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The magnetic Laplacian

Consider a charged particle in a domain X ⊂ Rn (or Riemannian
manifold) moving in a non-vanishing, time-independent magnetic
field.

Magnetic field: B ∈ Ω2(X) is a differential 2-form.

Magnetic potential: A ∈ Ω1(X), s.t. dA = B.

Classical Hamiltonian: H(q, p) = ‖p−A(q)‖2 on T ∗X.
Gauge transformation: p 7→ p+ df .

Quantum Hamiltonian: H =
∑(

~
i

∂

∂qj
− aj

)2

.

Here X = Rn, A = a1dq1 + · · · andqn.
Gauge transformation: unitary conjugation by eif/~.
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Motivations

Maths:
much less studied than
electric field ∆ + V

(some similarities,
sometimes mysterious)

Earth’s magnetic field

Superconductors
[Fournais-Helffer, Lu-Pan, etc.]
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Semiclassical analysis

asymptotics, as ~→ 0, of eigenfunctions, eigenvalues, gaps,
tunnel effect, etc. (many authors !)

constant magnetic field
variable magnetic field, non zero
possibly vanishing magnetic field
various geometries

Dimension 2, non-vanishing B:

Theorem (Helffer-Kordyukov 2009, 2013)

If the magnetic field has a unique and non-degenerate minimum,
the j-th eigenvalue admits an expansion in powers of ~1/2 of the
form:

λj(~) ∼ ~ min
q∈R2

B(q) + ~2(c1(2j − 1) + c0) +O(~5/2),

where c0 and c1 are constants depending on the magnetic field.
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Averaging method for “Schrödinger” (A. Weinstein, Duke 1977)
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Periodic bicharacteristics, more

There have been many works on “periodic bicharacteristics”.

Colin de Verdière 1979 [3]
It is enough that the principal symbol is elliptic and has a
periodic hamiltonian flow. (+ assmptn on sub-principal)

Averaging ⇒ clustering of the spectrum.

Boutet de Monvel, Guillemin 1979 [1]
The structure of each cluster is given by a Toeplitz operator.
The number of eigenvalues in each cluster is a
“Riemann-Roch” formula (simply periodic case)

many refinements, generalizations, etc.
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Periodic “bicharacteristics”, non-selfadjoint
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Periodic bicharacteristics & Harmonic approximation

For semi-excited states, the Harmonic approximation can replace
the principal symbol (cf. [Sjöstrand 1992]).

Theorem (Charles, VNS, 2008)

Let P = −h2

2 ∆ + V (x), V has a non-degenerate minimum with
eigenvalues (ν2

1 , . . . , ν
2
n). Assume that νj are coprime integers.

1 There exists ~0 > 0 and C > 0 such that for every ~ ∈ (0, ~0]

Spec(P ) ∩ (−∞, C~
2
3 ) ⊂

⋃
EN∈Spec(Ĥ2)

[
EN −

~
3
, EN +

~
3

]
.

2 When EN ≤ C~
2
3 , let

m(EN , ~) = #Spec(P )∩
[
EN − ~

3 , EN + ~
3

]
. Then m(EN , ~)

is precisely the dimension of ker(Ĥ2 − EN ).
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Classical dynamics for magnetic fields: Lorentz

Let (e1, e2, e3) be an orthonormal basis
of R3. Our configuration space is
R2 = {q1e1 + q2e2; (q1, q2) ∈ R2}, and
the magnetic field is ~B = B(q1, q2)e3,
B 6= 0.

Newton’s equation for the particle under the action of the Lorentz
force:

q̈ = 2q̇ ∧ ~B. (1)

The kinetic energy E = 1
4‖q̇‖

2 is conserved.

If the speed q̇ is small, we may linearize the system, which
amounts to have a constant magnetic field.
⇒ circular motion of angular velocity θ̇ = −2B and radius
‖q̇‖/2B. Thus, even if the norm of the speed is small, the angular
velocity may be very important.
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Magnetic drift

If B is in fact not constant, then after a while, the particle may
leave the region where the linearization is meaningful.

This suggests a separation of scales, where the fast circular motion
is superposed with a slow motion of the center

electron beam in a non-uniform magnetic field

This photograph shows the motion

of an electron beam in a non-uniform

magnetic field. One can clearly see

the fast rotation coupled with a

drift. The turning point (here on

the right) is called a mirror point.

Credits: Prof. Reiner Stenzel, http://

www.physics.ucla.edu/plasma-exp/

beam/BeamLoopyMirror.html
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Classical dynamics for magnetic fields: Hamilton

It is known that the system (1) is Hamiltonian.
In terms of canonical variables (q, p) ∈ T ∗R2 = R4 the
Hamiltonian (=kinetic energy) is

H(q, p) = ‖p−A(q)‖2. (2)

We use here the Euclidean norm on R2, which allows the
identification of R2 with (R2)∗ by

∀(v, p) ∈ R2 × (R2)∗, p(v) = 〈p, v〉. (3)

Thus, the canonical symplectic structure ω on T ∗R2 is given by

ω((Q1, P1), (Q2, P2)) = 〈P1, Q2〉 − 〈P2, Q1〉. (4)

It is easy to check that Hamilton’s equations for H imply Newton’s
equation (1). In particular, through the identification (3) we have
q̇ = 2(p−A).
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Fast-slow decomposition: cyclotron & drift

Theorem

There exists a small energy E0 > 0 such that, for all E < E0, for
times t ≤ T (E), the magnetic flow ϕtH at kinetic energy H = E is,
up to an error of order O(E∞), the Abelian composition of two
motions:

[fast rotating motion] a periodic flow with frequency
depending smoothly in E;

[slow drift] the Hamiltonian flow of a function of order E on
Σ := H−1(0).

Thus, we can informally describe the motion as a coupling
between a fast rotating motion around a center c(t) ∈ H−1(0)
and a slow drift of the point c(t).

For generic starting points, T (E) ∼ 1/EN , arbitrary N > 0.
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Fast-slow decomposition: numerics

B = 2 + q2
1 + q2

2 + q3
1/3
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Fast-slow decomposition: numerics
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A symplectic submanifold

We introduce the submanifold of all particles at rest (q̇ = 0):

Σ := H−1(0) = {(q, p); p = A(q)}.

Since it is a graph, it is an embedded submanifold of R4,
parameterized by q ∈ R2.

Lemma

Σ is a symplectic submanifold of R4. In fact,

j∗ω�Σ = dA ' B,

where j : R2 → Σ is the embedding j(q) = (q,A(q)).

Proof.

We compute
j∗ω = j∗(dp1∧dq1 +dp2∧dq2) = (−∂A1

∂q2
+ ∂A2

∂q1
)dq1∧dq2 6= 0.
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The symplectic orthogonal bundle

We wish to describe a small neighborhood of Σ in R4, which
amounts to understanding the normal symplectic bundle of Σ.
(Weinstein, 1971 [9])

Σ = {(q,A(q))} ⇒ Tj(q)Σ = span{(Q,TqA(Q))}.

Lemma

For any q ∈ Ω, a symplectic basis of Tj(q)Σ
⊥ is:

u1 :=
1√
|B|

(e1, tTqA(e1)); v1 :=

√
|B|
B

(e2, tTqA(e2))

Proof.

Let (Q1, P1) ∈ Tj(q)Σ and (Q2, P2) with P2 = tTqA(Q2). Then
ω((Q1, P1), (Q2, P2)) = 〈TqA(Q1), Q2〉 − 〈tTqA(Q2), Q1〉 = 0.
etc.
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The transversal Hessian

Lemma

The transversal Hessian of H, as a quadratic form on Tj(q)Σ
⊥, is

given by

∀q ∈ Ω,∀(Q,P ) ∈ Tj(q)Σ⊥, d2
qH((Q,P )2) = 2‖Q ∧ ~B‖2.

We may express this Hessian in the symplectic basis (u1, v1) given
by the Lemma:

d2H�Tj(q)Σ⊥
=

(
2 |B| 0

0 2 |B|

)
. (5)

Indeed, ‖e1 ∧ ~B‖2 = B2, and the off-diagonal term is
1
B 〈e1 ∧ ~B, e2 ∧ ~B〉 = 0.
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1
B 〈e1 ∧ ~B, e2 ∧ ~B〉 = 0.
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Preparation lemma

We endow Cz1 × R2
z2 with canonical variables z1 = x1 + iξ1,

z2 = (x2, ξ2), and symplectic form ω0 := dξ1 ∧ dx1 + dξ2 ∧ dx2.

By Darboux theorem, there exists a diffeomorphism
g : Ω→ g(Ω) ⊂ R2

z2 such that g(q0) = 0 and g∗(dξ2 ∧ dx2) = j∗ω.
In other words, the new embedding ̃ := j ◦ g−1 : R2 → Σ is
symplectic.

C× Ω
Φ̃−→ NΣ

(x1 + iξ1, z2) 7→ x1u1(z2) + ξ1v1(z2),

where q = g−1(z2). This is an isomorphism between the normal
symplectic bundle of {0} × Ω and NΣ, the normal symplectic
bundle of Σ (for fixed z2, the map z1 7→ Φ̃(z1, z2) is a linear
symplectic map). Weinstein [9] ⇒ ∃ symplectomorphism Φ from a
neighborhood of {0} × Ω to a neighborhood of ̃(Ω) ⊂ Σ whose
differential at {0} × Ω is equal to Φ̃.
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Preparation lemma: the transformed Hamiltonian

The zero-set Σ = H−1(0) is now {0} × Ω, and the symplectic
orthogonal T̃(0,z2)Σ

⊥ is canonically equal to C× {z2}. By (5), the
matrix of the transversal Hessian of H ◦Φ in the canonical basis of
C is simply d2(H ◦ Φ)�C×{z2} =

= d2
Φ(0,z2)H ◦ (dΦ)2 =

(
2
∣∣B(g−1(z2))

∣∣ 0
0 2

∣∣B(g−1(z2))
∣∣) . (6)

Therefore, by Taylor’s formula in the z1 variable (locally uniformly
with respect to the z2 variable seen as a parameter), we get
H ◦ Φ(z1, z2) =
= H ◦Φ�z1=0 + dH ◦Φ�z1=0(z1) + 1

2d
2(H ◦Φ)�z1=0(z2

1) +O(|z1|3)

= 0 + 0 +
∣∣B(g−1(z2))

∣∣ |z1|2 +O(|z1|3).

Can one do better ?
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Magnetic Birkhoff normal form

Theorem

Let Ω ⊂ R2 be an open set where B does not vanish. Then there
exists a symplectic diffeomorphism Φ, defined in an open set
Ω̃ ⊂ Cz1 × R2

z2 , with values in T ∗R2, which sends the plane
{z1 = 0} to the surface {H = 0}, and such that

H ◦ Φ = |z1|2 f(z2, |z1|2) +O(|z1|∞), (7)

where f : R2 × R→ R is smooth. Moreover, the map

ϕ : Ω 3 q 7→ Φ−1(q,A(q)) ∈ ({0} × R2
z2) ∩ Ω̃ (8)

is a local diffeomorphism and f ◦ (ϕ(q), 0) = |B(q)|.
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Long time dynamics

Let K = |z1|2 f(z2, |z1|2) (completely integrable).

Theorem

Assume that the magnetic field B > 0 is confining: there exists
C > 0 and M > 0 such that B(q) ≥ C if ‖q‖ ≥M . Let C0 < C.
Then

1 The flow ϕtH is uniformly bounded for all starting points (q, p)
such that B(q) ≤ C0 and H(q, p) = O(ε) and for times of
order O(1/εN ), where N is arbitrary.

2 Up to a time of order Tε = O(|ln ε|), we have

‖ϕtH(q, p)− ϕtK(q, p)‖ = O(ε∞) (9)

for all starting points (q, p) such that B(q) ≤ C0 and
H(q, p) = O(ε).
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Very Long time dynamics

It is interesting to notice that, if one restricts to regular values of
B, one obtains the same control for a much longer time, as stated
below.

Theorem

Under the same confinement hypothesis, let J ⊂ (0, C0) be a
closed interval such that dB does not vanish on B−1(J). Then up
to a time of order T = O(1/εN ), for an arbitrary N > 0, we have

‖ϕtH(q, p)− ϕtK(q, p)‖ = O(ε∞)

for all starting points (q, p) such that B(q) ∈ J and
H(q, p) = O(ε).

Rem: The longer time T = O(1/εN ) perhaps also applies for some types

of singularities of B; this seems to be an open question.
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Quantum spectrum

The spectral theory of H~,A is governed at first order by the
magnetic field itself, viewed as a symbol on Σ.

Theorem

Assume that the magnetic field B is confining and non vanishing.
Let H0

~ = Opw~ (H0), where H0 = B(ϕ−1(z2))|z1|2. Then the
spectrum of H~,A below C~ is ’almost the same’ as the spectrum
of N~ := H0

~ +Q~, i.e.:

|λj(~)− µj(~)| = O(~∞).

where Q~ is a classical pseudo-differential operator, such that

Q~ commutes with Opw~ (|z1|2);

Q~ is relatively bounded with respect to H0
~ with an arbitrarily

small relative bound;

its Weyl symbol is Oz2(~2 + ~ |z1|2 + |z1|4),
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Microlocal normal form, I

Cf. [Sjöstrand, 1992], [Charles – VNS, 2008], and [Ivrii 1998].

Theorem

For ~ small enough there exists a Fourier Integral Operator U~
such that

U∗~Uh = I + Z~, U~U
∗
h = I + Z ′~,

where Z~, Z
′
~ are pseudo-differential operators that microlocally

vanish in a neighborhood of Ω̃ ∩ Σ, and

U∗~H~,AU~ = I~F~ + Ô(~∞), (10)

where

1 I~ := −~2 ∂2

∂x21
+ x2

1;

2 F~ is a classical pseudo-differential operator in S(m) that
commutes with I~ (and I~F~ = N~ = H0

~ +Q~).
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Microlocal normal form, II

[F~, I~] = 0

Theorem (Quantization and reduction)

1 For any Hermite function hn(x1) such that

I~hn = ~(2n− 1)hn, the operator F
(n)
~ acting on L2(Rx2) by

hn ⊗ F (n)
~ (u) = F~(hn ⊗ u)

is a classical pseudo-differential operator in SR2(m) with
principal symbol F (n)(x2, ξ2) = B(q);
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Bottom of the magnetic well

We recover the result of Helffer-Kordyukov [4], adding the fact that
no odd power of ~1/2 can show up in the asymptotic expansion.

Corollary (Low lying eigenvalues)

Assume that B has a unique non-degenerate minimum. Then
there exists a constant c0 such that for any j, the eigenvalue λj(~)
has a full asymptotic expansion in integral powers of ~ whose first
terms have the following form:

λj(~) ∼ ~minB + ~2(c1(2j − 1) + c0) +O(~3),

with c1 =

√
det(B”◦ϕ−1(0))

2B◦ϕ−1(0)
, where the minimum of B is reached at

ϕ−1(0).
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Magnetic excited states

Corollary (Magnetic excited states)

Let c be a regular value of B, and assume that the level set
B−1(c) is connected. Then there exists ε > 0 such that the
eigenvalues of the magnetic Laplacian in the interval
[~(c− ε), ~(c+ ε)] have the form

λj(~) = (2n− 1)~f~(~n(j), ~k(j)) +O(~∞), (n(j), k(j)) ∈ Z2,

where f~ = f0 + ~f1 + · · · , fi ∈ C∞(R2;R) and ∂1f0 = 0,
∂2f0 6= 0. Moreover, the corresponding eigenfunctions are
microlocalized in the annulus B−1([c− ε, c+ ε]).
In particular, if c ∈ (minB, 3 minB), the eigenvalues of the
magnetic Laplacian in the interval [~(c− ε), ~(c+ ε)] have gaps of
order O(~2). (n = 1)
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Proof: semiclassical normal form

Recall H(z1, z2) = H0 +O(|z1|3), where H0 = B(g−1(z2))|z1|2.
Consider the space of the formal power series in x̂1, ξ̂1, ~ with
coefficients smoothly depending on (x̂2, ξ̂2) : E = C∞

x̂2,ξ̂2
[x̂1, ξ̂1, ~].

We endow E with the Moyal product (compatible with the Weyl
quantization)

The degree of x̂α1 ξ̂
β
1 ~l is α+ β + 2l. DN denotes the space of the

monomials of degree N . ON is the space of formal series with
valuation at least N .

Proposition

Given γ ∈ O3, there exist formal power series τ, κ ∈ O3 such that:

ei~
−1adτ (H0 + γ) = H0 + κ,

with: [κ,H0] = 0.
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Open questions

n = 3 ! Störmer problem (Aurora Borealis)
http://www.dynamical-systems.org/stoermer/

Non constant rank (B = 0, etc.): new phenomena.
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polynôme de Hilbert-Samuel [d’après V. Guillemin].
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Birkhäuser Boston Inc., Boston, MA, 1987.
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