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Introduction, Random series

The simplest model is the 1-D torus T = R/2πZ with its Sobolev

spaces. Let f (x) =
∑
n∈Z

cne
inx then ‖f ‖2

Hs(T) =
∑
n∈Z

(1 + |n|)2s |cn|2.

By the usual Sobolev embeddings, if f ∈ H1/2−1/p(T) with p ≥ 2
then f ∈ Lp(T).
Paley and Zygmund (1930) have improved this result allowing
random coefficients.
Let f ω(x) =

∑
n∈Z

Xn(ω)cne
inx where {Xn} is a sequence of

independent Bernoulli random variables.

If f ∈ L2(T) then for all
p ≥ 2, a.s f ω ∈ Lp(T).
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Introduction, Random series

Moreover if for some α > 1,
∑
n∈Z

logα(1 + |n|)|cn|2 < +∞ then a.s

f ω ∈ C(T).
Many other results concerning random trigonometric series were
obtained by Paley and Zygmund, as it is detailed in the beautiful
book of J-P. Kahane (Some random series of functions).
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Introduction, Random series

The setting of random trigonometric series was extended to
Riemannian compact manifolds for orthonormal basis of
eigenfunctions of the Laplace-Beltrami operator, in particular by
Burq, Lebeau, Tvzetkov.
The main motivations and applications are the following :

(1) To get existence and well posedness results for non linear PDE
(wave equation or Schrödinger equation) in supercritical cases.
(2) For linear self-adjoint PDE with high multiplicity eigenvalues
(Laplace on the 2-sphere; harmonic oscillator with D ≥ 2) find
basis of eigenfunctions satisfying ”better” L∞ estimates or
satisfying a quantum ergodic property (Zelditch considered the
2-sphere (1992), recently Burq-Lebeau have improved his result)
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Introduction, Random series

In our joint work with A. Poiret and L. Thomann we extend the
Burq-Lebeau analysis to Schrödinger operators in L2(Rd), d ≥ 2.
Moreover we consider more general probability measures on the
spectral subspaces Eh satisfying a Gaussian concentration property.

Here we shall only consider the applications (2). For the details,
see the link to our preprint: Random weighted Sobolev inequalities
and application to Hermite functions and the soon forthcoming
paper : Random weighted Sobolev inequalities for Schrödinger
operator with superquadratic potentials.
Concerning applications of our results to NLS in supercritical cases
with (or without) harmonic potential, see the link to our preprint:
Probabilistic global well-posedness for the supercritical nonlinear
harmonic oscillator.
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Probabilities on scales of Hilbert spaces

Let {Xn} a sequence of complex i.i.d random variables, of common
law ν satisfying the following concentration property:
there exist constants c ,C > 0 independent of N ∈ N such that
for all Lipschitz and convex function F : CN −→ R

ν⊗N
[

X ∈ CN :
∣∣F (X )− E(F (X ))

∣∣ ≥ r
]
≤ c e

− Cr2

‖F‖2
Lip , ∀r > 0,

(1)
where ‖F‖Lip is the best constant so that
|F (X )− F (Y )| ≤ ‖F‖Lip‖X − Y ‖`2 .
Examples: Gauss law, Bernoulli law and more generally measures
with compact support (Talagrand theorem).
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Probabilities on scales of Hilbert spaces

Let K a separable complex Hilbert space and K is a self-adjoint,
positive operator on K with a compact resolvent. We denote by
{ϕj , j ≥ 1} an orthonormal basis of eigenvectors of K ,
Kϕj = λjϕj , and {λj , j ≥ 1} is the non decreasing sequence of
eigenvalues of K (each is repeated according to its multiplicity).
Then we get a natural scale of Sobolev spaces associated with K ,
defined for s ≥ 0 by Ks = Dom(K s/2).
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Probabilities on scales of Hilbert spaces

Let γ = {γj}j≥1 a sequence of complex numbers such that∑
j≥1

λsj |γj |2 < +∞.

We denote by vγ =
∑
j≥1

γjϕj ∈ Ks and vωγ =
∑
j≥1

γjXj(ω)ϕj . We

have E(‖vωγ ‖2
K) < +∞, therefore vωγ ∈ Ks , a.s. We define the

measure µγ on Ks as the probability law of the random vector vωγ .
These measures were introduced by Burq-Tzvetkov (2008). They
are much more flexible than Gibbs measures known before in some
particular cases (Lebowitz, Bourgain).
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Probabilities on scales of Hilbert spaces

Some properties

(i) If the support of ν is C and if γj 6= 0 for all j ≥ 1 then the
support of µγ is Ks .

(ii) If for some ε > 0 we have vγ /∈ Ks+ε then µγ(Ks+ε) = 0.

(iii) Assume that we are in the particular case where
dν(x) = cαe

−|x |αdx with α ≥ 2. Let γ = {γj} and β = {βj}
be two complex sequences and assume that

∑
j≥1

(∣∣∣∣γjβj
∣∣∣∣a/2

− 1

)2

= +∞.

Then the measures µγ and µβ are mutually singular, i.e there exists
a measurable set A ⊂ Ks such that µγ(A) = 1 and µβ(A) = 0.
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Probabilities on scales of Hilbert spaces

Consider finite dimensional subspaces Eh of K defined by spectral
localizations depending on a small parameter 0 < h ≤ 1 (h−1 is a
measure of energy for the quantum Hamiltonian K ).
Let Ih = [ahh ,

bh
h [, Λh = {j , λj ∈ Ih}, Nh = #Λh and Eh the spectral

subspace of K in the interval Ih. Our goal is to find uniform
estimates in h ∈]0, h0[ for h0 > 0 small enough.
Consider the random vector in Eh:

vγ(ω) := vγ,h(ω) =
∑
j∈Λh

γjXj(ω)ϕj . (2)

Introduce the squeezing condition:

|γn|2 ≤
K0

Nh

∑
j∈Λh

|γj |2, ∀n ∈ Λh, ∀h ∈]0, h0]. (3)
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Probabilities on scales of Hilbert spaces

To get estimates from below we also need:

K1

Nh

∑
j∈Λh

|γj |2 ≤ |γn|2 ≤
K0

Nh

∑
j∈Λh

|γj |2, ∀n ∈ Λh, ∀h ∈]0, 1]. (4)

Why this assumption?
For 1-D Hamiltonians the eigenvalues are non degenerate and it is
possible to get accurate L∞ estimates on eigenfunctions. But for
D ≥ 2 eigenvalues may have high multiplicities and it is much
more difficult to get accurate L∞ estimates. With condition (3) or
(4) we shall see that it is enough to know good estimates for the
spectral functions in small energy windows instead of individual
eigenfunctions.
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Probabilities on scales of Hilbert spaces

Now consider probabilities on the unit sphere Sh of the subspaces
Eh. The random vector vγ defines a probability measure νγ,h on
Eh. We define a probability measure Pγ,h on Sh as the image of
νγ,h by v 7→ v

‖v‖ .
Examples:
• If |γn| = 1√

N
for all j ∈ Λ and if Xn follows the complex normal

law NC(0, 1) then Pγ,h is the uniform probability on Sh considered
in Burq-Lebeau.
• Assume that for all n ∈ N, P(Xn = 1) = P(Xn = −1) = 1/2,
then Pγ,h is a convex sum of 2N Dirac measures.
In the first example Pγ,h is invariant by e−itK .
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Probabilities on scales of Hilbert spaces

To get an optimal lower bound for L∞ estimates we shall need a
stronger normal concentration estimate (Assum2).

(i) The random variables Xj are standard independent Gaussians
NC(0, 1).

(ii) The sequence γ satisfies (4).

Note that conditions (3) and (4) are stable by small perturbations.
So assuming that ν is Gaussian we can get an infinite number of
pairs of mutually singular probability measures µγ .
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Probabilities on scales of Hilbert spaces

Let L be a linear form on Eh, and denote by eL =
∑
j∈Λh

|L(ϕj)|2.

Then we have the large deviation estimate:

Theorem

Let L be a linear form on Eh. Suppose that (3) holds and that
(Assum1) is satisfied. Then there exist C2, c2 > 0 so that

Pγ,h
[
u ∈ Sh : |L(u)| ≥ t

]
≤ C2e

−c2
N
eL

t2

, ∀ t ≥ 0, ∀ h ∈]0, h0].

If (Assum2) is satisfied, there exist C1,C2, c1, c2, ε0, h0 > 0 so that

C1 e
−c1

N
eL

t2

≤ Pγ,h
[
u ∈ Sh : |L(u)| ≥ t

]
≤ C2 e

−c2
N
eL

t2

,

∀ t ∈ [0, ε0
√

eL ], ∀ h ∈]0, h0].
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Probabilities on scales of Hilbert spaces

In applications considered here there is a Sobolev embedding
Ks → C (M), for some s > 0 , where M is a metric space. We
have E ⊆

⋂
s∈RKs , thus we can consider the Dirac evaluation

linear form δx(v) = v(x). In this case we have

eL =
∑
j∈Λh

|ϕj(x)|2 = ex , which is usually called the spectral

function of K in the interval I . Notice that from Cauchy-Schwarz:

|L(v)| ≤ e
1/2
L ‖v‖, ∀v ∈ Eh.

A theorem of P. Levy gives a concentration inequality for the
canonical measure on spheres of large dimension. This is
generalized as follows. It is a an important basic tool in the
Burq-Lebeau approach (see also Zelditch).
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Probabilities on scales of Hilbert spaces

The concentration condition on ν gives the following

Proposition

Suppose that (Assum1) is satisfied. Then there exist constants
K > 0, κ > 0 (depending only on C ?) such that for every Lipschitz
function F : Sh −→ R satisfying

|F (u)− F (v)| ≤ ‖F‖Lip‖u − v‖L2(Rd ), ∀u, v ∈ Sh,

we have

Pγ,h
[

u ∈ Sh : |F −MF | > r
]
≤ Ke

− κNhr
2

‖F‖2
Lip , ∀r > 0, h ∈]0, 1],

where MF is a median for F .

Recall that a median MF for F is defined by

Pγ,h
[

u ∈ Sh : F ≥MF

]
≥ 1

2
, Pγ,h

[
u ∈ Sh : F ≤MF

]
≥ 1

2
.
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Spectral estimates for polynomial potentials

Consider the Schrödinger Hamiltonian Ĥ = −4+ V in Rd for
d ≥ 2.
Assume that V is an elliptic polynomial in Rd , that means:
V = V0 + V1 where V0 is an homogeneous elliptic polynomial of
degree 2k (V0(x) > 0 if x 6= 0) and V1(x) is a polynomial of
degree ≤ 2k − 1. We can assume V (x) > 0 on Rd .
It is more convenient to work with the normalized Hamiltonian
Ĥnor = Ĥ

k+1
2k . Recall the Weyl law for Hnor :

NHnor (λ) =Wnor (λ) +O(λd−1)

with Wnor (λ) ≈ λd (classical Weyl term).
(Helffer-R, some years ago)
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Spectral estimates for polynomial potentials

We also need accurate estimates for the spectral function of H (or

Hnor ). Denote πHnor (λ; x , y) =
∑
ωj≤λ

ϕj(x)ϕj(y).

Proposition

For every δ ∈ [0, 1] and C0 > 0, there exists C > 0 such that for
every θ ∈ [0, dk ] and r ∈]1,+∞], there exists C > 0 such that

‖πHnor (λ+ µ; x , x)− πHnor (λ; x , x)‖Lr,k(r−1)θ(Rd ) ≤ Cλα

for |µ| ≤ C0λ
1−δ, λ ≥ 1, α = d

k+1 (k + 1
r )− δ + kθ

k+1 (1− 1
r ).

Here ‖u‖r
Lr,s(Rd )

=
∫
Rd 〈x〉s |u(x)|rdx .
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Spectral estimates for polynomial potentials

Comment on spectral function estimates: Proofs are easier if
δ < 2/3. For the harmonic oscillator and δ = 1 this is a
consequence of results of Thangavelu (1993) Karadzhov (1995) or
Koch-Tataru (2005). For k > 1 this can be proved using
Koch-Tataru-Zworski (2007).

The Sobolev spaces associated with Ĥ are here defined as follows.
Let s ≥ 0, p ∈ [1,+∞].

Ws,p
k :=Ws,p

k (Rd) :=
{

u ∈ Lp(Rd), Ĥs
noru ∈ Lp(Rd)

}
,

‖u‖s,p = ‖Ĥs
noru‖Lp(Rd ).

The Hilbert Sobolev spaces are denoted Hs
k =Ws,2

k .
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Spectral estimates for polynomial potentials

To prepare a spectral analysis ”à la Littlewood-Paley” of this
Sobolev spaces, introduce Ih = [ahh ,

bh
h [ such that ah and bh satisfy,

for some a, b,D > 0, δ ∈ [0, 1],

lim
h→0

ah = a, lim
h→0

bh = b, 0 < a ≤ b and bh − ah ≥ Dhδ.

From Weyl asymptotics we have Nh ∼ ch−d(bh − ah) (c > 0).

In particular (Nh
h→0→ +∞ for d ≥ 2).
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Spectral estimates for polynomial potentials

Using estimates on the spectral function and interpolation we get
Sobolev inequalities with weights:
for every u ∈ Eh, θ ≥ 0, p ≥ 2.

‖u‖L∞,kθ/2(Rd ) ≤ C
(

Nhh
d−kθ
k+1

)1/2
‖u‖L2(Rd )

‖u‖Lp,kθ(p/2−1)(Rd ) ≤ C
(

Nhh
d−kθ
k+1

) 1
2
− 1

p ‖u‖L2(Rd ).

Notice that Nh is of order (bh − ah)h−d ≈ hδ−d , δ ∈ [0, 1].
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Probabilistic weighted Sobolev estimates

Theorem

Assume that 0 ≤ δ < 2/3. For every κ ∈]0, 1[, K > 0 , there exist
C0 > 0, C1 > 0, c1 > 0 such that for every r ∈ [2,K | log h|κ] we
have

Pγ,h
[
u ∈ Sh : C0

√
rh

d
2(k+1)

(1− 2
r

)
h−s ≤ ‖u‖Ws,r

k (Rd )

≤ C1

√
rh

d
2(k+1)

(1− 2
r

)
h−s
]
≥ 1− e−c1| log h|1−κ ,

and for r = +∞ we have for all h ∈]0, h0]

Pγ,h
[
u ∈ Sh : C0| log h|1/2h

d
2(k+1)

−s ≤ ‖u‖Ws,∞
k (Rd )

≤ C1 | log h|1/2h
d

2(k+1)
−s
]
≥ 1− hc1 .

This Theorem shows a gain of k+1
2k d derivatives compared to the

usual deterministic Sobolev embeddings.
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Probabilistic weighted Sobolev estimates
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Probabilistic weighted Sobolev estimates

Recall that the condition δ < 2/3 is used here because to get a
lower bound for weighted norms of the spectral function (on
compact manifold this lower bound is given, when δ = 1, by the
local Weyl asymptotics proved by Hörmander).
Even for the Harmonic oscillator it seems that no good global lower
bounds are known for the spectral function when δ ∈ [2/3, 1].
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Probabilistic weighted Sobolev estimates

Example

• Assume γj = 1√
Nh

, 1 ≤ j ≤ Nh and ν is a Gaussian law. Then

Pγ,h is the uniform probability and the Theorem says that for x in
a subset Ωh of S2Nh−1 such that lim

h→0
Pγ,hΩh = 1 we have

‖
∑

1≤j≤Nh

xjϕj‖Wd/2,∞(Rd ) ≈ | log h|1/2.

• Assume now that ν is a Bernoulli law. Let γ = {γj} as above
and |γ| = 1. Ω = {0, 1}Nh is the probability space and we have

1

2Nh
#
{
ε ∈ Ω; ‖

∑
1≤j≤Nh

(−1)εjγjϕj‖Wd/2,∞ ≈ | log h|1/2
}

converges to 1 as h→ 0.

32



Spectral estimates and Random Weighted Sobolev Inequalities

Probabilistic weighted Sobolev estimates

Example

• Assume γj = 1√
Nh

, 1 ≤ j ≤ Nh and ν is a Gaussian law. Then

Pγ,h is the uniform probability and the Theorem says that for x in
a subset Ωh of S2Nh−1 such that lim

h→0
Pγ,hΩh = 1 we have

‖
∑

1≤j≤Nh

xjϕj‖Wd/2,∞(Rd ) ≈ | log h|1/2.

• Assume now that ν is a Bernoulli law. Let γ = {γj} as above
and |γ| = 1. Ω = {0, 1}Nh is the probability space and we have

1

2Nh
#
{
ε ∈ Ω; ‖

∑
1≤j≤Nh

(−1)εjγjϕj‖Wd/2,∞ ≈ | log h|1/2
}

converges to 1 as h→ 0.

33



Spectral estimates and Random Weighted Sobolev Inequalities

Probabilistic weighted Sobolev estimates

Applying to the Harmonic oscillator a method of Burq-Lebeau, and
Zelditch, we get the following consequence for the Hermite
functions.
Assume that γj = N

−1/2
h and that Xj ∼ NC(0, 1), so that

Ph := Pγ,h is the uniform probability on Sh. We set hk = 1/k with
k ∈ N∗, and

ahk = 2 + dhk , bhk = 2 + (2 + d)hk .

So we can take δ = 1 and D = 2. In particular, each interval

Ihk =
[ ahk

hk
,

bhk

hk

[
= [2k + d , 2k + d + 2[

only contains the eigenvalue λk = 2k + d with multiplicity
Nhk ∼ ckd−1, and Ehk is the corresponding eigenspace of the
harmonic oscillator H.
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Probabilistic weighted Sobolev estimates

The space of the orthonormal basis of Ehk can be identified with
the unitary group U(Nhk ) and we endow U(Nhk ) with its Haar
probability measure ρk . Then the space B of the Hilbertian bases
of eigenfunctions of H in L2(Rd) can be identified with

B = ×k∈NU(Nhk ),

with the probability measure

dρ = ⊗k∈N dρk .

Denote by B = (ϕk,`)k∈N, `∈J1,Nhk
K ∈ B a typical orthonormal basis

of L2(Rd) so that for all k ∈ N, (ϕk,`)`∈J1,Nhk
K ∈ U(Nhk ) is an

orthonormal basis of Ehk .
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Probabilistic weighted Sobolev estimates

Theorem

Let d ≥ 2. Then, if M > 0 is large enough, there exist c,C > 0 so
that for all r > 0

ρ
[

B = (ϕk,`)k∈N, `∈J1,Nhk
K ∈ B : ∃k, `; ‖ϕk,`‖Wd/2,∞(Rd ) ≥

M(log k)1/2 + r
]
≤ Ce−cr

2
.

Corollary

For d ≥ 2 there exists orthonormal basis {ϕn} of eigenfunctions of
the Harmonic oscillator −4+ |x |2 such that

‖ϕn‖L∞(Rd ) ≤ Mλ
−d/4
n (1 + log λn)1/2, ∀n ≥ 0.

Notice that for general bases we have ‖ϕn‖L∞(Rd ) ≤ Mλ
d/4−1/2
n

(Koch-Tataru).

36



Spectral estimates and Random Weighted Sobolev Inequalities

Probabilistic weighted Sobolev estimates

Global Estimates

Using a dyadic Littlewood-Paley decomposition, we get
probabilistic estimates in Sobolev spaces Ws,r (Rd). For s ∈ R,
p, q ∈ [1,+∞], define the harmonic Besov space by

Bsp,q(Rd) =
{

u =
∑
n≥0

un :
∑
n≥0

2nqs/2‖un‖qLp(Rd )
< +∞

}
,

un = Π2−nu. Bsp,q(Rd) is a Banach space with the norm in `q(N)

of {2ns/2‖un‖Lp(Rd )}n≥0.
We assume that γ satisfies (4) and∑

n≥0

|γ|Λn < +∞,Λn := Λ2−n .
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Probabilistic weighted Sobolev estimates

Let vγ(ω) =
∑+∞

j=0 γjXj(ω)ϕj .

Almost surely vγ ∈ B0
2,1(Rd) and its probability law defines a

measure µγ in B0
2,1(Rd). Notice that we have

Hs(Rd) ⊂ B0
2,1(Rd) ⊂ L2(Rd), ∀s > 0.

We have the following result

Theorem

For every (s, r) ∈ R2 such that r ≥ 2 and s = d( 1
2 −

1
r ) there

exists c0 > 0 such that for all K > 0 we have

µγ

[
u ∈ B0

2,1(Rd) : ‖u‖Ws,r (Rd ) ≥ K‖u‖B0
2,1(Rd )

]
≤ e−c0K2

.

In particular µγ-almost all functions in B0
2,1(Rd) are in Ws,r (Rd).
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Probabilistic weighted Sobolev estimates

If γ satisfies (4) and the (weaker) condition
∑
n≥0

|γ|2Λn
< +∞, then

µγ defines a probability measure on L2(Rd) and we can prove the
estimate

µγ

[
u ∈ L2(Rd) : ‖u‖Ws,r (Rd ) ≥ K‖u‖L2(Rd )

]
≤ e−c0K2

,

whenever s < d( 1
2 −

1
r ).

From this result it is easy to deduce a probabilistic Strichartz

estimate for the linear flow e−itĤ which is used for surcritical
NLSH in [PRT].
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Probabilistic weighted Sobolev estimates

About the proof of a.s-Lr -estimate
Let us give a sketch of proof of the following estimate (k = 2),
following the strategy of Burq-Lebeau.
We have to prove:

Pγ,h
[
u ∈ Sh : C0

√
rh

d−θ
4

(1− 2
r

) ≤ ‖u‖Lr,θ(r/2−1) ≤ C1

√
rh

d−θ
4

(1− 2
r

)
]

≥ 1− hc1 ,

for r ∈ [2,K | log h|], and h ∈]0, h0].

Denote by Fr (u) = ‖u‖Lr,θ(r/2−1) and by Mr its median. We have
the Lipschitz estimate

|Fr (u)− Fr (v)| ≤ C
(

Nhh
d−θ

2

) 1
2
− 1

r ‖u − v‖L2(Rd ), ∀u, v ∈ Sh.
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Probabilistic weighted Sobolev estimates

Denote by

βr ,θ =
d − θ

2
(1− 2

r
).

By Gaussian concentration we have:

Pγ,h
[
u ∈ Sh : |Fr −Mr | > Λ

]
≤ 2 exp

(
− c2N

2/r
h h−βr,θΛ2

)
.

The next step is to estimate Mr . Denote by Ar
r = Eh(F r

r ) the
moment of order r and compute, with s = θ(r/2− 1),

Ar
r = Eh

(∫
Rd

〈x〉s |u(x)|r dx

)
= r

∫
Rd

〈x〉s
(∫ +∞

0
τ r−1Pγ,h

[
u ∈ Sh : |u(x)| > τ

]
dτ
)

dx .
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Probabilistic weighted Sobolev estimates

We get

C1r

∫
Rd

〈x〉s
(∫ ε0

√
ex

0
τ r−1e−c1

N
ex
τ2

dτ
)

dx ≤ Ar
r ≤

C2r

∫
Rd

〈x〉s
(∫ +∞

0
τ r−1e−c2

N
ex
τ2

dτ
)

dx .

After computations, we get that there exists ε1 > 0 such that for
N large and r ≤ ε1

N
log N we have

e−r/2C−1r

(∫
Rd

〈x〉se
r/2
x dx

)
N−r/2Γ(r/2) ≤ Ar

r ≤

C2 rN−r/2

(∫
Rd

〈x〉se
r/2
x dx

)
Γ(r/2)

and Γ(r/2) can be estimated thanks to the Stirling formula.
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Probabilistic weighted Sobolev estimates

Then, from estimates for the spectral function we get

C0

√
rhβr,θ ≤ Ar ≤ C1

√
rhβr,θ , ∀r ≥ 2, h ∈]0, h0].

Now we have to compare Ar and the median Mr . We have

|Ar −Mr |r =
∣∣‖Fr‖Lr (Sh) − ‖Mr‖Lr (Sh)

∣∣r
≤ ‖Fr −Mr‖rLr (Sh)

= r

∫ ∞
0

sr−1Pγ,h
[
|Fr −Mr | > s

]
ds.
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Probabilistic weighted Sobolev estimates

Then using a large deviation estimate we get

|Ar −Mr | ≤ CN−1/r
√

rhβr,θ , ∀r ≥ 2.

Choosing r ≤ δ log N, (δ < 1) and N large, we obtain

C0

√
rhβr,θ ≤Mr ≤ C1

√
rhβr,θ , ∀r ∈ [2, δ log N]

and the proof of the (a.s) Lr estimate is done.
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Random Quantum Ergodicity

Assume that Ih =]ah, bh] is such that

lim
h→0

ah = lim
h→0

bh = 1 > 0 and lim
h→0

bh − ah
h

= +∞.

L1 is the Liouville measure associated with the classical

Hamiltonian H0(x , ξ) = |ξ|2
2 + V0(x). Recall that

L1(A) = C1

∫
[H0(z)=1]

A(z)

|∇H0(z)|
dΣ1(z)

where Σ1 is the Euclidean measure on the hypersurface
Σ1 := H−1

0 (1) and C1 > 0 is a normalization constant such that L1

is a probability measure on Σ1.
We denote by S(1, k) the class of symbols such that A ∈ C∞(R2d)
and A is quasi-homogeneous of degree 0 outside a small
neighborhood of (0, 0) in Rd

x × Rd
ξ .
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Random Quantum Ergodicity

So that A(λx , λkξ) = A(x , ξ) for every λ ≥ 1 and |(x , ξ)| ≥ ε.
For A ∈ S(1, k) let us denote by Â the Weyl quantization of A
(here h = 1).
Notice that if ‖u‖L2(Rd ) = 1 then A 7→ 〈u, Âu〉 defines a
semiclassical probability measure on Σ1. We have

Theorem (quantum large deviation)

Consider a potential V which satisfies conditions (A1). Assume
that we are in the isotropic case (γj = 1√

Nh
for all j ∈ Λh), and

that ν satisfies the concentration of measure property (1). Then
there exist c,C > 0 so that for all r ≥ 1 and A ∈ S(1, k),

Ph

[
u ∈ Sh : |〈u, Âu〉 − L1(A)| > r

]
≤ Ce−cNhr

2
.
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Random Quantum Ergodicity

This result can be related with quantum ergodicity which concerns
the semi-classical behavior of 〈ϕj , Âϕj〉 when the classical flow is
ergodic on the energy hyper surface Σ1: for ”almost-all”

eigenfunctions ϕj , we have 〈ϕj , Âϕj〉
j→+∞−→ L1(A).

The meaning of Theorem 9 is that we have 〈u, Âu〉 h→0−→ L1(A) for
almost all u such that all modes (ϕj)j∈Λh

are
“almost-equi-present” in u (condition on the γj).

Zelditch have proved that on the standard 2-sphere: a random
orthonormal basis of eigenfunctions of the Laplace operator is
ergodic. Burq-Lebeau obtained a similar result for the Laplacian on
a compact manifold. A modification of their proof allows us to
consider more general random variables satisfying the Gaussian
concentration assumption instead of the uniform law.
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ergodic on the energy hyper surface Σ1: for ”almost-all”

eigenfunctions ϕj , we have 〈ϕj , Âϕj〉
j→+∞−→ L1(A).

The meaning of Theorem 9 is that we have 〈u, Âu〉 h→0−→ L1(A) for
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Random Quantum Ergodicity

Now we easily get two applications of the quantum deviation
inequality, using the Borel-Cantelli Lemma.
Let {hj}j≥0, lim

j→+∞
hj = 0. X =

∏
j∈N Shj is equipped with the

product probability P = ⊗j∈NPhj .
Let u ∈ X , u = {uj}j∈N where uj ∈ Shj . For any A ∈ S(1, k),

u 7→ 〈uj , Âuj〉 defines a sequence of random variables on X .

Corollary

Assume that d ≥ 2 and that
∑
j≥0

e−εh
1−d
j < +∞ for every ε > 0.

Then

P
[
u ∈ X , lim

j→+∞
〈uj , Âuj〉 = L1(A), ∀A ∈ S(1, k)

]
= 1.
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Random Quantum Ergodicity

Proof:

Denote by fh(u) = 〈Πhu, ÂΠhu〉. Notice that the random variable
fhj depends only on uj = Πhj u so we get

P
[
u = {uj} : |fhj (u)− L1(A)| ≥ ε

]
= Phj

[
|fhj − L1(A)| ≥ ε

]
.

So applying the large deviation estimate and the Borel-Cantelli
Lemma to the independent random variables {fhj}j∈N we get the
conclusion. �
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Random Quantum Ergodicity

As another application of the large deviation estimate is that a
random orthonormal basis of eigenfunctions of the Harmonic
oscillator Ĥ is Quantum Uniquely Ergodic (Q.U.E, according the
terminology of S. Zelditch).

Corollary

Let Ĥ be the harmonic oscillator. For B ∈ B and A ∈ S(1, 1)
denote by

Dj(B) = max
1≤`≤Nhj

∣∣〈ϕj ,`, Âϕj ,`〉 − L(A)
∣∣.

Then we have

lim
j→+∞

Dj(B) = 0, ρ− a.s on B.
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Random Quantum Ergodicity

Proof:

Every B ∈ B can be identified with
{

Bj

}
j≥1

where Bj ∈ U(Nhj ).
The random variables Dj are independent and Dj depends only on
Bj . So for every r > 0 we have

ρ
[
Dj(B) > r

]
= ρj

[
∃j ∈ J1,Nhj K,

∣∣〈ϕj ,`, Âϕj ,`〉 − L(A)
∣∣ > r

]
≤

∑
1≤j≤Nhj

ρk

[ ∣∣〈ϕj ,`, Âϕj ,`〉 − L(A)
∣∣ > r

]
= NhjPhj

[ ∣∣〈uÂ(hj)u〉 − L(A)
∣∣ > r − ChM

j

]
.
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Random Quantum Ergodicity

Using the quantum large deviation estimate,

ρ
[
Dj(B) > r

]
≤ C1jd−1 exp

[
− C2jd−1(r − C3j−M)2

]
.

In particular for any d ≥ 2 we get∑
j≥1

ρ
[
Dj(B) > r

]
< +∞

and the result is again a consequence of the Borel-Cantelli Lemma.
�

In conclusion, almost all orthonormal basis of the Harmonic
oscillator, for d ≥ 2, is Quantum Uniquely Ergodic but the natural
one (tensor products of the 1-D Hermite functions) is not Q.U.E !
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