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Outline:

I Calderón’s problem with partial data

I Travel time tomography with partial data



CALDERÓN’S PROBLEM

⌦ ⇢ Rn

(n = 2,3)

Can one determine the electrical conductivity of ⌦, �(x),
by making voltage and current measurements at the
boundary?
(Calderón; Geophysical prospection)

Early breast cancer detection
Normal breast tissue 0.3 mho
Cancerous breast tumor 2.0 mho
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REMINISCENCIA DE MI VIDA MATEMATICA

Speech at Universidad Autónoma de Madrid accepting

the ‘Doctor Honoris Causa’:

My work at “Yacimientos Petroliferos Fiscales”

(YPF) was very interesting, but I was not well

treated, otherwise I would have stayed there.
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ACT3 imaging blood as it leaves the heart (blue) and fills the lungs (red)
during systole.



(Loading DBarPerfMovie1.avi)

Thanks to D. Issacson
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Media File (video/avi)



CALDERÓN’S PROBLEM (EIT)

Consider a body ⌦ ⇢ Rn. An electrical potential u(x)

causes the current

I(x) = �(x)ru

The conductivity �(x) can be isotropic, that is, scalar,

or anisotropic, that is, a matrix valued function. If the

current has no sources or sinks, we have

div(�(x)ru) = 0 in ⌦
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div(�(x)ru(x)) = 0

u
���
@⌦

= f

�(x) = conductivity,

f = voltage potential at @⌦

Current flux at @⌦ = (⌫ · �ru)
���
@⌦

were ⌫ is the unit
outer normal.

Information is encoded in

map

⇤�(f) = ⌫ · �ru
���
@⌦

EIT (Calderón’s inverse problem)

Does ⇤� determine � ?

⇤� = Dirichlet-to-Neumann map
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Theorem n ≥ 3 (Sylvester-U, 1987)

γ ∈ C 2(Ω), 0 < C1 ≤ γ(x) ≤ C2 on Ω

Λγ1 = Λγ2 ⇒ γ1 = γ2

• Extended to γ ∈ C 3/2(Ω) (Päivarinta-Panchenko-U,
Brown-Torres, 2003)
• γ ∈ C 1+ε(Ω), γ conormal (Greenleaf-Lassas-U, 2003)
• γ ∈ C 1(Ω), (Haberman-Tataru, 2013).
Complex-Geometrical Optics Solutions (CGO)
• Reconstruction (A. Nachman, R. Novikov 1988)
• Stability (G. Alessandrini 1988)
• Numerical Methods (D. Issacson, J. Müller, S. Siltanen)



Reduction to Schrödinger equation

div(�rw) = 0

u =
p
�w

Then the equation is transformed into:

(�� q)u = 0, q =
�

p
�

p
�

✓
� =

nX

i=1

@2

@x2
i

◆

(�� q)u = 0

u
���
@⌦

= f

Define ⇤q(f) =
@u

@⌫

���
@⌦

⌫ = unit-outer normal to @⌦.
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IDENTITY

Z

⌦
(q1 � q2)u1u2 =

Z

@⌦

⇣
(⇤q1 � ⇤q2)u1

���
@⌦

⌘
u2

���
@⌦

dS

(�� qi)ui = 0

If ⇤�1 = ⇤�2 ) ⇤q1 = ⇤q2 and

Z

⌦
(q1 � q2)u1u2 = 0

GOAL: Find MANY solutions of (�� qi)ui = 0.
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CGO SOLUTIONS

Calderón: Let ⇢ 2 Cn, ⇢ · ⇢ = 0

⇢ = ⌘+ ik ⌘, k 2 Rn, |⌘| = |k|, ⌘ · k = 0

u = ex·⇢ = ex·⌘eix·k

�u = 0, u =

8
>>><
>>>:

exponentially decreasing, x · ⌘ < 0

oscillating, x · ⌘ = 0

exponentially increasing, x · ⌘ > 0
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COMPLEX GEOMETRICAL OPTICS

(Sylvester-U) n � 2, q 2 L1(⌦)

Let ⇢ 2 Cn (⇢ = ⌘+ ik, ⌘, k 2 Rn) such that ⇢ · ⇢ = 0

(|⌘| = |k|, ⌘ · k = 0).

Then for |⇢| su�ciently large we can find solutions of

(�� q)w⇢ = 0 on ⌦

of the form

w⇢ = ex·⇢(1 + q(x, ⇢))

with  q ! 0 in ⌦ as |⇢| ! 1.
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Proof ⇤q1 = ⇤q2 ) q1 = q2

Z

⌦
(q1 � q2)u1u2 = 0

u1 = ex·⇢1(1 + q1(x, ⇢1)), u2 = ex·⇢2(1 + q2(x, ⇢2))

⇢1 · ⇢1 = ⇢2 · ⇢2 = 0, ⇢1 = ⌘+ i(k + l)
⇢2 = �⌘+ i(k � l)

⌘ · k = ⌘ · l = l · k = 0, |⌘|2 = |k|2 + |l|2

Z

⌦
(q1 � q2)e

2ix·k(1 + q1 + q2 + q1 q2) = 0

Letting |l| ! 1
Z

⌦
(q1 � q2)e

2ix·k = 0 8k =) q1 = q2
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PARTIAL DATA PROBLEM

Suppose we measure

⇤�(f)|�, suppf ✓ �0

�, �0 open subsets of @⌦

Can one recover �?

Important case � = �0.
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EXTENSION OF CGO SOLUTIONS

u = ex·⇢(1 + q(x, ⇢))

⇢ 2 Cn, ⇢ · ⇢ = 0

(Not helpful for localizing)

Kenig-Sjöstrand-U (2007),

u = e⌧('(x)+i (x))(a(x) + R(x, ⌧))

⌧ 2 R, ', real-valued, R(x, ⌧) ! 0 as ⌧ ! 1.

' limiting Carleman weight,

r' · r = 0, |r'| = |r |
Example: '(x) = ln |x � x0|, x0 /2 ch(⌦)
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CGO SOLUTIONS

u = e⌧('(x)+i (x))(a0(x) + R(x, ⌧))

R(x, ⌧)
⌧!1�! 0 in ⌦

'(x) = ln |x � x0|

Complex Spherical Waves

Theorem (Kenig-Sjöstrand-U) ⌦ strictly convex.

⇤q1

���
�

= ⇤q2

���
�
, � ✓ @⌦, � arbitrary

) q1 = q2
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Complex Spherical Waves

(Loading reconperfect1.mpg)


reconperfect1.mpg
Media File (video/mpeg)



Theorem (Kenig-Sjöstrand-U) ⌦ strictly convex.

⇤q1

���
�

= ⇤q2

���
�
, � ✓ @⌦, � arbitrary

) q1 = q2

u⌧ = e⌧('+i )a⌧ '(x) = ln |x � x0|, x0 2\ch(⌦)

Eikonal: r' · r = 0, |r'| = |r |
 (x) = d( x�x0

|x�x0|,!),! 2 Sn�1: smooth

for x 2 ⌦̄.

Transport: (r'+ ir ) · ra⌧ = 0

(Cauchy-Riemann equation in plane generated by r',r )
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'(x) = ln |x � x0|, x0 2\ch(⌦)

Carleman Estimates

u|@⌦ = @u
@⌫ |@⌦� = 0 @⌦± = {x 2 @⌦;r'·⌫ >

< 0}

Z

@⌦+

< r', ⌫ > |e�⌧'(x)@u

@⌫
|2ds  C

⌧

Z

⌦
|(�� q)ue�⌧'(x)|2ds

This gives control of @u
@⌫ |@⌦+,�,

@⌦+,� = {x 2 @⌦,r' · ⌫ � �}
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Outline:

I Calderón’s problem with partial data

I Travel time tomography with partial data



Travel Time Tomography (Transmission)

Global Seismology

Inverse Problem: Determine inner structure of Earth by measuring

travel time of seismic waves.
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Tsunami of 1960 Chilean Earthquake

Black represents the largest waves, decreasing in height through

purple, dark red, orange and on down to yellow. In 1960 a tongue

of massive waves spread across the Pacific, with big ones through-

out the region.
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Human Body Seismology

ULTRASOUND TRANSMISSION TOMOGRAPHY(UTT)

T =
Z

�

1

c(x)
ds = Travel Time (Time of Flight).
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THIRD MOTIVATION
OCEAN ACOUSTIC TOMOGRAPHY

Ocean Acoustic Tomography

Ocean Acoustic Tomography is a tool with which we can study

average temperatures over large regions of the ocean. By measur-

ing the time it takes sound to travel between known source and

receiver locations, we can determine the soundspeed. Changes in

soundspeed can then be related to changes in temperature.
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REFLECTION TOMOGRAPHY

Scattering

Points in medium

Obstacle
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REFLECTION TOMOGRAPHY

Oil Exploration Ultrasound
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TRAVELTIME TOMOGRAPHY (Transmission)

Motivation:Determine inner structure of Earth by
measuring travel times of seismic waves

Herglotz, Wiechert-Zoeppritz (1905)

Sound speed c(r), r = |x|

d
dr

✓
r

c(r)

◆
> 0

Reconstruction method of c(r) from lengths of
geodesics
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ds2 = 1
c2(r)

dx2

More generally ds2 = 1
c2(x)

dx2

Velocity v(x, ⇠) = c(x), |⇠| = 1 (isotropic)

Anisotropic case

ds2 =
nX

i,j=1

gij(x)dxidxj
g = (gij) is a positive defi-

nite symmetric matrix

Velocity v(x, ⇠) =
qPn

i,j=1 gij(x)⇠i⇠j, |⇠| = 1

gij = (gij)
�1

The information is encoded in the
boundary distance function
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More general set-up

(M, g) a Riemannian manifold with boundary
(compact) g = (gij)

x, y 2 @M

dg(x, y) = inf
�(0)=x
�(1)=y

L(�)

L(�) = length of curve �

L(�) =
R 1
0

r
Pn

i,j=1 gij(�(t))
d�i
dt

d�j
dt dt

Inverse problem

Determine g knowing dg(x, y) x, y 2 @M
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dg ) g ?

(Boundary rigidity problem)

Answer NO  : M ! M di↵eomorphism

 
���
@M

= Identity

d ⇤g = dg

 ⇤g =
⇣
D � g � (D )T

⌘
�  

Lg(�) =
R 1
0

r
Pn

i,j=1 gij(�(t))
d�i
dt

d�j
dt dt

e� =  � � L ⇤g(e�) = Lg(�)

10



d ⇤g = dg

Only obstruction to determining g from dg ? No

dg(x0, @M) > supx,y2@M dg(x, y)

Can change metric

near SP
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Def (M, g) is boundary rigid if (M, eg) satisfies deg = dg.

Then 9 : M ! M di↵eomorphism,  
���
@M

= Identity, so

that

eg =  ⇤g

Need an a-priori condition for (M, g) to be boundary

rigid.

One such condition is that (M, g) is simple
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DEF (M, g) is simple if given two points x, y 2 @M , 9!
geodesic joining x and y and @M is strictly convex

CONJECTURE

(M, g) is simple then (M, g) is boundary rigid ,that is

dg determines g up to the natural obstruction.

(d ⇤g = dg)

( Conjecture posed by R. Michel, 1981 )
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Results (M, g) simple

• R. Michel (1981) Compact subdomains of R2 or H2

or the open round hemisphere

• Gromov (1983) Compact subdomains of Rn

• Besson-Courtois-Gallot (1995) Compact subdomains
of negatively curved symmetric spaces

(All examples above have constant curvature or special
symmetries)

•

8
>>>><
>>>>:

Stefanov-U (1998)
Lassas-Sharafutdinov-U
(2003)
Burago-Ivanov (2010)

9
>>>>=
>>>>;

dg = dg0 , g0 close to

Euclidean
14



n = 2

• Otal and Croke (1990) Kg < 0

THEOREM(Pestov-U, 2005)

Two dimensional Riemannian manifolds with boundary

which are simple are boundary rigid (dg ) g up to

natural obstruction)
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Theorem (n � 3) (Stefanov-U, 2005)

(M, gi) simple i = 1,2, gi close to g0 2 L where L is a

generic set of simple metrics in Ck(M). Then

dg1 = dg2 ) 9 : M ! M di↵eomorphism,

 
���
@M

= Identity, so that g1 =  ⇤g2

Remark

If M is an open set of Rn, L contains all simple and

real-analytic metrics in Ck(M).
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Isotropic Case

Assume that g is isotropic, i.e., gij(x) = c�2(x)�ij. Phys-

ically, this corresponds to a variable wave speed that

does not depend on the direction of propagation. In

the class of the isotropic metrics, we do not have the

freedom to apply isometries and we would expect g to

be uniquely determined.

This is known to be true for simple metrics (Mukhometov,

Romanov, et al.) More generally, we can fix g0 and we

have uniqueness of the recovery of the conformal factor

c(x) in c�2g0.
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Partial Data

Boundary Rigidity with partial data: Does dc�2g0
,

known on @M ⇥ @M near some p, determine c(x) near

p uniquely?

We measure the distance betwen pairs of points here

p

We want to recover c(x) here

x

y

dc�2g0
(x, y)

M

18



Theorem (Stefanov-U-Vasy, 2013). Let dimM � 3. If

@M is strictly convex near p for c and ec, and dc�2g0
= dec�2g0

near (p, p), then c = ec near p.

Also stability and reconstruction.

The only results so far of similar nature is for real ana-

lytic metrics (Lassas-Sharafutdinov-U, 2003). We can

recover the whole jet of the metric at @M and then use

analytic continuation.

This is the first local result without analyticity assump-

tions.
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Geodesics in Phase Space

g =
⇣
gij(x)

⌘
symmetric, positive definite

Hamiltonian is given by

Hg(x, ⇠) =
1

2

✓ nX

i,j=1

gij(x)⇠i⇠j � 1
◆

g�1 =
⇣
gij(x)

⌘

Xg(s, X0) =
⇣
xg(s, X0), ⇠g(s, X0)

⌘
be bicharacteristics ,

sol. of
dx

ds
=
@Hg

@⇠
,

d⇠

ds
= �@Hg

@x

x(0) = x0, ⇠(0) = ⇠0, X0 = (x0, ⇠0), where ⇠0 2 Sn�1
g (x0)

Sn�1
g (x) =

n
⇠ 2 Rn; Hg(x, ⇠) = 0

o
.

Geodesics Projections in x: x(s) .
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Scattering Relation

dg only measures first arrival times of waves.

We need to look at behavior of all geodesics

k⇠kg = k⌘kg = 1

↵g(x, ⇠) = (y, ⌘), ↵g is SCATTERING RELATION

If we know direction and point of entrance of geodesic

then we know its direction and point of exit.
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Lens Rigidity

Define the scattering relation ↵g and the length (travel
time) function `:

↵g : (x, ⇠) ! (y, ⌘), `(x, ⇠) ! [0,1].

Di↵eomorphisms preserving @M pointwise do not change
L, `!
Lens rigidity: Do ↵g, ` determine g uniquely, up to isometry?
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Lens rigidity: Do ↵g, ` determine g uniquely, up to isometry?

No, in general but the counterexamples are harder to
construct.

The lens rigidity problem and the boundary rigidity one
are equivalent for simple metrics! Indeed, then dg(x, y),
known for x, y on @M determines ↵g, ` uniquely, and
vice-versa. This is also true locally, near a point p where
@M is strictly convex.

For non-simple metrics (caustics and/or non-convex
boundary), the Lens Rigidity is the right problem to
study.

There are fewer results: local generic rigidity near a
class of non-simple metrics (Stefanov-U, 2009), for
real-analytic metrics satisfying a mild condition (Vargo,
2010), the torus is lens rigid (Croke 2012), stability es-
timates for a class of non-simple metrics (Bao-Zhang
2012).
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Lens Rigidity with partial data

Lens Rigidity with partial data: Does the lens re-

lation known for points near p, and “almost tangent

directions” determine c(x) near p uniquely?

As an immediate consequence of our theorem, the an-

swer is a�rmative.
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Global result under the foliation condition

We could use a layer stripping argument to get deeper
and deeper in M and prove that one can determine c in
the whole M .

Foliation condition: M is foliated by strictly con-
vex hypersurfaces if, up to a nowhere dense set, M =
[t2[0,T )⌃t, where ⌃t is a smooth family of strictly con-
vex hypersurfaces and ⌃0 = @M .

@M

A more general condition: several families, starting
form outside M .
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Global result under the foliation condition

Theorem (Stefanov-U-Vasy, 2013). Let dimM � 3, let

c = ec on @M , let @M be strictly convex with respect to

both g = c�2g0 and eg = ec�2g0. Assume that M can be

foliated by strictly convex hypersurfaces for g. Then if

↵g = e↵eg, l = el we have c = ec in M .

This is a generalization of Mukhometov’s result: one

can have conjugate points inside, or even trapped geodesics.

Example: a tubular neighborhood of a periodic geodesic

on a negatively curved manifold.

Foliation condition is an analog of the Herglotz, Wieckert-

Zoeppritz condition for non radial speeds.
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Idea of the proof

The proof is based on two main ideas.

First, we use the approach in a recent paper by U-Vasy

(2013) on the linear integral geometry problem.

Second, we convert the non-linear boundary rigidity

problem to a “pseudo-linear” one. Straightforward lin-

earization, which works for the problem with full data,

fails here.
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First step: Linear Problem

U-Vasy result: Consider the inversion of the geodesic

ray transform

If(�) =
Z

f(�(s)) ds

known for geodesics intersecting some neighborhood of

p 2 @M (where @M is strictly convex) “almost tangen-

tially”. Then they prove that those integrals determine

f near p uniquely. It is a Helgason support type of

theorem for non-analytic curves! This was extended

recently by H. Zhou for arbitrary curves (@M must be

strictly convex w.r.t. them) and non-vanishing weights.
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The main trick in U-Vasy is the following idea:

Introduce an artificial, still strictly convex boundary

near p which cuts a small subdomain near p. Then

use Melrose’s scattering calculus to show that the I,

composed with a suitable ‘‘back-projection” is elliptic

in that calculus. Since the subdomain is small, it would

be invertible as well.

29



Consider

Pf(z) := I⇤�If(z) =
Z

SM
x�2�If(�z,v)dv,

where � is a smooth cuto↵ sketched below (angle ⇠ x),

and x is the distance to the artificial boundary.

@M
actual boundary

artificial boundary

M
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Inversion of local geodesic transform

Pf(z) := I⇤�If(z) =
Z

SM
x�2�If(�z,v)dv,

Main result: P is an elliptic pseudodi↵erential operator

in Melrose’s scattering calculus.

There exists A such that AP = I + R

This is Fredholm and R has a small norm in a neigh-

borhood of p. Therefore invertible near p.
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Second Step: Reduction to Pseudolinear Problem

Identity (Stefanov-U, 1998)

X 0

Xg1
(t)

Xg2
(t)

Xg1
(s)

Vg1 V g2�g

T = dg1,

F (s) = Xg2

⇣
T � s, Xg1(s, X

0)
⌘
,

F (0) = Xg1(T, X0), F (T ) = Xg2(T, X0),
Z T

0
F 0(s)ds = Xg1(T, X0) � Xg2(T, X0)

Z T

0

@Xg2

@X0

⇣
T � s, Xg1(s, X

0)
⌘
(Vg1 � Vg2)

���
Xg1(s,X

0)
dS

= Xg1(T, X0) � Xg2(T, X0)
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Identity (Stefanov-U, 1998)

Z T

0

@Xg2

@X0

⇣
T � s, Xg1(s, X

0)
⌘
(Vg1 � Vg2)

���
Xg1(s,X

0)
dS

= Xg1(T, X0) � Xg2(T, X0)

Vgj :=

 
@Hgj

@⇠
,�
@Hgj

@x

!
the Hamiltonian vector field.

Particular case:

(gk) =
1

c2k

⇣
�ij
⌘

, k = 1,2

Vgk =
⇣
c2k⇠, �1

2
r(c2k)|⇠|2

⌘

Linear in c2k!
33



Reconstruction

Z T

0

@Xg1

@X0

⇣
T � s, Xg2(s, X

0)
⌘
⇥

✓
(c21 � c22)⇠, �

1

2
r(c21 � c22)|⇠|2

◆���
Xg2(s,X

0)
dS

= Xg1(T, X0)| {z }
data

� Xg2(T, X0)

Inversion of weighted geodesic ray transform and use sim-

ilar methods to U-Vasy.

34



REFLECTION TRAVELTIME TOMOGRAPHY
Broken Scattering Relation

(M, g): manifold with boundary with Riemannian metric
g

((x0, ⇠0), (x1, ⇠1), t) 2 B
t = s1 + s2

Theorem (Kurylev-Lassas-U)

n � 3. Then @M and the broken scattering relation B
determines (M, g) uniquely.
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Numerical Method
(Chung-Qian-Zhao-U, IP 2011)

Z T

0

@Xg1

@X0

⇣
T � s, Xg2(s, X

0)
⌘
⇥

✓
(c21 � c22)⇠, �

1

2
r(c21 � c22)|⇠|2

◆���
Xg2(s,X

0)
dS

= Xg1(T, X0) � Xg2(T, X0)

Adaptive method

Start near @⌦ with

c2 = 1 and iterate.
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Numerical examples

Example 1: An example with no broken geodesics,

c(x, y) = 1 + 0.3 sin(2⇡x) sin(2⇡y), c0 = 0.8.

Left: Numerical solution (using adaptive) at the 55-th iteration.

Middle: Exact solution. Right: Numerical solution (without

adaptive) at the 67-th iteration.

37



Example 2: A known circular obstacle enclosed by a

square domain. Geodesic either does not hit the

inclusion or hits the inclusion (broken) once.

c(x, y) = 1 + 0.2 sin(2⇡x) sin(⇡y), c0 = 0.8.

Left: Numerical solution at the 20-th iteration. The relative error

is 0.094%. Right: Exact solution.
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Example 3: A concave obstacle (known).

c(x, y) = 1 + 0.1 sin(0.5⇡x) sin(0.5⇡y), c0 = 0.8.

Left: Numerical solution at the 117-th iteration. The relative

error is 2.8%. Middle: Exact solution. Right: Absolute error.
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Example 4: Unknown obstacles and medium.

Left: The two unknown obstacles. Middle: Ray coverage of the

unknown obstacle. Right: Absolute error.
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Example 4: Unknown obstacles and medium (contin-

ues).

r = 1 + 0.6 cos(3✓) with r =
q

(x � 2)2 + (y � 2)2.

c(r) = 1 + 0.2 sin r

Left: The two unknown obstacles. Middle: Ray coverage of the

unknown obstacle. Right: Absolute error.
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Example 5: The Marmousi model.

Left: The exact solution on fine grid. Middle: The exact solution

projected on a coarse grid. Right: The numerical solution at the

16-th iteration. The relative error is 2.24%.
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Example 5: The Marmousi model (with noise).

Left: The numerical solution with 0.1% noise. The relative error

is 4.16%. Right: The numerical solution with 1% noise. The

relative error is 5.53%.
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Open problem: Partial Data in n = 2 for dg .

Pestov-U (2005): from dg one can recover Λg .

Question: from dg
∣∣
Γ×Γ

can one recover Λg
∣∣
Γ
?

Carleman estimate?



THANKS JOHANNES FOR THE WONDERFUL MATHEMATICS!


