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Introduction

A quick overview of free Klein-Gordon fields on Minkowski space-time

e Consider on R1*9 the free Klein-Gordon equation:
(KG) Og(x) + m*p(x) =0, x = (t,x), O =92 — Ax.

We are interested in its smooth, real space-compact solutions.
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e Consider on R1*9 the free Klein-Gordon equation:
(KG) Og(x) + m*p(x) =0, x = (t,x), O =92 — Ax.

We are interested in its smooth, real space-compact solutions.

e It admits advanced/retarded Green's functions, with kernels
E.(t,x) given by

sin(e(k)t)

T e(k) = (K2 + m?)"2.

E.(t, k) = +0(%t)
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e Consider on R1*9 the free Klein-Gordon equation:
(KG) Og(x) + m*p(x) =0, x = (t,x), O =92 — Ax.

We are interested in its smooth, real space-compact solutions.
e It admits advanced/retarded Green's functions, with kernels
E.(t,x) given by
sin(e(k)t)
e(k)

e the difference E := E; — E_ is anti-symmetric, called the
Pauli-Jordan function. Clearly

Ei(t, k) = £0(+£t) . e(k) = (K + m?) 2.
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A quick overview of free Klein-Gordon fields on Minkowski space-time

e Consider on R1*9 the free Klein-Gordon equation:
(KG) Og(x) + m*p(x) =0, x = (t,x), O =92 — Ax.

We are interested in its smooth, real space-compact solutions.
e It admits advanced/retarded Green's functions, with kernels
E.(t,x) given by
sin(e(k)t)
e(k)

e the difference E := E; — E_ is anti-symmetric, called the
Pauli-Jordan function. Clearly

Ei(t, k) = £0(+£t) . e(k) = (K + m?) 2.

E : C°(RM?) = Sol..(KG).
e Actually RanE = Sols.(KG), KerE = (O + m?)C§°(R19).
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Free Klein-Gordon fields

e We associate to each (real valued) u € C§°(R!*?) a symbol
¢(u) and impose the relations:

o p(u+ Av) = ¢p(u) + Ap(v), A € R (R—linearity),
e ¢*(u) = ¢(u) (selfadjointness)
o [¢p(u),p(v)] :=i(u|Ev)1 (canonical commutation relations).

e taking the quotient of the complex polynomials in the ¢(-) by
the above relations, we obtain a x—algebra denoted by
A(RY*9) (Borchers algebra).
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defined by:
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The vacuum state on Minkowski

A quasi-free state w on A(R*9) is a state (positive linear
functional) which is uniquely determined by its covariance H
defined by:

e w(p(w)e(v)) =: (u[Hv) +i(u|Ev).
e Among all quasi-free states, there is a unique state wy,c, the
vacuum state such that:

e 1) Hy,c is invariant under space-time translations, hence is
given by convolution with a function Hyae(x),

o 2) Ayac(7, k) is supported in {7 > 0} (positive energy
condition).
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What happens for Klein-Gordon fields on a curved space-time 7

o Consider a manifold M with Lorentzian metric g, and the
associated Klein-Gordon operator [lg + m?.
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What happens for Klein-Gordon fields on a curved space-time 7

o Consider a manifold M with Lorentzian metric g, and the
associated Klein-Gordon operator [lg + m?.

e [0, + m? should admit unique advanced/retarded Green
operators. Answer (Leray): (M, g) should be globally
hyperbolic.

e The Borchers algebra A(M) can then be constructed as
before and states on A(M) can be considered.

e fundamental problem: what is a vacuum state on a curved
space-time 7

e Even on Minkowski the notion of vacuum state is
observer-dependent (Unruh effect): we singled out the time
variable in the positive energy condition.

Construction of Hadamard states



Introduction

The solution: Hadamard states

In the 80's physicists introduced the notion of Hadamard states,
characterized by the singularity structure of the distributional
kernel of their covariances (aka two-point functions).

Construction of Hadamard states



Introduction

The solution: Hadamard states

In the 80's physicists introduced the notion of Hadamard states,
characterized by the singularity structure of the distributional
kernel of their covariances (aka two-point functions).

They share many properties with the vacuum state in Minkowski
space: for example the stress-energy tensor can be renormalized
w.r.t. a Hadamard state.

Construction of Hadamard states



Introduction

The solution: Hadamard states

In the 80's physicists introduced the notion of Hadamard states,
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kernel of their covariances (aka two-point functions).

They share many properties with the vacuum state in Minkowski
space: for example the stress-energy tensor can be renormalized
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In 1996, microlocal analysis entered the scene: Radzikowski
showed that Hadamard states can be characterized only in terms of
the wave front set of their two-point function.

Construction of Hadamard states



Introduction

The solution: Hadamard states

In the 80's physicists introduced the notion of Hadamard states,
characterized by the singularity structure of the distributional
kernel of their covariances (aka two-point functions).

They share many properties with the vacuum state in Minkowski
space: for example the stress-energy tensor can be renormalized
w.r.t. a Hadamard state.

In 1996, microlocal analysis entered the scene: Radzikowski
showed that Hadamard states can be characterized only in terms of
the wave front set of their two-point function.

Essential ingredient: notion of distinguished parametrices
introduced by Duistermaat-Hormander in [FIO I1].
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Do Hadamard states exist on a globally hyperbolic space-time?

e It is not clear a priori that Hadamard states exist at all !

e Only known construction: [Fulling-Narcovich-Wald 1980]:
indirect deformation argument to a static space-time.

e We reconsider the construction of Hadamard states on
space-times with metric well-behaved at spatial infinity.

o Working on a fixed Cauchy surface, we can use rather
standard pseudo-differential analysis.

e We construct a large class of Hadamard states with pdo
covariances, in particular all pure Hadamard states.

Construction of Hadamard states
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Globally hyperbolic space-times

Consider a Lorentzian space-time (M, g, dx*dx"), with metric
signature (—,+, -+ ,+).
e Using the metric one defines time-like, causal, space-like
vector fields / curves in M.
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Globally hyperbolic space-times

Consider a Lorentzian space-time (M, g, dx*dx"), with metric
signature (—,+, -+ ,+).
e Using the metric one defines time-like, causal, space-like
vector fields / curves in M.
e Assume that M is time-orientable, i.e. there is a global,
continuous time-like vector field on M.

e For x € M, the future/past causal shadow of x, J¥(x) is the
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Globally hyperbolic space-times

Globally hyperbolic space-times

Consider a Lorentzian space-time (M, g, dx*dx"), with metric
signature (—,+, -+ ,+).

e Using the metric one defines time-like, causal, space-like
vector fields / curves in M.

e Assume that M is time-orientable, i.e. there is a global,
continuous time-like vector field on M.

e For x € M, the future/past causal shadow of x, J¥(x) is the
set of points reached from x by future/past directed causal
curves. For U C M JE(U) := U,ep JE (%)

e (M, g) is globally hyperbolic if M admits a Cauchy

hypersurface, i.e. a space-like hypersurface ¥ such that each
maximal time-like curve in M intersects ¥ at exactly one point.
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Globally hyperbolic space-times

Globally hyperbolic space-times

e This is equivalent to:
M is isometric to R x ¥ with metric —3dt?> + h;, where 3 is a
smooth positive function, h; is a riemannian metric on
depending smoothly on t € R.

Construction of Hadamard states



Globally hyperbolic space-times

Globally hyperbolic space-times

e This is equivalent to:
M is isometric to R x ¥ with metric —3dt?> + h;, where 3 is a
smooth positive function, h; is a riemannian metric on
depending smoothly on t € R.

¢ Denote for x € M by Vi (x) C T<M the open future/past
light cones at x.

Construction of Hadamard states



Globally hyperbolic space-times

Globally hyperbolic space-times

e This is equivalent to:
M is isometric to R x ¥ with metric —3dt?> + h;, where 3 is a
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depending smoothly on t € R.

¢ Denote for x € M by Vi (x) C T<M the open future/past
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Globally hyperbolic space-times

Globally hyperbolic space-times

e This is equivalent to:
M is isometric to R x ¥ with metric —3dt?> + h;, where 3 is a
smooth positive function, h; is a riemannian metric on
depending smoothly on t € R.

¢ Denote for x € M by Vi (x) C T<M the open future/past
light cones at x.

e The dual cones Vi(x) C T;M are defined as:
Vi(x)={¢e T;M : £-v>0, Vve Vi(x), v#0}.

e Interpreted as positive/negative energy cones.
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Klein-Gordon equations on Lorentzian manifolds

Klein-Gordon equations

Consider a globally hyperbolic space-time (M, g, dx*dx").
Standard notations:

_ 1
gl := detlgw].  [g"]:= gl dv:=lglzdx.

We fix a smooth vector potential A,(x)dx* and a smooth function
p:M—R.

e Klein-Gordon operator:

P(x, Dy) = |g|2(0,, +1A,)|g|28" (D, + iA,) + p.
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Klein-Gordon equations on Lorentzian manifolds

Advanced/retarded fundamental solutions

e P(x, D) admits unique advanced/retarded fundamental
solutions E4 solving:

P(x,Dy) 0 Ey = 1,
suppELf C Ji(suppf), f e CP(M),
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Klein-Gordon equations on Lorentzian manifolds

Advanced/retarded fundamental solutions

e P(x, D) admits unique advanced/retarded fundamental
solutions E4 solving:

P(x,Dy) 0 Ey = 1,
suppELf C Ji(suppf), f e CP(M),

e Moreover E_ = EJ, for scalar product (u1|uo) = fMuTuzdv.
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Klein-Gordon equations on Lorentzian manifolds

Symplectic space of solutions

Let Solsc(P) be the space of smooth, space-compact solutions of

(KG) P(x,Dy)¢ = 0.

o E=FE, — E_, called the Pauli-Jordan commutator function.
Note that E = —E*, PE = EP = 0.
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Klein-Gordon equations on Lorentzian manifolds

Symplectic space of solutions

Let Solsc(P) be the space of smooth, space-compact solutions of

(KG) P(x,Dy)¢ = 0.

o E=FE, — E_, called the Pauli-Jordan commutator function.
Note that E = —E*, PE = EP = 0.

o One has Sols.(P) = EC{°(M), KerE = PCS°(M).

o Moreover if we fix a Cauchy hypersurface ¥ and set
p: Solse(P) — C(X) @ G5 (X)
¢ = (¢|Z> iilnu(vu + IA,U«)QZS\Z) = (pod): p1¢)7

then p : Sols.(P) = C5°(X) @ C5°(X) is bijective.
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Klein-Gordon equations on Lorentzian manifolds

Symplectic space of solutions

e Denote by o the canonical symplectic form on
Go(X) @ G (%)

(log) = —i/(ﬂ)gl +Figo)ds, g € C°(T) @ Co(X),
>
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Symplectic space of solutions

e Denote by o the canonical symplectic form on
Go(X) @ G (%)

(log) = —i/(ﬂ)gl +Figo)ds, g € C°(T) @ Co(X),
>

e One has (u1]|Euz) = (p o Euilop o Eup) for uy, up € Cg°(M).
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Klein-Gordon equations on Lorentzian manifolds

Symplectic space of solutions

e Denote by o the canonical symplectic form on
Go(X) @ G (%)

(flog) == —i/(ﬂ)gl + Figo)ds, frg € C(T) & G (),
b
e One has (u1]|Euz) = (p o Euilop o Eup) for uy, up € Cg°(M).

e Hence (Cg°(M)/PC§°(M), E) is a symplectic space,
isomorphic to (C5°(X) ® C?, o) under the map po E.
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Hadamard states

Quantum fields on curved space-times

Since (C5°(M), E) is a (complex) symplectic space, it is more
convenient to generate the Borchers algebra by charged fields:
We associate to each u € C§°(M) symbols 9 (u), ¥*(u) such that:
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convenient to generate the Borchers algebra by charged fields:
We associate to each u € C§°(M) symbols 9 (u), ¥*(u) such that:

o (U4 Av) =9 (u) + M (v), (u+ Av) = 9(u) + Mp(v),

(C—linearity / anti-linearity).

o Y(u)* = ¢*(u),
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Quantum fields on curved space-times

Since (C5°(M), E) is a (complex) symplectic space, it is more
convenient to generate the Borchers algebra by charged fields:
We associate to each u € C§°(M) symbols 9 (u), ¥*(u) such that:

o F(u+Av) =P (u) + MP(v), Y(u+ Av) = (u) + M (v),
(C—linearity / anti-linearity).

o Y(u)* =¢*(v),

o [{(u1), Y(u2)] = [¢*(u1), " (u2)] = O,

[¥(u1),¥*(u2)] = i(u1]|Euz)1 (canonical comm. rel.)
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Hadamard states

Quantum fields on curved space-times

Since (C5°(M), E) is a (complex) symplectic space, it is more
convenient to generate the Borchers algebra by charged fields:
We associate to each u € C§°(M) symbols 9 (u), ¥*(u) such that:

o F(u+Av) =P (u) + MP(v), Y(u+ Av) = (u) + M (v),
(C—linearity / anti-linearity).

o Y(u)* =¢*(v),

o [{(u1), Y(u2)] = [¢*(u1), " (u2)] = O,

[¥(u1),¥*(u2)] = i(u1]|Euz)1 (canonical comm. rel.)

One can again consider the Borchers x—algebra A(M), consisting
of polynomials in the fields, quotiented by the above relations.
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Quasi-free states

e the simplest states on A(M) are quasi-free states, defined by
the property:

w([ Ty P(u) T2y 97 () = 0, i #J
w([Timy Y () Ty 7 (w) = Zoes, [Timy w(@(ui)¥™ (uo(iy))-

e The pair of sesquilinear forms

(u]Ayu2) == w(y(u1)P™ (1)), (nlA-w2) =: w(®™(v2)d(u1)),

are called the covariances of the quasi-free state w.

Construction of Hadamard states



Hadamard states

Quasi-free states

e the simplest states on A(M) are quasi-free states, defined by
the property:

w([ Ty P(u) T2y 97 () = 0, i #J
w([Timy Y () Ty 7 (w) = Zoes, [Timy w(@(ui)¥™ (uo(iy))-

e The pair of sesquilinear forms

(u]Ayu2) == w(y(u1)P™ (1)), (nlA-w2) =: w(®™(v2)d(u1)),

are called the covariances of the quasi-free state w.
o A pair of sesquilinear forms AL are the covariances of a
(unique) quasi-free state w iff

Ay >0, Ay —A_ =iE,

where E is the commutator function.
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Hadamard states
The covariances AL can be viewed as distributions on M x M
(modulo some obvious continuity condition + Schwartz kernel
theorem).
e Denote p(x, &) = g"(x)€u&, the principal symbol of
P(x, Dy),
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(modulo some obvious continuity condition + Schwartz kernel
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Hadamard states
The covariances AL can be viewed as distributions on M x M
(modulo some obvious continuity condition + Schwartz kernel
theorem).
e Denote p(x, &) = g"(x)€u&, the principal symbol of
P(x, Dy),
e N = p~1({0}) energy surface,
Ny ={(x,8) e N : &€ Vi(x)}, positive/negative energy
surfaces, N = N, UN_,
e For X; = (X,',tf,') write X1 ~ X if X1, X5 € N, X1, X5 on the
same Hamiltonian curve of p.
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Hadamard states
The covariances AL can be viewed as distributions on M x M
(modulo some obvious continuity condition + Schwartz kernel
theorem).
e Denote p(x, &) = g"(x)€u&, the principal symbol of
P(x, Dy),
e N = p~1({0}) energy surface,
Ny ={(x,8) e N : &€ Vi(x)}, positive/negative energy
surfaces, N = N, UN_,
e For X; = (X,',tf,') write X1 ~ X if X1, X5 € N, X1, X5 on the
same Hamiltonian curve of p.

Definition
w is a Hadamard state if

WF(/\:t)/ C {(Xl,Xz) : X1 ~ X2, : X1 (S Nj:}
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Hadamard states

Examples of Hadamard states

e If (M, g) is stationary i.e. admits a global time-like Killing
vector field, then associated vacuum and thermal states are
Hadamard [Sahimann, Verch '97].
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e If (M, g) is stationary i.e. admits a global time-like Killing
vector field, then associated vacuum and thermal states are
Hadamard [Sahimann, Verch '97].

o if (M, g) is asymptotically flat at null infinity, some
distinguished states at null infinity are Hadamard [Dappiagi,
Moretti, Pinamonti '09]
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e If (M, g) is stationary i.e. admits a global time-like Killing
vector field, then associated vacuum and thermal states are
Hadamard [Sahimann, Verch '97].

o if (M, g) is asymptotically flat at null infinity, some
distinguished states at null infinity are Hadamard [Dappiagi,
Moretti, Pinamonti '09]

e the Unruh state on Schwarzschild space-time is Hadamard
[Dappiagi, Moretti, Pinamonti '11].
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Examples of Hadamard states

e If (M, g) is stationary i.e. admits a global time-like Killing
vector field, then associated vacuum and thermal states are
Hadamard [Sahimann, Verch '97].

o if (M, g) is asymptotically flat at null infinity, some
distinguished states at null infinity are Hadamard [Dappiagi,
Moretti, Pinamonti '09]

e the Unruh state on Schwarzschild space-time is Hadamard
[Dappiagi, Moretti, Pinamonti '11].

e If (M, g) has a compact Cauchy surface, Hadamard states
exist [Junker '97].
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Examples of Hadamard states

e If (M, g) is stationary i.e. admits a global time-like Killing
vector field, then associated vacuum and thermal states are
Hadamard [Sahimann, Verch '97].

o if (M, g) is asymptotically flat at null infinity, some
distinguished states at null infinity are Hadamard [Dappiagi,
Moretti, Pinamonti '09]

e the Unruh state on Schwarzschild space-time is Hadamard
[Dappiagi, Moretti, Pinamonti '11].

e If (M, g) has a compact Cauchy surface, Hadamard states
exist [Junker '97].

e on general space-times, Hadamard states exist [Fulling,
Narcowich, Wald '80].
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Model Klein-Gordon equation

We consider the following model Klein-Gordon equation:
e M =RMY4 x=(t x)ecR*

d d ]
a(t,x, D) = = Y 042%(x)0u+ )V (x)0y—0b (x)+m(x),
k=1 j=1
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e M =RMY4 x=(t x)ecR*

d d ]
a(t,x, D) = = Y 042%(x)0u+ )V (x)0y—0b (x)+m(x),
k=1 j=1

o [a/] uniformly elliptic, %, b/, m uniformly bounded with all
derivatives in x, locally in t.
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a(t,x, D) = = Y 042%(x)0u+ )V (x)0y—0b (x)+m(x),
k=1 j=1

o [a/] uniformly elliptic, %, b/, m uniformly bounded with all
derivatives in x, locally in t.

e We consider P(x, Dy) = 0? + a(t,x, Dy).
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Model Klein-Gordon equation

We consider the following model Klein-Gordon equation:
e M =RMY4 x=(t x)ecR*

d d ]
a(t,x, D) = = Y 042%(x)0u+ )V (x)0y—0b (x)+m(x),
k=1 j=1

. [ajk] uniformly elliptic, &%, b/, m uniformly bounded with all
derivatives in x, locally in t.

e We consider P(x, Dy) = 0? + a(t,x, Dy).

¢ Klein-Gordon operators on a space-time (M, g) with a Cauchy
surface ¥ = RY and some uniform estimates on the metric
can be reduced to this case.
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Hadamard states

Pseudo-differential operators

The natural symbol classes of the problem are the classes
S™(R?9), m € R, consists of functions a such that

8297 a(x, k) € O((k)™ 1), o, 8 € N9

(actually their poly-homogeneous versions).
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Pseudo-differential operators

The natural symbol classes of the problem are the classes
S™(R?9), m € R, consists of functions a such that

8297 a(x, k) € O((k)™ 1), o, 8 € N9
(actually their poly-homogeneous versions).

We denote W™(RY) := Op™ (5™ (R??)) the space of
pseudodifferential operators of degree m.

Construction of Hadamard states



Hadamard states

Parametrix for the Cauchy problem

Consider the Cauchy problem for P:

3?@5(1‘) + a(t>X7 DX)¢(t) =0,
() $(0) = fo,
i719,¢(0) = f1,
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Parametrix for the Cauchy problem

Consider the Cauchy problem for P:

3?@5(1‘) + a(t>X7 DX)¢(t) =0,
() $(0) = fo,
i719,¢(0) = f1,

essential step to construct Hadamard states for P: characterize
solutions with wavefront set in A/ in terms of their Cauchy data.
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Parametrix for the Cauchy problem

Consider the Cauchy problem for P:

3?@5(1‘) + a(t7X7 DX)¢(t) =0,
(©) $(0) = fo,
iilat(ﬁ(o) = fl?
essential step to construct Hadamard states for P: characterize

solutions with wavefront set in A/ in terms of their Cauchy data.

method: construct a sufficiently explicit parametrix for the Cauchy
problem (C).
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Parametrix for the Cauchy problem

Consider the Cauchy problem for P:

3?@5(1‘) + a(t7X7 DX)¢(t) =0,
() $(0) = fo,
i719,¢(0) = f1,

essential step to construct Hadamard states for P: characterize
solutions with wavefront set in A/ in terms of their Cauchy data.
method: construct a sufficiently explicit parametrix for the Cauchy
problem (C).

tool: use pseudo-differential calculus (no need for Fourier integral
operators, eikonal equations, etc.)
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Hadamard states

Parametrix for the Cauchy problem

Step 1: take a square root of a(t): there exists e(t,x, Dy) € W1
s.t. a(t,x, Dy) = €2(t,x, Dx) mod W~
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Parametrix for the Cauchy problem

Step 1: take a square root of a(t): there exists e(t,x, Dy) € W1
s.t. a(t,x, Dy) = €2(t,x, Dx) mod W~

Step 2: construct asymptotic solutions: there exist b(t) € Wt
unique mod. W= with b(t) = €(t) + WO such that if

up(t) = Texp(i [y b(s)ds), u_(t) = Texp(—i [, b*(s)ds) one has

(9% 4 €2(t))ux(t) = 0 mod W,
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Parametrix for the Cauchy problem

Step 1: take a square root of a(t): there exists e(t,x, Dy) € W1
s.t. a(t,x, Dy) = €2(t,x, Dx) mod W~

Step 2: construct asymptotic solutions: there exist b(t) € Wt
unique mod. W= with b(t) = €(t) + WO such that if

up(t) = Texp(i [y b(s)ds), u_(t) = Texp(—i [, b*(s)ds) one has

(9% 4 €2(t))ux(t) = 0 mod W,

Step 3: adjust initial conditions: there exists r € W1, unique
mod W~ with r = ¢(0)~! + V=2 and dy € WO such that if
ry:=r, r—:=r*and

Ui(t)f = ui(t)di(fo + rifl)

then U(t) = Uy (t) + U_(t) is a parametrix for the Cauchy
problem (C).
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Hadamard states

Spaces of positive/negative wavefront set solutions

Using Egorov's theorem one gets that WF(UL(t)f) C Nx.
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Spaces of positive/negative wavefront set solutions

Using Egorov’s theorem one gets that WF(Ux(t)f) C Nx.
First consequence: set

Solg(P) := {¢ € C°(R, H}(RY)) n C}(R, L2(RY)) : P¢ =0},

(finite energy solutions),
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Spaces of positive/negative wavefront set solutions

Using Egorov’s theorem one gets that WF(Ux(t)f) C Nx.
First consequence: set

Solg(P) := {¢ € C°(R, H}(RY)) n C}(R, L2(RY)) : P¢ =0},

(finite energy solutions),
and

SolE (P, r) == {¢ € Sole(P) : ¢(0) = £rii 10:4(0))}.

Then:
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Spaces of positive/negative wavefront set solutions

Using Egorov’s theorem one gets that WF(Ux(t)f) C Nx.
First consequence: set

Solg(P) := {¢ € C°(R, H}(RY)) n C}(R, L2(RY)) : P¢ =0},

(finite energy solutions),
and

SolE (P, r) == {¢ € Sole(P) : ¢(0) = £rii 10:4(0))}.

Then:

Theorem

1) ¢ € SolZ(P,r) = WF¢ C Ny,

2) +io > 0 on Sol (P, r), and the spaces Sol£(P, r) are
symplectically orthogonal.
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Hadamard states with pseudo-differential covariances

e Once having fixed r (it is not unique in the construction), we

set
1 r
1 —r )

N[

T(r):=(r+r")"
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Hadamard states with pseudo-differential covariances

e Once having fixed r (it is not unique in the construction), we

set
1 r
1 —r )

e T(r) diagonalizes the symplectic form:

N[

T(r):=(r+r")"

5= (T(r) Y oooT(n "= ( el > .
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Hadamard states with pseudo-differential covariances

e Once having fixed r (it is not unique in the construction), we

set
1 r
1 —r )

e T(r) diagonalizes the symplectic form:

N[

T(r):=(r+r")"

5= (T(r) Y oooT(n "= ( el > .

e If c is a covariance on C§°(RY) ® C? (Cauchy data), set

&= (T(r) Y oco T(r) L =: ( Gt G )
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Hadamard states with pseudo-differential covariances

We can identify a sesquilinear form C on C5°(M) with a
sesquilinear form on C§°(X) ® C? by

C=(poE)oco(poE).

If we fix c we set C; :=C, C_:=C —iE.

Theorem
Assume that ¢ has pdo entries. Then the associate pair C+
satisfies the Hadamard condition iff:

1- E—‘r-‘r: E—i——a E—-‘r’ ¢ € w_oo(Rd)
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Hadamard states with pseudo-differential covariances

One also has to check the conditions C+ > 0, which become
¢>0, ¢>io.
Theorem

let a_oo, b_oo € W™, 29 € WO with ||ag|| < 1. Then if

Z'++ =1 + bioobfooa C__ = a*_ooa,oo,
Cy_ =C 4 =b" a0a_co;

c is the covariance of a quasi-free Hadamard state.
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Pure Hadamard states

One can completely describe pure Hadamard states with pdo
covariances.

Theorem
c is the covariance of a pure Hadamard state iff

E++ = 1+ a_ooa*_oo,

= a'ga—o,

~ e * 1/2
- = 4 = 3—00(1 + afooa—OO) /

for some a_o, € W~°(RY).
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Canonical Hadamard state

Choose a_,, = 0 above. The corresponding state has covariance:

C(r):< (r+r) =t (rr)7tr )

r(r+r)~t r(r+r)7tr

It is called the canonical Hadamard state (associated to r).

Construction of Hadamard states



Canonical Hadamard state

Choose a_,, = 0 above. The corresponding state has covariance:
o(r) = (r+r*)~1 (r+r*)~1r
T\ (r+r) o (r+r)7r )
It is called the canonical Hadamard state (associated to r).

Theorem

If r, r' are as before, then there exists a symplectic transformation
G € Sp(o) such that c(r') = G* o ¢(r) o G (covariance under
symplectic transformations). Moreover G has pdo entries.
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Basic examples

Consider the static case a(t,x, Dy) = a(x, Dy) independent on t.
Then one can define the vacuum (0-temperature) and thermal
state.
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Basic examples

Consider the static case a(t,x, Dy) = a(x, Dy) independent on t.
Then one can define the vacuum (0-temperature) and thermal
state.

. - 1 0
covariance of the vacuum state: ¢ = 00 )
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Basic examples

Consider the static case a(t,x, Dy) = a(x, Dy) independent on t.
Then one can define the vacuum (0-temperature) and thermal
state.

. - 1 0
covariance of the vacuum state: ¢ = 00 )

covariance of the thermal state:

. _( O 0
B8 — 0 e—ﬁe(l _ e—,Be)—l )

where ¢ = al/2.
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Basic examples

Consider the static case a(t,x, Dy) = a(x, Dy) independent on t.
Then one can define the vacuum (0-temperature) and thermal
state.

. - 1 0
covariance of the vacuum state: ¢ = 00 )

covariance of the thermal state:

. _( O 0
B8 — 0 e—ﬁe(l _ e—,Be)—l )

where ¢ = al/2.

Both covariances are pseudo-differential and Hadamard.
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Open problems

e Relax condition on the metric at spatial infinity.
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o Replace Cauchy surface by a characteristic manifold
(backward lightcone).
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e Treat fermionic (Dirac) fields.
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Open problems

e Relax condition on the metric at spatial infinity.

o Replace Cauchy surface by a characteristic manifold
(backward lightcone).

e Treat fermionic (Dirac) fields.

e What happens for gauge theories (Maxwell, Yang-Mills) ?
existence of Hadamard states is still unknown for (linearized)
Yang-Mills fields (deformation argument does not work
anymore).

Construction of Hadamard states
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