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The magnetic Laplacian

Consider a charged particle in a domain X C R™ (or Riemannian
manifold) moving in a non-vanishing, time-independent magnetic
field.
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The magnetic Laplacian

Consider a charged particle in a domain X C R™ (or Riemannian
manifold) moving in a non-vanishing, time-independent magnetic
field.

Magpnetic field: B € Q%(X) is a differential 2-form.
Magnetic potential: 4 € Q(X), s.t. dA = B.

Classical Hamiltonian: H(q,p) = |lp — A(q)||* on T*X.
Gauge transformation: p +— p + df.

h o 2
Quantum Hamiltonian: H = Z 0 —a; | .
i 0g;

Here X = R", A = a1dg + - - - andgy.
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The magnetic Laplacian

Consider a charged particle in a domain X C R™ (or Riemannian
manifold) moving in a non-vanishing, time-independent magnetic
field.

Magpnetic field: B € Q%(X) is a differential 2-form.
Magnetic potential: 4 € Q(X), s.t. dA = B.

Classical Hamiltonian: H(q,p) = |lp — A(q)||* on T*X.
Gauge transformation: p — p + df.

h o 2
Quantum Hamiltonian: H = Z 0 —a; | .
i 0g;

Here X = R", A = a1dg + - - - andgy.
Gauge transformation: unitary conjugation by e*//".
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m Maths:
much less studied than
electric field A +V
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= Maths:
much less studied than
electric field A +V
(some similarities,
sometimes mysterious)

San Vii Ngoc, Univ. Rennes 1 Eigenvalue clusters for magnetic Laplacians in 2D 3/31



Motivations

m Maths:
much less studied than
electric field A +V
(some similarities,
sometimes mysterious)

m Earth’s magnetic field

San Vi Ngoc, Univ. Rennes 1 Eigenvalue clusters for magnetic Laplacians in 2D



Motivations

m Maths:
much less studied than
electric field A +V
(some similarities,
sometimes mysterious)

m Earth’s magnetic field

m Superconductors
[Fournais-Helffer, Lu-Pan, etc.]
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Semiclassical analysis

m asymptotics, as i — 0, of eigenfunctions, eigenvalues, gaps,
tunnel effect, etc. (many authors !)
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m constant magnetic field

m variable magnetic field, non zero
m possibly vanishing magnetic field
m various geometries
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Semiclassical analysis

m asymptotics, as i — 0, of eigenfunctions, eigenvalues, gaps,
tunnel effect, etc. (many authors !)

m constant magnetic field

m variable magnetic field, non zero
m possibly vanishing magnetic field
m various geometries

m Dimension 2, non-vanishing B:
Theorem (Helffer-Kordyukov 2009, 2013)

If the magnetic field has a unique and non-degenerate minimum,
the j-th eigenvalue admits an expansion in powers of i'/% of the
form:

Aj(h) ~ hmin B(q) 4 h2(c1(25 — 1) 4 o) + O(B%/?),

q€R?

where cy and c; are constants depending on the magnetic field.
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ASYMPTOTICS OF EIGENVALUE CLUSTERS FOR THE
LAPLACIAN PLUS A POTENTIAL

ALAN WEINSTEIN

0. Introduction

Let & be the Laplace-Beltrami operator on a compact riemannian manifold X,
V: X — R a smooth function which we consider as a multiplication oper-
ator. The sum H = A + V is called a (reduced) Schrodinger operator, and its
elgenvalues represent the encrgy levels of  guantum mechanica sysiem with
kinetic energy given by the riemannian metric, and potential energy V.

If X is the unit n-sphere S*, the cigenvalucs of A are of the form
k(k + n — 1), with multiplicities growing as a polynomial of order n ~ 1 in .
These are the energy levels of a “free particle.” If a force field with potential V
is now applied, each of the multiple eigenvalues splits into a *'cluster” of eigen-
values in the interval

[k(k + n = 1) + min V, k(k + n = 1) + max V).

(The Stark effect, in which V is an electrostatic potential, is a physical example
of this phenomenon.

The structure of the clusters has recently been studied by Guillemin in a
series of papers [GIJ[G2](G3)] intended to show how the potential function V.
might be determined by the cigenvalues of /A + V. In this paper, we extend
some of Guillemin's analysis by showing that the distribution of eigenvalues in
the A'th cluster approaches a limit as k - o, and that the limiting distribution
can be expressed in terms of the averages of V along closed geodesics.

Although we begin with differential operators, our constructions immediately
require the use of pseudodifferential operators, so we begin in that context as
well. In section 1 we show that, modulo a small error, we can replace the

57 study of eigénvalues, is  bidge to the principal Section 3, in which we
analyze the joint spectrum of two commuting operators. Theorem 3.4 in that
section is the main theorem in this paper.* In Section 4, we present some exam-
ples, including an application to the spectrum of manifolds all of whose geodes-
ics are closed.

‘The aforementioned papers of Guillemin, as well as the numerical calcula-
tions of Chachere [C] (discussed in section ) were the main impetus behind the
*M. K and T. Spencer, as well as H. Widom, have independenty proven slightly weaker ver-
sions of Theorem 3.4, using completey diffrent methos.

Received August 19, 1977
883
s

Averaging method for “Schrodinger” (A. Weinstein, Duke 1977)
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work described here. I would like to thank V. Guillemin, T. Spencer, M. Tay-
lor, and H. Widom for very helpful conversations.

1. Averaging the potential.

Let A be a first-order, self-adjoint, positive, elliptic pseudo-differential oper-
ator (WDO) on an n-dimensional compact manifold X such that ¢4 = cf for
some constant ¢, and let H = A* + B, where B is a self-adjoint yDO of order 0.
To study the spectrum of H, we introduce the transformed operators

B, = e Bea

and the averaged operator
e
b=t J Bat.

By Theorem 1.1 of [D-GJ, ¢ is a unitary Fourier integral operator, so the B's
and B are self-adjoint yDO's of order 0.

Lemma 11 [AB] = 0.

Proof. We observe first that

= —iAC B 4 je e,

LA (8}

Now [A.B] = 5 L“ A bt = < B - B,

which is zero because ¢*"'4 commutes with B.

The sp of A* + Bis easy to¢ in terms of the joint spe f
A and B. We will show that A* + B is a good substitute for H = A? + B by
proving the following theorem.

THEOREM 1.2, There is a unitary pseudodifferential operator U such that
U = Iand UA* + B)U-' = (A% + B) are both of order 1.

Theorem 1.2 is a realization, in the context of operator theory, of the *“aver-
aging method™” commonly used in celestial mechanics (see Chapter 10 of [A]).
‘The proof will follow the next few lemmas.

Lemma 1.3, Let Q be a skew adjoint yDO of order 1 such that [A*,
Q] = (B~ B) has order ~1. Then, U= ¢% is unitary, and U ~ I and
U(A* + B)U" = (A* + B) have order ~1.

Proof. U is unitary because Q is skew-adjoint. By Seeley’s functional cal-
culus [SE], U is a DO of order 0. Since the 0-order principal symbol of Q is 0,
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Averaging method for “Schrodinger” (A. Weinstein, Duke 1977)

1. Averaging the potential.

Let A be a first-order, self-adjoint, positive, elliptic pseudo-differential oper-
ator ({DO) on an r-dimensional compact manifold X such that e*"4 = ] for
some constant ¢, and let H = A? + B, where B is a self-adjoint yDO of order 0.
To study the spectrum of H, we introduce the transformed operators

B, = it B oitd
and the averaged operator
_ 1 27
B = 771_— JD B.dt.
By Theorem 1.1 of [D-G], ¢* is a unitary Fourier integral operator, so the B,’s
and B are self-adjoint ¢DQO’s of order 0.

LemMa 1.1. [A,B] = 0.
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Averaging method for “Schrodinger” (A. Weinstein, Duke 1977)

The spectrum of A* + Bis easy to determine in terms of the joint spectrum of
A and B. We will show that A? + B is a good substitute for H = A? + B by
proving the following theorem.

THEOREM 1.2. There is a unitary pseudodifferential operator U such that
U — Iand U(A? + B)U™! — (A% + B) are both of order —1.

Theorem 1.2 is a realization, in the context of operator theory, of the ‘‘aver-
aging method’’ commonly used in celestial mechanics (see Chapter 10 of [A]).
The proof will follow the next few lemmas.

LeMMA 1.3. Let Q be a skew adjoint yDO of order —1 such that [A?,
Q] - (B — B) has order —1. Then, U = e is unitary, and U — 1 and
U(A? + B)U™! — (A2 + B) have order —1.
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Periodic bicharacteristics, more

There have been many works on “periodic bicharacteristics”.

m Colin de Verdiere 1979 [3]
It is enough that the principal symbol is elliptic and has a
periodic hamiltonian flow. (+ assmptn on sub-principal)
Averaging = clustering of the spectrum.
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Periodic “bicharacteristics”, non-selfadjoint

Ann. Henri Poincaré 5 (2004) 1 — 73
(© Birkh&user Verlag, Basel, 2004
1424-0637,/04,/010001-73

DOI 10.1007/500023-004-0160-1 |Anna|es Henri Poincaré

Non-Selfadjoint Perturbations of
Selfadjoint Operators in 2 Dimensions I

Michael Hitrik and Johannes Sjostrand

Abstract. This is the first in a series of works devoted to small non-selfadjoint
perturbations of selfadjoint h-pseudodifferential operators in dimension 2. In the
present work we treat the case when the classical flow of the unperturbed part is
periodic and the strength € of the perturbation is 3 h (or sometimes only > h?) and
bounded from above by A° for some 8 > 0. We get a complete asymptotic description
of all eigenvalues in certain rectangles [—1/C,1/C] + ie[Fy — 1/C, Fy + 1/C).

San Vii Ngoc, Univ. Rennes 1 Eigenvalue clusters for magnetic Laplacians in 2D



Periodic “bicharacteristics”, non-selfadjoint

Ann. Henri Poincaré 5 (2004) 1 — 73
(© Birkh&user Verlag, Basel, 2004
1424-0637,/04/010001-73

DOI 10.1007/500023-004-0160-1 |Anna|es Henri Poincaré

Non-Selfadjoint Perturbations of
Selfadjoint Operators in 2 Dimensions I

Michael Hitrik and Johannes Sjostrand

Abstract. This is the first in a series of works devoted to small non-selfadjoint
perturbations of selfadjoint h-pseudodifferential operators in dimension 2. In the
present work we treat the case when [the classical flow of the unperturbed part is
periodic and the strength € of the perturbation is 3 h (or sometimes only >» h?) and
bounded from ahove by A° for some 8 > 0. We get a complete asymptotic description
of all eigenvalues in certain rectangles [—1/C,1/C] + ie[Fy — 1/C, Fy + 1/C).

San Vii Ngoc, Univ. Rennes 1 Eigenvalue clusters for magnetic Laplacians in 2D



Periodic “bicharacteristics”, non-selfadjoint

Let H), = pj - dd—m — :—5 be the Hamilton field of p. In this work, we will always
assume that for E € neigh (0, R):

The Hy-flow is periodic on p~Y(E) N T*M with

period T'(£) > 0 depending analytically on E. (1.13)

Let g = %(%)eznpé, so that
pe = p+ieqg+ O(¥m), (1.14)
in the case M = R?* and p. = p+ ieq + O(2(€)™) in the manifold case. Let
1 T(E)/2
{q) = —/ goexptHydt on p~ ' (E)NT*M. (1.15)
T(E) J_ripy2

Notice that p, (¢) are in involution; 0 = Hy(g) =: {p, {¢)}. In Section 3, we shall
see how to reduce ourselves to the case when

pe = p+ ieq) + O(2), (1.16)

near p~ ! (0)NT™*M. An easy consequence of this is that the spectrum of P, in {z €
C:|Rez| < 6} is confined to | — 4, §[+i€] (Re g} min,0 — 0(1). (Re ¢)max,0 +0(1)[, when
d,€,h — 0, where (Re@)mino = minpfl(mmeM(Req) and similarly for (g)max,o.
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Periodic bicharacteristics & Harmonic approximation

For semi-excited states, the Harmonic approximation can replace
the principal symbol (cf. [Sjostrand 1992]).

Theorem (Charles, VNS, 2008)

2 .. .
Let P = —%A + V(x), V has a non-degenerate minimum with
eigenvalues (V%,...,v2). Assume that v; are coprime integers.

There exists hg > 0 and C' > 0 such that for every h € (0, hy]

. En+ -

h h
35 g

Spec(P) N (—oo, Ch%) C U {EN -
En€Spec(Hz)

When Ey < Ch3, let
m(Ey, k) = #Spec(P) N [EN — L En+ g} . Then m(Ey, )

is precisely the dimension of ker(Hy — Ey).
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Classical dynamics for magnetic fields: Lorentz

Let (e1,e2,e3) be an orthonormal basis B(q)
of R3. Our configuration space is

R? = {qie1 + q2e2; (q1,q2) € R?}, and

the magnetic field is B = B(q1,q2)es, ©

B #0. o

:
Eigenvalue clusters for magnetic Laplacians in 2D 12/31
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Classical dynamics for magnetic fields: Lorentz

Let (e1,e2,e3) be an orthonormal basis B(q)
of R3. Our configuration space is

R? = {gie1 + qeea; (q1,¢2) € R?}, and
the magnetic field is B = B(q1,q2)es,
B #0. o

Newton's equation for the particle under the action of the Lorentz

force:
q§g=2qNB. (1)

The kinetic energy E = 1{/4||? is conserved.
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Classical dynamics for magnetic fields: Lorentz

Let (e1,e2,e3) be an orthonormal basis B(q)
of R3. Our configuration space is

R? = {q1e1 + qoe2; (CIL, ¢2) € R?}, and

the magnetic field is B = B(q1,q2)es, ©
B #0. a1
Newton's equation for the particle under the action of the Lorentz
force:
G=24ANB. (1)

The kinetic energy E = 1{/4||? is conserved.

If the speed ¢ is small, we may linearize the system, which
amounts to have a constant magnetic field.

= circular motion of angular velocity 6 = —2B and radius
llg||/2B. Thus, even if the norm of the speed is small, the angular
velocity may be very important.
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Magnetic drift

If B is in fact not constant, then after a while, the particle may
leave the region where the linearization is meaningful.
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http://www.physics.ucla.edu/plasma-exp/beam/BeamLoopyMirror.html
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Magnetic drift

If B is in fact not constant, then after a while, the particle may
leave the region where the linearization is meaningful.

This suggests a separation of scales, where the fast circular motion
is superposed with a slow motion of the center
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Magnetic drift

If B is in fact not constant, then after a while, the particle may
leave the region where the linearization is meaningful.

This suggests a separation of scales, where the fast circular motion
is superposed with a slow motion of the center

m electron beam in a non-uniform magnetic field

This photograph shows the motion
of an electron beam in a non-uniform
magnetic field. One can clearly see
the fast rotation coupled with a
drift. The turning point (here on
the right) is called a mirror point.
Credits: Prof. Reiner Stenzel, http://

www.physics.ucla.edu/plasma-exp/

beam/BeamLoopyMirror.html
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Classical dynamics for magnetic fields: Hamilton

It is known that the system (1) is Hamiltonian.
In terms of canonical variables (¢, p) € T*R? = R* the
Hamiltonian (=kinetic energy) is

H(q,p) = Ilp — A(9)]I*. (2)

We use here the Euclidean norm on R2, which allows the
identification of R? with (R?)* by

V(v,p) € R? x (R*)*,  p(v) = (p,v). (3)
Thus, the canonical symplectic structure w on T*R? is given by
w((Q1, P1), (Q2, P»)) = (P1,Q2) — (P2, Q1) (4)

It is easy to check that Hamilton's equations for H imply Newton's
equation (1). In particular, through the identification (3) we have
q=2(p—A).
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Fast-slow decomposition: cyclotron & drift

Theorem
There exists a small energy Ey > 0 such that, for all E < Ey, for
times t < T(E), the magnetic flow ©'; at kinetic energy H = E s,
up to an error of order O(E°), the Abelian composition of two
motions:
m [fast rotating motion| a periodic flow with frequency
depending smoothly in E;

m [slow drift] the Hamiltonian flow of a function of order E on
¥ = H-Y0).

m Thus, we can informally describe the motion as a coupling
between a fast rotating motion around a center c(t) € H~1(0)
and a slow drift of the point ¢(¢).

m For generic starting points, T(E) ~ 1/E", arbitrary N > 0.
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ﬂ B=2+@+¢@+¢/3
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/home/san/prog/ocaml/oplot/exemples/magnetic.ml

Fast-slow decomposition: numerics
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A symplectic submanifold

We introduce the submanifold of all particles at rest (¢ = 0):
Si=H'0)={(ap); p=A@)}

Since it is a graph, it is an embedded submanifold of R%,
parameterized by ¢ € R2.
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A symplectic submanifold

We introduce the submanifold of all particles at rest (¢ = 0):
Si=H'0)={(ap); p=A@)}

Since it is a graph, it is an embedded submanifold of R%,
parameterized by ¢ € R2.

Lemma

¥ is a symplectic submanifold of R*. In fact,
Jjfwin = dA ~ B,

where j : R? — ¥ is the embedding j(q) = (¢, A(q)).
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A symplectic submanifold

We introduce the submanifold of all particles at rest (¢ = 0):
Si=H'0)={(ap); p=A@)}

Since it is a graph, it is an embedded submanifold of R%,
parameterized by ¢ € R2.

Lemma
¥ is a symplectic submanifold of R*. In fact,
Jjfwin = dA ~ B,
where j : R? — ¥ is the embedding j(q) = (¢, A(q)).

Proof.
We compute
J*w = j*(dp1 ANdg1 +dpa Ndge) = (—%—‘321 %;‘f)dql Ndgs #0. [
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The symplectic orthogonal bundle

We wish to describe a small neighborhood of ¥ in R*, which
amounts to understanding the normal symplectic bundle of 3.
(Weinstein, 1971 [9])
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The symplectic orthogonal bundle

We wish to describe a small neighborhood of ¥ in R*, which
amounts to understanding the normal symplectic bundle of 3.
(Weinstein, 1971 [9])

3 = {(4, A(@))} = Ty® = span{(Q, T,A(Q))}.
Lemma

For any q € ), a symplectic basis of Tj(q)EL is:

uy = ! (e1,"TgA(e1)); wv1:= m(e%thA(e?))

V]

Proof.

Let (Ql,Pl) S Tj(q)E and (QQ,PQ) with P, = thA(Qg). Then

w((Q1, P1), (Q2, P2)) = (T,A(Q1), Q2) — ('T,A(Q2), Q1) = 0.
etc. L]
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The transversal Hessian

Lemma

The transversal Hessian of H, as a quadratic form on Tj(q)EL, is
given by

Vg € QV(Q, P) € Tj»=t, d2H((Q,P)%) =2|Q A B

We may express this Hessian in the symplectic basis (u1,v1) given
by the Lemma:

2 _ (2B 0
dHTTj(q)EJ'_( 0 2|B| . (5)

Indeed, ||e; A B||? = B2, and the off-diagonal term is
%<61 A B,es A B> =0.
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Preparation lemma

We endow C,, x REZ with canonical variables z; = x1 + &1,
29 = (w2,&2), and symplectic form wg := d&; A dxy + d€a A dxs.
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Preparation lemma

We endow C,, X R§2 with canonical variables z; = x1 + &1,

29 = (x2,&2), and symplectic form wg := d&; A dxy + d€a A dxs.
By Darboux theorem, there exists a diffeomorphism
g:Q—g(Q)C REQ such that g(go) = 0 and g*(d&2 A dxs) = j*w.
In other words, the new embedding 7:=jog™ ' : R? = X is
symplectic.
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Preparation lemma

We endow C,, X R§2 with canonical variables z; = x1 + &1,

29 = (x2,&2), and symplectic form wg := d&; A dxy + d€a A dxs.
By Darboux theorem, there exists a diffeomorphism
g:Q—g(Q)C REQ such that g(go) = 0 and g*(d&2 A dxs) = j*w.
In other words, the new embedding 7:=jog™ ' : R? = X is
symplectic.

Cx Q-2 Ny

(1 + &1, 22) = z1u1(22) + &1v1(22),

where ¢ = g~!(z2). This is an isomorphism between the normal
symplectic bundle of {0} x € and N, the normal symplectic
bundle of 3 (for fixed z3, the map z; — é[:)(zl,zQ) is a linear
symplectic map). Weinstein [9] = 3 symplectomorphism & from a
neighborhood of {0} x © to a neighborhood of 7(£2) C ¥ whose
differential at {0} x Q is equal to ®.
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Preparation lemma: the transformed Hamiltonian

The zero-set ¥ = H~1(0) is now {0} x ©, and the symplectic
orthogonal T ., X+ is canonically equal to C x {22}. By (5), the
matrix of the transversal Hessian of H o @ in the canonical basis of
C is simply d?(H o D) icxfz) =

—1(,
= digyro = (PO S ) ©

Therefore, by Taylor's formula in the z; variable (locally uniformly
with respect to the zy variable seen as a parameter), we get

Ho (I)(Zl, 22) =

= H oo+ dH o Py —o(21) + 5d*(H 0 )z, —0(27) + O(|21 )
=040+ |B(g~(22))] |21]* + O(|1]?).
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Preparation lemma: the transformed Hamiltonian

The zero-set ¥ = H~1(0) is now {0} x ©, and the symplectic
orthogonal T ., X+ is canonically equal to C x {22}. By (5), the
matrix of the transversal Hessian of H o @ in the canonical basis of
C is simply d?(H o D) icxfz) =

—1(,
= digyro = (PO S ) ©

Therefore, by Taylor's formula in the z; variable (locally uniformly
with respect to the zy variable seen as a parameter), we get

Ho (I)(Zl, 22) =

= H oo+ dH o Py —o(21) + 5d*(H 0 )z, =0(27) + O(|21 )
=040+ |B(g~(22))] |21]* + O(|1]*).

Can one do better ?
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Magnetic Birkhoff normal form

Theorem

Let Q C R? be an open set where B does not vanish. Then there
exists a symplectic diffeomorphism ®, defined in an open set

Q C C., x R2,, with values in T*R?, which sends the plane

{z1 = 0} to the surface {H = 0}, and such that

Ho® = |z f(2,|21]") + O(|21|*), (7)
where f : R? x R — R is smooth. Moreover, the map
¢:Q3q— (g, Aq)) € {0} xRZ,)NQ (8)

is a local diffeomorphism and f o (¢(q),0) = |B(q)|.
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Long time dynamics

Let K = |z1]% f(22,|z1]*) (completely integrable).

Theorem
Assume that the magnetic field B > 0 is confining: there exists
C >0 and M > 0 such that B(q) > C if ||q|| > M. Let Cp < C.
Then
The flow ', is uniformly bounded for all starting points (g, p)
such that B(q) < Cy and H(q,p) = O(e) and for times of
order O(1/€Y), where N is arbitrary.

), we have

Up to a time of order T, = O(|lne

ek (g, p) — 0k (g, p)Il = O(e>) (9)

for all starting points (q,p) such that B(q) < Cy and
H(g,p) = O(e).
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Very Long time dynamics

It is interesting to notice that, if one restricts to regular values of
B, one obtains the same control for a much longer time, as stated
below.

Theorem

Under the same confinement hypothesis, let J C (0,Cy) be a
closed interval such that dB does not vanish on B=Y(J). Then up
to a time of order T = O(1/€N), for an arbitrary N > 0, we have

1% (q,p) — i (q,p) Il = O(e™)

for all starting points (q,p) such that B(q) € J and
H(g,p) = O(e).

Rem: The longer time T' = O(1/€e") perhaps also applies for some types
of singularities of B; this seems to be an open question.
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Quantum spectrum

The spectral theory of Hj A is governed at first order by the
magnetic field itself, viewed as a symbol on 3.

Theorem

Assume that the magnetic field B is confining and non vanishing.
Let HY = Op}’(H), where H® = B(yp~'(22))|21|?>. Then the
spectrum of Hy A below Ch is 'almost the same’ as the spectrum
of Ny i=H) + Qp, ie:

[Aj(R) = pj(h)| = O(R%).

where Qy, is a classical pseudo-differential operator, such that
m Qy commutes with Opl* (|z1]%);

m Q) is relatively bounded with respect to ’H% with an arbitrarily
small relative bound;

m its Weyl symbol is O.,(h2 + hi|z1|? + |z1]h),
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Microlocal normal form, |

Cf. [Sj6strand, 1992], [Charles — VNS, 2008], and [lvrii 1998].
Theorem

For h small enough there exists a Fourier Integral Operator Uy,
such that

UiUn =1+ 25, UUF =1+ 27},

where Zy, Z; are pseudo-differential operators that microlocally
vanish in a neighborhood of Q2 N3, and

Ui HpnaUn = TnFp + O(h>), (10)

where
Ih = —h2 o2 2 = 38

Fy is a c/ass:cal pseudo—differentia/ operator in S(m) that
commutes with Iy, (and Ip,F, = Ny = H) + Qp).
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Microlocal normal form, Il

[Fr,Zr] =0

Theorem (Quantization and reduction)

For any Hermite function h,(xz1) such that
Zyhy = R(2n — 1)h,,, the operator F,gn) acting on L*(R,,) by

hn ® F™ (1) = Fy(hn ® u)

is a classical pseudo-differential operator in Sg2(m) with
principal symbol F("™ (x4, &) = B(q);
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Bottom of the magnetic well

We recover the result of Helffer-Kordyukov [4], adding the fact that
no odd power of /!/2 can show up in the asymptotic expansion.

Corollary (Low lying eigenvalues)

Assume that B has a unique non-degenerate minimum. Then
there exists a constant cy such that for any j, the eigenvalue \;(h)
has a full asymptotic expansion in integral powers of h whose first
terms have the following form:

Aj(R) ~ hmin B + h?(c1(2§ — 1) + o) + O(R?),
det(B”op=1(0))

with ¢; = “Bop=10) where the minimum of B is reached at
¢~ 1(0).
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Magnetic excited states

Corollary (Magnetic excited states)

Let ¢ be a regular value of B, and assume that the level set
B~Y(c) is connected. Then there exists ¢ > 0 such that the
eigenvalues of the magnetic Laplacian in the interval

[A(c — €), h(c+ €)] have the form

Xj(h) = (2n = Dhfa(hn(5), hk(5)) + O(h%),  (n(3),k(5)) € Z*,

where f = fo+hfi +---, fi € C®°(R%R) and 01 fo = 0,

02 fo # 0. Moreover, the corresponding eigenfunctions are
microlocalized in the annulus B='([c — ¢, c + €]).

In particular, if ¢ € (min B, 3 min B), the eigenvalues of the
magnetic Laplacian in the interval [h(c — €), h(c + €)] have gaps of
order O(h?). (n=1)
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Proof: semiclassical normal form

Recall H(z1,22) = H® + O(|z1]3), where H? = B(g71(22))|21|%.
Consider the space of the formal power series in 21,1, /i with
coefficients smoothly depending on (i9,&5) @ £ = c> - & (21,61, 7).
We endow & with the Moyal product (compatible W|th the Weyl
quantization)
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Proof: semiclassical normal form

Recall H(z1,22) = H® + O(|z1]3), where H? = B(g71(22))|21|%.
Consider the space of the formal power series in 21,1, /i with
coefficients smoothly depending on (i9,&5) @ £ = c> - & (21,61, 7).
We endow & with the Moyal product (compatible W|th the Weyl
quantization)

The degree of :E‘félﬁhl is a« + 8+ 2l. Dy denotes the space of the
monomials of degree N. Oy is the space of formal series with
valuation at least IV.
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Proof: semiclassical normal form

Recall H(z1,22) = H° + O(|21]), where H? = B(gjl(zQ))|21]2.
Consider the space of the formal power series in &1,&1, 1 with
coefficients smoothly depending on (Z2,&2) : € = c> - & [Z1, &1, R

We endow & with the Moyal product (compatible W|th the Weyl
quantization)

The degree of ¢ Alﬁhl is a« + 8+ 2l. Dy denotes the space of the
monomials of degree N. Oy is the space of formal series with
valuation at least IV.

Proposition
Given v € Os, there exist formal power series T,k € O3 such that:
eihfladT(Ho ) = HO + &,

with: [k, H°] = 0.
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Open questions

m n = 3! Stormer problem (Aurora Borealis)
http://www.dynamical-systems.org/stoermer/

e g e g Fe

Sur Jles trajectoires des corpuscules
¢électrisés dans I'espace
Applications & I'aurore boréale et aux perturbations magnétiques*

Par CARL STORMER,

Professont de Physique i PUnjversité de Cliistiania.

de Birkeland sur Tauvore horéale,  vés dans le champ magnétique terrestre. Birkeland a

UYPOTH
I hypothése que M. Stirmer s'est. proposé dap-  cherehé 1 vérifier expérimentalement sa théorie, ot il
puyer par le caleul, est que Te phénoméne ost  a institu® queligues expériences remusiuables em expo-

A i des pavons cathodiques dmanes du soleil! el alli- 1, e travail

L dun memoire d

Stirmer, publ ehiv. for mathetmatik of Naturvi-

. Pour M. Vittatw au contraire, ces rayons cathodiques sonl  denskab, B. XXVIIL, n*2. (€. R. vol. CXLIL, p. 1580 et CXLITE,

d"ovigine terrestre. Les wavaux sur ce sujet ont été publies eu: po 110, 408 et 4601 (Ectraits par M. Léon Bloch, revns pa
1896. 1901 (Birkeland’, 1804 [Stirmer]. M. C. Stiemer. )
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Sur Jles trajectoires des corpuscules
¢électrisés dans I'espace

Applications & I'aurore boréale et aux perturbations magnétiques*

Par CARL STORMER,

Professont de Physique i PUnjversité de Cliistiania.

vés dans le champ magnétique terrestre. Bickeland a

‘weornise de Dirkeland swe Tanvore horéale,
ifier expérimentalement sa théorie, o i]

I hypothése que M. Stirier s'est. proposé dap-  cherehé 3w

puyer par le caleul, est que Te phénoméne ost  a institu® queligues expériences remusiuables em expo-

A i des pavons cathodiques dmanes du soleil! el alli- 1, G teavail a6

Stirmer, public da

1. Ponr M. ¥ au cenlraire, ces rayons cathadiques sont  denskab, B, XXVIII, ne

d'origine terrestre. Les wavaux sur ce sujet ont €té publies cu: p. 110, 408 et 4601
1896. 1001 ’Eu‘hl]ﬂlldj 1804 (Stimer].

. din mémoire i
for matheimati
R. vol. CNLIL, p. 1580 et CXLITI,

m Non constant rank (B = 0, etc.): new phenomena.
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