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I. Introduction

In this talk, we shall describe a new method to analyze Fourier
series. The motivation comes from solving nonlinear PDE’s.
These PDE’s are evolution equations, describing evolution in time
of physical systems, e.g. So the series are typically space-time
Fourier series .
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Generally speaking, conservation laws play an important role in the
subject. For example, from Mechanics classes, one learns early on
that energy conservation plays an important role. Recall how we
learned in high school to calculate how high a stone could reach if
we throw it up in the air.

While in physics one can almost always invoke energy conservation,
this is no longer so in mathematics, because sometimes one needs
to work in a function space where there is no known conserved
quantities.
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For example, the aforementioned energy is usually defined in a
space which requires 1 derivative. It could happen, that sometimes
the solutions could only be found in a space which requires more
than 1 derivative. (In fact, majority of nonlinear PDE’s are in this
situation.) So even though the energy is conserved, it is not useful!

These equations are called energy supercritical.
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Below we start with the motivating example, the nonlinear
Schrödinger equation (NLS). I hope that you will see that the new
idea required is sufficiently general that it might be applicable to
some other equations.

We start with the basics.
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II. Laplacian and Fourier series in space

We consider the Laplacian ∆ on the torus Td = Rd/(2πZ)d .
Functions on the torus can be identified with periodic functions on
Rd with period (2π)d .

Solving the Laplace equation:

−∆u = f

with a given function f ,
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leads to the eigenvalue-eigenfunction problem

−∆u = λu.

The eigenvalues λ are j2 := |j |2 with corresponding eigenfunction

e−ij ·x , j ∈ Zd ,

forming the basis of space Fourier series. The analysis of which is
an old and classical subject.
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III. Linear Schrödinger equation

The linear Schrödinger equation studies the evolution in time of
the Laplacian. It is

−i ∂u
∂t

= −∆u;

or more generally with the addition of a potential V :

−i ∂u
∂t

= −∆u + Vu.
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We note that by comparison, the heat equation is

∂u

∂t
= −∆u.

With the addition of i , Schrödinger is a different, oscillatory
problem.

This is a recurrent point in the study, namely how to take care of
the first order operator:

i
∂

∂t
,

which is compatible with translation (in time) invariance and
therefore completely loses locality .
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To solve the first Schrödinger equation (the free Schrödinger
equation), one can use the aforementioned space Fourier series.
One obtains solutions of the form

e ij
2te−ij ·x ,

which are components of a space-time Fourier series.

W.-M. Wang Nonlinear Fourier series and applications to PDE



IV. NLS on Td

The nonlinear Schrödinger equation (NLS) on the torus takes the
following form:

−i u̇ = −∆u + |u|2pu,

where p ∈ N is arbitrary or more generally

−i u̇ = −∆u + |u|2pu + H(x , u, ū),

with the addition of an analytic H, for example.

The main reason we mention H is that it has explicit x
dependence, breaking translation invariance and could represent a
topological obstruction.
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(For example, of a kind that one encounters when trying to embed
dimension 3 in dimension 2.)

Remark 1. The Laplacian and the resulting space Fourier series
reflect translation invariance. Therefore the loss of this invariance
could conceivably be a difficulty.

Remark 2. This obstruction already exists in finite dimensions (i.e.,
classical Hamiltonian systems), cf. Duistermaat (1984).
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The method that I will describe is, however, indifferent to the lack
of symmetry and gets around this obstruction. So for the rest of
the talk, I will take H = 0.
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III. The lift

The free Schrödinger equation has only periodic in time solutions
with basic frequency equal to 1. This is because the eigenvalues
are integers.

It is therefore natural to see whether some of these periodic
solutions could bifurcate to solutions to the nonlinear equation,
albeit with several (arbitrary but finite number) frequencies. Let us
denote the number of frequencies by b.
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We wish to continue using Fourier series to find solutions. As a
step toward that, we reexamine the free Schrödinger equation and
try to find more general solutions of b frequencies.

Remark. Sometimes the reason that one cannot find a solution to
a nonlinear equation is because the “solution space” is not large
enough and not because the solution does not exist.
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One therefore lifts the problem and seeks solutions which are
appropriate linear combinations of

e in·ωte−ij ·x ,

where n ∈ Zb and ω = {λk}bk=1 with each λk = j2k an eigenvalue
of the Laplacian, is a vector in Rb.
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In other words, for each frequency in time, an additional dimension
is added and one works in Tb × Td instead.

We note that by restricting to

|n| = 1,

the base harmonics, this recovers the solutions:

e ij
2
k te−ijk ·x

found earlier.
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IV. The bi-characteristics

Using the above ansatz, the Fourier support of the solutions to the
free Schrödinger equation:

−i ∂u
∂t

= −∆u,

satisfies
n · ω + j2 = 0.

We call this paraboloid the characteristics: C+.
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1d periodic for NLS:
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We note that there are many (infinitely) more solutions than
before. This should help solving the nonlinear equations as the
“solution space” is now much bigger:

Zd 7→ Zb × Zd ,

the Fourier dual of Tb × Td .
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V. Nonlinear Fourier series

Returning to the nonlinear equation, as an ansatz, we seek
solutions of b frequencies to the nonlinear equation

−i u̇ = −∆u + |u|2pu

in the form of a nonlinear Fourier series:

u =
∑

û(n, j)e in·ωte ij ·x , (n, j) ∈ Zb+d ,

where ω ∈ Rb is to be determined.

We note that this is a main difference with the linear equation,
where the frequency ω is fixed.
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IV. The bi-characteristics again

Using the nonlinear Fourier series ansatz, the NLS equation
becomes a nonlinear matrix equation:

diag (n · ω + j2)û + (û ∗ v̂)∗p ∗ û = 0

where (n, j) ∈ Zb+d , v̂ = ˆ̄u and ω ∈ Rb is to be determined. For
simplicity we drop the hat and write u for û and v for v̂ etc.
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The solutions to the nonlinear equation will be determined
iteratively using a Newton scheme. The initial approximation is the
linear solution with the linear frequency, which is composed of b
eigenvalues of the Laplacian.

Therefore the initial Fourier support is the same as for the linear
solution and we continue to take the paraboloids C to be the
bi-characteristics.
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Since ω is an integer vector at this stage, C is an infinite set.
Considering C as defining a function on

Rb+d × Rb+d ,

we notice an essential difficulty – the bi-characteristics do not
consist of isolated points.

The “isolated point” property is essential to solve PDE. At this
stage, this “bad geometry” simply does not permit any meaningful
analysis.

Remark (Question). This isolated point property is related to
hypo-ellpticity. (?)
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VI. Partitioning the paraboloids

We improve the geometry by making a partition of the integer
paraboloids C, so that each set in the partition is “small” (for the
most part at most 2d + 2 lattice points).

The partition here is adapted to the convolution structure
generated by the nonlinear terms. This is different from the more
standard lattice point partition, which is typically relative to the
convolution structure leading to the lattice Zm.
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Example.

The symbol
2 cos x = e−ix + e ix

leads to the lattice
Z

and
2 cos 2x + 2 cos 2y = e−2ix + e2ix + e−2iy + e2iy

leads to
2Z× 2Z.
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One of the most classical lattice point partition results is on
spheres Sm. It is essentially due to Janick (circa 1926). This
lemma and its generalizations are in fact convexity bounds.
Moreover they are only asymptotic in the large radius limit.

The partition on the paraboloids has to be achieved differently,
because the time-n direction is flat. This is the difficulty.

One circumvents the lack of convexity by describing each set in the
partition algebraically and proceeds to bound the size of
polynomial systems where there is possibly a solution.
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For appropriate linear solutions (convolution), one then obtains
that the sets in the partition are small. This is the main novelty.

Afterwards, one extracts a parameter from the nonlinearity using
amplitude-frequency modulation. Recall that ω is a variable in the
nonlinear Fourier series.
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More precisely, ω is now such that

n · ω + j2 6= 0

except at (0, 0). (Such ω is called Diophantine.)

The bi-characteristics C has therefore been reduced to one point,
namely the origin. So one can proceed to the analysis.

But there is a catch – this estimate – this isolated point property is
not uniform. There is a problem at infinity (n→∞) leading to
small-divisors.
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VII. The Analysis

With the frequency ω a Diophantine parameter, one can start to
adapt the small-divisor analysis of Bourgain, which previously was
under the fundamental assumption of a spectral gap, in the form
of a spectrally defined Laplacian.

Our work has now removed this assumption and therefore solves
the original NLS.
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VIII. Conclusion

Putting everything together using a Newton scheme, the final
conclusion is then

Theorem [W] There exists a class of global solutions to energy
supercritical NLS in arbitrary dimension d and for arbitrary
nonlinearity p.
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Remark. These solutions seem to be out of the reach of the
current nonlinear Schrödinger theory, which relies on energy
conservation laws.

We note that for the cubic NLS (p = 1), Procesi and Procesi have
related results using a different approach.
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IX. Some comments

The theory sketched above, in some sense, centers around
singularity analysis, be it geometrical – characteristics are not
isolated points, or analytical – small divisors.

The possible singularities that are dealt with here occur only for
long or infinite time and are largely brought on by the first order
operator i∂/∂t. Generally speaking, these singularities do not exist
when one can use energy conservation (or when the Kolmogorov
non-degeneracy condition is not violated).
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This is also reflected in the mathematics used in the theory, which
includes notions such as algebraic sets, semi-algebraic sets, variable
reductions and subharmonic functions.

When seeking certain types of solutions, this method seems to
provide a rather general way to deal with singularities.
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X. A technical note

A large part of the theory is independent of self-adjointness. In
fact, in d ≤ 2, the whole theory goes through without using
self-adjointness.

The reason is that most part of the theory uses determinant
(polynomial) approximations. For d ≤ 2, this is ok for controlling
the degree of the polynomials since the degeneracy of the Laplacian
essentially only contributes a “log”, more precisely e logR/loglogR .

For d > 2, due to the high degeneracy of the Laplacian, it seems
that one way out is to replace determinant variation by eigenvalue
variation and hence the need for self-adjointness.
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HAPPY BIRTHDAY, JOHANNES !
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