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Spectral estimates and Random Weighted Sobolev Inequalities
Introduction, Random series

The simplest model is the 1-D torus T = R/27Z with its Sobolev
spaces. Let f(x) = che’”x then ||fHH5 (1) = Z(l + [n)%|cal?.
ncZ neZ

By the usual Sobolev embeddings, if f € H/2=Y/P(T) with p > 2
then f € LP(T).
Paley and Zygmund (1930) have improved this result allowing
random coefﬁcients
Let f*(x ZX (w)cae™ where {X,} is a sequence of

neZ
independent Bernoulli random variables.
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The simplest model is the 1-D torus T = R/27Z with its Sobolev
spaces. Let f(x) = che’”x then ||fHH5 (1) = Z(l + [n)%|cal?.
nez neZ

By the usual Sobolev embeddings, if f € H/2=Y/P(T) with p > 2
then f € LP(T).
Paley and Zygmund (1930) have improved this result allowing
random coefﬁcients
Let f*(x ZX (w)cae™ where {X,} is a sequence of

nez
independent Bernoulli random variables. If f € L2(T) then for all
p>2, as f¥ e LP(T).
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Moreover if for some o > 1, Z log®(1 + |n|)|cal?> < +o0 then a.s
neZ

fe e C(T).

Many other results concerning random trigonometric series were

obtained by Paley and Zygmund, as it is detailed in the beautiful

book of J-P. Kahane (Some random series of functions).
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The setting of random trigonometric series was extended to
Riemannian compact manifolds for orthonormal basis of
eigenfunctions of the Laplace-Beltrami operator, in particular by
Burq, Lebeau, Tvzetkov.

The main motivations and applications are the following :
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The setting of random trigonometric series was extended to
Riemannian compact manifolds for orthonormal basis of
eigenfunctions of the Laplace-Beltrami operator, in particular by
Burq, Lebeau, Tvzetkov.

The main motivations and applications are the following :

(1) To get existence and well posedness results for non linear PDE
(wave equation or Schrodinger equation) in supercritical cases.
(2) For linear self-adjoint PDE with high multiplicity eigenvalues
(Laplace on the 2-sphere; harmonic oscillator with D > 2) find
basis of eigenfunctions satisfying " better” L°° estimates or
satisfying a quantum ergodic property (Zelditch considered the
2-sphere (1992), recently Burg-Lebeau have improved his result)
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In our joint work with A. Poiret and L. Thomann we extend the
Burg-Lebeau analysis to Schrodinger operators in L2(R9), d > 2.
Moreover we consider more general probability measures on the
spectral subspaces &, satisfying a Gaussian concentration property.


http://arxiv.org/abs/1307.4976
http://arxiv.org/abs/1307.4976
http://arxiv.org/abs/1309.0795
http://arxiv.org/abs/1309.0795
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Introduction, Random series

In our joint work with A. Poiret and L. Thomann we extend the
Burg-Lebeau analysis to Schrodinger operators in L2(R9), d > 2.
Moreover we consider more general probability measures on the
spectral subspaces &, satisfying a Gaussian concentration property.
Here we shall only consider the applications (2). For the details,
see the link to our preprint: Random weighted Sobolev inequalities
and application to Hermite functions and the soon forthcoming
paper : Random weighted Sobolev inequalities for Schrodinger
operator with superquadratic potentials.

Concerning applications of our results to NLS in supercritical cases
with (or without) harmonic potential, see the link to our preprint:
Probabilistic global well-posedness for the supercritical nonlinear
harmonic oscillator.


http://arxiv.org/abs/1307.4976
http://arxiv.org/abs/1307.4976
http://arxiv.org/abs/1309.0795
http://arxiv.org/abs/1309.0795
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Probabilities on scales of Hilbert spaces

Let {X,} a sequence of complex i.i.d random variables, of common
law v satisfying the following concentration property:

there exist constants ¢, C > 0 independent of N € N such that
for all Lipschitz and convex function F : CN — R

cr?

V®N[X eCV . |F(X) - B(F(X))| > r] <ce ", vr>o,
(1)

where ||F||jp is the best constant so that

[F(X) = FOY)I < [IFllLipll X = V|-

Examples: Gauss law, Bernoulli law and more generally measures
with compact support (Talagrand theorem).
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Probabilities on scales of Hilbert spaces

Let K a separable complex Hilbert space and K is a self-adjoint,
positive operator on K with a compact resolvent. We denote by
{¢j, j > 1} an orthonormal basis of eigenvectors of K,

Kyj = Ajg;j, and {\;, j > 1} is the non decreasing sequence of
eigenvalues of K (each is repeated according to its multiplicity).
Then we get a natural scale of Sobolev spaces associated with K,
defined for s > 0 by K° = Dom(K*/?).
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Let v = {7j};>1 a sequence of complex numbers such that

> X < 4o

jz1

We denote by v, = Z'ng@j € K*® and v = Z'ijj(w)goj-. We
Jjz1 jz1

have E(||v&[|3) < 400, therefore v& € K°, a.s. We define the

measure /., on K* as the probability law of the random vector vy

These measures were introduced by Burg-Tzvetkov (2008). They

are much more flexible than Gibbs measures known before in some

particular cases (Lebowitz, Bourgain).
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Probabilities on scales of Hilbert spaces

Some properties

(1) If the support of v is C and if v; # 0 for all j > 1 then the
support of 1, is K°.

(11) If for some € > 0 we have v, ¢ K7 then (K7€) = 0.

(111) Assume that we are in the particular case where
dv(x) = coe™¥%dx with a > 2. Let v = {7;} and B8 = {B;}
be two complex sequences and assume that

a/2 2
Z ( — 1) = +o00.
jz1

Then the measures j1, and pg are mutually singular, i.e there exists
a measurable set A C K* such that p,(A) =1 and pg(A) = 0.

v
B
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Consider finite dimensional subspaces &, of K defined by spectral
localizations depending on a small parameter 0 < h <1 (h~1is a
measure of energy for the quantum Hamiltonian K).

Let Iy = [32, 25, Ay = {j, \j € In}, Np = #Ap and & the spectral
subspace of K in the interval /. Our goal is to find uniform
estimates in h €]0, hg[ for hy > 0 small enough.

Consider the random vector in &y:

V(W) = v(w) = D Xi(w)es (2)

JEN

Introduce the squeezing condition:

K
a2 < ﬁ: > R ¥n€ A, Yh €O, ho]. (3)
JENL
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Probabilities on scales of Hilbert spaces

To get estimates from below we also need:

Kl KO
2o il <P < > P vne A, vhelo, 1] (4)
hjE/\h hjE/\h
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Probabilities on scales of Hilbert spaces

To get estimates from below we also need:

Kl KO
2o il <P < > P vne A, vhelo, 1] (4)
h jeny h jen,

Why this assumption?

For 1-D Hamiltonians the eigenvalues are non degenerate and it is
possible to get accurate L estimates on eigenfunctions. But for
D > 2 eigenvalues may have high multiplicities and it is much
more difficult to get accurate L*> estimates. With condition (3) or
(4) we shall see that it is enough to know good estimates for the
spectral functions in small energy windows instead of individual
eigenfunctions.
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Now consider probabilities on the unit sphere Sj, of the subspaces
&p. The random vector v, defines a probability measure v, , on
Ep. We define a probability measure P, , on Sy, as the image of
Vyh by v i ﬁ

Examples:

o If |y, = ﬁ for all j € A and if X, follows the complex normal
law N (0, 1) then P, 4 is the uniform probability on S, considered
in Burg-Lebeau.

e Assume that for all n € N, P(X, =1) =P(X, = -1) =1/2,
then P, is a convex sum of 2N Dirac measures.

In the first example P j is invariant by e K,
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Probabilities on scales of Hilbert spaces

To get an optimal lower bound for L* estimates we shall need a
stronger normal concentration estimate (Assum?2).

(1) The random variables X; are standard independent Gaussians
Nc(0,1).
(11) The sequence ~y satisfies (4).

Note that conditions (3) and (4) are stable by small perturbations.
So assuming that v is Gaussian we can get an infinite number of
pairs of mutually singular probability measures /..
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Probabilities on scales of Hilbert spaces

Let L be a linear form on &, and denote by e, = Z L)
JENR

Then we have the large deviation estimate:

THEOREM

Let L be a linear form on E,. Suppose that (3) holds and that
(Assum1l) is satisfied. Then there exist Co,c, > 0 so that

N2

Ponluesy: |L(u)> t} < Ge ®at, Vt>0, Vhe|o, k.

If (Assum2) is satisfied, there exist Cy, Cy, c1, €2, €0, hg > 0 so that
—(,‘1ﬂt‘2 N ;2

Ge "t <Py, [u €Sy |L(u)] > t] < Ge %at

Vte0,e/EL], Vhe,h

10
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Probabilities on scales of Hilbert spaces

In applications considered here there is a Sobolev embedding
Ks — C(M), for some s > 0, where M is a metric space. We
have € C ﬂseR KC?, thus we can consider the Dirac evaluation
linear form dx(v) = v(x). In this case we have

e, = Z pj(x)|> = ex, which is usually called the spectral

JENR
function of K in the interval /. Notice that from Cauchy-Schwarz:

L) < e?Ivll, Y € &
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In applications considered here there is a Sobolev embedding
Ks — C(M), for some s > 0, where M is a metric space. We
have € C nseR KC?, thus we can consider the Dirac evaluation
linear form dx(v) = v(x). In this case we have
e, = Z pj(x)|> = ex, which is usually called the spectral

JENR
function of K in the interval /. Notice that from Cauchy-Schwarz:

L) < e?Ivll, Y € &

A theorem of P. Levy gives a concentration inequality for the
canonical measure on spheres of large dimension. This is
generalized as follows. It is a an important basic tool in the
Burg-Lebeau approach (see also Zelditch).
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The concentration condition on v gives the following
PROPOSITION

Suppose that (Assuml) is satisfied. Then there exist constants
K > 0, k > 0 (depending only on C*) such that for every Lipschitz
function F : S, — R satisfying

|F(u) = F(I < IFlleipllu = vilizre),  Vu,v € Sp,

we have

mNhr2

P%h[u €Sy |F— Mp| > r} < Ke "o vr>o0, helo,1],

where Mg is a median for F.

Recall that a median Mg for F is defined by

[y

Ponlu€Sy: F>Mp] > % PonlueSy: F<Mp] > 5
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Consider the Schrodinger Hamiltonian H=—A+VinR? for
d>2.

Assume that V is an elliptic polynomial in RY, that means:

V = Wy + V4 where V is an homogeneous elliptic polynomial of
degree 2k (Vo(x) > 0 if x # 0) and Vi(x) is a polynomial of
degree < 2k — 1. We can assume V/(x) > 0 on R€.

It is more convenlent to work with the normalized Hamiltonian
Hno, = H % . Recall the Weyl law for H,:

NHnor()\) - Wnor()‘) + O()‘dil)

with Wior(X) & A9 (classical Weyl term).
(Helffer-R, some years ago)
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Spectral estimates for polynomial potentials

We also need accurate estimates for the spectral function of H (or
Hpor). Denote my,,, (i x,y) Z j(x

w;<A

PROPOSITION

For every § € [0,1] and Cy > 0, there exists C > 0 such that for
every 0 € [0, %] and r €]1, +o¢], there exists C > 0 such that

||7THnor()\ + ,LL, X7X) - 7THnor()\; X7X)||L’7k('_1)9(Rd) S C)\a

for |u| < A0, A>1, a= k%(kju D-6+20-1.

Here ||UH'[:r,s( fRd rdX
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Spectral estimates for polynomial potentials

Comment on spectral function estimates: Proofs are easier if

d < 2/3. For the harmonic oscillator and § = 1 this is a
consequence of results of Thangavelu (1993) Karadzhov (1995) or
Koch-Tataru (2005). For k > 1 this can be proved using
Koch-Tataru-Zworski (2007).
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Spectral estimates for polynomial potentials

Comment on spectral function estimates: Proofs are easier if

d < 2/3. For the harmonic oscillator and 6 = 1 this is a
consequence of results of Thangavelu (1993) Karadzhov (1995) or
Koch-Tataru (2005). For k > 1 this can be proved using
Koch-Tataru-Zworski (2007).

The Sobolev spaces associated with A are here defined as follows.
Let s >0, p € [1, +o0].
WP = WiP(RY) = {u € LP(RY), H5,u € LP(RY)},

ulls,p = ||H;oru||LP(Rd)'

The Hilbert Sobolev spaces are denoted H; = W,f’2.
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Spectral estimates for polynomial potentials

(1IN

To prepare a spectral analysis "a la Littlewood-Paley” of this
Sobolev spaces, introduce I, = [‘%”, %[ such that a, and by, satisfy,

for some a,b,D > 0,0 € [0,1],

lima,=a, limb,=b, 0<a<hb and by,—a,> DH.
h—0 h—0

From Weyl asymptotics we have Nj, ~ ch=9(by, — ap) (c > 0).
In particular (Nj 20 4 oo for d > 2).
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Spectral estimates for polynomial potentials

Using estimates on the spectral function and interpolation we get
Sobolev inequalities with weights:
for every u e &, 0 >0, p > 2.

d—ko\ 1/2
ull o022y < C (/v,,h = ) ol 2z

N
T =

d—k§
lulpsotore-nay < € (Nph %0 )* 7 [lu] 2oy,

Notice that N is of order (b, — ap)h™9 =~ =4, 5 e [0,1].
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Probabilistic weighted Sobolev estimates

THEOREM

Assume that 0 < 6 < 2/3. For every k €]0,1[, K > 0, there exist
Co >0, G >0, c1 > 0 such that for every r € [2, K|log h|"] we
have

d 2
P [u € Sh 2 Gov/rhT D5 < e ey

< G -] > 1 emalloghl "
and for r = +00 we have for all h €]0, ho|

_d___
P |u € Sk Collog h[*2h7T ™ < lullyyece (o)

< (G |log h\1/2h2<kd+T)‘5] >1— he.
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Probabilistic weighted Sobolev estimates

THEOREM

Assume that 0 < 6 < 2/3. For every k €]0,1[, K > 0, there exist
Co >0, G >0, c1 > 0 such that for every r € [2, K|log h|"] we
have

d 2
Pous [ € Sn s Govrh T T8 Dhms < lull e
<G \ﬁhﬁ(l_%)hﬂ} >1-— efcl“ogh'l_n,

and for r = +00 we have for all h €]0, ho|

d
P |u € Sk Collog h[*2h7T ™ < lullyyece (o)

< (i |log h|1/2h72(k11)_5] >1 - he,

This Theorem shows a gain of %d derivatives compared to the

usual deterministic Sobolev embeddings.
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Probabilistic weighted Sobolev estimates

Recall that the condition § < 2/3 is used here because to get a
lower bound for weighted norms of the spectral function (on
compact manifold this lower bound is given, when § = 1, by the
local Weyl asymptotics proved by Hérmander).

Even for the Harmonic oscillator it seems that no good global lower
bounds are known for the spectral function when § € [2/3,1].
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EXAMPLE
e Assume v, = ﬁ 1 <j < Njand vis a Gaussian law. Then

P, 1 is the uniform probability and the Theorem says that for x in
a subset €2 of Sy, —1 such that il)imo P, »2p = 1 we have
ﬁ

H Z XJ'SOJ'HWd/ZOO(Rd) ~ ‘ |Og h‘1/2.
1<j<Ny

29
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Probabilistic weighted Sobolev estimates

EXAMPLE

e Assume v, = ﬁ 1 <j < Njand vis a Gaussian law. Then

P, 1 is the uniform probability and the Theorem says that for x in
a subset €2 of Sy, —1 such that il)imo P, »2p = 1 we have
ﬁ

H Z XJ'SOJ'HWd/ZOO(Rd) ~ ‘ |Og h‘1/2.
1<<Np

e Assume now that v is a Bernoulli law. Let v = {7;} as above
and |y| = 1. Q = {0,1}"r is the probability space and we have

1 .
swtle el Y (“)Telhwene ~ |loghl2 ]
1<<Ny

converges to 1 as h — 0.
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Applying to the Harmonic oscillator a method of Burg-Lebeau, and
Zelditch, we get the following consequence for the Hermite
functions.

Assume that ~; = Nh_l/2 and that X; ~ N¢(0, 1), so that

Py, := P, p is the uniform probability on S;,. We set h, = 1/k with
k € N*, and

an, = 2 + dhy, bhk :2+(2+d)hk.
So we can take d =1 and D = 2. In particular, each interval

b
I, = [aﬂﬂ{: [2k + d, 2k + d + 2]
hi ~ hi
only contains the eigenvalue A\ = 2k + d with multiplicity
Np, ~ ck9=1, and Ep, is the corresponding eigenspace of the
harmonic oscillator H.
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Probabilistic weighted Sobolev estimates

The space of the orthonormal basis of &5, can be identified with
the unitary group U(Nj,) and we endow U(Np, ) with its Haar
probability measure p. Then the space B of the Hilbertian bases
of eigenfunctions of H in L?(R?) can be identified with

B = XkGNU(Nhk)a
with the probability measure
dp = @en dpk.

Denote by B = (Sok,é)keN,Ee[[l,Nhk]] € B a typical orthonormal basis

of L?(R9) so that for all k € N, (‘Pk,ﬁ)ée[[l,Nhk]] € U(Np,) is an
orthonormal basis of &y, .
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THEOREM

Let d > 2. Then, if M > 0 is large enough, there exist ¢, C > 0 so
that for all r > 0

P[B = (pk,e)ken, ee[,ny, ] € B 2 3k, & [l @kellyyarzoomay =
M(log k)2 + r} < Ce—c.

COROLLARY
For d > 2 there exists orthonormal basis {p,} of eigenfunctions of
the Harmonic oscillator —/\ + |x|? such that

[[onll oo ey < M, (1 + log An)/2, ¥n > 0.

Notice that for general bases we have [|¢nl| o (ra) < MNZ/41/2
(Koch-Tataru).
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GLOBAL ESTIMATES

Using a dyadic Littlewood-Paley decomposition, we get
probabilistic estimates in Sobolev spaces W*'(R9). For s € R,
p, q € [1,+00], define the harmonic Besov space by

B; 4 :{u—Zu,,. Z2”q5/2||u,,||Lde)<—|-oo}

n>0 n>0

up = My-nu. B ,(R?) is a Banach space with the norm in £9(N)
of {272 un|| Lo (ra) } n>0-
We assume that  satisfies (4) and

Z W|/\n < +OO,/\,7 = AZ_”'
n>0
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Probabilistic weighted Sobolev estimates

+
Let vy (w) = Zj:og Vi Xj(w)epj.
Almost surely v, € Bgvl(Rd) and its probability law defines a
measure 41, in B9 (RY). Notice that we have

H(R?) C B3 1(RY) € L*(RY), Vs>0.

We have the following result



20

Spectral estimates and Random Weighted Sobolev Inequalities
Probabilistic weighted Sobolev estimates

+
Let vy (w) = Zj:og Vi Xj(w)epj.
Almost surely v, € Bgvl(Rd) and its probability law defines a
measure 41, in B9 (RY). Notice that we have

H(R?) C B3 1(RY) € L*(RY), Vs>0.

We have the following result

THEOREM

For every (s, r) € R? such that r > 2 and s = d(% - %) there
exists ¢g > 0 such that for all K > 0 we have

_ 2
Myl U & Bg,l(Rd) : H”HWS"(R") 2 KHU”Bg,l(Rd) < e ok

In particular j1-almost all functions in 8871(Rd) are in W' (R9).
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If v satisfies (4) and the (weaker) condition Z 17/A, < +oc, then
n>0

fi~ defines a probability measure on L?(R9) and we can prove the

estimate

K2
| 0 € LR 2 ([ullyyer ey = Kllul2grey | < oK,

whenever s < d(3 — 1).

From this result it is easy to deduce a probabilistic Strichartz
—itH

estimate for the linear flow e which is used for surcritical

NLSH in [PRT].
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Probabilistic weighted Sobolev estimates

About the proof of a.s-L"-estimate

Let us give a sketch of proof of the following estimate (k = 2),
following the strategy of Burg-Lebeau.

We have to prove:

Poh|u€Sh: Cov/rh™F (=9 < [ull proe/2-1) < Ciy/rh e (=7 ]
> 1k,

for r € [2, K| log hl], and h €]0, ho].
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Probabilistic weighted Sobolev estimates

About the proof of a.s-L"-estimate

Let us give a sketch of proof of the following estimate (k = 2),
following the strategy of Burg-Lebeau.

We have to prove:

Poh|u€Sh: Cov/rh™F (=9 < [ull proe/2-1) < Clxﬁh$(1_%)]
>1— h9,
for r € [2, K| log h|], and h €]0, ho].

Denote by F.(u) = ||ul|r.6¢/2-1) and by M, its median. We have
the Lipschitz estimate

i

1_
IFo(u) — F(v)| < C (N,,h%)Z lu—vl2@ey, Vu,v € Sp.
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Probabilistic weighted Sobolev estimates

Denote by
Bro=—5—(1--).

By Gaussian concentration we have:
. — _ 2/!‘ _Br,e 2
PynlueSy:|Fr— M| >N §2exp( N, h A )

The next step is to estimate M,. Denote by A7 = E,(F/) the
moment of order r and compute, with s = 6(r/2 — 1),

e, ([ (olutar o)

= r/Rd<X>S</O+OO TP, [u €Sy |u(x)| > T} dr) dx.

A
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Probabilistic weighted Sobolev estimates

We get
€0v/ex | —e N2
R4 0

+o0o
Czr/ <X>s</ rlem @™ dT)dX.
R 0

After computations, we get that there exists €3 > 0 such that for
N large and r < 61% we have

e2C 1y </ <x)5e;/2dx> N="2T(r/2) < A" <
Rd
Gy rN~"/? ( / <x>se;/2dx> r(r/2)
Rd

and '(r/2) can be estimated thanks to the Stirling formula.
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Probabilistic weighted Sobolev estimates

Then, from estimates for the spectral function we get

GV rhPre <A <GV rhﬁ'ﬁ, Vr>2, h E]O, ho]

Now we have to compare A, and the median M,. We have

A =M™ = |IIF sy = IMellrsy|
< |IFr = Millis))

= r/ s’flP%hUFr - M,| > s}ds.
0
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Probabilistic weighted Sobolev estimates

Then using a large deviation estimate we get

A, — M,| < CN"Y"\/ rhPro, vr > 2.

Choosing r < dlog N, (6§ < 1) and N large, we obtain

CoVrhPre < M, < CiVrhPre, Nr e [2,5log N]

and the proof of the (a.s) L" estimate is done.
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Random Quantum Ergodicity

Assume that I, =]ap, bp] is such that

. bp—a
lim a, = I|m bp=1>0 and lim = h
h—0 h—0

= 400

L1 is the Liouville measure associated with the classical
2
Hamiltonian Hy(x, &) = & 4 Vo(x). Recall that

B Az)
L(A) = cl/[ )

where 27 is the Euclidean measure on the hypersurface

Y1 := Hy'(1) and C; > 0 is a normalization constant such that L;
is a probability measure on ;.

We denote by S(1, k) the class of symbols such that A € C>°(R?9)
and A is quasi-homogeneous of degree 0 outside a small
neighborhood of (0,0) in RY x Rg.
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Random Quantum Ergodicity

So that A(Ax, \k€) = A(x, &) for every A > 1 and |(x,&)| > «.
For A € S(1, k) let us denote by A the Weyl quantization of A
(here h =1).

Notice that if ||u||;2(gey = 1 then A+ (u, Au) defines a
semiclassical probability measure on > ;. We have

THEOREM (QUANTUM LARGE DEVIATION)

Consider a potential VV which satisfies conditions (Al). Assume

that we are in the isotropic case (y; = ﬁ for all j € \p), and
h

that v satisfies the concentration of measure property (1). Then
there exist ¢, C > 0 so that for all r > 1 and A € 5(1, k),

PolueSy: |<u,2\u> — Li(A)] > r] < Ce—CNnr® .
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This result can be related with quantum ergodicity which concerns
the semi-classical behavior of (¢;, Ap;) when the classical flow is

ergodic on the energy hyper surface 21: for "almost-all”

eigenfunctions ¢;, we have (cpj,,2\¢j> IHe Li(A).

The meaning of Theorem 9 is that we have (u, Au) h=9 Li(A) for

almost all u such that all modes (¢;)jen, are
“almost-equi-present” in u (condition on the v;).



Spectral estimates and Random Weighted Sobolev Inequalities
Random Quantum Ergodicity

This result can be related with quantum ergodicity which concerns
the semi-classical behavior of (¢;, Ap;) when the classical flow is

ergodic on the energy hyper surface 21: for "almost-all”

eigenfunctions ¢;, we have (cpj,,2\¢j> IHe Li(A).

The meaning of Theorem 9 is that we have (u, Au) h=9 Li(A) for

almost all u such that all modes (¢;)jen, are

“almost-equi-present” in u (condition on the v;).

Zelditch have proved that on the standard 2-sphere: a random
orthonormal basis of eigenfunctions of the Laplace operator is
ergodic. Burg-Lebeau obtained a similar result for the Laplacian on
a compact manifold. A modification of their proof allows us to
consider more general random variables satisfying the Gaussian
concentration assumption instead of the uniform law.



Spectral estimates and Random Weighted Sobolev Inequalities
Random Quantum Ergodicity

Now we easily get two applications of the quantum deviation
inequality, using the Borel-Cantelli Lemma.

Let {h;};>o0, j_leoo hj = 0. X = [[;cy Sh; is equipped with the
product probability P = ®;enPp,.

Let u € X, u={uj}jen where u; € Sp,.. For any A € S(1, k),
u — (uj, Au;) defines a sequence of random variables on X.

COROLLARY
1—d
Assume that d > 2 and that Z e M < 400 for every € > 0.
Jj=0
Then

Plue X, lim (y,Au) = L1(A), VA € S(1, k)} —1

J—+o0




~)
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Proof:

Denote by f,(u) = (Myu, AMl,u). Notice that the random variable
fp; depends only on u; = Iy, u so we get

P[u — {u} : |fiy(u) = Li(A)] > 5} — P, [\fhj — L1(A)| > e]

So applying the large deviation estimate and the Borel-Cantelli
Lemma to the independent random variables {fp, }jen we get the
conclusion. [J
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As another application of the large deviation estimate is that a
random orthonormal basis of eigenfunctions of the Harmonic
oscillator A is Quantum Uniquely Ergodic (Q.U.E, according the
terminology of S. Zelditch).

COROLLARY

Let H be the harmonic oscillator. For B € B and A € 5(1,1)
denote by

Di(B) = | max, 1teie Agie) = LAY

Then we have

lim Dj(B)=0, p—as on B.

Jj—+oo




R4

Spectral estimates and Random Weighted Sobolev Inequalities
Random Quantum Ergodicity

Proof:

Every B € B can be identified with {B; } ~, Where B; € U(N,).
The random variables D; are mdependent and D; depends only on
B;. So for every r > 0 we have

p[Di(B) > 1] = pi[ € [Ny, (0 i) — L(A)| > 7]
< Z Pk [ |<90j,£,;490j7@> — L(A)| > r}
1<j<Ny,;

— NyPy [ (uA(hj)u) — L(A)| > r — ChJM]
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Using the quantum large deviation estimate,
p[Dj(B) > r] < Cj9 texp {— 297 — GjM)?).
In particular for any d > 2 we get

> p[Di(B) > r] < 400

jz1

and the result is again a consequence of the Borel-Cantelli Lemma.
O

In conclusion, almost all orthonormal basis of the Harmonic
oscillator, for d > 2, is Quantum Uniquely Ergodic but the natural
one (tensor products of the 1-D Hermite functions) is not Q.U.E !

N~
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