Two or Three Things that I Know About Johannes

"Microlocal Analysis and Spectral Theory" "En I’honneur de Johannes Sjöstrand"

C .I. R. M., September 23, 2013

CENTRE DE MATHEMATIQUES

17, RUE DESCARTES • 75230 PARIS CEDEX 05

par J. J. DUISTERMAAT et J. SJ0STRAND
exposé par J. SJ0STRAND
$P: \Psi \mathrm{DO}$ of order m on X s.t. $\frac{1}{i}\{p, \bar{p}\} \neq 0$ on $\Sigma=\operatorname{Char}(P)$.
$\Sigma^{ \pm}=\left\{(x, \xi) \mid p=0 ; \pm \frac{1}{i}\{p, \bar{p}\}>0\right\}$
Microlocal model : $D_{n}+i x_{n} D_{n-1}$ (Mizohata)

Then $\exists F, F^{+}, F^{-}$of a precise form s.t.
$F P \equiv I-F^{+} \quad ; P F \equiv I-F^{-} ;\left(F^{ \pm}\right)^{2} \equiv F^{ \pm}$
$F: H^{s} \rightarrow H^{s+m-1 / 2} ; \quad F^{ \pm}: H^{s} \rightarrow H^{s}$
$W F^{\prime}(F)=\operatorname{diag}\left(T^{*} X \backslash 0\right) ; W F^{\prime}\left(F^{ \pm}\right)=\operatorname{diag}\left(\Sigma^{ \pm}\right)$

Fourier Intégraux à phase complexe (10 p.)
with A. Melin - January 1974

Integrals $\int e^{i \varphi(x, \theta)} a(x, \theta) d \theta$
Phase $\varphi \in C^{\infty}\left(\mathbf{R}^{n} \times \mathbf{R}^{N}\right) ; \operatorname{Im}(\varphi) \geq 0$

Homogeneous, no critical point, non degenerate (as in FIO1)

- almost analytic extension $\widetilde{\varphi}$
- Morse lemma, Stationary phase (saddle point)
- (jet of) positive Lagrangean submanifold \wedge, image of
$\left\{(x, \theta) \in \mathbf{C}^{n} \times \mathbf{C}^{N} \mid d_{\theta} \widetilde{\varphi}=0\right\} \mapsto\left(x, d_{x} \widetilde{\varphi}\right) \in \mathbf{C}^{n} \times \mathbf{C}^{n}$

Applications

- Oblique derivative problem (with A. Melin)
- Singularities of Bergman and Szegö kernels (with L. Boutet de Monvel)

Elliptic operators singular in one point (with M. S. Baouendi)
$P=\sum a_{\alpha}(x) D_{x}^{\alpha} \quad ; \quad a_{\alpha}$ hom. pol. of $\mathrm{d}^{\circ}|\alpha|$
Assumptions : P elliptic outside $0+$ condition (C)

- P is not hypoelliptic
- Any C^{∞} solution is analytic

On the eigenvalues of a class of hypoelliptic operators
$\left.\begin{array}{l}\text { I } \\ \text { II } \\ \text { III } \\ \text { IV }\end{array}\right\}$ with A. Menikoff

Hypoelliptic operators with loss of one derivative
P pseudo, selfadjoint, symbol $p_{m}+p_{m-1}+\cdots$, .
$p_{m} \geq 0, \Sigma=\operatorname{Char}(P)=p_{m}^{-1}(0)$ (not necessarily smooth)

Assumption relating the subprincipal symbol and the eigenvalues of the fundamental matrix on Σ.
$N(\lambda)=$ number of eigenvalues $\leq \lambda\left(\right.$ or $\left.N^{ \pm}(\lambda)\right)$
$e^{-t P}$ constructed as a FIO with (quasihomogeneous) complex phase.
asymptotic in terms of measure of level sets in the phase space

Singularities of Boundary Value Problems I and II (with R. Melrose)

TH. If $(x, \xi) \in \mathrm{WF}_{\mathrm{b}}(u)$ then $\mathrm{WF}_{\mathrm{b}}(u)$ contains
$\left\{\begin{array}{c}\text { the } \\ \text { at least one }\end{array}\right\}$ maximal ray starting from (x, ξ).

Propagation of analytic singularities for second order
Dirichlet problem I, II, III + microhyperbolic BVPb + ...

Same results for $\mathrm{WFa}_{\mathrm{a}}(u)$ but propagation along analytic rays.

+ results on impossible configurations.

Sato-Kawai-Kashiwara :

$$
\delta(x)=\int_{\mathbf{S}^{n-1}} \frac{h(x, \eta)}{\left(\langle x, \eta\rangle+i|x|^{2}+i 0\right)^{n}} d \eta=\int \Phi(x, \eta) d \eta
$$

Fourier \longrightarrow idem with $i|x|^{2}$ replaced by 0 .
$\left(x_{0}, \eta_{0}\right) \notin \operatorname{WF}_{\mathrm{a}}(u) \Longleftrightarrow \int \Phi(x-y, \eta) u(y) d y$ analytic near $\left(x_{0}, \eta_{0}\right)$. 11

Bros-Iagolnitzer

$$
T u\left(x, \xi, \xi_{0}\right)=\int e^{-i\langle x, \xi\rangle-\xi_{0}|x-y|^{2}} u(y) d y \quad \xi_{0}>0
$$

Actually, a closed n-form $T u d \xi_{1} \ldots \wedge d \xi_{n}+\sum T_{j} u d \xi_{0} \wedge \widehat{d \xi_{j}}$
$(\bar{x}, \bar{\xi}) \notin \mathrm{WF}_{\mathrm{a}}(u) \Longleftrightarrow\left|T u\left(x, \xi, \xi_{0}\right)\right| \leq C(1+|\xi|)^{N} e^{-\alpha \xi_{0}}$
for ξ in a conic neighbourhood of $\bar{\xi}$ and $0<\xi_{0}<\gamma|\xi|$.
Inversion formula. Deformation of the contour of integration.

Resolution of identity

Operators $A=\left(A_{\lambda}\right)$ with Schwartz kernel:

$$
A(x, y)=\lambda^{3 n / 2} \int e^{i \lambda \Phi(x, y, \alpha)} a(x, y, \alpha, \lambda) d \alpha
$$

$\Phi\left(x, y, \alpha_{x}, \alpha_{\xi}\right)$ holomorphic in a nbhd of $\left(x_{0}, x_{0}, x_{0}, \xi_{0}\right) \in \mathbf{R}^{4 n}$
such as $\Phi(x, y, \alpha)=\left\langle x-y, \alpha_{\xi}\right\rangle+\frac{i}{2}\left(\left(x-\alpha_{x}\right)^{2}+\left(y-\alpha_{x}\right)^{2}\right)$
For $\pi_{\alpha}=\lambda^{3 n / 2} e^{i \lambda \Phi(x, y, \alpha)} a(x, y, \alpha, \lambda)$, one has (so to speak)
$\mathrm{WF}_{\mathrm{a}}^{\prime}\left(\pi_{\alpha}\right)$ " $=$ " $\left(\alpha_{x}, \alpha_{x}, \alpha_{\xi}, \alpha_{\xi}\right)$ as $\lambda \rightarrow \infty$.
For $P(x, \xi, \lambda)=e^{-i \lambda\langle x, \xi\rangle} A\left(e^{i \lambda\langle\cdot, \xi\rangle}\right)$, one has $A=P\left(x, \frac{D_{x}}{\lambda}, \lambda\right)$.
Particular case : Id $=\int \pi_{\alpha} d \alpha$

Space $H_{\varphi}(\Omega)$. (φ real psh in $\Omega \subset \mathbf{C}^{n}$):
$u(z, \lambda)$ holomorphic in z s.t. $\forall \varepsilon, \forall K,|u(z, \lambda)| \leq C_{K, \varepsilon} e^{\lambda(\varphi(z)+\varepsilon)}$.
$u \sim v$ if $\forall K, \exists \varepsilon,|u-v| \leq C_{K} e^{\lambda(\varphi(z)-\varepsilon)}$
Geometry : $\wedge=\left\{\left(z, \frac{2}{i} \frac{\partial \varphi}{\partial z}\right)\right\} \subset \mathrm{C}^{2 n}$.
For φ strictly psh, it is I-Iagrangean and R-symplectic.

- Fourier transformation For φ psh s.t. $\varphi^{\prime \prime}\left(x_{0}\right)$ non deg. signature 0 . For $\xi \in \mathrm{C}^{n}$ near $\xi_{0}=\frac{2}{i} \varphi^{\prime}\left(x_{0}\right)$ set $\varphi^{*}(\xi)=\operatorname{crit} . v a l \cdot{ }_{x}(\varphi+\operatorname{Im} x \cdot \xi)$

$$
H_{\varphi, x_{0}} \ni u(x, \lambda) \longmapsto \mathcal{F} u(\xi, \lambda)=\int_{\Gamma_{\xi}} e^{-i \lambda x \cdot \xi} u(x, \lambda) d x \in H_{\varphi^{*}, \xi_{0}}
$$

- $\Psi \mathrm{DO}: H_{\varphi, x_{0}} \rightarrow H_{\varphi, x_{0}}$
- FIO : $H_{\varphi, x_{0}} \rightarrow H_{\psi, y_{0}}$

$$
A u(y, \lambda)=\int_{\Gamma_{y}} a(x, y, \theta, \lambda) u(x, \lambda) d x d \theta ; a \in H_{\Phi,\left(x_{0}, y_{0}, \theta_{0}\right)}
$$

Transformation of FBI. Let $\varphi(x, y)$ holomorphic near $\left(x_{0}, y_{0}\right) \in \mathbf{C}^{n} \times \mathbf{R}^{n}$ At that point, assume $\frac{\partial \varphi}{\partial y}=-\eta_{0} \in \mathbf{R}^{n} ; \operatorname{Im} \frac{\partial^{2} \varphi}{\partial y^{2}} \gg 0 ; \operatorname{det} \frac{\partial^{2} \varphi}{\partial x \partial y} \neq 0$.

Set $y(x)=$ the point where $\operatorname{Im} \varphi(x, \cdot)$ is minimum, $\eta(x)=-\frac{\partial \varphi}{\partial y}(x, y(x))$. Then $x \longmapsto(y(x), \eta(x))$ is a diffeo (near $\left.x_{0}\right) \mathbf{C}^{n} \rightarrow T^{*} \mathbf{R}^{n}$.

For a classical elliptic symbol of order 0 , the transformation

$$
T u(x, \lambda)=\int e^{i \lambda \varphi(x, y)} a(x, y, \lambda) \chi(y) u(y) d y
$$

maps $\mathcal{D}\left(\mathbf{R}^{n}\right) \rightarrow H_{\Phi}$ with $\Phi(x)=-\varphi(x, y(x))$.
TH. $\left(y\left(x_{1}\right), \eta\left(x_{1}\right)\right) \notin \mathrm{WF}_{\mathrm{a}}(u) \Longleftrightarrow T u(x, \lambda) \equiv 0$ in $H_{\Phi, x_{1}}$.

Direct infinitesimal geometry

Conormal "fiber bundle" of F $N^{*} F \subset T^{*} \mathbf{R}^{n} \backslash 0 \quad($ not closed)

- (JMB) if $p(x, \xi)$ and $q(x, \xi)$ vanish on $N^{*} F$, then $\{p, q\}$ also.

- (JS) If $p(x, \xi)$ vanishes on $N^{*} F$ $(x(t), \xi(t))$: bicharacteristic of p starting from $\left(x_{0}, \xi_{0}\right) \in N^{*} F$, then it remains in $N^{*} F$ for $|t|<\varepsilon$.

End of the first part :

"Ten years of the life of Johannes"

Multiple wells in the semiclassical limit I to $\mathrm{VI}+\ldots$ (with B. Helffer)
Eigenvalues near 0 of $P=-h^{2} \Delta+V(x)(\underline{\lim V(x)>0 \text { for } x \rightarrow \infty) ~}$

$\Lambda(k)=$ eigenvalues of Dirichlet Pb . in $\complement \widetilde{U_{k}}$

$$
\wedge(P)=\left\{\bigcup_{k} \wedge(k)\right\}+\left\{\text { interaction } O\left(e^{-S_{0} / h}\right)\right\}+\left\{\operatorname{error} O\left(e^{-2 S_{0} / h}\right)\right\}
$$

μ_{1}

- Molecule

- Witten complex. Computation of the cohomology of a Riemannian manifold via the complex $d_{f}=e^{-f / h} h d e^{f / h}$ (f Morse function) Inequalities of Morse and Bott

Harper equation I, II, III + magnetic Schrödinger + (with B. Helffer)

$$
P=\cos \left(h D_{x}\right)+\cos x \quad \text { in } L^{2}(\mathbf{R})
$$

RESONANCES

$$
28+6=34 \text { articles }
$$

- Invasion of the subject by microlocal analysis.
- The well in the island.
- Microlocal version of the complex scaling. Upper bounds.
- The black box.
- Trace formulas. Lower bounds.

$$
\text { Pseudospectrum }: z \in \sigma_{\varepsilon}(P) \Longleftrightarrow\left\|(z-P)^{-1}\right\| \geq 1 / \varepsilon(\text { or } z \in \sigma(P))
$$

- For $P=p(x, h D)$, the set $\Sigma=\overline{p\left(\mathbf{R}^{2 n}\right)}$ is a "good approximation":
— inside, if $\frac{1}{i}\{p, \bar{p}\}>0,\left\|(z-P)^{-1}\right\| \geq 1 / h^{N}$
- for $z \in \partial \Sigma$, under a "non trapping assumption", the disk $D\left(z_{0}, h \log (1 / h)\right)$ contains no eigenvalue.
- Non s.a. perturbations of s.a. operators in dimension 2 (I, II, IIIa with Hitrik): precise estimates of $\#(\sigma(P) \cap$ rectangle).
- Random perturbations of non s.a. operators : the spectrum of $P+\delta(h) Q_{\omega}$ satisfy a Weyl law with probability $\rightarrow 1$.
Perturbation by a potential.
Almost sure Weyl law.

