal and Fabien Pourre.
  • Le 11 avril 2024 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Christian Klingenberg Université de Wurzburg
    .

  • Le 2 mai 2024 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Victor Michel-Dansac Inria Strasbourg
    .

  • Le 13 juin 2024 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Firas Dhaouadi University of Trento
    .

  • Le 27 juin 2024 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Davide Torlo SISSA Trieste
    Structure preserving methods via Global Flux quadrature: divergence-free preservation with continuous Finite Element
    In many problems, the emergence of physical structures and equilibrium solutions, such as divergence-free solutions in contexts like shallow water and magneto-hydrodynamics, poses a significant challenge. A simple linear approximation of such systems that already show these behavior is the linear acoustic system of equations. We focus on Cartesian grid discretizations of such system in 2 dimensions and in the preservation of stationary solutions that arise due to a truly multidimensional balance of terms, which corresponds to the divergence-free solutions for acoustic systems.
    Conventional methods, like the continuous Finite Element SUPG, face limitations in maintaining these structures due to the stabilization techniques employed, which do not effectively vanish when the discrete divergence is zero.
    What we propose is to use the Global Flux procedure, which has proven to be successful in preserving 1-dimensional equilibria [1,2], to define some auxiliary variables guiding a suitable discretization of both the divergence and stabilization operators [3]. This approach enables the natural preservation of divergence-free solutions and more intricate equilibria involving various sources. Moreover, this strategy facilitates the identification of discrete equilibria of the scheme that verify boundary or initial conditions. We use the Deferred Correction time discretization, obtaining explicit arbitrarily high order methods.
    Numerous numerical tests validate the accuracy of our proposed scheme compared to classical approaches. Our method not only excels in preserving (discretely) divergence-free solutions and their perturbations but also maintains the original order of accuracy on smooth solutions.

    [1] Y. Cheng, A. Chertock, M. Herty, A. Kurganov and T. Wu. A new approach for designing moving-water equilibria preserving schemes for the shallow water equations. J. Sci. Comput. 80(1): 538–554, 2019.
    [2] M. Ciallella, D. Torlo and M. Ricchiuto. Arbitrary high order WENO finite volume scheme with flux globalization for moving equilibria preservation. Journal of Scientific Computing, 96(2):53, 2023.
    [3] W. Barsukow, M. Ricchiuto and D. Torlo. Structure preserving methods via Global Flux quadrature: divergence-free preservation with continuous Finite Element. In preparation, 2024.

    Les archives depuis 2004