Spectral rigidity	Weak isospectral condition	KAM tori. Mather's β -function.	Isospectral invariants	Applications	Idea of the proof
000	0	0000	0	0000000	00

Isospectral deformations, Mather's β -function and spectral rigidity

G. Popov (based on joint work with P. Topalov)

Laboratoire de Mathématiques Jean Leray Université de Nantes

Microlocal Analysis and Spectral Theory In honor of J. Sjöstrand

Luminy - September 26, 2013

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Spectral rigidity	Weak isospectral condition	KAM tori. Mather's β -function.	Isospectral invariants	Applications	Idea of the proof
000	0	0000	0	0000000	00

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Table of contents

- Spectral rigidity
- 2 Weak isospectral condition
- **3** KAM tori. Mather's β -function.
- Isospectral invariants
- 5 Applications
- 6 Idea of the proof

Spectral rigidity ●○○	Weak isospectral condition o	KAM tori. Mather's β -function.	Isospectral invariants o	Applications	Idea of the proof
Spectra	al rigidity				

 \widetilde{X} smooth manifold of dimension $n \ge 2$ Billiard table in \widetilde{X} - smooth compact Riemannian manifold $(X,g), X \subset \widetilde{X}$, with boundary Γ , dim X = n. C^1 deformation of $(X,g) - C^1$ family of billiard tables (X_t, g_t) in \widetilde{X} , where $X_0 = X$ and $g_0 = g$ Δ_t - the corresponding L-B operator with Dirichlet boundary

conditions on Γ_t . The deformation is

- isospectral if Spec $(\Delta_t) =$ Spec (Δ_0) for each t
- trivial if there is a family of diffeomorphisms $\psi_t : X_0 \to X_t$ such that $\psi_0 = \text{Id}$ and $\psi_t^* g_t = g_0$.

 X_0 is spectrally rigid if every isospectral deformation of X_0 is trivial.

Question : Is the ellipse (ellipsoid) spectrally rigid in \mathbb{R}^2 (\mathbb{R}^n)?

Spectral rigidity
o ● 0Weak isospectral condition
oKAM tori. Mather's β-function.
o 0Isospectral invariants
o 0Applications
o 0Idea of the proof
o 0

How to relate Spec (Δ) to the the geometry ? 1) Heat invariants :

$$\sigma_h(t) = \sum_j e^{-\lambda_j t} = \operatorname{tr}\left(e^{-t\Delta}\right), t > 0,$$

 $\sigma_h(t) \sim c_0 t^{-n/2} + c_1 t^{-(n-1)/2} + \cdots \text{ as } t \searrow 0$

2) Wave-trace method :

$$\sigma_{w}(t) = \sum_{j} \cos(t\sqrt{\lambda_{j}}) = \operatorname{tr}\left(\cos(t\sqrt{-\Delta})\right), t \in \mathbb{R},$$

s.s. $(\sigma_{w}) \subset \{\pm \ell : \ell \in \mathcal{L}(X)\} \cup \{\mathbf{0}\}$

- Equality for generic domains Petkov-Stojanov,
- Singular expansions Chazarain, Andersen-Melrose, Duistermaat-Guillemin, Guillemin-Melrose, Marvizi-Melrose,
- Bikhoff Normal Form Guillemin, Zelditch, Iantchenko-Sjöstrand-Zworski, Colin de Verdière
- Recovery of the boundary Zeditch, Hezari-Zelditch

Spectral rigidity	Weak isospectral condition	KAM tori. Mather's β -function.	Isospectral invariants	Applications	Idea of the proof
000	0	0000	0	0000000	00

- Closed Riemannian manifolds of negative sectional curvature are spectrally rigid : Guillemin-Kazhdan n = 2 (1980), Croke-Sharafutdinov $n \ge 2$ (1998), Anosov flows (n = 2) - Paternain-Salo-Uhlmann (2013).

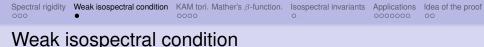
- Infinitesimal rigidity of the ellipse - Hezari-Zelditch (2013).

The wave-trace method requires certain technical assumptions such as simplicity of the length spectrum (a non-coincidence condition) and non-degeneracy of the corresponding closed geodesic and its iterates.

We propose another method which avoids these assumptions.

3) Method based on a quasi-mode construction (Popov-Topalov, CPDE 2012)

Instead of trying to recover the BNF from the coefficients of the complete singular expansion at a given length t = T, we are looking for the first Birkhoff invariant for a large family of invariant tori which can be regarded as a Radon transform.



Fix d > 0 and c > 0. Consider $\mathcal{I} \subset (0, \infty)$ such that

(H₁) \mathcal{I} - union of infinitely many disjoint intervals [a_k , b_k] where

• $\lim a_k = \lim b_k = +\infty$,

• $b_k - a_k = o\left(\sqrt{a_k}\right)$ as $k \to \infty$

• $a_{k+1} - b_k \ge cb_k^{-d}$ for any $k \in \mathbb{N}$.

 $[a_k, b_k]$ going to infinity, of length $o(\sqrt{a_k})$, and polynomially separated.

 $(\mathsf{H}_2) \exists a \geq 1 \text{ s.t. } \forall t \in [0,1], \text{ Spec} (\Delta_t) \cap [a,+\infty) \subset \mathcal{I}.$

Isospectrality implies weak isospectralitry (take d > n/2).

 Spectral rigidity
 Weak isospectral condition
 KAM tori. Mather's β-function.
 Isospectral invariants
 Applications
 Idea of the proof

 000
 0
 000
 0
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

K.A.M. tori and Mather's β -function

Billiard ball map - Symplectic map $B : B^*\Gamma \to B^*\Gamma$ associated to the billiard table (X, g). Fix $m \ge 1$ and set $P = B^m$.

Kronecker torus of *P* with a vector of rotation ω

Embedded Lagrangian submanifold $\Lambda(\omega)$ of $B^*\Gamma$ diffeomorphic to \mathbb{T}^{n-1} such that $\Lambda(\omega)$ is invariant with respect to $P = B^m$ and the restriction of P to $\Lambda(\omega)$ is C^{∞} conjugated to the translation

 $R_{2\pi\omega}(\varphi) = \varphi + 2\pi\omega \,(\text{mod } 2\pi)$

Embedding $f_{\omega}: \mathbb{T}^{n-1} \to \Lambda(\omega) \subset B^*\Gamma$ such that

$$\begin{array}{cccc} \mathbb{T}^{n-1} & \xrightarrow{R_{2\pi\omega}} & \mathbb{T}^{n-1} \\ \downarrow f_{\omega} & & \downarrow f_{\omega} \\ \Lambda(\omega) & \xrightarrow{P} & \Lambda(\omega) \end{array}$$
(1)

Spectral rigidity	Weak isospectral condition	KAM tori. Mather's β -function.	Isospectral invariants	Applications	Idea of the proof
000	0	0000	0	0000000	00

```
Fix \kappa \in (0, 1] and \tau > n - 1.
```

```
Diophantine vectors of rotation

\omega \in \mathbb{R}^{n-1} is D(\kappa, \tau) if

\forall (k, k_n) \in \mathbb{Z}^{n-1} \times \mathbb{Z}, k \neq 0 : |\langle \omega, k \rangle + k_n| \geq \kappa |k|^{-\tau};

\Omega_{\kappa} the set of (\kappa, \tau)-Diophantine vectors in a domain \Omega
```

K.A.M. theorem provides a lot of Kronecker invariant tori $\Lambda(\omega)$ with vectors of rotation $\omega \in \Omega_{\kappa}$ for small perturbations *P* of a nondegenerate smooth completely integrable symplectic map. If $t \to P_t$ is C^1 then the corresponding families of invariant tori $t \to \Lambda_t(\omega)$ are C^1 (not at all trivial ! [Popov-Topalov, 2013]) Spectral rigidity weak isospectral condition o **KAM tori. Mather's** β-function. Isospectral invariants Applications oo

Given $\rho = (x, \xi) \in B^*\Gamma$ denote the action on the geodesic arc $\gamma(\rho)$ starting from ρ and with endpoint $\rho' = P(\rho)$ by

$$A(\varrho) := \int_{\gamma(\varrho)} \xi dx.$$

Average action on $\Lambda(\omega)$ when ω is Diophantine

$$\beta(\omega) := -2 \lim_{N \to +\infty} \frac{1}{2N} \sum_{k=-N}^{N-1} \mathcal{A}(\mathcal{P}^k \varrho) = -2 \int_{\Lambda(\omega)} \mathcal{A}d\mu$$

 μ is the unique probability measure on $\Lambda(\omega)$ invariant with respect to *P*. If *P* is a twist map (dim $\Gamma = 2$, m = 1, Γ -strictly convex), then $\beta(\omega)$ is the value of Mather's β -function at $\omega \in \Omega_{\kappa}$. The function $t \to \beta_t(\omega)$ is C^1 if $t \to \Lambda_t(\omega)$ is a C^1 family of Kronecker tori of P_t with a Diophantine vector of rotation ω .

Spectral rigidity	Weak isospectral condition	KAM tori. Mather's β -function.	Isospectral invariants	Applications	Idea of the proof
000	0	000•	0	0000000	00

Examples :

- Liouville billiard tables : [Popov-Topalov, ETDS 2003, 2008, CMP 2011]

- Elliptic broken geodesics

- Strictly convex billiard tables in \mathbb{R}^2 - Lazutkin caustics : $\beta(\omega) = \omega I(\omega) - L(I(\omega))$ where $L(I(\omega))$ is the Lazutkin parameter of the corresponding caustic $C(\omega)$ and $I(\omega)$ is its length.

Isospectral invariants

Theorem (Popov-Topalov, 2013)

Let (X_t, g_t) , $t \in [0, 1]$, be a C^1 family of compact billiard tables satisfying the weak isospectral condition $(H_1) - (H_2)$. Let $[0, \delta) \ni t \to \Lambda_t(\omega)$ be a C^1 family of invariant tori of $P_t = B_t^m$ with vectors of rotation $\omega \in \Omega_{\kappa}$. Then $\beta_t(\omega)$ is independent of $t \in [0, \delta]$ for any $\omega \in \Omega_{\kappa}$.

Remark. Although the invariant tori $\Lambda_t(\omega)$ may not exist at $t = \delta$ the β -function is well defined and it is continuous in $t = \delta$ for twist maps.

For any $t \in [0, \delta)$ the function β_t is C^{∞} on Ω_{κ} in Whitney sense.

Spectral rigidity
οοWeak isospectral condition
οKAM tori. Mather's β-function.
οοIsospectral invariants
οApplications
οοIdea of the proof
οο

Applications

1. Infinitesimal rigidity of ellipsoidal billiard tables

Theorem (Popov-Topalov, CMP, 2011)

The billiard ball map of an ellipsoidal billiard table in \mathbb{R}^n is a non-degenerate (in Kolmogorov sense) completely integrable symplectic map.

Let X_0 be the ellipsoidal billiard table in \mathbb{R}^n . Applying (a variant) of the KAM theorem to B_t near an invariant torus $\Lambda_0(\omega)$, $\omega \in D(\kappa, \tau)$, one obtains a C^1 family of invariant tori $\Lambda_t(\omega)$ of B_t . Suppose that the family is weakly isospectral. Then the main Theorem implies $\beta_t(\omega) = \beta_0(\omega)$ for any $\omega \in \Omega$ and $0 \le t < \delta$.

Spectral rigidity	Weak isospectral condition	KAM tori. Mather's β -function.	Isospectral invariants	Applications	Idea of the proof
000	0	0000	0	000000	00

Proposition (Popov-Topalov, 2013)

Let $\Gamma_t = \{x + a_t(x)\nu(x) : x \in \Gamma_0\}$, where $\nu : \Gamma_0 \to S^{n-1}$ is a normal vector field. Then

$$rac{d}{dt}eta_t(\omega)|_{t=0}=0 \quad \Leftrightarrow \quad \int_{\Lambda_0(\omega)} rac{d}{dt}a_t|_{t=0}d\mu=0$$

Here $d\mu$ is the unique probability measure on $\Lambda_0(\omega)$ which is invariant with respect to P_0 .

Hence, the Radon transform of $\frac{d}{dt}a_t|_{t=0}$ is identically zero

$$\forall \omega \in \Omega, \ \int_{\Lambda_0(\omega)} rac{d}{dt} a_t|_{t=0} d\mu = 0$$

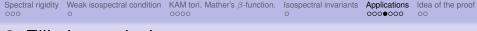
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (Popov-Topalov, CMP, 2011)

Let $f \in C(\Gamma_0)$ be invariant under the symmetries of the ellipsoid Γ_0 . Then

$$\forall \omega \in \Omega, \ \mathcal{R}_f(\Lambda_0(\omega)) := \int_{\Lambda_0(\omega)} f \, d\mu = 0 \quad \Longrightarrow \quad f \equiv 0$$

Ellipse Guillemin-Melrose (1978), Liouville billiard tables n = 2Popov-Topalov (2003), Liouville billiard tables n = 3Popov-Topalov (2011). This implies infinitesimal rigidity : the first variation of a_t at t = 0 is 0 if a_t is invariant under the symmetries of the ellipsoid. If $t \rightarrow a_t$ is C^{∞} then a_t is flat at t = 0. Holds for Liouville billiard tables. For the ellipse (n = 2) Hezari-Zelditch (Analysis PDE, 2013).



2. Elliptic geodesics

Let γ be a closed elliptic. Denote by $e^{\pm 2\pi\alpha_k i}$, $1 \le k \le n-1$, the eigenvalues of the linear Poincaré map *DP*, where $\alpha_k \in (0, 1/2)$ and set $\alpha = (\alpha_1, \ldots, \alpha_{n-1})$. Suppose that γ is 4-elementary (no resonances of order ≤ 4) which means that $\langle \alpha, k \rangle \ne 0$ for any $k \in \mathbb{Z}^{n-1}$ with $|k| := |k_1| + \cdots + |k_{n-1}| \le 4$. Then the corresponding Poincaré map *P* admits BNF

 $P(\theta, r) = (\theta + 2\pi\alpha + Br, r) + O(|r|^{3/2}).$

Let the BNF be non-degenerate, i.e. det $B \neq 0$. Then one can apply the K.A.M. theorem for C^1 -deformations of P.

Spectral rigidity	Weak isospectral condition	KAM tori. Mather's β -function.	Isospectral invariants	Applications	Idea of the proof
000	0	0000	0	0000000	00

Theorem (Popov-Topalov, 2013)

Let (X_t, g_t) , $t \in [0, 1]$, be a C^1 family of compact Riemannian manifolds (convex billiard tables) satisfying $(H_1) - (H_2)$. Suppose that (X_0, g_0) admits a (broken) closed elliptic 4-elementary geodesic γ_0 with a non-degenerate BNF. Then

• there exists a C^1 family of elliptic orbits γ_t , $t \in [0, 1]$,

- there is a set Ω ⊂ ℝⁿ⁻¹ of Diophantine vectors such that meas (Ω ∩ B(α, ϵ))/meas B(α, ϵ) = 1 − O(ϵ) and for any ω ∈ Ω a C¹ family of Kronecker invariant tori Λ_t(ω), t ∈ [0, 1], of the corresponding local Poincaré maps P_t
- **③** $\forall \omega \in \Omega$ and *t* ∈ [0, 1], $\beta_t(\omega) = \beta_0(\omega)$.

Deformations of Rienannian metrics with the same length spectrum [Popov, Math. Z. 93].

Applications : spectral rigidity of $\mathbb{Z}_2 \times \mathbb{Z}_2$ billiard tables.

Define a class of billiard tables as follows.

Let (\widetilde{X}, g) , dim $\widetilde{X} = 2$ be a real analytic Riemannian manifold of dimension two. Suppose that it admits two commuting involutions \mathcal{J}_k , k = 1, 2, acting as isometries. Consider the family \mathcal{B} of analytic billiard tables (X, g) in (\widetilde{X}, g) which are invariant with respect to \mathcal{J}_k , k = 1, 2. Then the set of fixed points of \mathcal{J}_k , defines a bouncing ball geodesic γ_k for k = 1, 2,

Corollary

Let $(X, g) \in \mathcal{B}$. Suppose that the broken geodesic γ_1 is elliptic, 4-elementary and that the corresponding BNF is non-degenerate. Then (X, g) is spectrally rigid in \mathcal{B} .

Exemple : Classical Liouville billiard tables. It follows from the main theorem and a variant of the above proposition using a simple argument of Popov-Topalov CPDE (2012) Spectral rigidity Weak isospectral condition KAM tori. Mather's *β*-function. Isospectral invariants Applications Idea of the proof

3. Strictly convex billiard tables

Theorem (Popov-Topalov, 2013)

Let $X_t \subset \mathbb{R}^2$, $t \in [0, 1]$, be a C^1 family of compact billiard tables in \mathbb{R}^2 satisfying the weak isospectral condition $(H_1) - (H_2)$. Suppose that X_0 is strictly convex. Then

- **1** X_t is strictly convex for each $t \in [0, 1]$
- 2 There is a Cantor set $\Omega \subset (0, 1]$ consisting of Diophantine numbers such that meas $(\Omega \cap (0, \varepsilon)) / \varepsilon = 1 - O_N(\varepsilon^N)$ as $\varepsilon \to 0^+$ and such that $\forall \omega \in \Omega$ there is a C^1 family of Kronecker invariant circles $[0, 1] \ni t \to \Lambda_t(\omega)$ of B_t of rotation number ω .

● $\forall \omega \in \Omega$ and $t \in [0, 1]$, $I_t(\omega) = I_0(\omega)$, $L_t(I_t(\omega)) = L_0(I_0(\omega))$.

Recall that $I_t(\omega)$ is the length and $L_t(I_t(\omega))$ is the Lazutkin parameter of the caustic $C_t(\omega)$. Billiard tables with the same length spectrum [Popov, CMP 94] (ロ) (同) (三) (三) (三) (○) (○)

Idea of the proof

Main ingredients :

- KAM theorem with parameters ($t \rightarrow P_t$ a C^1 family)
- Construction of C¹ with respect to t quasi-modes (P-T, CPDE 2012)

Quasi-modes of order $N \ge 0$ associated with $\Lambda_t(\omega)$: Fix $t \in [0, \delta)$. There is a unbounded index set $\mathcal{M}_t(\omega) \subset \mathbb{Z}^n$ and for any $q \in \mathcal{M}_t(\omega)$ and $s \in [t, t + 2/|q|]$ a quasi-mode $(u_{s,q}, \mu_q(s)^2)$ such that

- $u_{s,q} \in D(\Delta_s) \cap C^{\infty}(\widetilde{X})$ and $||u_{s,q}||_{L^2(X_t)} = 1$,
- $\mu_q \in C^1([t, t+2/|q|])$ and $\mu_q(s) \geq C|q|$,
- there is $C_N > 0$ such that

$$\left\| \Delta_{s} \, u_{s,q} \, - \, \mu_{q}^{2}(s) \, u_{s,q} \right\|_{L^{2}(X_{s})} \, \leq \, C_{N} \, \mu_{q}(s)^{-N}$$

 Spectral rigidity
 Weak isospectral condition
 KAM tori. Mather's β-function.
 Isospectral invariants
 Applications
 Idea of the proof

 000
 0
 000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 $\mu_q(s)$ determines $\beta_s(\omega)$ up to $o(|q|^{-1})$ as $q \to \infty$ for rotation vectors ω in a dense subset $\Omega_{\kappa}^t \subset \Omega_{\kappa}$:

 $\mu_{q}(s) = \mu_{q}(t) + o_{\omega}(1) \implies \beta_{s}(\omega) = \beta_{t}(\omega) + o_{\omega}(|q|^{-1})$ uniformly in $s \in [t, t + 2/|q|].$

Lemma

Suppose that $(H_1) - (H_2)$ holds. Then

 $\mu_q(s) = \mu_q(t) + o_\omega(1)$ as $q \to \infty$

uniformly in $s \in [t, t + 2/|q|]$.

We have $|\operatorname{Spec}(\Delta_s) - \mu_q(s)^2| \leq C_N \mu_q(s)^{-N}$. Take N > 2d. Then $(H_1) - (H_2)$ implies $|\mu_q(s)^2 - \mu_q(t)^2| = o(\mu_q(s))$ as $q \to \infty$. Hence, $\frac{d}{dt}\beta_t(\omega) = 0$ on Ω_{κ}^t and by continuity on Ω_{κ} .