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Introduction. Motivation

The Kramers-Fokker-Planck equation

The Kramers-Fokker-Planck equation is the evolution equation for the
distribution functions describing the Brownian motion of particles in
an external field F(x) :

ow 0 0 F(x), ~KkT

ot Dt T ) Ty AW M
where W = W(x,v;t), x,v e R", t > 0and F(x) = —mV V(x) is the
external force. This equation is a special case of the Fokker-Planck
equation.



Introduction. Motivation

The Kramers-Fokker-Planck equation

After change of unknowns and suitable normalization of the physical
constants, the Kramers-Fokker-Planck (KFP) equation can be written
into the form

owu(x,v;t)+ Pu(x,v;t) =0, (x,v) eR"xR".n>1t>0 (2)
with the initial condition
u(x,v;0) = up(x, v) (3)

where P=v -V, —-VV(x)-V, — A, + 3|v[? - 2.



Return to the equilibrium

In this talk, we are interested in the time-decay of solutions to the
equation (2) in the case VV(x) — 0 as |x| — oo.
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In this talk, we are interested in the time-decay of solutions to the
equation (2) in the case VV(x) — 0 as |x| — oo.

The case |V V(x)| — oo (or at least |V V(x)| > C > 0 at the infinity)
has been studied by several authors: Desvilettes-Villani(CPAM,
2001), Hérau-Nier(ARMA, 2004), Helffer-Nier(LNM, 2005),
Hérau-Hitrik-Sjéstrand (AHP, 2008 - ), - - -



Return to the equilibrium

In the case |V V(x)| — oo and V(x) > 0 outside some compact set,
the solutions look like

u(t) — c(up)mo = O(e™""), 0 > 0,
in appropriate spaces where my = e~ 3(%+V() is the Maxwillian.

The existence of a gap between 0 and the remaining part of the
spectrum is crucial for such results.



The question

If V(x) = a|x|* forsome a>0and0 < < 1,then my € L2 and 0 is
an eigenvalue of P. If V(x) = aln|x|, mq is an eigenfunction if a > 7
and is a resonant state if %2 < a < . But now there is no gap
between 0 and the remaining part of the spectrum.
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If V(x) = a|x|* forsome a>0and0 < < 1,then my € L2 and 0 is
an eigenvalue of P. If V(x) = aln|x|, mq is an eigenfunction if a > 7
and is a resonant state if %2 < a < . But now there is no gap
between 0 and the remaining part of the spectrum.

Question. What can one say about the time-decay of solutions if V is
slowly increasing or decreasing?

One may say that the case |V V| — ~o is a non-selfadjoint eigenvalue

problem, while the case |V V| — 0 is a non-selfadjoint scattering
problem for the pair (Py, P) where P, is the free KFP operator

1 n
Po:V-VX—AV+Z|V|2—§



The free KFP operator

Complex harmonic oscillators

Py =v-Vx— A, + 1|v[> — 2 with the maximal demain is an accretive
and hypoelliptic operator. It is unitarily equivalent with Py which is a
direct integral of Py(€),¢ € R”,

A 1 2 .o N

Po(¢) = —-A, + Z(v+ i28)" + &% — >
One can check that o(Py(€)) = {k + €2, k € N}. All the eigenvalues
are semisimple and the Riesz projection associated with the
eigenvalue k + £2 is given by

M= > (Wi vl

aeN,|al=k



Complex harmonic oscillators

Here 15, (V) = ¥a (v + i2¢) and v, a € N", are normalized Hermite
functions: (—A, + 1v2 — D), = |a|t.

Lemma 1

Forany ¢ € R" andt > 0, one has the following spectral
decomposition for the semigroup:

ftPo Z e t(k+£?) (4)
k=0

where the series is norm convergent as operators on L2(R7).
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Complex harmonic oscillators

Here 15, (V) = ¥a (v + i2¢) and v, a € N", are normalized Hermite
functions: (—A, + 1v2 — D), = |a|t.

Lemma 1

Forany ¢ € R" andt > 0, one has the following spectral
decomposition for the semigroup:

*fPo Z e~ t(k+£?) (4)
k=0

where the series is norm convergent as operators on L2(R7).

To prove this lemma, we show that if n =1,

o o thkre) ey — &) g
> e Ml = 5 —=r e )
k=0




The free KFP operator

Time-decay for free KFP operator

The free KFP operator is unitarily equivalent with a direct integral of
this family of complex harmonic oscillators. One deduces that

o(Po) = Ugerno(Po(€)) = [0, +o0.

The set N is called thresholds of Py. The numerical range of P, is
{z;Rz > 0}.



The free KFP operator

Time-decay for free KFP operator

The free KFP operator is unitarily equivalent with a direct integral of
this family of complex harmonic oscillators. One deduces that

o(Po) = Ugerno(Po(€)) = [0, +o0.

The set N is called thresholds of Py. The numerical range of P, is
{z;Rz > 0}.

To study the time-decay of e~ , we introduce
L£25(R?M) = L2(R2"; (x)2dxdVv).

and
LP = LP(RY; L3(RD)), p>1.



The free KFP operator

Time-decay for the free KFP equation

One has the following dispersive type estimate: 3C > 0 such that
e c
le~Poulle~ < luller, t23, ©)
foru € £'. In particular, for any s > 5, one has for some Cs > 0

_ C
le="ou o5 < T;HUH@S’ (7)

fort >3 and u e £%5.
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The free KFP operator

Time-decay for the free KFP equation

One has the following dispersive type estimate: 3C > 0 such that
e c
le~Poulle~ < luller, t23, ©)
foru € £'. In particular, for any s > 5, one has for some Cs > 0

_ C
le="ou o5 < T;HUH@S’ (7)

fort >3 and u e £%5.

(6) is deduced from the estimate
g (t—2— )

el —1

16 "7®) || 52y <



The free KFP operator

Limiting absorption principles for P,

Set Ry(z) = (Po — 2)~", z ¢ R... Denote
HS = {ue S'(R2); (1 — Ay + V2 + |Dy|3)2u € £29).

Le’g lﬁ(r, s, r',s') be the space of bounded operators from 4" to
H"-*. One has the following resolvent estimates

Proposition 2

(a). Letn>1. Forany s > % the boundary values of the resolvent
Ro(A £10) = lim._,o, Ro(\ £ ie) exists B(—1,s;1,—s) for A € R\ N
and is continuous in \.

(b). Letk € N and n > 3. The limits Ry(k £ i0) = lim,_x +3750 Ro(2)
existin B(—1,s;1,—s) forany s > 1.

Open Question. Can one establish some high energy estimates for
Ro(A £i0)?



The KFP operator with a potential

High energy resolvent estimates

Consider now the KFP operator P with a potential V(x) satisfying
IVV(x)| < Cx)~"~', xeR" 9)

One canwrite P= Py + Wwith W =-VV(x)-V,.lfp>—-1, Wis
relatively compact with respect to Py. One has o, (Po) = [0, +oo[. If
z is an eigenvalue of P, then ®z > 0 and 0 is the only possible
eigenvalue with #z = 0.



High energy resolvent estimates

Let n > 1 and assume (9) with p > —1. Then there exists C > 0 such
that o(P) N {z;|3z| > C,Rz < £|3z|5} = 0 and

IR@)] < ZC| (10)

and
C

ELa

=

I(1 = Ay +v¥)2R(2)| <

(11)

=

for|Sz| > C and Rz < %[Sz]s.

In the proof, we use a semiclassical resolvent estimate due to
Dencker-Sjéstrand-Zworski (CPAM, 2004).



Time-decay of the semigroup

To obtain time-decay estimates, we also need to study the spectrum
of P near 0.

Theorem 3

Assume n=3 and p > 1. Then for any s > % one has for some
C>0 \
le=" 50,505y < Ct™2, t>0. (12)

If p > 2, there exists By € B(—1,s;1,—s) and some ¢ > 0 such that
e P =188+ O(t7 2 (13)

in B(0,s;0,—s) ast — +oo.




Low-energy resolvent estimates

To prove Theorem 3, we study the spectral properties of P near 0.

Theorem 4

Assume n= 3 and p > 1. Then 0 is not an accumulation point of the
eigenvalues of P. one has the following expansions in B(—1,s;1,—5)

R(z) = Ao+ O(|z|%), ifp>1,s>1, (14)
R(z) = Ao+ z2A;+0(|z|2%), ifp>2,5> (15)

w

E?
for¢ R, and |z| small.




Low-energy spectral properties in short-range case

Ildeas of the proof

To prove that P has no eigenvalues near 0, we use techniques of
threshold spectral analysis and the supersymetry of P to show that
Pu = 0 has no nontrivial solution u € £2~¢ for any s > 1.



Low-energy spectral properties in short-range case

Ildeas of the proof

To prove that P has no eigenvalues near 0, we use techniques of
threshold spectral analysis and the supersymetry of P to show that
Pu = 0 has no nontrivial solution u € £2~¢ for any s > 1.

Theorem 3 on time-decay follows from the resolvent estimates on an
appropriate contour in the right half complex plane.



Low-energy spectral properties in short-range case

A comment

One often says that the KFP operator P is closely related to the
Witten Laplacian

—Ay =(=Vx+VV(X)) - (Vx+ VV(x))

which is selfadjoint and elliptic. This can in particular be illustrated in
terms of low-lying eigenvalues in the case when 0 is in the discrete
spectrum.
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A comment

One often says that the KFP operator P is closely related to the
Witten Laplacian

—Ay =(=Vx+VV(X)) - (Vx+ VV(x))

which is selfadjoint and elliptic. This can in particular be illustrated in
terms of low-lying eigenvalues in the case when 0 is in the discrete
spectrum.

In our case 0 is the bottom of the essential spectrum of P. In the case
V(x) =« c|x|* for some p < 1 and ¢ > 0, low-energy behavior of the
resolvent (—Ay — z)~' can be well understood. (Joint work in
progress with J.-M. Bouclet).



Low-energy spectral properties in short-range case

A comment

In particular, if 0 < 1 < 1, one can show that

(-Ay—2)"" :—%+C0+ZC1+2202+~~ , z—0,3z+#0, (16)

in appropriate spaces, where [y is the spectral projection associated
with the eigenvalue 0 of —A\,. Consequently,

€4 = Mo+ O(t™) : Limp(RY) = Lic(RY),t = 00 (17)

The model operator used in this case is the Schrédinger operator with
a slowly decreasing potential studied by D. Yafaev (1982,1983), S.
Nakamura (1994).
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A comment

In particular, if 0 < 1 < 1, one can show that

(-Ay—2)"" :—%+C0+ZC1+2202+~~ , z—0,3z+#0, (16)

in appropriate spaces, where [y is the spectral projection associated
with the eigenvalue 0 of —A\,. Consequently,

€4 = Mo+ O(t™) : Limp(RY) = Lic(RY),t = 00 (17)

comp

The model operator used in this case is the Schrédinger operator with
a slowly decreasing potential studied by D. Yafaev (1982,1983), S.
Nakamura (1994).

Question. Can one prove similar results for the KFP operator P?



Low-energy spectral properties in short-range case

Thanks!
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