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Outline:
» Calderén’s problem with partial data

» Travel time tomography with partial data




CALDERON'’S PROBLEM

QCR"
(n=2,3)

Can one determine the electrical conductivity of Q,v(z),
by making voltage and current measurements at the
boundary?

(Calderdn; Geophysical prospection)

Early breast cancer detection

Normal breast tissue
Cancerous breast tumor






REMINISCENCIA DE MI VIDA MATEMATICA

Speech at Universidad Auténoma de Madrid accepting
the ‘Doctor Honoris Causa':

My work at ‘“Yacimientos Petroliferos Fiscales”
(YPF) was very interesting, but I was not well
treated, otherwise I would have stayed there.



Geological underground probing is the
application of EIT considered by Calderén




Early detection of breast cancer is effective
using combined X-ray mammography and EIT

Electrode
Cancerous tissue is up to four
times more conductive than
healthy tissue. [Jossinet -98]
X-ray attenuation is almost
the same in cancerous and
Tumor

healthy tissue.

David Isaacson and his
team have achieved good
results in early detection of
breast cancer using EIT.

Compressed breast




ACT3 imaging blood as it leaves the heart (blue) and fills the lungs (red)
during systole.



(Loading DBarPerfMoviel.avi)

Thanks to D. Issacson
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CALDERON'S PROBLEM (EIT)

Consider a body @ C R™. An electrical potential u(x)

causes the current
I(z) = v(z)Vu

The conductivity v(z) can be isotropic, that is, scalar,
or anisotropic, that is, a matrix valued function. If the
current has no sources or sinks, we have

div(y(z)Vu) =0 in Q




div(y(z)Vu(z)) = 0| ~(z) = conductivity,
u‘aQ = f| f = voltage potential at 9052

Current flux at Q2 = (v - Wvu)‘aﬁ were v is the unit
outer normal.

) Information is encoded in

DR~
M= 1T

a0

EIT (Calderdn’s inverse problem)

Does determine |7

Ay = Dirichlet-to-Neumann map



Theorem n > 3 (Sylvester-U, 1987)

yeC)HQ), 0<G<y(x)<C onQ
My =My =7 =7

Extended to v € C3/2(Q) (Piivarinta-Panchenko-U,
Brown-Torres, 2003)

v € C1¢(Q),~ conormal (Greenleaf-Lassas-U, 2003)

v € CYQ), (Haberman-Tataru, 2013).
Complex-Geometrical Optics Solutions (CGO)

Reconstruction (A. Nachman, R. Novikov 1988)

Stability (G. Alessandrini 1988)

Numerical Methods (D. Issacson, J. Miiller, S. Siltanen)



Reduction to Schrodinger equation
div(yVw) =0
u = \/yw

Then the equation is transformed into:

_ _Aﬁ _ n iQ
@-au=04=20  (a=% 7

(& —qu=0

=f
Define Aq¢(f) = % 50

v = unit-outer normal to 9%2.

“‘aﬂ




IDENTITY

‘/;2((11 — @)uiup = ./;)Q (A = Agdua |, Jual, ,ds

(A —g)u; =0

If Ay = Ny, = Ng; = Ny, and

_ -0
/Q(fﬂ q2)uiun

GOAL: Find MANY solutions of (A — ¢;)u; = 0.




|CGO SOLUTIONS

Calderon: Let peC™, p-p=10|
nk €R™|n| = |kl,n-k=0

exponentially decreasing, z-n <0
Au =0, wu=oscillating, z-n=0
exponentially increasing, z-n >0




'COMPLEX GEOMETRICAL OPTICS

(Sylvester-U) n > 2, g € L*°(2)

Let p e C" (p = n+ik,n, k € R") such that

(Inl = [kl,n -k = 0).

Then for |p| sufficiently large we can find solutions of

‘(A—q)wp=00n Q‘

of the form

wp = €"P(1+ Wy(x, p))

with W; — 0 in Q as |p| = oco.




Proof /\q1=Aq2:>Q1ZQ2‘

_ =0
/Q(ql go)uiun

up =" P11+ Wy (2, 01)), w2 =e""2(1+ Vgy(,p2))

pr-pr=p2-p2=0, p1=n+i(k+1)
p2=-—n+i(k—1)

nk=mn-1=1k=0, [n*>=]k?+]I? .

/Q(‘II - %)82“}’6(1 F Vg + Wy + Vg Wy,) =0

Letting |I| — oo ‘/Q(ql — qg)eQiI'k =0 VE=q1=¢




|PARTIAL DATA PROBLEM

Suppose we measure [

A(DIr. suppf C T
", I’ open subsets of 92

Can one recover ~7

Important case ' =T1".



EXTENSION OF CGO SOLUTIONS

u=e"P(1+ Vy(z,p)
peCp-p=0

(Not helpful for localizing)
Kenig-Sjostrand-U (2007),

u = " PO+ () (4(2) + R(a, 1))

T €R, ¢, real-valued, R(z,7)— 0 as 7 — oo.
@ limiting Carleman weight,

Ve Vi =0, |Vo|=|VY|
zg ¢ ch(2)

Example: ‘tp(a:) =In|x — zq|,




CGO SOLUTIONS

u = e™(P@+(@) (44 () + R(z, 7))
R(z,7) =30 in Q

‘o) =1In|z — x|

Complex Spherical Waves

Theorem (Kenig-Sjostrand-U) 2 strictly convex.

/\‘11

)r =Ag|., TCoQ T arbitrary

=q1 =q2



Complex Spherical Waves

(Loading reconperfectl.mpg)
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Theorem (Kenig-Sjostrand-U) 2 strictly convex.

AQl = /\Q2 r

)r rC o, T arbitrary

=q1 = q2

ur = @ FWa, | p(x) = Infa —wol,20 &eh()

Eikonal: \wa VY =0,|Veg| = VY|
P(z) = d(‘z W), w € Sn=1: smooth ”

for z € Q.

Transport: ‘(V(p +iVy) - Var = O‘

(Cauchy-Riemann equation in plane generated by Vi, V1))



p(z) = Injz —zol, o &ch(R2) ’

Carleman Estimates

>
ulpg = PMon =0 QL = {x € 9Q; Vyp-v < 0}

/ <Vo,v > |e_7¢(x)a—u|2ds < g/ (A — q)ue_7¢($)|2ds
Josay ov T JQ

This gives control of %|39+,5,

‘BQ_F’(;:{:BeaQ,Vapw/Zé}‘




Outline:

» Calderén’s problem with partial data

» Travel time tomography with partial data




Travel Time Tomography (Transmission)‘

Global Seismology |

Inverse Problem: Determine inner structure of Earth by measuring
travel time of seismic waves.



\Tsunami of 1960 Chilean Earthquake

Black represents the largest waves, decreasing in height through
purple, dark red, orange and on down to yellow. In 1960 a tongue
of massive waves spread across the Pacific, with big ones through-
out the region.



Human Body Seismology

ULTRASOUND TRANSMISSION TOMOGRAPHY(UTT)

Receiver g d
) Y

o C Transmitter

1
/ ds| = Travel Time (Time of Flight).
v c(x)




THIRD MOTIVATION
'OCEAN ACOUSTIC TOMOGRAPHY |

e —— " e T—
— e

Ocean Acoustic Tomography

Ocean Acoustic Tomography is a tool with which we can study
average temperatures over large regions of the ocean. By measur-
ing the time it takes sound to travel between known source and
receiver locations, we can determine the soundspeed. Changes in
soundspeed can then be related to changes in temperature.

N



'REFLECTION TOMOGRAPHY

Scattering Obstacle

Points in medium

Q) @



'REFLECTION TOMOGRAPHY

'Oil Exploration Ultrasound




| TRAVELTIME TOMOGRAPHY | (Transmission)

Motivation:Determine inner structure of Earth by
measuring travel times of seismic waves

Herglotz, Wiechert-Zoeppritz (1905)

Sound speed ¢(r), r = |z

r (c(r)) >0

Reconstruction method of ¢(r) from lengths of
geodesics



2__ 1 2
dsc = md.’r

More generally ds2 = %daﬂ
Velocity v(z,£) = c(z), || =1 (isotropic)

Anisotropic case

ds® = Xni 945 (x)dx;dx g = (gi5) is a positive defi-

i,j=1 nite symmetric matrix
Velocity v(z, &) = /X121 g9 (2)&€5, €] =1
99 = (gip) 7"

The information is encoded in the
boundary distance function



More general set-up
(M, g) a Riemannian manifold with boundary
(compact) g = (g45)
X

y x,yG@M

do(w,y) = inf (o)

o(l)=y

L(o) = length of curve &

L(o) = f3 \/Z?,jzl Qij(o'(t))%%dt

Inverse problem

Determine g| knowing dg(z,y) z,y € OM



?

y dg=g -

(Boundary rigidity problem)

Answer ¢ M — M diffeomorphism
w‘aM = Identity

dw*g = dg

v*g = (Dyogo(DY)T) oy

.do;
Ly(0) = 1§ \[S0jmr 93 (o ()25 S

G=4vo0 ‘Lw*g(&) = Ly(0) ‘




Only obstruction to determining g from dg 7 No

za
@“

dg(xg, 0M) > supy yeonm dg(z,y)

Can change metric
near SP




Def (M, g) is boundary rigid if (M, g) satisfies dz = dy.
Then 3¢ : M — M diffeomorphism,
that

¢\8M = Identity, so

Need an a-priori condition for (M, g) to be boundary
rigid.

One such condition is that (M, g) is



DEF (M,g) is simple if given two points z,y € M, 3!
geodesic joining z and y and OM is strictly convex

[CONJECTURE]

(M, g) is simple then (M, g) is boundary rigid ,that is
determines [g| up to the natural obstruction.
(dd)*g = dg)

( Conjecture posed by R. Michel, 1981 )



Results (M, g) simple

e R. Michel (1981) Compact subdomains of R2 or H?Z2
or the open round hemisphere

e Gromov (1983) Compact subdomains of R"

e Besson-Courtois-Gallot (1995) Compact subdomains
of negatively curved symmetric spaces

(All examples above have constant curvature or special
symmetries)

Stefanov-U (1998)

Lassas-Sharafutdinov-U —
*\ (2003) dg = dgo , go close to

Burago-Ivanov (2010) Euclidean



n=2

e Otal and Croke (1990)

THEOREM(Pestov-U, 2005)

Two dimensional Riemannian manifolds with boundary
which are simple are boundary rigid (dg = g up to
natural obstruction)



Theorem (n > 3) (Stefanov-U, 2005)

(M, g;) simple 1 = 1,2, g; close to gg € L where L is a
generic set of simple metrics in C*¥(M). Then

dg; = dg, = I . M — M diffeomorphism,

) oM = Identity, so that

Remark

If M is an open set of R", £ contains all simple and
real-analytic metrics in C*(A1).



Isotropic Case

Assume that g is isotropic, i.e., g;j(z) = c_2(a:)5ij. Phys-
ically, this corresponds to a variable wave speed that
does not depend on the direction of propagation. In
the class of the isotropic metrics, we do not have the
freedom to apply isometries and we would expect g to
be uniquely determined.

This is known to be true for simple metrics (Mukhometov,
Romanov, et al.) More generally, we can fix gg and we
have uniqueness of the recovery of the conformal factor

e(z) in ¢ 2gq.



Partial Data

Boundary Rigidity with partial data: Does dc,ggo,
known on OM x OM near some p, determine c(x) near
p uniquely?

We measure the distance betwen pairs of points here sz

7]
’




Theorem (Stefanov-U-Vasy, 2013). Let dimM > 3. If
OM is strictly convex near p for cand ¢, and dc_2g0 = dz_ggo
near (p,p), then ¢ = ¢ near p.

Also stability and reconstruction.

The only results so far of similar nature is for real ana-
lytic metrics (Lassas-Sharafutdinov-U, 2003). We can
recover the whole jet of the metric at M and then use
analytic continuation.

This is the first local result without analyticity assump-
tions.



'Geodesics in Phase Space

g= (gij(:c)) symmetric, positive definite
Hamiltonian is given by

o =2 Y diwag-1) o= (s9w)

i,j=1

1

X4(s,X9) = (mg(s,X0)7§g(s,X0)> be bicharacteristics

dx _ OHy d¢ _ 0OHy

sol. of — ,
ds & ds ox

2(0) =29, £(0) = €9, X0 = (20,¢0), where £0 € S7~1(20)
537 Ha) = {€ € R™ Hy(e,&) =0}

Projections in z: z(s) .



Scattering Relation

dg only measures first arrival times of waves.

We need to look at behavior of all geodesics

=

) I€llg = lInllg =1

ag(2,€) = (y,1), ag is SCATTERING RELATION

If we know direction and point of entrance of geodesic
then we know its direction and point of exit.



Lens Rigidity

Define the scattering relation agy and the length (travel
time) function £:
oM

ag : ($7§) — (y777)7 Z(x,&) — [0,00]
Diffeomorphisms preserving OM pointwise do not change

L, ¢!
Lens rigidity: Do a4, ¢ determine g uniquely, up to isometry?




Lens rigidity: Do ag, ¢ determine g uniquely, up to isometry?

No, in general but the counterexamples are harder to
construct.

The lens rigidity problem and the boundary rigidity one
are equivalent for simple metrics! Indeed, then dg(m,y),
known for z, y on M determines ag4, ¢ uniquely, and
vice-versa. This is also true locally, near a point p where
OM is strictly convex.

For non-simple metrics (caustics and/or non-convex
boundary), the Lens Rigidity is the right problem to
study.

There are fewer results: local generic rigidity near a
class of non-simple metrics (Stefanov-U, 2009), for
real-analytic metrics satisfying a mild condition (Vargo,
2010), the torus is lens rigid (Croke 2012), stability es-
timates for a class of non-simple metrics (Bao-Zhang
2012).



Lens Rigidity with partial data

Lens Rigidity with partial data: Does the lens re-
lation known for points near p, and “almost tangent
directions” determine c(z) near p uniquely?

As an immediate consequence of our theorem, the an-
swer is affirmative.



Global result under the foliation condition

We could use a layer stripping argument to get deeper
and deeper in M and prove that one can determine c in
the whole M.

Foliation condition: M is foliated by strictly con-
vex hypersurfaces if, up to a nowhere dense set, M =
Ute[O,T)Zt' where 3; is a smooth family of strictly con-
vex hypersurfaces and g = oM.

A more general condition: several families, starting
form outside M.



Global result under the foliation condition

Theorem (Stefanov-U-Vasy, 2013). Let dim M > 3, let
c=con oM, let M be strictly convex with respect to
both g = ¢ 2gg and § = & 2gg. Assume that M can be
foliated by strictly convex hypersurfaces for g. Then if
ag = dgl=1we have c=¢in M.

This is a generalization of Mukhometov's result: one
can have conjugate points inside, or even trapped geodesics.
Example: a tubular neighborhood of a periodic geodesic

on a negatively curved manifold.

Foliation condition is an analog of the Herglotz, Wieckert-
Zoeppritz condition for non radial speeds.



Idea of the proof
The proof is based on two main ideas.

First, we use the approach in a recent paper by U-Vasy
(2013) on the linear integral geometry problem.

Second, we convert the non-linear boundary rigidity
problem to a “pseudo-linear” one. Straightforward lin-
earization, which works for the problem with full data,
fails here.



First step: Linear Problem

U-Vasy result: Consider the inversion of the geodesic
ray transform

150 = [ $(x() ds

known for geodesics intersecting some neighborhood of
p € OM (where OM is strictly convex) “almost tangen-
tially” . Then they prove that those integrals determine
f near p uniquely. It is a Helgason support type of
theorem for non-analytic curves! This was extended
recently by H. Zhou for arbitrary curves (OM must be
strictly convex w.r.t. them) and non-vanishing weights.



The main trick in U-Vasy is the following idea:

Introduce an artificial, still strictly convex boundary
near p which cuts a small subdomain near p. Then
use Melrose's scattering calculus to show that the I,
composed with a suitable ‘‘back-projection” is elliptic
in that calculus. Since the subdomain is small, it would
be invertible as well.



Consider

PIG) = DXL = [ @ X f (),
where x is a smooth cutoff sketched below (angle ~ ),
and z is the distance to the artificial boundary.




Inversion of local geodesic transform
PF) o= INIf) = [ a7 F (0o,

Main result: P is an elliptic pseudodifferential operator
in Melrose’'s scattering calculus.

There exists A such that AP=I1+R

This is Fredholm and R has a small norm in a neigh-
borhood of p. Therefore invertible near p.



Second Step: Reduction to Pseudolinear Problem

Identity (Stefanov-U, 1998)

X,
X0 %

T = dg,,

F(s) = Xgo (T — 5, Xg, (5, X0)),

F(0) = Xg, (T, X°), F(T) = Xg,(T, X9,
/OT F/(s)ds = Xgy (T, X°) — Xy, (T, X°)

T 90Xy,

S
o 9x0

(T =5, Xgy (5, X%)) (Vg — vgz)\qu(&xo)d

= X4, (T, X°) — X,,(T, X°)




Identity (Stefanov-U, 1998)

0
— 5, Xg,(5,X9)) (Vg — V92)‘X91(3,X0)d5

= X4, (T, X°%) — X4, (T, X9)

/T 0X 92
0Xx0

Vg]. =

OHg; OHy; I .
J —— =) )| the Hamiltonian vector field.
o€ oz

Particular case:]

1

1
Voo = (6, —5V(@DleP)

Linear in c?!



'Reconstruction

T 0Xg, 0
/O e (T — 5, Xgo(s, X9)) x

1
2 2y oo ovi2
((01 c5)§, 2V(c1 c3) €] )‘Xg2(57X0)dS
= X, (T, X°) — X, (T, X°)
—_———
data

Inversion of weighted geodesic ray transform and use sim-
ilar methods to U-Vasy.




REFLECTION TRAVELTIME TOMOGRAPHY
Broken Scattering Relation

(M, g): manifold with boundary with Riemannian metric

@
((x hé“)v(xlvgl):t) €B ¢ '
t = S1 + Lol e

(r1.&1)

Theorem (Kurylev-Lassas-U)

n > 3. Then OM and the broken scattering relation B
determines (M, g) uniquely.




'Numerical Method
(Chung-Qian-Zhao-U, IP 2011)

T 0Xg,
o 0x0

(T = s, X4, (s, X9)) x

2 2 1.2 o2
(=D 3R - DIEP)|y(, yoyS
= Xg; (T, X°) — Xy, (T, X°)

Adaptive method

Start near with

co = 1 and iterate.




'Numerical examples

Example 1: An example with no broken geodesics,
c(z,y) =14 0.3sin(2wz) sin(27y), cg = 0.8.

Numerical soltion at he 55th terason

: - .
0e =
0 — 08
0 o7
0 08 1
|
08 . 08
g 0z [ o o 0 © o1 02 03 0+ 05 08 07 08 03 1
=

Left: Numerical solution (using adaptive) at the 55-th iteration.

Middle: Exact solution. Right: Numerical solution (without
adaptive) at the 67-th iteration.



Example 2: A known circular obstacle enclosed by a
square domain. Geodesic either does not hit the
inclusion or hits the inclusion (broken) once.

c(z,y) =14 0.2sin(2nrzx) sin(my), cg = 0.8.

Numerical scluon & the 201 teratio Exact soluior

I

g iz 0 o 0 T 0 0z n« 0 0 0

Left: Numerical solution at the 20-th iteration. The relative error
is 0.094%. Right: Exact solution.



Example 3: A concave obstacle (known).
c(z,y) =14 0.1sin(0.57x) sin(0.57y), ¢g = 0.8.

Numerical soltion &t e &7t erason

Left: Numerical solution at the 117-th iteration. The relative
error is 2.8%. Middle: Exact solution. Right: Absolute error.




Example 4: Unknown obstacles and medium.

The unknown obstacles

Rays used without ki

Left: The two unknown obstacles. Middle: Ray coverage of the

unknown obstacle. Right: Absolute error.

g the shape

Asolts emo



Example 4: Unknown obstacles and medium (contin-
ues).
r=140.6cos(36) with r = \/(z — 2)2 4 (y — 2)2,

c(r) =1+ 0.2sinr

The urknown flower-shaped obstacle

Left: The two unknown obstacles. Middle: Ray coverage of the
unknown obstacle. Right: Absolute error.




Example 5: The Marmousi model.

Numerical scluion at the 16th teration

Left: The exact solution on fine grid. Middle: The exact solution
projected on a coarse grid. Right: The numerical solution at the

16-th iteration. The relative error is 2.24%.




Example 5: The Marmousi model (with noise).

Left: The numerical solution with 0.1% noise. The relative error
is 4.16%. Right: The numerical solution with 1% noise. The

relative error is 5.53%.



Open problem: Partial Data in n = 2 for dj.

Pestov-U (2005): from d; one can recover A,.

. 2
Question: from dg‘rxr .can one recover A, -
Carleman estimate?



THANKS JOHANNES FOR THE WONDERFUL MATHEMATICS!



