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I do not have much more time left, so let me close by trying to give you a little
bit of the flavor of how Witten’s assertion comes about at least in this simplest case. He
did not groze it by mathematical standards in his wonderful paper [8]. For that we had
to wait for the quite difficult papers of Helder and Sjéstrand [5], where of course Smale’s
transversality condition enters. (In fact, it is nowadays possible to write long Comptes

Raoul Bott: Morse theory indomitable (IHES 1988)
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Geometric Kramers-Fokker-Planck operators

In the euclidean space, the operator

—Ap + ‘P|2

Py ==+£p.0g — 04V (q).0p + 5 . x=(q,p) € QxRI

is associated with the Langevin process

dg=pdt , dp=—9,V(q)dt — pdt+ dW

Q= QUAQ riem. mfld with bdy, X = T*Q, X = T4, Q.
Metric g = g;(q)dq'de/ , g~ = (g¥)

o, D +1plG o
Pigg=HVe+ ———, Do =gi(a)p
R lplz  &Y(a)pip;

&(q,p) = > T,

Ve = 8"(a)Pidy — 5 048" ()PipiOp = 8" (a)Piej, & = Ogi + TjpeOp; -

acting on C>®(X;f). P+ @,g = scalar part of Bismut's hypoelliptic Laplacian.
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Specular reflection:u(0, —p1) = u(0, p1) for p1 > 0.
It can be written yogqu = 0 with vyogqu = w )
Absorption:u(0, p1) = 0 for p1 < 0.

. . . 0, 0,—
It can be written Yoqqu = sign(p1)Yevt with yeyu = %M .
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General BC

Geometric Metric locally on 8Q: (dg!)?> &+ m(q',q’). Consider f-valued functions, f Hilbert
ol sooce.
Planck : B B B H . — 1 _ .
operatars Let j be a unitary involution in f and define along 9X = {q! = 0}:
with
boundary / N _infa '
i (', p1,P") —jv(d’, —p1, P')
conditions Yodd = Moddy = ’ > ’ s
/ / H / /
2 > P1, + ;> —P1,
e = Mgy = W9PLP) +02(d =P P)
2
Let the boundary condition on the trace yu = u‘ 5x be
The ¢
et Yodd U = *sign(p1)Avevu MeyA = Al .

Formal integration by part

HquHiZde ¢ +H‘P‘q“Hiszd ¢ 1
Re (u, Pt qgu) = (X.dadpif) (Xdadpif) 3 ~ / lyul(q’, p)* p1dq’d
2 2 Jox
IVpull?

2
120%,dadory) T 11Plalli2(x dgaps) .

5 Re (yevur, Avevt) 12(9x, |py |da’ dpsF)

Assumptions:

m A= A(q,|plq) is local in q and |p|4 (local elastic collision at the boundary);
m A(q,|plq) € L(LZ(SSQQ. |w1|dq’ dw; )) with ||A(q, r)|| < C unif.
m either Re A(q, r) > ca > 0 unif. or A(q,r)
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Questions

o Do such boundary conditions with (A, j) define a maximal accretive realization
Fokker-
Planck Kiag of Prqg?
operators Can we specify the domain of K4 4, and the regularity (and decay in p)
bomtda,y estimates for the resolvent ? Global subelliptic estimates ?
diti u . n
conditions KiAg Cusp|da| 7
Imz
‘
!
o,
! .
The i
problem
.

Compactness of the resolvent 7 Discrete spectrum 7 Exponential decay ppties of

/e*fZ(zf K) ! dz?
.

e tKtag = =
2im
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Some related works and motivations

Keamers.

Fokker Kinetic theory: Carrillo (1998) and Lucquin (2002) weak formulations. No

operators information on the operator domain

ci‘)ﬂ“d':g?)'nvs SDE's: B. Lapeyre (1990) 1D specular reflection, Bossy—Jabir (2011) specular
reflection. Bertoin (2007) non-elastic 1D boundary conditions. Very few results
for the PDE interpretation
Quasi Stationary Distribution (— molecular dynamics algorithms):
Le Bris—Leliévre—Luskin—Perez (2012) and Lelievre-N. (2013) Elliptic case,

T Witten Laplacian. But Langevin is a more natural model !

problem

Exponentially small eigenvalues of Witten Laplacians on p-forms in the low
temperature limit: Le Peutrec—Viterbo—N. (2013) Artificial boundary value
problems are introduced.

Series of works by Bismut and Lebeau (2004—2011) about the hypoelliptic
Laplacian. Phase-space hypoelliptic and non self-adjoint version of Witten's
deformation of Hodge theory.

Exponentially small eigenvalues for the scalar Kramer-Fokker-Planck equation:
Hérau—Hitrik—Sjostrand (2011). In view of Le Peutrec—Viterbo—N. could be
extended to the hypoelliptic Laplacian on p-forms.

Maximal subelliptic estimates of the geometric (Kramers)-Fokker-Planck
operator: Lebeau (2007). Used in the analysis of boundary value problems
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QSD Simulations by T. Lelievre
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Notations and first result

Geometric
Kramers-
Pranck —Bptlplg s’ —s'j22(T*
op;:foys Call Og ¢ = 5 and set H* (q) = (d/2+ Oq) L (Tq Q,dp;f) and
ot globally H5" = (d/2 + Oq,,)~*/2L2(X, dqdp; f) . H*(Q; Hsl,) is the Sobolev
TeERitTE space of H®-sections of the hermitian fiber bundle 7, : H® — Q.
Remember the BC's 7,q0u = £sign(p1)Avevu
m Alle, =T A
m A= A(q,|plq) is local in g and |p|q (local elastic collision at the boundary);
m A(q, |plq) € E(LZ(S;QQ. |w1]dq’ dw; §)) with ||A(q, r)|| < C unif.
m either Re A(q,r) > ca > 0 unif. or A(q,r) =0.
Vit Theorem 1: With the domain D(K4+ 4 ) characterized by
results
ue L2(QHY) , Piqgu€ L*(X,dqdp;f),
SRS L/20c(;)X* \pl\dq/dp; ’) y YoddU = iSign(pl)AAﬁvaL

the operator Ky 4, % is maximal accretive and

dy 2
Re (u, (Kt a6 + E)u) = HuHZz(qu‘H]) + Re (yevu, Aﬁevu}szx_m dq’ dpif) -

The adjoint of Ky a5 is K ax ¢ -
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operators Call Oq ¢ =—2 and set ;:-[ (q) =(d/2+0qz) "/ /L (T4 Q,dp;f) and
o globally #°' = (d/2 4+ Oq.¢)~* /2L2(X, dqdp; §) . H*(Q;H*") is the Sobolev
e ’
TeERitTE space of H*®-sections of the hermitian fiber bundle Ty - HS — Q.
Remember the BC's 7,400 = Esign(p1)Avevu
m Alle, =T A
m A= A(q,|plq) is local in g and |p|q (local elastic collision at the boundary);
m A(q, |plq) € E(LZ(S;QQ. |w1]dq’ dw; §)) with ||A(q, r)|| < C unif.
m either Re A(q,r) > ca > 0 unif. or A(q,r) =0.
Ve Theorem 1: With the domain D(K4 4 ,) characterized by

results

ue LX(QHY) , Piggue L’(X,dqdp;F),
yu € LE(0X,|p1ldg’dpif) ,  Yodqu = Esign(p1)Avevu,

the operator K¢ 4 g — % is maximal accretive and

d
Re (u, (Kt ag + 5)“> = ||uHi2(Q,dq;’H_1) + Re (Yevu, A’YSV”>L2(8X,|p1|dq’dp;f) )

The adjoint of Kt a4 is K+ a* g -



Geometric
Kramers-
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Planck
operators
with
boundary
conditions

Main
results

Subelliptic estimates when

Theorem 2: When A=0 there exists C > 0 and for all & € Cp°([0, +-00)) satisfying
®(0) = 0 a constant Cg such that

1 1
N & lull + A B llullz@upry + 1l /30y

1 _ .
+ N @+ [Ple) " vull 2(ox, |py | dardpiy < Cll(Kx,0,6 — iNull,

and
[®(dg(q,0Q))Oq,gull < Cl|®[[Lo [(K+,0,6 — iN)ull + Collull,

hold for all u € D(K+,0,¢) and all A € R.
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with
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Main
results

Subelliptic estimates when Re A> cq > 0

Theorem 3: Assume Re A(q, [plg) > ca > 0 uniformly. There exists C > 0, for all
te|o, %8) a constant C; > 0 and for all ® € Cp°([0, +-00)) satisfying ®(0) =0 a
constant Cg such that

1 1 _
N F llull + (N3 llull 2ty + Co Ml e (oo

1 .
+ <A>8 Il’yulle(aX,\pl\dq’dp;f) < C”(Kﬂ:,A,g - I)\)U” ’

and
[®(dg(q,0Q))Oq,gull < Cl|®|reo [|(Ki,a,g — iA)ull + Collull,

hold for all u € D(K4 az) and all A € R.



Corollaries

Geometric

Kramers- The operator K4 4 . is cuspidal.

Fokker- —

Planck When Q is compact, K71 is compact — discrete spectrum.

operators

bom‘d"my The integration by parts |mp|y H“HLz Q.11 <I(K+,a,g — iN)ull||lull and a
conditions

potential term F94V/(q)dp with V L|psch|tz is a nice perturbation — All the
results are still valid with such a potential term.

PT-symmetry if jAj = A*, UKy A U* = Kz px g = K;A,g when

Uu(q,p) = u(q,—p).

The results hold (with additional conditions for the PT-symmetry) when Q X § is
replaced by a hermitian bundle 7 : F — Q with a metric g© and a connection
Main VF. The pull-back bundle Fx = 7*F with 7 : X = T*Q — @ is then endowed
el with the metric gfx = n*gF and the connection

F; F F.
Ve =Vo, » Vo =0

Covariant derivative @?X(sk(x)fk) = Tsk(x)f, + sk(x)v? fi. x=1(q,p).
(including hypoelliptic
Laplacian)

+g7(a)piVe + Og + M (q,P)V i +M'(a.p),
J

where M} denotes symbols of order p in p: \(’);(‘);‘Mf(q.p)\ < Cy pp)yrlel,
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Geometric

Kramers- The operator K4 4 g is cuspidal.

(E;E;&ys When Q is compact, K;lA.g is compact — discrete spectrum.

b:ﬂiyy The integration by parts imply ””HiZ(Q,Hl) <I(K+,4,g — iN)ull|lull and a
i potential term F94V/(q)9p with V Lipschitz is a nice perturbation — All the

results are still valid with such a potential term.

PT-symmetry if jAj = A*, UKy A U* = Kz px g = K;A,g when

Uu(q,p) = u(q,—p).

The results hold (with additional conditions for the PT-symmetry) when Q X f is
replaced by a hermitian bundle 7 : F — Q with a metric g© and a connection

Main VF. The pull-back bundle Fx = m*F with 7 : X = T*Q — Q@ is then endowed
el with the metric gfx = n*gF and the connection

VX :vgw . VX =o.

O,
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results are still valid with such a potential term.

PT-symmetry if jAj = A*, UKy agU" = Kz ax g = K:T:,A,g when

Uu(q,p) = u(q,—p).

The results hold (with additional conditions for the PT-symmetry) when Q X § is

replaced by a hermitian bundle 7 : F — Q with a metric g© and a connection
Main VF. The pull-back bundle Fx = 7*F with 7 : X = T*Q — @ is then endowed
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Ve =Vo, » Vg =0
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Corollaries

Ceometric The operator K1 4 , is cuspidal.

Fokker- —

Planck When Q is compact, K71 is compact — discrete spectrum.

operators

bom‘d"ary The integration by parts |mp|y HUHL, Q.m1) <I(K+,a,g — iNull||lull and a
conditions potential term F94V(q)dp with V L|psch|tz is a nice perturbation — All the

results are still valid with such a potential term.

PT-symmetry if jAj = A*, UKy A U* = Kz px g = K;A,g when

Uu(q,p) = u(q,—p).

The results hold (with additional conditions for the PT- symmetry) when Q X | is
replaced by a hermitian bundle ¢ : F — @ with a metric g© and a connection

Main VF . The pull-back bundle FX = 7n*F with m: X = T*Q — Q is then endowed
el with the metric gfx = 7*g* and the connection

Fx _ Fx _
Ve =vh, . Vi =o.
Covariant derivative 6'?( (s¥(x)fi) = Tsk(x)fi + Sk(X)V";—X fi. x=1(q,p).

(including hypoelliptic
Laplacian)
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Corollaries

Geometric

Kramers- The operator K4 4 g is cuspidal.
Fokker- — . 71 . .
Planck When Q is compact, K_ is compact — discrete spectrum.
operators
with

boumtary The integration by parts |mp|y HUHLZ Q.m1) <I(K+,a,g — iNull||lull and a
conditions potential term F94V(q)dp, with V L|psch|tz is a nice perturbation — All the
results are still valid with such a potential term.
PT-symmetry if jAj = A*, UKy A U* = Kz px g = K;A,g when
Uu(q,p) = u(q,—p).
The results hold (with additional conditions for the PT-symmetry) when Q X § is
replaced by a hermitian bundle 7 : F — Q with a metric g© and a connection

Main VF. The pull-back bundle Fx = m*F with 7 : X = T*Q — Q@ is then endowed
el with the metric gfx = n*gF and the connection

F; F F.
Ve =Vh, » Vo =0

Covariant derivative @?X(sk(x)fk) = Tsk(x)f, + sk(x)v? fi. x=1(q,p).
DEF: General geometric Kramers-Fokker-Planck operator (including hypoelliptic
Laplacian)
i = F = F
+g7(q)piVe + Og.5 + M(q, PIVoy + M(q,p),

where ML' denotes symbols of order p in p: |6§8§‘Mf(q, p)| < Cap(pyr—lel.



Scalar case: f=C

Geometric
Kramers-
Fokker-
Planck
°P€"_at;°'5 Specular reflection: j=1, A=0.
wi
bound fone i T
oy Absorption: j =1, A=1d.
The two above cases can be interpreted in terms of stochastic processes by
completing the Langevin process with a jump process when X(t) hits the
boundary:
m For specular reflection the jump changes the velocity (p1, p’) with p; > 0 into
(=p1, P/);
m For the absorption, the particle is sent to an external stationary point ¢ when the
particle hits the boundary.
More general jump processes: Set X+ = {(0,q’, p1,p’),+p1 > 0}. More
P general Markov kernel from 90Xy to 9X_ U {e} can be considered. Re A > cx

means that a positive fraction is sent to ¢

Doubling the manifold: In the position variable the Neumann and Dirichlet
boundary value problems for —Ag can be introduced by considering even and
odd solutions after the extension by reflection (¢',q’) — (—q*,q’).
Here the extension by reflection is (¢*,q’, p1,p’) = (=g, q’, —p1,p’).

m Even case=specular reflection: j =1and A=0.

m Odd case: j = —1 and A = 0 — does not preserve the positivity.
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means that a positive fraction is sent to ¢
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Hypoelliptic Laplacian

Geometric
Kramers- Set (U, V) = (mU, 1 V)g —w(U, V) for U,V € TX = T(T*Q) where
E::irk w = dp A dq is the symplectic form on X . The non degenerate form n* i
PELLTE defined by duality and then extended to A T X, x = (q,p) .
ci"ﬂ“df:flzfnvs Call dX the differential on X and E;( the “codifferential” defined by
—X
(@ 9)0). 00 dado = [ (). (@)5)(x)) daco-
2
Deformation a la Witten: For H(q, p) = ‘p% + V(q), the deformed differential
and codifferential are defined by
d,;_([ = e HgXe | Hf,H = eHE;iefH.

Application:

Hypoelliptic Laplacian . uz = (d);-(t + Ef](_q.[)z. ' .
With the basis (e/&; = el A... A€ A& AL A éj\J\) with e/ =dq',
& = dp; — Ff}.pgdqf , consider the weight operator

() EoB(wfe'e)) = (p)VIwfele, .

Then <p>*dgg oZ/{,?_( o (p}*dgg is a geometric Kramers-Fokker-Planck operator.
(Note &' = 7*(dq’), & = =*(dpy) = 7(9,) )
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Geometric
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operators
with
boundary
conditions

Hypoelliptic Laplacian

A proposal for “Dirichlet” and “Neumann” realization of the hypoelliptic Laplacian.

Remember gX = g @ g~ with g(e"7 ej) =gl g(&;,8) = gjj and g(ei, &)=0
and the natural extension to A T X.
The mapping ji locally defined by

ik(e'ay) = (—1)F(—pltHnIFIEINlely,

defines a unitary involution on FX = 7*F for k =0 and k = 1.
“Neumann” realization: Take k =0, j =jo and A=0.

“Dirichlet” realization: Take k =1, j=j; and A=0.

Starting from D = {u € C (X, A\ T*X) , Yodau = O} , the closure of

C+ <p)7dgg o U3, o (p)*des is maximal accretive. The fiber bundle version of
Theorem 1 and its corollaries are valid.
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boudrfd_atv A proposal for “Dirichlet” and “Neumann” realization of the hypoelliptic Laplacian.
conditions
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Application:

“Dirichlet” realization: Take k =1, j=j; and A=0.
Starting from D = {u € CS(X; A T*X) , Yodau = 0} , the closure of
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Strategy
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Planck
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conditions

It is a very classical one for boundary value problems (see for example
Hérmander-Chap 20 or Boutet de Montvel (1970))

Have a good understanding of the simplest 1D-problem.
Use some separation of variables for straight half-spaces.

Look at the general local problem by sending it to the straight half-space
problem with a change of variables and try to absorb the corresponding
perturbative terms.

Elements
of proof
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Strategy

It is a very classical one for boundary value problems (see for example
Hérmander-Chap 20 or Boutet de Montvel (1970))

Have a good understanding of the simplest 1D-problem.
Use some separation of variables for straight half-spaces.

Look at the general local problem by sending it to the straight half-space
problem with a change of variables and try to absorb the corresponding
perturbative terms.
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Pb 1 solved by introducing adapted Fourier series and a quantization of the function

sign(p1) -

Pb 2 solved by introducing a dyadic partition of unity in the p-variable and by using
the 2nd resolvent formula for the corresponding semiclassical problems (h=27/).
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1D case

Take f = C, j =1 for simplicity. One wants to prove that

—02+p°+1
— = lu=f,

{ pdqu + (5 + O)u = [pdq +
Yodd U = sign(p)Avevu,
admits a unique solution u € L2(R_, dg; H!) with traces when f € L?(R2 , dgdp).

Consider more generally f € L>(R_, dg; H™!) and set

fF=(3+0)71f € 2(R_,dg; H').

The equation becomes (% +O) 1pdqu+ u= F Yodd = sign(p)Avev U .

The operator Ag = (% + O)~1pis self-adjoint on H! and compact.

sign(v)

Ay = vley)(ey| in HY with e, =i 207 v — Yyand o ,
0= Z, s eyh e el in 1 with e Ay -n(p =) and o
nth normalized Hermite function.
Defined Ds = { u = L uey, 1 V)2 < +oo .
s ngi(m‘ri Ve ,Zugi(%,ri 1% uy |

Then Do = H!, D_y = {u e D'(R*),puc H '} and

D

= L*(R,

pldp)

1
2

with a different scalar product. If Se, = sign(v)e, then

(. S0)p_y = (. SiEn(P)V) 2 i) = [ TP)V(p) ol

2



Geometric
Kramers-
Fokker-
Planck
operators
with
boundary
conditions

Elements
of proof

1D case

Take f = C, j =1 for simplicity. One wants to prove that

—02+p°+1
— = lu=f,

{ pdqu + (5 + O)u = [pdq +
Yodd U = sign(p)Avevu,
admits a unique solution u € L2(R_, dg; H!) with traces when f € L?(R2 , dgdp).

Consider more generally f € L?(R_,dg; H™') and set

F=(G+0)" 1 e (R, dg; HY).

The equation becomes (% +O) pdqu+u= '\ Yoddu = sign(p)Aveyu .

The operator Ag = (% + O)~1pis self-adjoint on H! and compact.
sign(v)

Ao = e ) (e, | in HY with e, =i 207 vy —Lyand ¢
0= X eyt Mool in it & = T v () and on,
nth normalized Hermite function.
Defined Ds = Ju = 1 Upey, 1 VP u 2 < oo p .

s Znei(zwrf Ve ,Zugi(zﬁ,),i\ 12 uw |

Then Do =H', D1 = {u € D'(R*),pu € H™'} and

D

= L*(R, |p|dp)

1
2

with a different scalar product. If Se, = sign(v)e, then

(. S0)p_y = (. (@) 2 i) = [ TP)V(p) ol

2



1D case

Geometric Take f = C, j =1 for simplicity. One wants to prove that
Kramers-
Fokker- —924p241
osii:tcjrs Paqu“l‘(% +O)U: [Paq“l‘ p2 ]U: f’
i Yodd U = sign(p)Avevu
oundary
conditions admits a unique solution u € L2(R_, dg; H!) with traces when f € L?(R2 , dgdp).
Consider more generally f € L>(R_, dg; H™!) and set
fF=(3+0)71f € 2(R_,dg; H').
The equation becomes (3 + O)"1pdqu+ u=F, Yoqqu = sign(p)Ave us.
The operator Ay = (% + O)~1pis self-adjoint on H! and compact.
sign(v)
_ H 1 — [ 22 _ 1
Ag = Zuei(ZN*)_% viey)(ey| in H' with e, =i 2 mp[ﬁ_l](p =) and ¢,
nth normalized Hermite function.
Elements . o _ 2 2 )
ofproo; Defined Ds = qu = 1/€i(2rf:1‘)7% upéy, Zugi(zrﬁ')f% [v]=|uy|® < +C><,} .

Then Do =H', D1 = {u € D'(R*),puc H™'} and

D

= L*(R, |p|dp)

1
2

with a different scalar product. If Se, = sign(v)e, then

(. S0)p_y = (. (@) 2 i) = [ TP)V(p) ol

2



1D case

Geometric Take f = C, j =1 for simplicity. One wants to prove that
Kramers-
Fokker- —924p241
osi?:tcjrs Paqu“l‘(% +O)U: [Paq“l‘ p2 ]U: f’
i Yodd U = sign(p)Avevu
oundary
conditions admits a unique solution u € L2(R_, dg; H!) with traces when f € L?(R2 , dgdp).
Consider more generally f € L>(R_,dq; H™1) and set
fF=(3+0)71f € 2(R_,dg; H').
The equation becomes (3 + O)"1pdqu+ u=F, Yoqqu = sign(p)Ave us.
The operator Ag = (% + O)~1pis self-adjoint on H! and compact.
sign(v)
_ Ll _ = 1 .
Ao = Z:/ei(ﬂ*)’% viey)(ey| in H* with e, =i 2 L/ﬁ,[ﬁil](p >) and ¢n,
nth normalized Hermite function.
Elements . 2s 2
Defined Ds =< u = uyey , V= |uy|® < 400 p.
= (U= ey W S ey I

Then Do = H', D_1 = {u € D'(R*), pu € H'} and

D_, = L*(R, |p|dp)

_1
2
with a different scalar product. If Se, = sign(v)e, then

(u, Sv)p_, = (u, sign(P)v) 2(r, |p|dp) =/RU(P)V(P) pdp.

1
2



1D case

Geometric Take f = C, j =1 for simplicity. One wants to prove that
Kramers-
Fokker- —924p241
osi?:tcjrs Paqu“l‘(% +O)U: [Paq“l‘ p2 ]U: f’
i Yodd U = sign(p)Avevu
oundary
conditions admits a unique solution u € L2(R_, dg; H!) with traces when f € L?(R2 , dgdp).
Consider more generally f € L>(R_,dq; H™1) and set
fF=(3+0)71f € 2(R_,dg; H').
The equation becomes (3 + O)"1pdqu+ u=F, Yoqqu = sign(p)Ave us.
The operator Ag = (% + O)~1pis self-adjoint on H! and compact.
sign(v)
_ Ll _ = 1 .
Ao = Z:/ei(ﬂ*)’% viey)(ey| in H* with e, =i 2 L/ﬁ,[ﬁil](p >) and ¢n,
nth normalized Hermite function.
Elements . 2s 2
Defined Ds =< u = uyey , V= |uy|® < 400 p.
= (U= ey W S ey I

Then Do = H', D_1 = {u € D'(R*), pu € H'} and

D_, = L*(R, |p|dp)

_1
2
with a different scalar product. If Se, = sign(v)e, then

(u, Sv)p_, = (u, sign(P)v) 2(r, |p|dp) =/RU(P)V(P) pdp.

1
2



1D case

Geometric

Kramers- Set E(R_) = {u € L2(R_,dq; H!); pdq € L2(R_,dg; H 1)} . There is a
E::irk continuous and onto trace operator v : E(R_) - D_; .
operators .
bomi“dha,y After setting f = (% + (’))*1)‘ = 2,16*(2%)7% fuey , the well posedness of
conditions T
(POg+ (3 +O))u=f
Tyu="fyeT with TeL(D_1;T)
2
is equivalent to the well posedness in D_ 1 of
2
(1+S5)y=0,
Ty=feT TeL('Df%;T)
Elements
of proo: The Calderon projector (kill the exponentially growing modes when solving

l/(i’)qu +u, = O) is 1E‘; (S) and I{an]_}; (S) = ker lp; (S) = ker (%) .

With M = S osign(p), solving vodqq — sign(p)Ayey = fj and (14 S)y=0'is
equivalent to
(Id -+ MA)",/EV = 7f; s Yodd = 75")’5\/ .

C

But ((A, D(A)) max. acc. in L(R, |p|dp)) < ((MA. D(A)) max. acc. in Di%) .

Conclusion: K4 4 is maximal accretive.
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e This solves only the basic functional analysis.
Uni There are still a lot of things to be investigated:
Rennes 1
Non self-adjoint spectral problems.
Boundary value problems.
Parameter dependent asymptotics (large friction, small
temperature=semiclassical).
Multiple wells and tunnel effect...
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