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Semiclassical random walk

Let φ ∈ C∞(Rd ) be a real function such that dµh = e−φ(x)/hdx is a
probability measure. We are interested in the random-walk operator
defined on the space C0 of continuous function going to 0 at infinity by

Thf (x) =
1

µh(Bh(x))

∫
Bh(x)

f (y)dµh(y),

where Bh(x) = B(x ,h). By duality, this defines an operator T?h on the
setMb of bounded Borel measures

∀f ∈ C0,∀ν ∈Mb, T?h(ν)(f ) = ν(Thf )
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Invariant measure

Observe that if dν has a density with respect to Lebesgue measure
dν = ρ(x)dx ,then

T?h(dν) =

(∫
|x−y|<h

1
µh(Bh(x))

ρ(x)dx

)
e−φ(y)/hdy

As a consequence, the measure

dνh,∞ =
µh(Bh(x))e−φ(x)/h

Zh
dx :=Mh(x)dx

where Zh is chosen so that dνh,∞ is a probability on Rd satisfies

T?h(dνh,∞) = dνh,∞.

We say that dνh,∞ is an invariant measure for Th andMh is
sometimes called the Maxwellian.
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Convergence to equilibrium

Question

For dν ∈Mb, what is the behavior of (T?h)n(dν) when n→∞?

Under suitable assumptions on φ we can easily prove the following :

Theorem
For any probability measure dν, we have

lim
n→+∞

(T?h)n(dν) = dνh,∞

We are willing to compute the speed of convergence in the above
limit. The answer is closely related to the spectral theory of T?h, at
least when we restrict to a stable Hilbertian subspace of T?h inMb.
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Reduction and Some elementary properties

For the coming analysis, we restrict to the following Hilbertian
subspace of measures (with density)

Hh = L2(Rd ,dνh,∞) ↪→Mb : f −→ fdνh,∞

We denote again by T∗h this restriction. We have the following
elementary properties :

Proposition

The following hold true :
T∗h is bounded and self-adjoint on Hh

1 is an eigenvalue of T?h (Markov property)
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Assumptions on φ

We make the following assumptions on φ :
there exists c,R > 0 and some constants Cα > 0, α ∈ Nd such
that :

∀α ∈ Nd \ {0}, ∀x ∈ Rd |∂αx φ(x)| ≤ Cα

and
∀|x | ≥ R, |∇φ(x)| ≥ c and φ(x) ≥ c|x |.

φ is a Morse function (i.e. φ the critical points of φ are
non-degenerate).
We denote by U (k) the set of critical points,of φ of index k ,
nk = ]U (k), U (0) = {mk , k = 1 . . . n0} and for convenience
U (1) = {sj , j = 1 . . . n1 + 1} with s1 =∞.
We suppose that the values φ(sj )− φ(mk ), sj ∈ U (1), mk ∈ U (0)

are distincts. (recall that the index of a critical point c is the
number of negative eigenvalues of Hess(φ)(c)).
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Description of small eigenvalues

Theorem [Bony-Hérau-Michel]

Suppose that the previous assumptions are fullfilled. Then
There exists κ0 > 0 such that :

- σess(T?h ) ∩ [1− κ0, 1] = ∅
- σ(T?h ) ∩ [−1,−1 + κ0] = ∅

There exists ε > 0 such that there are exactly n0 eigenvalues of
T?h in the interval [1− εh,1]. One of them is 1 and the other enjoy
the following asymptotic

λ?k,h = 1− hθk,0

2(d + 2)
e−Sk/h(1 +O(h))

where the coefficient θk ,Sk are defined later.



Introduction Supersymmetry and Witten Laplacian Supersymmetry for random walks Final remarks

Reformulation of the problem

Since we prefer to work in the standard L2(dx) space, we pose for the
following

u =M1/2
h f def

= U−1
h f where U : L2(dνh,∞)→ L2(dx) unitary

and
Th = U∗hT?hU

which expression is

Thf (x) = ah(x)
1

αdhd

∫
|x−y|<h

ah(y)f (y)dy

where
ah(x)−2 =

1
αdhd

∫
|x−y|<h

e(φ(x)−φ(y))/hdy .
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We now have to study the spectral properties of the selfadjoint
operator Th on L2(dx)

Thu(x) = ah(x)
1

αdhd

∫
|x−y|<h

ah(y)u(y)dy

Observe that the operator u 7→ 1
αd hd

∫
|x−y|<h u(y)dy is a fourier

multiplier G(hDx ) with

G(ξ) =
1
αd

∫
|x|<1

eix·ξdx

We can then notice that

Th = ahG(hDx )ah and a−2
h = eφ/hG(hDx )(e−φ/h)

In order to study the spectrum of Th near 1, we can study the
spectrum near 0 of

Ph
def
= 1− Th = ah(Vh(x)−G(hDx ))ah

where
Vh(x) = a−2

h (x) = eφ/hG(hDx )(e−φ/h).
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Short heuristics

Let u ∈ C∞0 (Rd ) be fixed, using the change of variable y = x + hz and
Taylor expansion for G in the expression of Ph, we show easily that

Phu(x) = ah (Vh(x)−G(hDx ))︸ ︷︷ ︸
1

2(d+2) PW
h +O(h3)

ahu(x)

where
PW

h = −h2∆ + |∇φ|2 − h∆φ

is the semiclassical Witten Lapacian. Here the term O(h3) is not an
error term from a spectral point of view. Anyway

questions

PW
h widely studied : can we benefit from this knowledge to

compute the ev’s of Ph ?
Is there a supersymmetric structure for Ph as for PW

h
(recall Ph(a−1

h e−φ/h) = 0) ?
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Some biblio and known results

The spectrum of semiclassical Witten laplacian has been
analyzed by many authors : Witten 85, Helffer-Sjöstrand 85,
Cycon-Froese-Kirch-Simon 87, Bovier-Gayrard-Klein 04,
Helffer-Klein-Nier 04. In the last article, a complete asymptotic of
exponentially small ones is given (under the above assumptions)
The spectrum Metropolis operator has also been recently studied
(using the connections with Witten). In bounded domains with
Neumann conditions, Diaconis-Lebeau-Michel 12, and various
geometries, Christianson-Guillarmou-Michel 13, Lebeau-Michel
10 (with an other scalling).
No study of exponentially close to 1 spectrum for Metropolis (and
"tunneling effect") so far...
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Description of small eigenvalues

We recall some facts about PW
h = −h2∆ + |∇φ|2 − h∆φ.

It is rather easy to show that PW
h has n0 := ]U (0) eigenvalues

0 = λ1 ≤ . . . ≤ λn0 , in the interval [0,h3/2].
The most accurate result in [HKN04] gives an approximation of
these eigenvalues (for k ≥ 2) :

λk = hθk (h)e−Sk/h with θk (h) =
∑
l≥0

hlθk,l ,

The quantities, Sk , θk,0 can be computed : there exists a labelling
of U (0) and an application j : {1, . . . ,n0} → {1, . . . ,n1 + 1} such
that (for k ≥ 2) :

Sk = 2(φ(sj(k))−φ(mk )) and θk,0 =
|λ̂1(sj(k))|

π

√
det(Hessφ(mk ))

det(Hessφ(sj(k)))

where λ̂1(sj(k)) is the negative eigenvalue of Hessφ(sj(k)).
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Interaction matrix

The strategy of Helffer-Klein-Nier (see also Helffer-Sjostrand 84 and
Hérau-Hitrik-Sjostrand 11 for Kramers-Fokker-Planck) is the
following :

Introduce
F (0) = eigenspace associated to the n0 low lying eigenvalues on
0-forms
Π(0) = projector on F (0) .
M = restriction of ∆φ,h to F (0).

We have to compute the eigenvalues of M.

We compute suitable quasimodes f (0)k , show that

e(0)
k = Π(0)f (0)k = f (0)k + error

and compute the matrix of M in the base e(0)
k .

Doing that leads to error terms which are too big.
In order to do that, use the supersymmetric structure.
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Using Supersymmetry (I)

For p = 0, . . . ,d − 1, denote d (p) : ΛpRd → Λp+1Rd the exterior
derivative and d (p),∗ : Λp+1Rd → ΛpRd its formal adjoint. Then
the Hodge Laplacian on p-form is defined by

−∆(p) = d (p),∗d (p) + d (p−1)d (p−1),∗.

The semiclassical Witten Laplacian (Witten, 1985) on p-form is
defined by introducing the twisted exterior derivatives
d (p)
φ,h = e−φ/h(hd (p))eφ/h and d (p),∗

φ,h its adjoint and by setting

PW ,(p)
h = d (p),∗

φ,h d (p)
φ,h + d (p−1)

φ,h d (p−1),∗
φ,h

In particular, for p = 0, the Witten Laplacian on function is given
by

PW
h = PW ,(0)

h = d (0),∗
φ,h d (0)

φ,h = −h2∆ + |∇φ|2 − h∆φ.
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Using Supersymmetry (II)

The fondamental remarks are the following :

PW ,(p+1)
h d (p)

φ,h = d (p)
φ,hPW ,(p)

h and d (p),∗
φ,h PW ,(p+1)

h = PW ,(p)
h d (p),∗

φ,h

Denote F (1) the eigenspace associated to low lying eigenvalues
on 1 forms, then d (0)

φ,h(F (0)) ⊂ F (1) and d (0),∗
φ,h (F (1)) ⊂ F (0). Hence

M = L∗L

where L is the matrix of d (0)
φ,h : F (0) → F (1).

The matrix L = (Lj,k ) is very well approximated by

Lj,k = 〈f (1)j ,d (0)
φ,hf (0)k 〉+O(e−(Sk+α)/h) with Lj(k),k ∼ e−Sk/h

where f (1)k are good localized quasimodes on 1-form.
We can conclude by computing the singular values of L thanks to
the structure (k −→ Sk strictly decreasing) and the Ky fan
inequalities.
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Supersymmetry for Metropolis

Recall that PW
h = d∗φ,hdφ,h. One fundamental step in our analysis is

the following similar description of Ph :

Theorem [Bony-Hérau-Michel]

There exists a real valued symbol q ∈ S0(T ∗Rd , ∂A) such that

Ph =
1

2(d + 2)
ahd∗φQ∗Qdφah

with Q = Opw
h (q). Moreover, the principal symbol q0 of Q satisfies

q0(x , ξ) = Id +O((x − c, ξ)2) near (c,0) for any critical point c ∈ U .
and Q is invertible in a similar class.

Here ∂A : T ∗Rd →Md (R) is given by ∂Ai,j (x , ξ) = (〈ξj〉)−1 and
q ∈ S0(T ∗Rd ,A) means ∂αx ∂

β
ξ q(x , ξ) = O(∂A(x , ξ)) component by

component.



Introduction Supersymmetry and Witten Laplacian Supersymmetry for random walks Final remarks

Random walks operator on (1)-forms

Let us denote Lφ = Qdφah, then we have shown that (forgetting
the prefactor 1/2(d + 2))

Ph = L∗φLφ
def
= P(0)

h

We can then define an operator on (1)-forms with similar
properties as the ones for the Witten Laplacian :

P(1)
h = LφL∗φ + (Q∗)−1d∗φMdφQ−1

where M is an operator acting on 2-form such that P(1)
h is elliptic.

Observe that with this special choice the interwinning relations
are still ok :

P(1)
h Lφ = LφP(0)

h

since

P(1)
h Lφ =LφL∗φLφ + (Q∗)−1d∗φM dφQ−1Qdφ︸ ︷︷ ︸

=d2
φ=0

ah = Lφ(L∗φLφ)
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More geometrical point of view

In fact denoting G def
= Op(gj,k )j,k = Q∗Q, we can consider ahd∗φGdφah

as a Hodge Witten Laplacian on (0)-form with pseudodifferential
metric G−1.
The corresponding Laplacian on (1) forms is therefore naturally given
with

M = M(j,k),(a,b) =
1
2

Op
(
a2

h (gj,agk,b − gk,agj,b)
)

Here
M(j,k),(a,b) ∈ Ψ0

(
〈ξj〉−1 〈ξk 〉−1 〈ξa〉−1 〈ξb〉−1

)
and

gj,k ∈ Ψ0(〈ξj〉−1 〈ξk 〉−1)
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Elements of proof of the Theorem (I)

We then can can follow similar arguments as in the Witten case
Lφ = Qdφah plays the role of the exterior derivative.
minmax or IMS arguments imply that Ph has n0 exponentially
small eigenvalues and P(1)

h has n1 exp. small eigenvalues.

Denoting F (0) and F (1) the corresponding generalized
eigenspaces, the interwinning relations give : L(0)

φ : F (0) −→ F (1).

The f (0)k = χk a(−1)
h f W ,(0)

k are pretty good quasimodes for Ph,
where f W ,(0)

k ∈ F W ,(0) is well localized near mk and close to sj(k)
(see HKN)

The f 1)
j = (Q∗)−1θj f

W ,(1)
j are rather good quasimodes for P(1)

h ,

where f W ,(1)
j ∈ F W ,(1) is well localized near sj .

If e(0)
k = Π(0)f (0)k and e(1)

j = Π(1)f (1)j , then the families
{

e(0)
k

}
and{

e(1)
j

}
are orthonormal families of F (0) and F (1) mod O(h).
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Elements of proof of the Theorem (II)

The matrix L = Lj,k of L(0)
φ : F (0) −→ F (1) with respect to these

bases is well approximated by

Lj,k =
〈

f [1)j ,L(0)
φ f (0)k

〉
+O(e−(Sk+α)/h)

=
〈

(Q∗)−1θj f
W ,(1)
j ,Qdφaha−1

h χk f W ,(0)
k

〉
+O(e−(Sk+α)/h)

=
〈
θj f

W ,(1)
j ,dφχk f W ,(0)

k

〉
+O(e−(Sk+α)/h)

= LW
j,k +O(e−(Sk+α)/h) ( recall LW

j(k),k ∼ e−Sk/h)

of course the term O−(Sk+α)/h is fundamental, and relies on the
crucial following fact :

e(1)
j − f (1)j = O(h) but L∗φ(e(1)

j − f (1)j ) = O(e−α/h)

We can conclude by computing the singular values of L thanks to
the structure (k −→ Sk strictly decreasing) and the Ky fan
inequalities for which we only need O(h) approximate
orthonormal basis
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About the Factorization Lemma

We first recall some facts about pseudodifferential operators
Let τ > 0, we say that a symbol p ∈ C∞(R2d ,C) belongs to the
class S0

τ (1) if
for all x ∈ Rd , ξ 7→ p(x , ξ) is analtytic with respect to
ξ ∈ Bτ = {ξ ∈ Cd , |Im ξ| < τ}
∀(x , ξ) ∈ Rd × Bτ , |∂αx ∂βξ p(x , ξ)| ≤ Cα,β .

We say that p ∈ S0
∞(1) if p ∈ S0

τ (1) for all τ > 0.
For p ∈ S0

τ (1), τ ∈ [0,∞] we define the Weyl-quantization of p :

Opw
h (p)u(x) = (2πh)−d

∫
R2d

ei(x−y)ξ/hp(
x + y

2
, ξ)u(y)dydξ

for any u ∈ S(Rd ).
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Let φ be as before. Let p ∈ S0
∞(1) and Ph = Opw

h (p). Assume that the
following assumptions hold true :

p is real-valued (and hence Ph is self-adjoint).
Ph(e−φ/h) = 0
For all x ∈ Rd , the function ξ ∈ Rd 7→ p(x , ξ) is even.
Near any critical points U ∈ U we have

p(x , ξ) = |ξ|2 + |∇φ(x)|2 +O(h + |(x − U, ξ)|4).

∀δ > 0, ∃α > 0,∀(x , ξ) ∈ T ∗Rd , (d(x ,U)2 + |ξ|2 ≥ δ =⇒
p(x , ξ) ≥ α)

Remark

The operator G(hD)−Vh(x) entering in the formulation of Ph satisfies
the above assumptions since G is the fourier transform of 1l|z|<1.
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Let us that Dφ = h∇x +∇φ(x) and ∂A : T ∗Rd →Md (R) given by
∂Ai,j (x , ξ) = (〈ξj〉)−1.

Theorem

Under the above assumptions, there exists τ > 0 and a real valued
symbol q ∈ S0

τ (T ∗Rd ,A) such that

Ph = D∗φQ∗QDφ

with Q = Opw
h (q). Moreover, the principal symbol q0 of Q satisfies

q0(x , ξ) = Id +O((x − c, ξ)2) near (c,0) for any critical point c ∈ U .
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A shorter proof !

As we saw before, the links between The Witten Laplacian and the
Random walk operator are strong. Indeed we showed before that
(exponentially close to 1)

λ?k,h = 1− 1
2(d + 2)

λW
k,h(1 +O(h))

where the λ?k,h are the eigenvalues for the Metropolis operator T?h and
λW

k,h the ones for the Witten Laplacian.
In fact using the minmax principle and a more direct comparison
between the 2 we are able to show that

λ?k,h = 1− 1
2(d + 2)

λW
k,h(1 + o(1))
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Perspectives

Asymptotic in O(h∞) / More intrinsic supersymmetric structure
Analysis on manifolds and with boundary
"Non-selfadjoint" case : walk with random velocity (equivalent of
the Fokker-Planck case w.r.t. the Witten one)


