Strichartz inequalities for waves in a strictly convex domain

Oana Ivanovici (\dagger), Richard Lascar (\ddagger), Gilles Lebeau (\dagger) and Fabrice Planchon (\dagger)

(\dagger) Université Nice Sophia Antipolis
(\ddagger) Université Paris 7
lebeau@unice.fr

In honor of
Johannes SJOSTRAND
25 September, 2013

Outline

(1) Result
(2) The parametrix construction
(3) Dispersive estimates
4) Interpolation estimates
(5) Optimality of the result
(6) Comments

Outline

(1) Result

(2) The parametrix construction

(3) Dispersive estimates

4 Interpolation estimates
(5) Optimality of the result
(6) Comments

Strichartz in \mathbb{R}^{d}

Dispersion

$$
\begin{equation*}
\left\|\chi\left(h D_{t}\right) e^{ \pm i t \sqrt{|\Delta|}}\left(\delta_{a}\right)\right\|_{L_{x}^{\infty}} \leq C h^{-d} \min \left(1,\left(\frac{h}{t}\right)^{\alpha_{d}}\right) \tag{1.1}
\end{equation*}
$$

Strichartz

$$
\begin{gathered}
\left(\partial_{t}^{2}-\triangle\right) u=0 \\
h^{\beta}\left\|\chi\left(h D_{t}\right) u\right\|_{L_{t \in[0, T]^{\prime}}^{q}\left(L_{x}^{+}\right)} \leq C\left(\|u(0, x)\|_{L^{2}}+\left\|h D_{t} u(0, x)\right\|_{L^{2}}\right) \\
q \in] 2, \infty[, \quad r \in[2, \infty] \\
\frac{1}{q}=\alpha_{d}\left(\frac{1}{2}-\frac{1}{r}\right), \quad \beta=\left(d-\alpha_{d}\right)\left(\frac{1}{2}-\frac{1}{r}\right) \\
\text { with } \alpha_{d}=\frac{d-1}{2} \text { in the free space } \mathbb{R}^{d}
\end{gathered}
$$

Main result

Let (M, g) be a Riemannian manifold. Let Ω be an open relatively compact subset of M with smooth boundary $\partial \Omega$. We assume that Ω is Strictly Convex in (M, g), i.e any (small) piece of geodesic tangent to $\partial \Omega$ is exactly tangent at order 2 and lies outside Ω.
We denote by \triangle the Laplacian associated to the metric g on M.

Theorem

For solutions of the mixed problem $\left(\partial_{t}^{2}-\triangle\right) u=0$ on $\mathbb{R}_{t} \times \Omega$ and $u=0$ on $\mathbb{R}_{t} \times \partial \Omega$, the Strichartz inequalities hold true with

$$
\alpha_{d}=\frac{d-1}{2}-\frac{1}{6}, \quad d=\operatorname{dim}(M)
$$

Remark

This was proved by M. Blair, H.Smith and C.Sogge in the case $d=2$ for arbitrary boundary (i.e without convexity assumption). The above theorem improves all the known results for $d \geq 3$.

Outline

(1) Result

(2) The parametrix construction
(3) Dispersive estimates
4) Interpolation estimates
(5) Optimality of the result
(6) Comments

The problem is local near any point p_{0} of the boundary. In geodesic coordinates normal to $\partial \Omega$ and after conjugation by a non vanishing smooth function $e(x, y)$, one has for $(x, y) \in \mathbb{R} \times \mathbb{R}^{d-1}$ near $(0,0)$

$$
\begin{array}{r}
\tilde{\triangle}=e^{-1} \cdot \triangle \cdot e=\partial_{x}^{2}+R\left(x, y, \partial_{y}\right) \\
\Omega=\{x>0\}, \quad p_{0}=(x=0, y=0)
\end{array}
$$

On the boundary, in geodesic coordinates centered at $y=0$, one has

$$
R_{0}\left(y, \partial_{y}\right)=R\left(0, y, \partial_{y}\right)=\sum \partial_{y_{j}}^{2}+O\left(y^{2}\right)
$$

Let $R_{1}\left(y, \partial_{y}\right)=\partial_{x} R\left(0, y, \partial_{y}\right)=\sum R_{1}^{j, k}(y) \partial_{y_{j}} \partial_{y_{k}}$. The quadratic form $\sum R_{1}^{j, k}(y) \eta_{j} \eta_{k}$ is positively define. We introduce the

Model Laplacian

$$
\Delta_{M}=\partial_{x}^{2}+\sum \partial_{y_{j}}^{2}+x\left(\sum R_{1}^{j, k}(0) \partial_{y_{j}} \partial_{y_{k}}\right)
$$

Set

$$
\rho(\omega, \eta)=\left(\eta^{2}+\omega q(\eta)^{2 / 3}\right)^{1 / 2}, \quad q(\eta)=\sum R_{1}^{j, k}(0) \eta_{j} \eta_{k}
$$

The following theorem is due to Melrose-Taylor, Eskin, Zworski, ...

Theorem

There exists two phases $\psi(x, y, \eta, \omega)$ homogeneous of degree 1 , $\zeta(x, y, \eta, \omega)$ homogeneous of degree $2 / 3$, and symbols $p_{0,1}(x, y, \eta, \omega)$ of degree 0 (ω is $2 / 3$ homogeneous, and $\left.|\omega| \eta\right|^{-2 / 3} \mid$ is small) such that

$$
G(x, y ; \eta, \omega)=e^{i \psi}\left(p_{0} A i(\zeta)+x p_{1}|\eta|^{-1 / 3} A i^{\prime}(\zeta)\right)
$$

satisfy

$$
\begin{gathered}
-\tilde{\triangle} G=\rho^{2} G+O_{C^{\infty}}\left(|\eta|^{-\infty}\right) \text { near }(x, y)=(0,0) \\
\zeta=-\omega+x|\eta|^{2 / 3} e_{0}(x, y, \eta, \omega)
\end{gathered}
$$

with p_{0} and e_{0} elliptic near any point $(0,0, \eta, 0)$ with $\eta \in \mathbb{R}^{d-1} \backslash 0$.

Let $(X-x) u+(Y-y) v+\Gamma(X, Y, u, v)$ be a generating function for a (Melrose) canonical transformation χ_{M} such that

$$
\chi_{M}\left(x=0, \xi^{2}+\eta^{2}+x q(\eta)=1\right)=\left(X=0, \Xi^{2}+R(X, Y, \Theta)=1\right)
$$

near $\Sigma_{0}=\{(x, y, \xi, \eta), x=0, y=0, \xi=0,|\eta|=1\}$. One has
$\Gamma(0, Y, u, v)$ is independent of u
There exists a symbol $q(x, y, \eta, \omega, \sigma)$ of degree 0 (σ is $1 / 3$ homogeneous) compactly supported near

$$
N_{0}=\left\{x=0, y=0, \omega=0, \sigma=0, \eta \in \mathbb{R}^{d-1} \backslash 0\right\}
$$

and elliptic on N_{0} such that

$$
G(x, y ; \eta, \omega)=\frac{1}{2 \pi} \int e^{i\left(y \eta+\sigma^{3} / 3+\sigma\left(x q(\eta)^{1 / 3}-\omega\right)+\rho \Gamma\left(x, y, \frac{\sigma q(\eta)^{1 / 3}}{\rho}, \frac{\eta}{\rho}\right)\right)} q d \sigma
$$

Let $\mathcal{G}(t, x, y ; a)$ be the Green function solution of the mixed problem, with $\left.a \in] 0, a_{0}\right], a_{0}>0$ small

$$
\begin{gathered}
\left(\partial_{t}^{2}-\tilde{\triangle}\right) \mathcal{G}=0 \text { in } x>0,\left.\quad \mathcal{G}\right|_{x=0}=0 \\
\left.\mathcal{G}\right|_{t=0}=\delta_{x=a, y=0},\left.\quad \partial_{t} \mathcal{G}\right|_{t=0}=0
\end{gathered}
$$

Definition

Let $\chi\left(x, t, y, h D_{t}, h D_{y}\right)$ be a h-pseudo differential (tangential) operator of degree 0 , compactly supported near $\tilde{\Sigma}_{0}=\{x=0, t=0, y=0, \tau=1,|\eta|=1\}$ and equal to identity near $\tilde{\Sigma}_{0}$.

A "parametrix" is an approximation (near $\{x=0, y=0, t=0\}$) mod $0_{C^{\infty}}\left(h^{\infty}\right)$, and uniformly in a $\left.\left.\in\right] 0, a_{0}\right]$ of $\chi\left(x, t, y, h D_{t}, h D_{y}\right)(\mathcal{G}(. ; a))$.

Set $\omega=h^{-2 / 3} \alpha$. Recall $\rho(\alpha, \theta)=\left(\theta^{2}+\alpha q(\theta)^{2 / 3}\right)^{1 / 2}$. Let $\Phi(x, y, \theta, \alpha, s)$ be the phase function

$$
\Phi=y \theta+s^{3} / 3+s\left(x q(\theta)^{1 / 3}-\alpha\right)+\rho(\alpha, \theta) \Gamma\left(x, y, \frac{s q(\theta)^{1 / 3}}{\rho(\alpha, \theta)}, \frac{\theta}{\rho(\alpha, \theta)}\right)
$$

and let $q_{h}(x, y, \theta, \alpha, s)=h^{-1 / 3} q\left(x, y, h^{-1} \theta, h^{-2 / 3} \alpha, h^{-1 / 3} s\right)$ Then

$$
J(f)(x, y)=\frac{1}{2 \pi} \int e^{\frac{i}{h}\left(\Phi-y^{\prime} \theta-t^{\prime} \alpha\right)} q_{h} f\left(y^{\prime}, t^{\prime}\right) d y^{\prime} d t^{\prime} d \theta d \alpha d s
$$

is a semiclassical OIF associated to a canonical transformation χ such that

$$
\chi\left(\left\{y^{\prime}=0, t^{\prime}=0,\left|\eta^{\prime}\right|=1, \tau^{\prime}=0\right\}\right)=\{y=0, x=0,|\eta|=1, \xi=0\}
$$

Moreover, J is elliptic on the above set and

$$
-h^{2} \tilde{\triangle} J(f)=J\left(\rho^{2}\left(h D_{t^{\prime}}, h D_{y^{\prime}}\right) f\right) \quad \bmod O_{C^{\infty}}\left(h^{\infty}\right)
$$

Airy-Poisson summation formula

Let $A_{ \pm}(z)=e^{\mp i \pi / 3} A i\left(e^{\mp i \pi / 3} z\right)$. One has $A i(-z)=A_{+}(z)+A_{-}(z)$. For $\omega \in \mathbb{R}$, set

$$
L(\omega)=\pi+i \log \left(\frac{A_{-}(\omega)}{A_{+}(\omega)}\right)
$$

The function L is analytic, strictly increasing, $L(0)=\pi / 3$, $\lim _{\omega \rightarrow-\infty} L(\omega)=0, L(\omega) \simeq \frac{4 \omega^{3 / 2}}{3}(\omega \rightarrow+\infty)$, and one has $\forall k \in \mathbb{N}^{*}$

$$
L\left(\omega_{k}\right)=2 \pi k \Leftrightarrow A i\left(-\omega_{k}\right)=0, \quad L^{\prime}\left(\omega_{k}\right)=\int_{0}^{\infty} A i^{2}\left(x-\omega_{k}\right) d x
$$

Lemma

The following equality holds true in $\mathcal{D}^{\prime}\left(\mathbb{R}_{\omega}\right)$.

$$
\sum_{N \in \mathbb{Z}} e^{-i N L(\omega)}=2 \pi \sum_{k \in \mathbb{N}^{*}} \frac{1}{L^{\prime}\left(\omega_{k}\right)} \delta_{\omega=\omega_{k}}
$$

Let $g_{h, a}\left(y^{\prime}, t^{\prime}\right)$ such that $J\left(g_{h, a}\right)-\frac{1}{2} \delta_{x=a, y=0}=R$ with $W F_{h}(R) \cap W=\emptyset$, where W is a fixed neighborhood of $\{(x=0, y=0, \xi=0, \eta),|\eta|=1\}$. For $\omega \in \mathbb{R}$, set (recall $\alpha=h^{2 / 3} \omega$)
$K_{\omega}(f)(t, x, y)=\frac{h^{2 / 3}}{2 \pi} \int e^{\frac{i}{h}\left(t \rho\left(h^{2 / 3} \omega, \theta\right)+\Phi-y^{\prime} \theta-t^{\prime} h^{2 / 3} \omega\right)} q_{h} f\left(y^{\prime}, t^{\prime}\right) d y^{\prime} d t^{\prime} d \theta d s$
One has $J(f)=\left.\int_{\mathbb{R}} K_{\omega}(f)\right|_{t=0} d \omega$. Finally, set
$<\sum_{N \in \mathbb{Z}} e^{-i N L(\omega)}, K_{\omega}\left(g_{h, a}\right)>_{\mathcal{D}^{\prime}(\mathbb{R})}=\mathcal{P}_{h, a}(t, x, y)=2 \pi \sum_{k \in \mathbb{N}^{*}} \frac{1}{L^{\prime}\left(\omega_{k}\right)} K_{\omega_{k}}\left(g_{h, a}\right)$

Proposition

$\mathcal{P}_{h, a}(t, x, y)$ is a parametrix.
The proof uses the left formula for $a \geq h^{2 / 3-\epsilon}$, and the right formula for $a \leq h^{4 / 7+\epsilon}$.

Outline

(1) Result

(2) The parametrix construction
(3) Dispersive estimates

4 Interpolation estimates
(5) Optimality of the result
(6) Comments

The special case $\tilde{\triangle}=\triangle_{M}$, with $q(\eta)=|\eta|^{2}$ (Friedlander model), where one has of course $\Gamma=0$, has been studied by Ivanovici-Lebeau-Planchon in Dispersion for waves inside strictly convex domains I: the Friedlander model case. (http://arxiv.org/abs/1208.0925 and to appear in Annals of Maths). The analysis of phase integrals are (essentially) the same in the general case, and leads to the following result.

Theorem

$$
\begin{gather*}
\left|\mathcal{P}_{h, a}(t, x, y)\right| \leq C h^{-d} \min \left(1,\left(\frac{h}{t}\right)^{\frac{d-2}{2}} \mathbf{C}\right) \tag{3.1}\\
\mathbf{C}=\left(\frac{h}{t}\right)^{1 / 2}+a^{1 / 8} h^{1 / 4} \text { for } a \geq h^{2 / 3-\epsilon} \\
\mathbf{C}=\left(\frac{h}{t}\right)^{1 / 3} \text { for } a \leq h^{1 / 3+\epsilon}
\end{gather*}
$$

Corollary

Strichartz holds true in any dimension $d \geq 2$ with $\alpha_{d}=\frac{d-1}{2}-\frac{1}{4}$

Swallowtails

The bad factor $h^{1 / 4}$ occurs only near the projection $S W_{n}, n \geq 1$ of the swallowtails. This are smooth submanifold of codimension 3 in \mathbb{R}^{1+d}, parametrized by a tangential initial direction $\nu \in S^{d-2}$. In the \triangle_{M} model, $S W_{n}$ is given by

$$
\begin{gathered}
t_{n}(a, \nu)=4 n a^{1 / 2}(1+a q(\nu))^{1 / 2} q(\nu)^{-1 / 2} \\
x_{n}(a, \nu)=a, \quad y_{n}(a, \nu)=4 n a^{1 / 2}\left(\nu+a q^{\prime}(\nu) / 3\right) q(\nu)^{-1 / 2}
\end{gathered}
$$

with an estimation of \mathbf{C} for t near $t_{n}(a, \nu)$, for a given ν, by

$$
\mathbf{C} \leq\left(\frac{h}{t}\right)^{1 / 2}+h^{1 / 3}+\frac{a^{1 / 8} h^{1 / 4}}{|n|^{1 / 4}+h^{-1 / 12} a^{-1 / 24}\left(t^{2}-t_{n}^{2}(a, \nu)\right)^{1 / 6}}
$$

For $\left|t^{2}-t_{n}^{2}(a, \nu)\right| \geq \epsilon a$, i.e $\left.t \notin\right] t_{n}(a, \nu)-\frac{\epsilon^{\prime} a^{1 / 2}}{|n|}, t_{n}(a, \nu)-\frac{\epsilon^{\prime} a^{1 / 2}}{|n|}[$ the last factor is $\leq h^{1 / 3}$.

Outline

(1) Result

(2) The parametrix construction
(3) Dispersive estimates
4) Interpolation estimates
(5) Optimality of the result
(6) Comments

Let us now give a sketch of the proof of the Strichartz estimate with $\alpha_{d}=(d-1) / 2-1 / 6$. Let us denote by $\mathcal{P}_{h, a, b}(t, x, y)$ the above parametrix where the source point is located at $x=a, y=b$ (the above estimates for $b=0$ apply uniformly for any value of b). For f compactly supported in $(s, a \geq 0, b)$, define

$$
A(f)(t, x, y)=\int \mathcal{P}_{h, a, b}(t-s, x, y) f(s, a, b) d s d a d b
$$

Let us first consider the case $d=3$. Our dispersive exponent is $\alpha_{d}=\alpha_{3}=1-1 / 6=5 / 6$. We have to prove the estimate (end point estimate for $r=\infty$ and $q=12 / 5)$, for some $T_{0}>0$,

$$
\begin{gather*}
h^{2 \beta}\left\|A(f) ; L_{t \in\left[0, T_{0}\right]}^{12 / 5}\left(L_{x, y}^{\infty}\right)\right\| \leq C\left\|f ; L_{s}^{12 / 7}\left(L_{a, b}^{1}\right)\right\| \tag{4.1}\\
2 \beta=\left(d-\alpha_{d}\right)=2+1 / 6=13 / 6
\end{gather*}
$$

We write $\mathcal{P}_{h, a, b}(t, x, y)=\mathcal{P}_{h, a, b}^{0}(t, x, y)+\mathcal{P}_{h, a, b}^{S}(t, x, y)$ where \mathcal{P}^{S} is the singular part, associated to a cutoff of $\mathcal{P}_{h, a, b}$ centered at the swallowtail singularities $(|n| \geq 1)$
$\left|x-x_{n}(a, b, \nu)\right| \leq \frac{a}{|n|^{2}}, \quad\left|t-t_{n}(a, b, \nu)\right| \leq \frac{\sqrt{a}}{|n|}, \quad\left|y-y_{n}(a, b, \nu)\right| \leq \frac{\sqrt{a}}{|n|}$

Lemma

$$
\begin{equation*}
h^{2 \beta} \sup _{x, y, a, b}\left|\mathcal{P}_{h, a, b}^{0}(t, x, y)\right| \leq C|t|^{-5 / 6} \tag{4.2}
\end{equation*}
$$

Let $A=A^{0}+A^{S}$.
The estimate for A^{0} follows easily, since the convolution by $|t|^{-5 / 6}$ maps $L^{12 / 7}$ in $L^{12 / 5}$.

The estimate for A^{S} will thus follows from the following lemma.

Lemma

$h^{2 \beta} A^{S}$ is bounded from $L_{t}^{12 / 7}\left(L_{x, y}^{1}\right)$ into $L_{t}^{12 / 5}\left(L_{x, y}^{\infty}\right)$.

In the Friedlander model, an explicit computation shows that $h^{2 \beta} A^{S}$ is bounded from $L_{t}^{1}\left(L_{x, y}^{1}\right)$ into $L_{t}^{2-\epsilon}\left(L_{x, y}^{\infty}\right)$. Since the cutoff in balls near the swallowtails singularities is symmetric in (x, a), by duality, $h^{2 \beta} A^{S}$ is bounded from $L_{t}^{2+\epsilon}\left(L_{x, y}^{1}\right)$ into $L_{t}^{\infty}\left(L_{x, y}^{\infty}\right)$, and by interpolation, we get

$$
h^{2 \beta} A^{S} \text { is bounded from } L_{t}^{12 / 7}\left(L_{x, y}^{1}\right) \text { into } L_{t}^{12-\epsilon}\left(L_{x, y}^{\infty}\right)
$$

which is far sufficient.

In the case $d \geq 4$, the end point Strichartz estimate we have to prove is

$$
\begin{equation*}
h^{\left(d-\alpha_{d}\right) / \alpha_{d}}\left\|A(f) ; L_{t \in[0,1]}^{2}\left(L_{x, y}^{r}\right)\right\| \leq C\left\|f ; L_{s}^{2}\left(L_{a, b}^{r^{\prime}}\right)\right\|, \quad r=\frac{6 d-8}{3 d-10} \tag{4.3}
\end{equation*}
$$

The decomposition $\mathcal{P}=\mathcal{P}^{0}+\mathcal{P}^{S}$ satisfy

Proposition

One can construct \mathcal{P}^{S} such that $f(a, b) \mapsto \int \mathcal{P}_{h, a, b}^{0}(t, x, y)(a, b) d a d b$ is bounded on L^{2} uniformly in $t \in\left[-T_{0}, T_{0}\right]$. Moreover, \mathcal{P}^{0} satisfies

$$
\begin{equation*}
\sup _{x, y, a, b}\left|\mathcal{P}_{h, a, b}^{0}(t, x, y)\right| \leq C h^{-\left(d-\alpha_{d}\right)}\left(\frac{1}{|t|}\right)^{\alpha_{d}} \tag{4.4}
\end{equation*}
$$

With $A=A^{0}+A^{S}$, the estimate for the part A^{0} follows now by the classical proof of Strichartz estimates in the free space: interpolation between the energy estimate and the $L^{1} \rightarrow L^{\infty}$ estimate. The estimate for A^{S} follows as above by the precise estimation near the swallowtails.

Outline

(1) Result

(2) The parametrix construction
(3) Dispersive estimates
4) Interpolation estimates

(5) Optimality of the result

Ivanovici counter examples

For simplicity, we consider here only the 3-d case. In the free space \mathbb{R}^{3}, Strichartz reads, with $\alpha_{3}=1$ and $1 / 2-1 / r=1 / q>2$

$$
\begin{equation*}
h^{2\left(\frac{1}{2}-\frac{1}{r}\right)}\left\|\chi\left(h D_{t}\right) u\right\|_{L_{t \in[0, T]}^{q}\left(L_{x}^{r}\right)} \leq C\left(\|u(0, x)\|_{L^{2}}+\left\|h D_{t} u(0, x)\right\|_{L^{2}}\right) \tag{5.1}
\end{equation*}
$$

The following theorem is due to O . Ivanovici

Theorem

In any domain of \mathbb{R}^{3} with at least one strictly convex geodesic on the boundary, for waves with Dirichlet boundary conditions, and any $r>4$ and $\epsilon>0$, the following inequality fails to be true

$$
\begin{equation*}
h^{2\left(\frac{1}{2}-\frac{1}{r}\right)+\frac{1}{6}\left(\frac{1}{4}-\frac{1}{r}\right)-\epsilon}\left\|\chi\left(h D_{t}\right) u\right\|_{L_{t \in[0, T]}^{q}\left(L_{x}^{r}\right)} \leq C\left(\|u(0, x)\|_{L^{2}}+\left\|h D_{t} u(0, x)\right\|_{L^{2}}\right) \tag{5.2}
\end{equation*}
$$

Optimality

The above results motivate the following question in 3-d:

For waves inside a domain with strictly convex boundary, does (free space) Strichartz holds true for the pair

$$
\begin{gathered}
(q, r)=(4,4) \\
? ? ?
\end{gathered}
$$

Outline

(1) Result

(2) The parametrix construction

(3) Dispersive estimates

4 Interpolation estimates
(5) Optimality of the result
(6) Comments

Comments

How to deal with general boundaries??

- 1. Propagation of singularities: The Melrose-Sjöstrand theorem
- 2. Strichartz estimates.
- 3. Dispersive estimates.
- 4. Parametrix construction.

The Melrose-Sjöstrand theorem involves a micro-hyperbolic argument.

How to get Strichartz (or bilinear) estimates without any weak form for a parametrix ?

