# Tunnel effect for semiclassical random walk 

F. Hérau<br>(joint work with J.-F. Bony and L. Michel)<br>Laboratoire Jean Leray, Université de Nantes

Microlocal Analysis and Spectral Theory Conference in honor of J. Sjöstrand

CIRM, September 27, 2013

## Plan

(2) Supersymmetry and Witten Laplacian
(3) Supersymmetry for random walks

4 Final remarks

## (1) Introduction

(2) Supersymmetry and Witten Laplacian

3 Supersymmetry for random walks
4. Final remarks

## Semiclassical random walk

Let $\phi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ be a real function such that $d \mu_{h}=e^{-\phi(x) / h} d x$ is a probability measure. We are interested in the random-walk operator defined on the space $\mathcal{C}_{0}$ of continuous function going to 0 at infinity by

$$
\mathbf{T}_{h} f(x)=\frac{1}{\mu_{h}\left(B_{h}(x)\right)} \int_{B_{h}(x)} f(y) d \mu_{h}(y)
$$

where $B_{h}(x)=B(x, h)$. By duality, this defines an operator $\mathbf{T}_{h}^{\star}$ on the set $\mathcal{M}_{b}$ of bounded Borel measures

$$
\forall f \in \mathcal{C}_{0}, \forall \nu \in \mathcal{M}_{b}, \mathbf{T}_{h}^{\star}(\nu)(f)=\nu\left(\mathbf{T}_{h} f\right)
$$

## Invariant measure

Observe that if $d \nu$ has a density with respect to Lebesgue measure $d \nu=\rho(x) d x$, then

$$
\mathbf{T}_{h}^{\star}(d \nu)=\left(\int_{|x-y|<h} \frac{1}{\mu_{h}\left(B_{h}(x)\right)} \rho(x) d x\right) e^{-\phi(y) / h} d y
$$

As a consequence, the measure

$$
d \nu_{h, \infty}=\frac{\mu_{h}\left(B_{h}(x)\right) e^{-\phi(x) / h}}{Z_{h}} d x:=\mathcal{M}_{h}(x) d x
$$

where $Z_{h}$ is chosen so that $d \nu_{h, \infty}$ is a probability on $\mathbb{R}^{d}$ satisfies

$$
\mathbf{T}_{h}^{\star}\left(d \nu_{h, \infty}\right)=d \nu_{h, \infty}
$$

We say that $d \nu_{h, \infty}$ is an invariant measure for $\mathbf{T}_{h}$ and $\mathcal{M}_{h}$ is sometimes called the Maxwellian.

## Convergence to equilibrium

## Question

For $d \nu \in \mathcal{M}_{b}$, what is the behavior of $\left(\mathbf{T}_{h}^{\star}\right)^{n}(d \nu)$ when $n \rightarrow \infty$ ?
Under suitable assumptions on $\phi$ we can easily prove the following :

## Theorem

For any probability measure $d \nu$, we have

$$
\lim _{n \rightarrow+\infty}\left(\mathbf{T}_{h}^{\star}\right)^{n}(d \nu)=d \nu_{h, \infty}
$$

We are willing to compute the speed of convergence in the above limit. The answer is closely related to the spectral theory of $\mathbf{T}_{h}^{\star}$, at least when we restrict to a stable Hilbertian subspace of $\mathbf{T}_{h}^{\star}$ in $\mathcal{M}_{b}$.

## Reduction and Some elementary properties

For the coming analysis, we restrict to the following Hilbertian subspace of measures (with density)

$$
\mathcal{H}_{h}=L^{2}\left(\mathbb{R}^{d}, d \nu_{h, \infty}\right) \hookrightarrow \mathcal{M}_{b}: f \longrightarrow f d \nu_{h, \infty}
$$

We denote again by $\mathbf{T}_{h}^{*}$ this restriction. We have the following elementary properties:

## Proposition

The following hold true :

- $\mathbf{T}_{h}^{*}$ is bounded and self-adjoint on $\mathcal{H}_{h}$
- 1 is an eigenvalue of $\mathbf{T}_{h}^{\star}$ (Markov property)


## Assumptions on $\phi$

We make the following assumptions on $\phi$ :

- there exists $c, R>0$ and some constants $C_{\alpha}>0, \alpha \in \mathbb{N}^{d}$ such that :

$$
\forall \alpha \in \mathbb{N}^{d} \backslash\{0\}, \forall x \in \mathbb{R}^{d}\left|\partial_{x}^{\alpha} \phi(x)\right| \leq C_{\alpha}
$$

and

$$
\forall|x| \geq R,|\nabla \phi(x)| \geq c \text { and } \phi(x) \geq c|x| .
$$

- $\phi$ is a Morse function (i.e. $\phi$ the critical points of $\phi$ are non-degenerate).
- We denote by $\mathcal{U}^{(k)}$ the set of critical points, of $\phi$ of index $k$, $n_{k}=\sharp \mathcal{U}^{(k)}, \mathcal{U}^{(0)}=\left\{\mathbf{m}_{k}, k=1 \ldots n_{0}\right\}$ and for convenience $\mathcal{U}^{(1)}=\left\{\mathbf{s}_{j}, j=1 \ldots n_{1}+1\right\}$ with $\mathbf{s}_{1}=\infty$.
- We suppose that the values $\phi\left(\mathbf{s}_{j}\right)-\phi\left(\mathbf{m}_{k}\right), \mathbf{s}_{j} \in \mathcal{U}^{(1)}, \mathbf{m}_{k} \in \mathcal{U}^{(0)}$ are distincts. (recall that the index of a critical point $\mathbf{c}$ is the number of negative eigenvalues of $\operatorname{Hess}(\phi)(\mathbf{c})$ ).


## Description of small eigenvalues

## Theorem [Bony-Hérau-Michel]

Suppose that the previous assumptions are fullfilled. Then

- There exists $\kappa_{0}>0$ such that:

$$
\begin{aligned}
& -\sigma_{\text {ess }}\left(\mathbf{T}_{h}^{\star}\right) \cap\left[1-\kappa_{0}, 1\right]=\emptyset \\
& -\sigma\left(\mathbf{T}_{h}^{\star}\right) \cap\left[-1,-1+\kappa_{0}\right]=\emptyset
\end{aligned}
$$

- There exists $\varepsilon>0$ such that there are exactly $n_{0}$ eigenvalues of $\mathbf{T}_{h}^{\star}$ in the interval $[1-\varepsilon h, 1]$. One of them is 1 and the other enjoy the following asymptotic

$$
\lambda_{k, h}^{\star}=1-\frac{h \theta_{k, 0}}{2(d+2)} e^{-S_{k} / h}(1+\mathcal{O}(h))
$$

where the coefficient $\theta_{k}, S_{k}$ are defined later.

## Reformulation of the problem

Since we prefer to work in the standard $L^{2}(d x)$ space, we pose for the following

$$
u=\mathcal{M}_{h}^{1 / 2} f \stackrel{\text { def }}{=} \mathbb{U}_{h}^{-1} f \quad \text { where } \quad \mathbb{U}: L^{2}\left(d \nu_{h, \infty}\right) \rightarrow L^{2}(d x) \text { unitary }
$$

and

$$
T_{h}=\mathbb{U}_{h}^{*} \mathbf{T}_{h}^{\star} \mathbb{U}
$$

which expression is

$$
T_{h} f(x)=a_{h}(x) \frac{1}{\alpha_{d} h^{d}} \int_{|x-y|<h} a_{h}(y) f(y) d y
$$

where

$$
a_{h}(x)^{-2}=\frac{1}{\alpha_{d} h^{d}} \int_{|x-y|<h} e^{(\phi(x)-\phi(y)) / h} d y
$$

We now have to study the spectral properties of the selfadjoint operator $T_{h}$ on $L^{2}(d x)$

$$
T_{h} u(x)=a_{h}(x) \frac{1}{\alpha_{d} h^{d}} \int_{|x-y|<h} a_{h}(y) u(y) d y
$$

Observe that the operator $u \mapsto \frac{1}{\alpha_{d} h^{d}} \iint_{|x-y|<h} u(y) d y$ is a fourier multiplier $G\left(h D_{x}\right)$ with

$$
G(\xi)=\frac{1}{\alpha_{d}} \int_{|x|<1} e^{i x \cdot \xi} d x
$$

We can then notice that

$$
T_{h}=a_{h} G\left(h D_{x}\right) a_{h} \text { and } a_{h}^{-2}=e^{\phi / h} G\left(h D_{x}\right)\left(e^{-\phi / h}\right)
$$

In order to study the spectrum of $T_{h}$ near 1, we can study the spectrum near 0 of

$$
P_{h} \stackrel{\text { def }}{=} 1-T_{h}=a_{h}\left(V_{h}(x)-G\left(h D_{x}\right)\right) a_{h}
$$

where

$$
V_{h}(x)=a_{h}^{-2}(x)=e^{\phi / h} G\left(h D_{x}\right)\left(e^{-\phi / h}\right)
$$

## Short heuristics

Let $u \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ be fixed, using the change of variable $y=x+h z$ and Taylor expansion for $G$ in the expression of $P_{h}$, we show easily that

$$
P_{h} u(x)=a_{h} \underbrace{\left(V_{h}(x)-G\left(h D_{x}\right)\right)}_{\frac{1}{2(d+2)} P_{h}^{w}+\mathcal{O}\left(h^{3}\right)} a_{h} u(x)
$$

where

$$
P_{h}^{W}=-h^{2} \Delta+|\nabla \phi|^{2}-h \Delta \phi
$$

is the semiclassical Witten Lapacian. Here the term $\mathcal{O}\left(h^{3}\right)$ is not an error term from a spectral point of view. Anyway

## questions

- $P_{h}^{W}$ widely studied : can we benefit from this knowledge to compute the ev's of $P_{h}$ ?
- Is there a supersymmetric structure for $P_{h}$ as for $P_{h}^{W}$ (recall $P_{h}\left(a_{h}^{-1} e^{-\phi / h}\right)=0$ )?


## Some biblio and known results

- The spectrum of semiclassical Witten laplacian has been analyzed by many authors : Witten 85, Helffer-Sjöstrand 85, Cycon-Froese-Kirch-Simon 87, Bovier-Gayrard-Klein 04, Helffer-Klein-Nier 04. In the last article, a complete asymptotic of exponentially small ones is given (under the above assumptions)
- The spectrum Metropolis operator has also been recently studied (using the connections with Witten). In bounded domains with Neumann conditions, Diaconis-Lebeau-Michel 12, and various geometries, Christianson-Guillarmou-Michel 13, Lebeau-Michel 10 (with an other scalling).
- No study of exponentially close to 1 spectrum for Metropolis (and "tunneling effect") so far...


## (1) Introduction

## 2 Supersymmetry and Witten Laplacian

## (3) Supersymmetry for random walks

(4) Final remarks

## Description of small eigenvalues

We recall some facts about $P_{h}^{W}=-h^{2} \Delta+|\nabla \phi|^{2}-h \Delta \phi$.

- It is rather easy to show that $P_{h}^{W}$ has $n_{0}:=\sharp \mathcal{U}^{(0)}$ eigenvalues $0=\lambda_{1} \leq \ldots \leq \lambda_{n_{0}}$, in the interval $\left[0, h^{3 / 2}\right]$.
- The most accurate result in [HKN04] gives an approximation of these eigenvalues (for $k \geq 2$ ) :

$$
\lambda_{k}=h \theta_{k}(h) e^{-S_{k} / h} \quad \text { with } \quad \theta_{k}(h)=\sum_{l \geq 0} h^{\prime} \theta_{k, l},
$$

- The quantities, $S_{k}, \theta_{k, 0}$ can be computed : there exists a labelling of $\mathcal{U}^{(0)}$ and an application $j:\left\{1, \ldots, n_{0}\right\} \rightarrow\left\{1, \ldots, n_{1}+1\right\}$ such that (for $k \geq 2$ ) :

$$
S_{k}=2\left(\phi\left(\mathbf{s}_{j(k)}\right)-\phi\left(\mathbf{m}_{k}\right)\right) \quad \text { and } \quad \theta_{k, 0}=\frac{\left|\hat{\lambda}_{1}\left(\mathbf{s}_{j(k)}\right)\right|}{\pi} \sqrt{\frac{\operatorname{det}\left(\operatorname{Hess} \phi\left(\mathbf{m}_{k}\right)\right)}{\operatorname{det}\left(\operatorname{Hess} \phi\left(\mathbf{s}_{j(k)}\right)\right)}}
$$

where $\hat{\lambda}_{1}\left(\mathbf{s}_{j(k)}\right)$ is the negative eigenvalue of $\operatorname{Hess} \phi\left(\mathbf{s}_{j(k)}\right)$.

## Interaction matrix

The strategy of Helffer-Klein-Nier (see also Helffer-Sjostrand 84 and Hérau-Hitrik-Sjostrand 11 for Kramers-Fokker-Planck) is the following :

- Introduce
- $F^{(0)}=$ eigenspace associated to the $n_{0}$ low lying eigenvalues on 0 -forms
- $\Pi^{(0)}=$ projector on $F^{(0)}$.
- $M=$ restriction of $\Delta_{\phi, h}$ to $F^{(0)}$.

We have to compute the eigenvalues of $M$.

- We compute suitable quasimodes $f_{k}^{(0)}$, show that

$$
e_{k}^{(0)}=\Pi^{(0)} f_{k}^{(0)}=f_{k}^{(0)}+\text { error }
$$

and compute the matrix of $M$ in the base $e_{k}^{(0)}$.

- Doing that leads to error terms which are too big.
- In order to do that, use the supersymmetric structure.


## Using Supersymmetry (I)

- For $p=0, \ldots, d-1$, denote $d^{(p)}: \Lambda^{p} \mathbb{R}^{d} \rightarrow \Lambda^{p+1} \mathbb{R}^{d}$ the exterior derivative and $d^{(p), *}: \Lambda^{p+1} \mathbb{R}^{d} \rightarrow \Lambda^{p} \mathbb{R}^{d}$ its formal adjoint. Then the Hodge Laplacian on $p$-form is defined by

$$
-\Delta^{(p)}=d^{(p), *} d^{(p)}+d^{(p-1)} d^{(p-1), *}
$$

- The semiclassical Witten Laplacian (Witten, 1985) on $p$-form is defined by introducing the twisted exterior derivatives $d_{\phi, h}^{(p)}=e^{-\phi / h}\left(h d^{(p)}\right) e^{\phi / h}$ and $d_{\phi, h}^{(p), *}$ its adjoint and by setting

$$
P_{h}^{W,(p)}=d_{\phi, h}^{(p), *} d_{\phi, h}^{(p)}+d_{\phi, h}^{(p-1)} d_{\phi, h}^{(p-1), *}
$$

- In particular, for $p=0$, the Witten Laplacian on function is given by

$$
P_{h}^{W}=P_{h}^{W,(0)}=d_{\phi, h}^{(0), *} d_{\phi, h}^{(0)}=-h^{2} \Delta+|\nabla \phi|^{2}-h \Delta \phi .
$$

## Using Supersymmetry (II)

The fondamental remarks are the following :

- $P_{h}^{W,(p+1)} d_{\phi, h}^{(p)}=d_{\phi, h}^{(p)} P_{h}^{W,(p)}$ and $d_{\phi, h}^{(p), *} P_{h}^{W,(p+1)}=P_{h}^{W,(p)} d_{\phi, h}^{(p), *}$
- Denote $F^{(1)}$ the eigenspace associated to low lying eigenvalues on 1 forms, then $d_{\phi, h}^{(0)}\left(F^{(0)}\right) \subset F^{(1)}$ and $d_{\phi, h}^{(0), *}\left(F^{(1)}\right) \subset F^{(0)}$. Hence

$$
M=L^{*} L
$$

where $L$ is the matrix of $d_{\phi, h}^{(0)}: F^{(0)} \rightarrow F^{(1)}$.

- The matrix $L=\left(L_{j, k}\right)$ is very well approximated by

$$
L_{j, k}=\left\langle f_{j}^{(1)}, d_{\phi, h}^{(0)} f_{k}^{(0)}\right\rangle+\mathcal{O}\left(e^{-\left(S_{k}+\alpha\right) / h}\right) \text { with } \quad L_{j(k), k} \sim e^{-S_{k} / h}
$$

where $f_{k}^{(1)}$ are good localized quasimodes on 1-form.

- We can conclude by computing the singular values of $L$ thanks to the structure ( $k \longrightarrow S_{k}$ strictly decreasing) and the Ky fan inequalities.


## (1) Introduction

## (2) Supersymmetry and Witten Laplacian

(3) Supersymmetry for random walks
4. Final remarks

## Supersymmetry for Metropolis

Recall that $P_{h}^{W}=d_{\phi, h}^{*} d_{\phi, h}$. One fundamental step in our analysis is the following similar description of $P_{h}$ :

## Theorem [Bony-Hérau-Michel]

There exists a real valued symbol $q \in S^{0}\left(T^{*} \mathbb{R}^{d}, \partial \mathcal{A}\right)$ such that

$$
P_{h}=\frac{1}{2(d+2)} a_{h} d_{\phi}^{*} Q^{*} Q d_{\phi} a_{h}
$$

with $Q=\mathrm{Op}_{h}^{w}(q)$. Moreover, the principal symbol $q^{0}$ of $Q$ satisfies $q^{0}(x, \xi)=I d+\mathcal{O}\left((x-\mathbf{c}, \xi)^{2}\right)$ near $(\mathbf{c}, 0)$ for any critical point $\mathbf{c} \in \mathcal{U}$. and $Q$ is invertible in a similar class.

Here $\partial \mathcal{A}: T^{*} \mathbb{R}^{d} \rightarrow \mathcal{M}_{d}(\mathbb{R})$ is given by $\partial \mathcal{A}_{i, j}(x, \xi)=\left(\left\langle\xi_{j}\right\rangle\right)^{-1}$ and $q \in S^{0}\left(T^{*} \mathbb{R}^{d}, \mathcal{A}\right)$ means $\partial_{x}^{\alpha} \partial_{\xi}^{\beta} q(x, \xi)=\mathcal{O}(\partial \mathcal{A}(x, \xi))$ component by component.

## Random walks operator on (1)-forms

- Let us denote $L_{\phi}=Q d_{\phi} a_{h}$, then we have shown that (forgetting the prefactor $1 / 2(d+2))$

$$
P_{h}=L_{\phi}^{*} L_{\phi} \stackrel{\text { def }}{=} P_{h}^{(0)}
$$

- We can then define an operator on (1)-forms with similar properties as the ones for the Witten Laplacian :

$$
P_{h}^{(1)}=L_{\phi} L_{\phi}^{*}+\left(Q^{*}\right)^{-1} d_{\phi}^{*} M d_{\phi} Q^{-1}
$$

where $M$ is an operator acting on 2-form such that $P_{h}^{(1)}$ is elliptic.

- Observe that with this special choice the interwinning relations are still ok:

$$
P_{h}^{(1)} L_{\phi}=L_{\phi} P_{h}^{(0)}
$$

since

$$
P_{h}^{(1)} L_{\phi}=L_{\phi} L_{\phi}^{*} L_{\phi}+\left(Q^{*}\right)^{-1} d_{\phi}^{*} M \underbrace{d_{\phi} Q^{-1} Q d_{\phi}}_{=d_{\phi}^{2}=0} a_{h}=L_{\phi}\left(L_{\phi}^{*} L_{\phi}\right)
$$

## More geometrical point of view

In fact denoting $G \stackrel{\text { def }}{=} O p\left(g_{j, k}\right)_{j, k}=Q^{*} Q$, we can consider $a_{h} d_{\phi}^{*} G d_{\phi} a_{h}$ as a Hodge Witten Laplacian on (0)-form with pseudodifferential metric $G^{-1}$.
The corresponding Laplacian on (1) forms is therefore naturally given with

$$
M=M_{(j, k),(a, b)}=\frac{1}{2} O p\left(a_{h}^{2}\left(g_{j, a} g_{k, b}-g_{k, a} g_{j, b}\right)\right)
$$

Here

$$
M_{(j, k),(a, b)} \in \Psi^{0}\left(\left\langle\xi_{j}\right\rangle^{-1}\left\langle\xi_{k}\right\rangle^{-1}\left\langle\xi_{a}\right\rangle^{-1}\left\langle\xi_{b}\right\rangle^{-1}\right)
$$

and

$$
g_{j, k} \in \psi^{0}\left(\left\langle\xi_{j}\right\rangle^{-1}\left\langle\xi_{k}\right\rangle^{-1}\right)
$$

## Elements of proof of the Theorem (I)

We then can can follow similar arguments as in the Witten case

- $L_{\phi}=Q d_{\phi} a_{h}$ plays the role of the exterior derivative.
- minmax or IMS arguments imply that $P_{h}$ has $n_{0}$ exponentially small eigenvalues and $P_{h}^{(1)}$ has $n_{1}$ exp. small eigenvalues.
- Denoting $F^{(0)}$ and $F^{(1)}$ the corresponding generalized eigenspaces, the interwinning relations give : $L_{\phi}^{(0)}: F^{(0)} \longrightarrow F^{(1)}$.
- The $f_{k}^{(0)}=\chi_{k} a_{h}^{(-1)} f_{k}^{W,(0)}$ are pretty good quasimodes for $P_{h}$, where $f_{k}^{W,(0)} \in F^{W,(0)}$ is well localized near $\mathbf{m}_{k}$ and close to $\mathbf{s}_{j(k)}$ (see HKN)
- The $f_{j}^{1)}=\left(Q^{*}\right)^{-1} \theta_{j} f_{j}^{W,(1)}$ are rather good quasimodes for $P_{h}^{(1)}$, where $f_{j}^{W,(1)} \in F^{W,(1)}$ is well localized near $\mathbf{s}_{j}$.
- If $e_{k}^{(0)}=\Pi^{(0)} f_{k}^{(0)}$ and $e_{j}^{(1)}=\Pi^{(1)} f_{j}^{(1)}$, then the families $\left\{e_{k}^{(0)}\right\}$ and $\left\{e_{j}^{(1)}\right\}$ are orthonormal families of $F^{(0)}$ and $F^{(1)} \bmod \mathcal{O}(h)$.


## Elements of proof of the Theorem (II)

- The matrix $L=L_{j, k}$ of $L_{\phi}^{(0)}: F^{(0)} \longrightarrow F^{(1)}$ with respect to these bases is well approximated by

$$
\begin{aligned}
L_{j, k} & =\left\langle f_{j}^{[1)}, L_{\phi}^{(0)} f_{k}^{(0)}\right\rangle+\mathcal{O}\left(e^{-\left(S_{k}+\alpha\right) / h}\right) \\
& =\left\langle\left(Q^{*}\right)^{-1} \theta_{j} f_{j}^{W,(1)}, Q d_{\phi} a_{h} a_{h}^{-1} \chi_{k} f_{k}^{W,(0)}\right\rangle+\mathcal{O}\left(e^{-\left(S_{k}+\alpha\right) / h}\right) \\
& =\left\langle\theta_{j} f_{j}^{W,(1)}, d_{\phi} \chi_{k} f_{k}^{W,(0)}\right\rangle+\mathcal{O}\left(e^{-\left(S_{k}+\alpha\right) / h}\right) \\
& =L_{j, k}^{W}+\mathcal{O}\left(e^{-\left(S_{k}+\alpha\right) / h}\right) \quad\left(\text { recall } L_{j(k), k}^{W} \sim e^{-S_{k} / h}\right)
\end{aligned}
$$

- of course the term $\mathcal{O}^{-\left(S_{k}+\alpha\right) / h}$ is fundamental, and relies on the crucial following fact :

$$
e_{j}^{(1)}-f_{j}^{(1)}=\mathcal{O}(h) \quad \text { but } L_{\phi}^{*}\left(e_{j}^{(1)}-f_{j}^{(1)}\right)=\mathcal{O}\left(e^{-\alpha / h}\right)
$$

- We can conclude by computing the singular values of $L$ thanks to the structure ( $k \longrightarrow S_{k}$ strictly decreasing) and the Ky fan inequalities for which we only need $\mathcal{O}(h)$ approximate orthonormal basis

2 Supersymmetry and Witten Laplacian

3 Supersymmetry for random walks

4 Final remarks


## About the Factorization Lemma

We first recall some facts about pseudodifferential operators

- Let $\tau>0$, we say that a symbol $p \in C^{\infty}\left(\mathbb{R}^{2 d}, \mathbb{C}\right)$ belongs to the class $\mathbb{S}_{\tau}^{0}(1)$ if
- for all $x \in \mathbb{R}^{d}, \xi \mapsto p(x, \xi)$ is analtytic with respect to $\xi \in B_{\tau}=\left\{\xi \in \mathbb{C}^{d},|\operatorname{Im} \xi|<\tau\right\}$
- $\forall(x, \xi) \in \mathbb{R}^{d} \times B_{\tau},\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} p(x, \xi)\right| \leq C_{\alpha, \beta}$.
- We say that $p \in \mathbb{S}_{\infty}^{0}(1)$ if $p \in \mathbb{S}_{\tau}^{0}(1)$ for all $\tau>0$.
- For $p \in \mathbb{S}_{\tau}^{0}(1), \tau \in[0, \infty]$ we define the Weyl-quantization of $p$ :

$$
\mathrm{Op}_{h}^{w}(p) u(x)=(2 \pi h)^{-d} \int_{\mathbb{R}^{2 d}} e^{i(x-y) \xi / h} p\left(\frac{x+y}{2}, \xi\right) u(y) d y d \xi
$$

for any $u \in \mathbb{S}\left(\mathbb{R}^{d}\right)$.

Let $\phi$ be as before. Let $p \in \mathbb{S}_{\infty}^{0}(1)$ and $P_{h}=\mathrm{Op}_{h}^{w}(p)$. Assume that the following assumptions hold true :

- $p$ is real-valued (and hence $P_{h}$ is self-adjoint).
- $P_{h}\left(e^{-\phi / h}\right)=0$
- For all $x \in \mathbb{R}^{d}$, the function $\xi \in \mathbb{R}^{d} \mapsto p(x, \xi)$ is even.
- Near any critical points $U \in \mathcal{U}$ we have

$$
p(x, \xi)=|\xi|^{2}+|\nabla \phi(x)|^{2}+\mathcal{O}\left(h+|(x-U, \xi)|^{4}\right) .
$$

- $\forall \delta>0, \exists \alpha>0, \forall(x, \xi) \in T^{*} \mathbb{R}^{d},\left(d(x, \mathcal{U})^{2}+|\xi|^{2} \geq \delta \Longrightarrow\right.$ $p(x, \xi) \geq \alpha)$


## Remark

The operator $G(h D)-V_{h}(x)$ entering in the formulation of $P_{h}$ satisfies the above assumptions since $G$ is the fourier transform of $1_{|z|<1}$.

Let us that $D_{\phi}=h \nabla_{x}+\nabla \phi(x)$ and $\partial \mathcal{A}: T^{*} \mathbb{R}^{d} \rightarrow \mathcal{M}_{d}(\mathbb{R})$ given by $\partial \mathcal{A}_{i, j}(x, \xi)=\left(\left\langle\xi_{j}\right\rangle\right)^{-1}$.

## Theorem

Under the above assumptions, there exists $\tau>0$ and a real valued symbol $q \in \mathbb{S}_{\tau}^{0}\left(T^{*} \mathbb{R}^{d}, \mathcal{A}\right)$ such that

$$
P_{h}=D_{\phi}^{*} Q^{*} Q D_{\phi}
$$

with $Q=\mathrm{Op}_{h}^{w}(q)$. Moreover, the principal symbol $q^{0}$ of $Q$ satisfies $q^{0}(x, \xi)=I d^{\prime}+\mathcal{O}\left((x-\mathbf{c}, \xi)^{2}\right)$ near $(\mathbf{c}, 0)$ for any critical point $\mathbf{c} \in \mathcal{U}$.

## A shorter proof!

As we saw before, the links between The Witten Laplacian and the Random walk operator are strong. Indeed we showed before that (exponentially close to 1 )

$$
\lambda_{k, h}^{\star}=1-\frac{1}{2(d+2)} \lambda_{k, h}^{W}(1+\mathcal{O}(h))
$$

where the $\lambda_{k, h}^{\star}$ are the eigenvalues for the Metropolis operator $\mathbf{T}_{h}^{\star}$ and $\lambda_{k, h}^{W}$ the ones for the Witten Laplacian.
In fact using the minmax principle and a more direct comparison between the 2 we are able to show that

$$
\lambda_{k, h}^{\star}=1-\frac{1}{2(d+2)} \lambda_{k, h}^{W}(1+o(1))
$$

## Perspectives

- Asymptotic in $\mathcal{O}\left(h^{\infty}\right)$ / More intrinsic supersymmetric structure
- Analysis on manifolds and with boundary
- "Non-selfadjoint" case : walk with random velocity (equivalent of the Fokker-Planck case w.r.t. the Witten one)

