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Spectral rigidity

X̃ smooth manifold of dimension n ≥ 2
Billiard table in X̃ - smooth compact Riemannian manifold
(X ,g), X ⊂ X̃ , with boundary Γ, dim X = n.
C1 deformation of (X ,g) - C1 family of billiard tables (Xt ,gt ) in
X̃ , where X0 = X and g0 = g
∆t - the corresponding L-B operator with Dirichlet boundary
conditions on Γt . The deformation is

isospectral if Spec (∆t ) = Spec (∆0) for each t
trivial if there is a family of diffeomorphisms ψt : X0 → Xt
such that ψ0 = Id and ψ∗t gt = g0.

X0 is spectrally rigid if every isospectral deformation of X0 is
trivial.
Question : Is the ellipse (ellipsoid) spectrally rigid in R2 (Rn) ?
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How to relate Spec (∆) to the the geometry ?
1) Heat invariants :

σh(t) =
∑

j

e−λj t = tr
(

e−t∆
)

, t > 0,

σh(t) ∼ c0t−n/2 + c1t−(n−1)/2 + · · · as t ↘ 0

2) Wave-trace method :

σw (t) =
∑

j

cos(t
√
λj) = tr

(
cos(t

√
−∆)

)
, t ∈ R,

s.s. (σw ) ⊂ {±` : ` ∈ L(X )} ∪ {0}

- Equality for generic domains - Petkov-Stojanov,
- Singular expansions - Chazarain, Andersen-Melrose,
Duistermaat-Guillemin, Guillemin-Melrose, Marvizi-Melrose,
- Bikhoff Normal Form - Guillemin, Zelditch,
Iantchenko-Sjöstrand-Zworski, Colin de Verdière
- Recovery of the boundary - Zeditch, Hezari-Zelditch
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- Closed Riemannian manifolds of negative sectional curvature
are spectrally rigid : Guillemin-Kazhdan n = 2 (1980),
Croke-Sharafutdinov n ≥ 2 (1998), Anosov flows (n = 2) -
Paternain-Salo-Uhlmann (2013).
- Infinitesimal rigidity of the ellipse - Hezari-Zelditch (2013).
The wave-trace method requires certain technical assumptions
such as simplicity of the length spectrum (a non-coincidence
condition) and non-degeneracy of the corresponding closed
geodesic and its iterates.
We propose another method which avoids these assumptions.

3) Method based on a quasi-mode construction
(Popov-Topalov, CPDE 2012)
Instead of trying to recover the BNF from the coefficients of the
complete singular expansion at a given length t = T , we are
looking for the first Birkhoff invariant for a large family of
invariant tori which can be regarded as a Radon transform.
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Weak isospectral condition

Fix d ≥ 0 and c > 0. Consider I ⊂ (0,∞) such that

(H1) I - union of infinitely many disjoint intervals [ak ,bk ] where

lim ak = lim bk = +∞,

bk − ak = o
(√

ak
)

as k →∞

ak+1 − bk ≥ cb−d
k for any k ∈ N.

[ak ,bk ] going to infinity, of length o (
√

ak ), and polynomially
separated.

(H2) ∃a ≥ 1 s.t. ∀ t ∈ [0,1] , Spec (∆t ) ∩ [a,+∞) ⊂ I .

Isospectrality implies weak isospectralitry (take d > n/2).
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K.A.M. tori and Mather’s β-function

Billiard ball map - Symplectic map B : B∗Γ→ B∗Γ associated to
the billiard table (X ,g). Fix m ≥ 1 and set P = Bm.

Kronecker torus of P with a vector of rotation ω
Embedded Lagrangian submanifold Λ(ω) of B∗Γ diffeomorphic
to Tn−1 such that Λ(ω) is invariant with respect to P = Bm and
the restriction of P to Λ(ω) is C∞ conjugated to the translation

R2πω(ϕ) = ϕ+ 2πω (mod 2π)

Embedding fω : Tn−1 → Λ(ω) ⊂ B∗Γ such that

Tn−1 R2πω−→ Tn−1

↓ fω ↓ fω
Λ(ω)

P−→ Λ(ω)

(1)
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Fix κ ∈ (0,1] and τ > n − 1.

Diophantine vectors of rotation

ω ∈ Rn−1 is D(κ, τ) if
∀ (k , kn) ∈ Zn−1 × Z, k 6= 0 : |〈ω, k〉+ kn| ≥ κ|k |−τ ;
Ωκ the set of (κ, τ)-Diophantine vectors in a domain Ω

K.A.M. theorem provides a lot of Kronecker invariant tori Λ(ω)
with vectors of rotation ω ∈ Ωκ for small perturbations P of a
nondegenerate smooth completely integrable symplectic map.
If t → Pt is C1 then the corresponding families of invariant tori
t → Λt (ω) are C1 (not at all trivial ! [Popov-Topalov, 2013])
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Given % = (x , ξ) ∈ B∗Γ denote the action on the geodesic arc
γ(%) starting from % and with endpoint %′ = P(%) by

A(%) :=

∫
γ(%)

ξdx .

Average action on Λ(ω) when ω is Diophantine

β(ω) := −2 lim
N→+∞

1
2N

N−1∑
k=−N

A(Pk%) = −2
∫

Λ(ω)
Adµ

µ is the unique probability measure on Λ(ω) invariant with
respect to P. If P is a twist map (dim Γ = 2, m = 1, Γ-strictly
convex), then β(ω) is the value of Mather’s β-function at ω ∈ Ωκ.
The function t → βt (ω) is C1 if t → Λt (ω) is a C1 family of
Kronecker tori of Pt with a Diophantine vector of rotation ω.
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Examples :

- Liouville billiard tables : [Popov-Topalov, ETDS 2003, 2008,
CMP 2011]

- Elliptic broken geodesics

- Strictly convex billiard tables in R2 - Lazutkin caustics :
β(ω) = ωI(ω)− L(I(ω)) where L(I(ω)) is the Lazutkin parameter
of the corresponding caustic C(ω) and I(ω) is its length.
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Isospectral invariants

Theorem (Popov-Topalov, 2013)

Let (Xt ,gt ), t ∈ [0,1], be a C1 family of compact billiard tables
satisfying the weak isospectral condition (H1)− (H2). Let
[0, δ) 3 t → Λt (ω) be a C1 family of invariant tori of Pt = Bm

t
with vectors of rotation ω ∈ Ωκ. Then βt (ω) is independent of
t ∈ [0, δ] for any ω ∈ Ωκ.

Remark. Although the invariant tori Λt (ω) may not exist at t = δ
the β-function is well defined and it is continuous in t = δ for
twist maps.
For any t ∈ [0, δ) the function βt is C∞ on Ωκ in Whitney sense.
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Applications
1. Infinitesimal rigidity of ellipsoidal billiard tables

Theorem (Popov-Topalov, CMP, 2011)

The billiard ball map of an ellipsoidal billiard table in Rn is a
non-degenerate (in Kolmogorov sense) completely integrable
symplectic map.

Let X0 be the ellipsoidal billiard table in Rn. Applying (a variant)
of the KAM theorem to Bt near an invariant torus Λ0(ω),
ω ∈ D(κ, τ), one obtains a C1 family of invariant tori Λt (ω) of Bt .
Suppose that the family is weakly isospectral. Then the main
Theorem implies βt (ω) = β0(ω) for any ω ∈ Ω and 0 ≤ t < δ.
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Proposition (Popov-Topalov, 2013)

Let Γt = {x + at (x)ν(x) : x ∈ Γ0}, where ν : Γ0 → Sn−1 is a
normal vector field. Then

d
dt
βt (ω)|t=0 = 0 ⇔

∫
Λ0(ω)

d
dt

at |t=0dµ = 0

Here dµ is the unique probability measure on Λ0(ω) which is
invariant with respect to P0.

Hence, the Radon transform of d
dt at |t=0 is identically zero

∀ω ∈ Ω,

∫
Λ0(ω)

d
dt

at |t=0 dµ = 0 .
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Radon transform

Theorem (Popov-Topalov, CMP, 2011)

Let f ∈ C(Γ0) be invariant under the symmetries of the ellipsoid
Γ0. Then

∀ω ∈ Ω, Rf (Λ0(ω)) :=

∫
Λ0(ω)

f dµ = 0 =⇒ f ≡ 0 .

Ellipse Guillemin-Melrose (1978), Liouville billiard tables n = 2
Popov-Topalov (2003), Liouville billiard tables n = 3
Popov-Topalov (2011). This implies infinitesimal rigidity : the
first variation of at at t = 0 is 0 if at is invariant under the
symmetries of the ellipsoid. If t → at is C∞ then at is flat at
t = 0. Holds for Liouville billiard tables.
For the ellipse (n = 2) Hezari-Zelditch (Analysis PDE, 2013).
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2. Elliptic geodesics

Let γ be a closed elliptic. Denote by e±2παk i , 1 ≤ k ≤ n − 1, the
eigenvalues of the linear Poincaré map DP, where
αk ∈ (0,1/2) and set α = (α1, . . . , αn−1). Suppose that γ is
4-elementary (no resonances of order ≤ 4) which means that
〈α, k〉 6= 0 for any k ∈ Zn−1 with |k | := |k1|+ · · ·+ |kn−1| ≤ 4.
Then the corresponding Poincaré map P admits BNF

P(θ, r) = (θ + 2πα + Br , r) + O(|r |3/2).

Let the BNF be non-degenerate, i.e. det B 6= 0. Then one can
apply the K.A.M. theorem for C1-deformations of P.
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Theorem (Popov-Topalov, 2013)

Let (Xt ,gt ), t ∈ [0,1], be a C1 family of compact Riemannian
manifolds (convex billiard tables) satisfying (H1)− (H2).
Suppose that (X0,g0) admits a (broken) closed elliptic
4-elementary geodesic γ0 with a non-degenerate BNF. Then

1 there exists a C1 family of elliptic orbits γt , t ∈ [0,1],
2 there is a set Ω ⊂ Rn−1 of Diophantine vectors such that

meas (Ω ∩ B(α, ε))/meas B(α, ε) = 1−O(ε) and for any
ω ∈ Ω a C1 family of Kronecker invariant tori Λt (ω),
t ∈ [0,1], of the corresponding local Poincaré maps Pt

3 ∀ω ∈ Ω and t ∈ [0,1], βt (ω) = β0(ω).

Deformations of Rienannian metrics with the same length
spectrum [Popov, Math. Z. 93 ].
Applications : spectral rigidity of Z2 × Z2 billiard tables.
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Define a class of billiard tables as follows.
Let (X̃ ,g), dim X̃ = 2 be a real analytic Riemannian manifold of
dimension two. Suppose that it admits two commuting
involutions Jk , k = 1,2, acting as isometries. Consider the
family B of analytic billiard tables (X ,g) in (X̃ ,g) which are
invariant with respect to Jk , k = 1,2. Then the set of fixed
points of Jk , defines a bouncing ball geodesic γk for k = 1,2,

Corollary

Let (X ,g) ∈ B. Suppose that the broken geodesic γ1 is elliptic,
4-elementary and that the corresponding BNF is
non-degenerate. Then (X ,g) is spectrally rigid in B.

Exemple : Classical Liouville billiard tables.
It follows from the main theorem and a variant of the above
proposition using a simple argument of Popov-Topalov CPDE
(2012)
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3. Strictly convex billiard tables

Theorem (Popov-Topalov, 2013)

Let Xt ⊂ R2, t ∈ [0,1], be a C1 family of compact billiard tables
in R2 satisfying the weak isospectral condition (H1)− (H2).
Suppose that X0 is strictly convex. Then

1 Xt is strictly convex for each t ∈ [0,1]

2 There is a Cantor set Ω ⊂ (0,1] consisting of Diophantine
numbers such that meas (Ω ∩ (0, ε)) /ε = 1−ON(εN) as
ε→ 0+ and such that ∀ω ∈ Ω there is a C1 family of
Kronecker invariant circles [0,1] 3 t → Λt (ω) of Bt of
rotation number ω,

3 ∀ω ∈ Ω and t ∈ [0,1], It (ω) = I0(ω), Lt (It (ω)) = L0(I0(ω)).

Recall that It (ω) is the length and Lt (It (ω)) is the Lazutkin
parameter of the caustic Ct (ω). Billiard tables with the same
length spectrum [Popov, CMP 94]
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Idea of the proof

Main ingredients :

KAM theorem with parameters (t → Pt a C1 family)
Construction of C1 with respect to t quasi-modes (P-T,
CPDE 2012)

Quasi-modes of order N ≥ 0 associated with Λt (ω) :
Fix t ∈ [0, δ). There is a unbounded index setMt (ω) ⊂ Zn and
for any q ∈Mt (ω) and s ∈ [t , t + 2/|q|] a quasi-mode
(us,q, µq(s)2) such that

us,q ∈ D(∆s) ∩ C∞(X̃ ) and ‖us,q‖L2(Xt )
= 1,

µq ∈ C1([t , t + 2/|q|]) and µq(s) ≥ C|q|,
there is CN > 0 such that∥∥∥∆s us,q − µ2

q(s) us,q

∥∥∥
L2(Xs)

≤ CN µq(s)−N
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µq(s) determines βs(ω) up to o(|q|−1) as q →∞ for rotation
vectors ω in a dense subset Ωt

κ ⊂ Ωκ :

µq(s) = µq(t) + oω(1) =⇒ βs(ω) = βt (ω) + oω(|q|−1)

uniformly in s ∈ [t , t + 2/|q|].

Lemma
Suppose that (H1)− (H2) holds. Then

µq(s) = µq(t) + oω(1) as q →∞

uniformly in s ∈ [t , t + 2/|q|].

We have
∣∣Spec(∆s)− µq(s)2

∣∣ ≤ CN µq(s)−N . Take N > 2d .
Then (H1)− (H2) implies |µq(s)2 − µq(t)2| = o(µq(s)) as
q →∞. Hence, d

dt βt (ω) = 0 on Ωt
κ and by continuity on Ωκ.


