Supersymmetry and Witten Laplacian

Supersymmetry for random walks

Final remarks

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

### Tunnel effect for semiclassical random walk

#### F. Hérau (joint work with J.-F. Bony and L. Michel)

Laboratoire Jean Leray, Université de Nantes

### **Microlocal Analysis and Spectral Theory**

Conference in honor of J. Sjöstrand

CIRM, September 27, 2013

Supersymmetry and Witten Laplacian

Supersymmetry for random walks 00000

Final remarks













| Introduction |  |
|--------------|--|
| 0000000000   |  |

Supersymmetry for random walks 00000



- 2 Supersymmetry and Witten Laplacian
- Supersymmetry for random walks

### 4 Final remarks

 Introduction

OOOOOOOOO

Supersymmetry and Witten Laplacian

Supersymmetry for random walks 00000

Final remarks

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

## Semiclassical random walk

Let  $\phi \in C^{\infty}(\mathbb{R}^d)$  be a real function such that  $d\mu_h = e^{-\phi(x)/h}dx$  is a probability measure. We are interested in the random-walk operator defined on the space  $C_0$  of continuous function going to 0 at infinity by

$$\mathbf{T}_h f(x) = \frac{1}{\mu_h(B_h(x))} \int_{B_h(x)} f(y) d\mu_h(y),$$

where  $B_h(x) = B(x, h)$ . By duality, this defines an operator  $\mathbf{T}_h^*$  on the set  $\mathcal{M}_b$  of bounded Borel measures

$$\forall f \in \mathcal{C}_0, \forall \nu \in \mathcal{M}_b, \ \mathbf{T}_h^{\star}(\nu)(f) = \nu(\mathbf{T}_h f)$$

Supersymmetry and Witten Laplacian

Supersymmetry for random walks 00000

Final remarks

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ・ つ へ ()

### Invariant measure

Observe that if  $d\nu$  has a density with respect to Lebesgue measure  $d\nu = \rho(x)dx$ , then

$$\mathbf{T}_h^{\star}(d\nu) = \left(\int_{|x-y| < h} \frac{1}{\mu_h(B_h(x))} \rho(x) dx\right) e^{-\phi(y)/h} dy$$

As a consequence, the measure

$$d
u_{h,\infty} = rac{\mu_h(B_h(x))e^{-\phi(x)/h}}{Z_h}dx := \mathcal{M}_h(x)dx$$

where  $Z_h$  is chosen so that  $d\nu_{h,\infty}$  is a probability on  $\mathbb{R}^d$  satisfies

 $\mathbf{T}_{h}^{\star}(d\nu_{h,\infty})=d\nu_{h,\infty}.$ 

We say that  $d\nu_{h,\infty}$  is an invariant measure for  $T_h$  and  $\mathcal{M}_h$  is sometimes called the Maxwellian.

Supersymmetry and Witten Laplacian

Supersymmetry for random walks

Final remarks

### Convergence to equilibrium

#### Question

For  $d\nu \in \mathcal{M}_b$ , what is the behavior of  $(\mathbf{T}_h^*)^n (d\nu)$  when  $n \to \infty$ ?

Under suitable assumptions on  $\phi$  we can easily prove the following :

#### Theorem

For any probability measure  $d\nu$ , we have

$$\lim_{n\to+\infty} (\mathbf{T}_h^\star)^n (d\nu) = d\nu_{h,\infty}$$

We are willing to compute the speed of convergence in the above limit. The answer is closely related to the spectral theory of  $\mathbf{T}_{h}^{\star}$ , at least when we restrict to a stable Hilbertian subspace of  $\mathbf{T}_{h}^{\star}$  in  $\mathcal{M}_{b}$ .

Supersymmetry and Witten Laplacian

Supersymmetry for random walks 00000

Final remarks

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

### Reduction and Some elementary properties

For the coming analysis, we restrict to the following Hilbertian subspace of measures (with density)

$$\mathcal{H}_{h} = L^{2}(\mathbb{R}^{d}, d\nu_{h,\infty}) \hookrightarrow \mathcal{M}_{b} : f \longrightarrow \mathit{fd}\nu_{h,\infty}$$

We denote again by  $\mathbf{T}_{h}^{*}$  this restriction. We have the following elementary properties :

Proposition

The following hold true :

- $\mathbf{T}_h^*$  is bounded and self-adjoint on  $\mathcal{H}_h$
- 1 is an eigenvalue of T<sup>\*</sup><sub>h</sub> (Markov property)

Supersymmetry and Witten Laplacian

Supersymmetry for random walks 00000

Final remarks

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

## Assumptions on $\phi$

We make the following assumptions on  $\phi$  :

there exists c, R > 0 and some constants C<sub>α</sub> > 0, α ∈ N<sup>d</sup> such that :

$$\forall \alpha \in \mathbb{N}^{d} \setminus \{\mathbf{0}\}, \forall \mathbf{x} \in \mathbb{R}^{d} |\partial_{\mathbf{x}}^{\alpha} \phi(\mathbf{x})| \leq C_{\alpha}$$

and

$$\forall |x| \geq R, |\nabla \phi(x)| \geq c \text{ and } \phi(x) \geq c|x|.$$

- φ is a Morse function (i.e. φ the critical points of φ are non-degenerate).
- We denote by  $\mathcal{U}^{(k)}$  the set of critical points, of  $\phi$  of index k,  $n_k = \sharp \mathcal{U}^{(k)}, \ \mathcal{U}^{(0)} = \{\mathbf{m}_k, k = 1 \dots n_0\}$  and for convenience  $\mathcal{U}^{(1)} = \{\mathbf{s}_j, j = 1 \dots n_1 + 1\}$  with  $\mathbf{s}_1 = \infty$ .
- We suppose that the values φ(s<sub>j</sub>) − φ(m<sub>k</sub>), s<sub>j</sub> ∈ U<sup>(1)</sup>, m<sub>k</sub> ∈ U<sup>(0)</sup> are distincts. (recall that the index of a critical point c is the number of negative eigenvalues of Hess(φ)(c)).

Supersymmetry and Witten Laplacian

Supersymmetry for random walks 00000

Final remarks

## Description of small eigenvalues

### Theorem [Bony-Hérau-Michel]

Suppose that the previous assumptions are fullfilled. Then

There exists κ<sub>0</sub> > 0 such that :

- 
$$\sigma_{ess}(\mathbf{T}_h^{\star}) \cap [1 - \kappa_0, 1] = \emptyset$$

- 
$$\sigma(\mathbf{T}_h^{\star}) \cap [-1, -1 + \kappa_0] = \emptyset$$

There exists ε > 0 such that there are exactly n<sub>0</sub> eigenvalues of T<sup>\*</sup><sub>h</sub> in the interval [1 - εh, 1]. One of them is 1 and the other enjoy the following asymptotic

$$\lambda_{k,h}^{\star} = 1 - \frac{h\theta_{k,0}}{2(d+2)} e^{-S_k/h} (1 + \mathcal{O}(h))$$

where the coefficient  $\theta_k$ ,  $S_k$  are defined later.

Supersymmetry and Witten Laplacian

Supersymmetry for random walks 00000

Final remarks

## Reformulation of the problem

Since we prefer to work in the standard  $L^2(dx)$  space, we pose for the following

$$u = \mathcal{M}_h^{1/2} f \stackrel{\text{def}}{=} \mathbb{U}_h^{-1} f \quad \text{where} \quad \mathbb{U} : L^2(d\nu_{h,\infty}) \to L^2(dx) \text{ unitary}$$

$$T_h = \mathbb{U}_h^* \mathbf{T}_h^* \mathbb{U}$$

which expression is

$$T_h f(x) = a_h(x) \frac{1}{\alpha_d h^d} \int_{|x-y| < h} a_h(y) f(y) dy$$

where

and

$$a_h(x)^{-2} = \frac{1}{\alpha_d h^d} \int_{|x-y| < h} e^{(\phi(x) - \phi(y))/h} dy$$

| ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Supersymmetry for random walks 00000

Final remarks

We now have to study the spectral properties of the selfadjoint operator  $T_h$  on  $L^2(dx)$ 

$$T_h u(x) = a_h(x) \frac{1}{\alpha_d h^d} \int_{|x-y| < h} a_h(y) u(y) dy$$

Observe that the operator  $u \mapsto \frac{1}{\alpha_d h^d} \int_{|x-y| < h} u(y) dy$  is a fourier multiplier  $G(hD_x)$  with

$$G(\xi) = \frac{1}{\alpha_d} \int_{|x| < 1} e^{ix \cdot \xi} dx$$

We can then notice that

$$T_h = a_h G(hD_x)a_h$$
 and  $a_h^{-2} = e^{\phi/h}G(hD_x)(e^{-\phi/h})$ 

In order to study the spectrum of  $T_h$  near 1, we can study the spectrum near 0 of

$$P_h \stackrel{\text{def}}{=} 1 - T_h = a_h (V_h(x) - G(hD_x)) a_h$$

where

$$V_h(x) = a_h^{-2}(x) = e^{\phi/h} G(hD_x) (e^{-\phi/h}).$$

 Introduction
 Supersymmetry and Witten Laplacian

 000000000
 0000

Supersymmetry for random walks

Final remarks

## Short heuristics

Let  $u \in C_0^{\infty}(\mathbb{R}^d)$  be fixed, using the change of variable y = x + hz and Taylor expansion for *G* in the expression of *P<sub>h</sub>*, we show easily that

$$P_h u(x) = a_h \underbrace{(V_h(x) - G(hD_x))}_{\frac{1}{2(d+2)}P_h^W + \mathcal{O}(h^3)} a_h u(x)$$

where

$$P_h^W = -h^2 \Delta + |\nabla \phi|^2 - h \Delta \phi$$

is the semiclassical Witten Lapacian. Here the term  $O(h^3)$  is not an error term from a spectral point of view. Anyway

#### questions

- *P*<sup>W</sup><sub>h</sub> widely studied : can we benefit from this knowledge to compute the ev's of *P*<sub>h</sub>?
- Is there a supersymmetric structure for P<sub>h</sub> as for P<sup>W</sup><sub>h</sub> (recall P<sub>h</sub>(a<sup>-1</sup><sub>h</sub>e<sup>-φ/h</sup>) = 0)?

Supersymmetry and Witten Laplacian

Supersymmetry for random walks

Final remarks

## Some biblio and known results

- The spectrum of semiclassical Witten laplacian has been analyzed by many authors : Witten 85, Helffer-Sjöstrand 85, Cycon-Froese-Kirch-Simon 87, Bovier-Gayrard-Klein 04, Helffer-Klein-Nier 04. In the last article, a complete asymptotic of exponentially small ones is given (under the above assumptions)
- The spectrum Metropolis operator has also been recently studied (using the connections with Witten). In bounded domains with Neumann conditions, Diaconis-Lebeau-Michel 12, and various geometries, Christianson-Guillarmou-Michel 13, Lebeau-Michel 10 (with an other scalling).
- No study of exponentially close to 1 spectrum for Metropolis (and "tunneling effect") so far...

| Introduction |  |
|--------------|--|
| 0000000000   |  |

Supersymmetry for random walks 00000



- 2 Supersymmetry and Witten Laplacian
- Supersymmetry for random walks

### 4 Final remarks

- < ロ > < 個 > < 注 > < 注 > 注 の < @

Supersymmetry and Witten Laplacian

Supersymmetry for random walks

Final remarks

うしん 前 ・ 山田・ 山田・ 山田・

## Description of small eigenvalues

We recall some facts about  $P_h^W = -h^2 \Delta + |\nabla \phi|^2 - h \Delta \phi$ .

- It is rather easy to show that  $P_h^W$  has  $n_0 := \sharp \mathcal{U}^{(0)}$  eigenvalues  $0 = \lambda_1 \leq \ldots \leq \lambda_{n_0}$ , in the interval  $[0, h^{3/2}]$ .
- The most accurate result in [HKN04] gives an approximation of these eigenvalues (for k ≥ 2) :

$$\lambda_k = h\theta_k(h)e^{-S_k/h}$$
 with  $\theta_k(h) = \sum_{l\geq 0} h'\theta_{k,l}$ ,

The quantities, S<sub>k</sub>, θ<sub>k,0</sub> can be computed : there exists a labelling of U<sup>(0)</sup> and an application j : {1,..., n<sub>0</sub>} → {1,..., n<sub>1</sub> + 1} such that (for k ≥ 2) :

$$S_k = 2(\phi(\mathbf{s}_{j(k)}) - \phi(\mathbf{m}_k)) \text{ and } \theta_{k,0} = \frac{|\hat{\lambda}_1(\mathbf{s}_{j(k)})|}{\pi} \sqrt{\frac{\det(\operatorname{Hess}\phi(\mathbf{m}_k))}{\det(\operatorname{Hess}\phi(\mathbf{s}_{j(k)}))}}$$

where  $\hat{\lambda}_1(\mathbf{s}_{j(k)})$  is the negative eigenvalue of  $\text{Hess}\phi(\mathbf{s}_{j(k)})$ .

Supersymmetry and Witten Laplacian

Supersymmetry for random walks

Final remarks

## Interaction matrix

The strategy of Helffer-Klein-Nier (see also Helffer-Sjostrand 84 and Hérau-Hitrik-Sjostrand 11 for Kramers-Fokker-Planck) is the following :

- Introduce
  - *F*<sup>(0)</sup> = eigenspace associated to the *n*<sub>0</sub> low lying eigenvalues on 0-forms
  - $\Pi^{(0)} = \text{projector on } F^{(0)}$ .
  - $M = \text{restriction of } \Delta_{\phi,h} \text{ to } F^{(0)}$ .

We have to compute the eigenvalues of *M*.

• We compute suitable quasimodes  $f_k^{(0)}$ , show that

$$e_k^{(0)} = \Pi^{(0)} f_k^{(0)} = f_k^{(0)} + error$$

and compute the matrix of *M* in the base  $e_k^{(0)}$ .

- Doing that leads to error terms which are too big.
- In order to do that, use the supersymmetric structure.

Supersymmetry and Witten Laplacian

Supersymmetry for random walks 00000

Final remarks

# Using Supersymmetry (I)

For p = 0,..., d − 1, denote d<sup>(p)</sup> : Λ<sup>p</sup>ℝ<sup>d</sup> → Λ<sup>p+1</sup>ℝ<sup>d</sup> the exterior derivative and d<sup>(p),\*</sup> : Λ<sup>p+1</sup>ℝ<sup>d</sup> → Λ<sup>p</sup>ℝ<sup>d</sup> its formal adjoint. Then the Hodge Laplacian on *p*-form is defined by

$$-\Delta^{(p)} = d^{(p),*}d^{(p)} + d^{(p-1)}d^{(p-1),*}$$

• The semiclassical Witten Laplacian (Witten, 1985) on *p*-form is defined by introducing the twisted exterior derivatives  $d_{\phi,h}^{(p)} = e^{-\phi/h}(hd^{(p)})e^{\phi/h}$  and  $d_{\phi,h}^{(p),*}$  its adjoint and by setting

$$P_h^{W,(p)} = d_{\phi,h}^{(p),*} d_{\phi,h}^{(p)} + d_{\phi,h}^{(p-1)} d_{\phi,h}^{(p-1),*}$$

 In particular, for p = 0, the Witten Laplacian on function is given by

$${\cal P}_h^W = {\cal P}_h^{W,(0)} = {\it d}_{\phi,h}^{(0),*} {\it d}_{\phi,h}^{(0)} = - {\it h}^2 \Delta + |
abla \phi|^2 - {\it h} \Delta \phi.$$

Supersymmetry and Witten Laplacian

Supersymmetry for random walks

Final remarks

# Using Supersymmetry (II)

The fondamental remarks are the following :

- $P_h^{W,(p+1)}d_{\phi,h}^{(p)} = d_{\phi,h}^{(p)}P_h^{W,(p)}$  and  $d_{\phi,h}^{(p),*}P_h^{W,(p+1)} = P_h^{W,(p)}d_{\phi,h}^{(p),*}$
- Denote *F*<sup>(1)</sup> the eigenspace associated to low lying eigenvalues on 1 forms, then *d*<sup>(0)</sup><sub>φ,h</sub>(*F*<sup>(0)</sup>) ⊂ *F*<sup>(1)</sup> and *d*<sup>(0),\*</sup><sub>φ,h</sub>(*F*<sup>(1)</sup>) ⊂ *F*<sup>(0)</sup>. Hence

 $M = L^*L$ 

where *L* is the matrix of  $d_{\phi,h}^{(0)}: F^{(0)} \to F^{(1)}$ .

• The matrix  $L = (L_{j,k})$  is very well approximated by

 $L_{j,k} = \langle f_j^{(1)}, d_{\phi,h}^{(0)} f_k^{(0)} \rangle + \mathcal{O}(e^{-(S_k + \alpha)/h}) \text{ with } L_{j(k),k} \sim e^{-S_k/h}$ 

where  $f_k^{(1)}$  are good localized quasimodes on 1-form.

 We can conclude by computing the singular values of *L* thanks to the structure (*k* → *S<sub>k</sub>* strictly decreasing) and the Ky fan inequalities.

| Introduction |
|--------------|
| 0000000000   |

Supersymmetry for random walks

Final remarks



- 2 Supersymmetry and Witten Laplacian
- Supersymmetry for random walks

### 4 Final remarks

- イロト イロト イヨト イヨト - ヨー - のへで

Supersymmetry and Witten Laplacian

Supersymmetry for random walks

Final remarks

## Supersymmetry for Metropolis

Recall that  $P_h^W = d_{\phi,h}^* d_{\phi,h}$ . One fundamental step in our analysis is the following similar description of  $P_h$ :

Theorem [Bony-Hérau-Michel]

There exists a real valued symbol  $q \in S^0(T^*\mathbb{R}^d, \partial A)$  such that

$$P_h = \frac{1}{2(d+2)}a_h d_\phi^* Q^* Q d_\phi a_h$$

with  $Q = Op_h^w(q)$ . Moreover, the principal symbol  $q^0$  of Q satisfies  $q^0(x,\xi) = Id + \mathcal{O}((x - \mathbf{c},\xi)^2)$  near  $(\mathbf{c}, 0)$  for any critical point  $\mathbf{c} \in \mathcal{U}$ . and Q is invertible in a similar class.

Here  $\partial \mathcal{A} : T^* \mathbb{R}^d \to \mathcal{M}_d(\mathbb{R})$  is given by  $\partial \mathcal{A}_{i,j}(x,\xi) = (\langle \xi_j \rangle)^{-1}$  and  $q \in S^0(T^* \mathbb{R}^d, \mathcal{A})$  means  $\partial_x^{\alpha} \partial_{\xi}^{\beta} q(x,\xi) = \mathcal{O}(\partial \mathcal{A}(x,\xi))$  component by component.

Supersymmetry and Witten Laplacian

Supersymmetry for random walks

Final remarks

<日 > < 同 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0</p>

### Random walks operator on (1)-forms

Let us denote L<sub>\u03c6</sub> = Qd<sub>\u03c6</sub> a<sub>h</sub>, then we have shown that (forgetting the prefactor 1/2(d + 2))

$$P_h = L_\phi^* L_\phi \stackrel{ ext{def}}{=} P_h^{(0)}$$

• We can then define an operator on (1)-forms with similar properties as the ones for the Witten Laplacian :

$$P_h^{(1)} = L_{\phi} L_{\phi}^* + (Q^*)^{-1} d_{\phi}^* M d_{\phi} Q^{-1}$$

where *M* is an operator acting on 2-form such that P<sub>h</sub><sup>(1)</sup> is elliptic.
Observe that with this special choice the interwinning relations are still ok :

$$P_h^{(1)}L_\phi=L_\phi P_h^{(0)}$$

since

$$P_{h}^{(1)}L_{\phi} = L_{\phi}L_{\phi}^{*}L_{\phi} + (Q^{*})^{-1}d_{\phi}^{*}M\underbrace{d_{\phi}Q^{-1}Qd_{\phi}}_{=d_{\phi}^{2}=0}a_{h} = L_{\phi}(L_{\phi}^{*}L_{\phi})$$

Supersymmetry and Witten Laplacian

Supersymmetry for random walks

Final remarks

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

## More geometrical point of view

In fact denoting  $G \stackrel{\text{def}}{=} Op(g_{j,k})_{j,k} = Q^*Q$ , we can consider  $a_h d_{\phi}^* G d_{\phi} a_h$  as a Hodge Witten Laplacian on (0)-form with pseudodifferential metric  $G^{-1}$ .

The corresponding Laplacian on (1) forms is therefore naturally given with

$$M = M_{(j,k),(a,b)} = \frac{1}{2} Op \left( a_h^2 (g_{j,a} g_{k,b} - g_{k,a} g_{j,b}) \right)$$

Here

$$\textit{\textit{M}}_{(j,k),(a,b)} \in \Psi^0\left(\langle \xi_j \rangle^{-1} \langle \xi_k \rangle^{-1} \langle \xi_a \rangle^{-1} \langle \xi_b \rangle^{-1}\right)$$

and

$$g_{j,k} \in \Psi^0(\langle \xi_j 
angle^{-1} \langle \xi_k 
angle^{-1})$$

Supersymmetry and Witten Laplacian

Supersymmetry for random walks

Final remarks

### Elements of proof of the Theorem (I)

We then can can follow similar arguments as in the Witten case

- $L_{\phi} = Qd_{\phi}a_h$  plays the role of the exterior derivative.
- minmax or IMS arguments imply that  $P_h$  has  $n_0$  exponentially small eigenvalues and  $P_h^{(1)}$  has  $n_1$  exp. small eigenvalues.
- Denoting  $F^{(0)}$  and  $F^{(1)}$  the corresponding generalized eigenspaces, the interwinning relations give :  $L^{(0)}_{\phi} : F^{(0)} \longrightarrow F^{(1)}$ .
- The f<sub>k</sub><sup>(0)</sup> = χ<sub>k</sub>a<sub>h</sub><sup>(-1)</sup>f<sub>k</sub><sup>W,(0)</sup> are pretty good quasimodes for P<sub>h</sub>, where f<sub>k</sub><sup>W,(0)</sup> ∈ F<sup>W,(0)</sup> is well localized near **m**<sub>k</sub> and close to **s**<sub>j(k)</sub> (see HKN)
- The  $f_j^{(1)} = (Q^*)^{-1} \theta_j f_j^{W,(1)}$  are rather good quasimodes for  $P_h^{(1)}$ , where  $f_j^{W,(1)} \in F^{W,(1)}$  is well localized near  $\mathbf{s}_j$ .
- If  $e_k^{(0)} = \Pi^{(0)} f_k^{(0)}$  and  $e_j^{(1)} = \Pi^{(1)} f_j^{(1)}$ , then the families  $\left\{ e_k^{(0)} \right\}$  and  $\left\{ e_j^{(1)} \right\}$  are orthonormal families of  $F^{(0)}$  and  $F^{(1)} \mod \mathcal{O}(h)$ .

l

Supersymmetry and Witten Laplacian

Supersymmetry for random walks

Final remarks

### Elements of proof of the Theorem (II)

• The matrix  $L = L_{j,k}$  of  $L_{\phi}^{(0)} : F^{(0)} \longrightarrow F^{(1)}$  with respect to these bases is well approximated by

$$\begin{split} L_{j,k} &= \left\langle f_j^{(1)}, L_{\phi}^{(0)} f_k^{(0)} \right\rangle + \mathcal{O}(\boldsymbol{e}^{-(S_k + \alpha)/h}) \\ &= \left\langle (\boldsymbol{Q}^*)^{-1} \theta_j f_j^{W,(1)}, \boldsymbol{Q} \boldsymbol{d}_{\phi} \boldsymbol{a}_h \boldsymbol{a}_h^{-1} \chi_k f_k^{W,(0)} \right\rangle + \mathcal{O}(\boldsymbol{e}^{-(S_k + \alpha)/h}) \\ &= \left\langle \theta_j f_j^{W,(1)}, \boldsymbol{d}_{\phi} \chi_k f_k^{W,(0)} \right\rangle + \mathcal{O}(\boldsymbol{e}^{-(S_k + \alpha)/h}) \\ &= L_{j,k}^W + \mathcal{O}(\boldsymbol{e}^{-(S_k + \alpha)/h}) \quad (\text{ recall } L_{j(k),k}^W \sim \boldsymbol{e}^{-S_k/h}) \end{split}$$

• of course the term  $\mathcal{O}^{-(S_k+\alpha)/h}$  is fundamental, and relies on the crucial following fact :

$$e_{j}^{(1)} - f_{j}^{(1)} = \mathcal{O}(h) \text{ but } L_{\phi}^{*}(e_{j}^{(1)} - f_{j}^{(1)}) = \mathcal{O}(e^{-\alpha/h})$$

• We can conclude by computing the singular values of *L* thanks to the structure  $(k \rightarrow S_k$  strictly decreasing) and the Ky fan inequalities for which we only need  $\mathcal{O}(h)$  approximate orthonormal basis

| Introduction |  |
|--------------|--|
| 0000000000   |  |

Supersymmetry for random walks 00000

Final remarks



- 2 Supersymmetry and Witten Laplacian
- Supersymmetry for random walks





Supersymmetry and Witten Laplacian

Supersymmetry for random walks 00000

Final remarks

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

### About the Factorization Lemma

We first recall some facts about pseudodifferential operators

- Let  $\tau > 0$ , we say that a symbol  $p \in C^{\infty}(\mathbb{R}^{2d}, \mathbb{C})$  belongs to the class  $\mathbb{S}^0_{\tau}(1)$  if
  - for all  $x \in \mathbb{R}^d$ ,  $\xi \mapsto p(x,\xi)$  is analytic with respect to  $\xi \in B_{\tau} = \{\xi \in \mathbb{C}^d, |Im\xi| < \tau\}$
  - $\forall (x,\xi) \in \mathbb{R}^d \times B_{\tau}, \ |\partial_x^{\alpha} \partial_{\xi}^{\beta} p(x,\xi)| \leq C_{\alpha,\beta}.$
- We say that  $p \in \mathbb{S}^0_{\infty}(1)$  if  $p \in \mathbb{S}^0_{\tau}(1)$  for all  $\tau > 0$ .
- For  $p \in \mathbb{S}^0_{\tau}(1), \tau \in [0, \infty]$  we define the Weyl-quantization of p :

$$\mathsf{Op}_h^w(p)u(x) = (2\pi h)^{-d} \int_{\mathbb{R}^{2d}} e^{i(x-y)\xi/h} p(\frac{x+y}{2},\xi)u(y) dy d\xi$$

for any  $u \in \mathbb{S}(\mathbb{R}^d)$ .

|     | Supersymmetry and Witten Laplacian | Supersymmetry for random walks |
|-----|------------------------------------|--------------------------------|
| 000 | 0000                               | 00000                          |

Let  $\phi$  be as before. Let  $p \in S^0_{\infty}(1)$  and  $P_h = \operatorname{Op}_h^w(p)$ . Assume that the following assumptions hold true :

• *p* is real-valued (and hence *P<sub>h</sub>* is self-adjoint).

• 
$$P_h(e^{-\phi/h}) = 0$$

- For all  $x \in \mathbb{R}^d$ , the function  $\xi \in \mathbb{R}^d \mapsto p(x,\xi)$  is even.
- Near any critical points  $U \in \mathcal{U}$  we have

$$p(x,\xi) = |\xi|^2 + |
abla \phi(x)|^2 + \mathcal{O}(h + |(x - U,\xi)|^4).$$

•  $\forall \delta > 0, \exists \alpha > 0, \forall (x, \xi) \in T^* \mathbb{R}^d, (d(x, U)^2 + |\xi|^2 \ge \delta \Longrightarrow p(x, \xi) \ge \alpha)$ 

#### Remark

The operator  $G(hD) - V_h(x)$  entering in the formulation of  $P_h$  satisfies the above assumptions since *G* is the fourier transform of  $1|_{|z|<1}$ .

Final remarks

| Introduction | Supersymmetry and Witten Laplacian | Supersymmetry for random walks | Final remarks |
|--------------|------------------------------------|--------------------------------|---------------|
| 000000000    | 0000                               | 00000                          | 00000         |

Let us that  $D_{\phi} = h \nabla_x + \nabla \phi(x)$  and  $\partial \mathcal{A} : T^* \mathbb{R}^d \to \mathcal{M}_d(\mathbb{R})$  given by  $\partial \mathcal{A}_{i,j}(x,\xi) = (\langle \xi_j \rangle)^{-1}$ .

#### Theorem

Under the above assumptions, there exists  $\tau > 0$  and a real valued symbol  $q \in \mathbb{S}^{0}_{\tau}(T^*\mathbb{R}^d, \mathcal{A})$  such that

$$P_h = D_\phi^* Q^* Q D_\phi$$

うつん 川 エー・エー・ エー・ ひゃう

with  $Q = Op_h^w(q)$ . Moreover, the principal symbol  $q^0$  of Q satisfies  $q^0(x,\xi) = Id + \mathcal{O}((x - \mathbf{c},\xi)^2)$  near  $(\mathbf{c}, 0)$  for any critical point  $\mathbf{c} \in \mathcal{U}$ .

Introduction Supersymmetry and Witten Laplacian Supersymmetry for random walks occord A shorter proof!

As we saw before, the links between The Witten Laplacian and the Random walk operator are strong. Indeed we showed before that (exponentially close to 1)

$$\lambda_{k,h}^{\star} = 1 - \frac{1}{2(d+2)} \lambda_{k,h}^{W}(1 + \mathcal{O}(h))$$

where the  $\lambda_{k,h}^{\star}$  are the eigenvalues for the Metropolis operator  $\mathbf{T}_{h}^{\star}$  and  $\lambda_{k,h}^{W}$  the ones for the Witten Laplacian.

In fact using the minmax principle and a more direct comparison between the 2 we are able to show that

$$\lambda_{k,h}^{\star} = 1 - \frac{1}{2(d+2)} \lambda_{k,h}^{W}(1 + o(1))$$

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

Supersymmetry and Witten Laplacian

Supersymmetry for random walks

Final remarks

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

### Perspectives

- Asymptotic in  $\mathcal{O}(h^{\infty})$  / More intrinsic supersymmetric structure
- Analysis on manifolds and with boundary
- "Non-selfadjoint" case : walk with random velocity (equivalent of the Fokker-Planck case w.r.t. the Witten one)