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A scattering problem
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V (x) =
3∑

j=1

aje
−|x−xj |2/bj

We consider

ih∂tu = −h2∆u + V (x)u

u(x , 0) = exp

(
i

h
〈x , ξ0〉 −

1

2h
〈x − x0, ξ0〉2

)
.



ih∂tu = −h2∆u + V (x)u
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Newtonian dynamics:

x ′(t) = 2ξ(t), ξ′(t) = −∇V (x(t)),

ϕt(x(0), ξ(0)) := (x(t), ξ(t)).

Trapped set at energy E :

KE := {(x , ξ) : ξ2 + V (x) = E , ϕt(x , ξ) 6→ ∞, t → ±∞}.
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In the movies we saw the effects of Newtonian (classical) dynamics
but we also saw oscillations, concentration and decay of waves.

Quantum Resonances describe these waves resonating in
interaction regions: there exist complex numbers

zj(h) = Ej(h)− iΓj(h), Γj(h) > 0,

and wj(x) 6∈ L2 (resonant states), such that

(P − zj(h))wj = 0, wj is outgoing .



Quantum Resonances describe the resonating waves:
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http://www.cims.nyu.edu/∼dbindel/resonant1d/



Here is how they sound:

time = linspace(0,500,5000);

sound(real(exp(-i*z*time)))
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A real experimental example

Potzuweit–Weich–Barkhofen–Kuhl–Stöckmann–Z ’12



Resonances for three discs:

Barkhofen–Kuhl–Weich ’13
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Resonances for three discs:
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incoming set trapped set outgoing set

Poon–Campos–Ott–Grebogi ’96



Resonances for three discs:

Resonant states are microlocalized on the outgoing set:
Helffer–Sjöstrand ’85, Bony–Michel ’04, Nonnenmacher–Rubin ’07.
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Sjöstrand ’90:

Suppose P = −h2∆ + V where V is analytic (and reasonable).
Suppose that the classical flow is hyperbolic on KE .

Then resonances of of P, zj(h), satisfy

#{zj(h) ∈ [E−ε,E+ε]−i [0, h]} ≤ Ch−m/2, m > dim∪|E ′−E |<2εKE ′ .

Here the dimension is the Minkowski/box dimension: for M ⊂ Rk ,

codimM = sup{γ : lim sup
ε→0

ε−γvolRk ({ρ : d(ρ,M) < ε}) <∞}.

Earlier, non-geometric bounds: Regge ’58, Melrose ’82, Intissar
’86, Z ’87,’89.



Sjöstrand ’90:

#{zj(h) ∈ [E−ε,E+ε]−i [0, h]} ≤ Ch−m/2, m > dim∪|E ′−E |<2εKE ′ .

KE := {(x , ξ) : ξ2 + V (x) = E , ϕt(x , ξ) 6→ ∞, t → ±∞}.

codimM = sup{γ : lim sup
ε→0

ε−γvolRk ({ρ : d(ρ,M) < ε}) <∞}.
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More recently:

Sjöstrand–Z ’07:

Resonances for −h2∆ + V where V ∈ C∞c (Rn;R) (and more
general operators)

#{zj(h) ∈ [E − h,E + h]− i [0, h]} ≤ Ch−µ, 2µ+ 1 > dimKE .

Nonnenmacher–Sjöstrand–Z ’13:

Resonances for −∆ on Rn \
⋃J

j=1Oj (and more general operators).
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Numerical studies:

Lin ’02:



Lu–Sridhar–Z ’03:

The reason for showing the paper is to indicate that to
communicate an idea it helps to publish it in physics.



Dyatlov ’13 (math) , Dyatlov–Z ’13 (physics)

Weyl law for quasi-normal modes/resonances for perturbations of
Kerr-de Sitter metrics (rotating black holes).



Dyatlov ’13 (math), Dyatlov–Z ’13 (physics)

Weyl law for quasi-normal modes/resonances for perturbations of
Kerr-de Sitter metrics (rotating black holes).
The trapped set as a changes from 0 to 1:

Wunsch–Z ’11: The key property of this smooth trapped set is the
r -normal hyperbolicity for any r .

Hirsch–Pugh–Schub ’77: stable under small C r perturbations.
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Dyatlov ’13 (math), Dyatlov–Z ’13 (physics)

Weyl law for quasi-normal modes/resonances for perturbations of
Kerr-de Sitter metrics (rotating black holes).

When the transversal expansion rates satisfy νmax < 2νmin (valid
for 98% of rotation speeds of black holes) then

#{zj ∈ the blue box} =
λ2

(2π)2
vol(∪E<1KE )(1 + o(1)),

Sjöstrand–Z ’99: Asymptotics for resonances for convex obstacles
satisfying a pinching condition (cubic bands).



Dyatlov ’13 (math), Dyatlov–Z ’13 (physics)

Weyl law for quasi-normal modes/resonances for perturbations of
Kerr-de Sitter metrics (rotating black holes).

When the transversal expansion rates satisfy νmax < 2νmin (valid
for 98% speeds of rotation of the black hole) then

#{zj ∈ the blue box} =
λ2

(2π)2
vol(∪E<1KE )(1 + o(1)),

Faure–Tsujii ’13: Similar asymptotics for the Policott–Ruelle
resonances for contact Anosov flows.



Dyatlov ’13 (math), Dyatlov–Z ’13 (physics)

Weyl law for quasi-normal modes/resonances for perturbations of
Kerr-de Sitter metrics (rotating black holes).

When the transversal expansion rates satisfy νmax < 2νmin (valid
for 98% speeds of rotation of the black hole) then

#{zj ∈ the blue box} =
λ2

(2π)2
vol(∪E<1KE )(1 + o(1)),

Faure–Tsujii ’13: Similar asymptotics for the Policott–Ruelle
resonances for contact Anosov flows.



A simpler model.

Nonnenmacher–Z ’05, ’07’: quantized open Baker maps
(Balazs–Voros ’89, Saraceno ’90)

Classical relation:

(q, p) ∼ (q′, p′) ⇐⇒
{

q′ = 3q, p′ = p/3, 0 ≤ q ≤ 1/3
q′ = 3q − 2, p′ = (p + 2)/3, 2/3 ≤ q < 1.

Quantum operator:

MN = F∗3N

FN 0 0
0 0 0
0 0 FN

 .
(FP is the discrete Fourier transform on CP).



Open Baker map:

incoming set trapped set outgoing set

Three discs reduced to the boundary:



Open Baker map:

Expected fractal Weyl law: for 0 < r < r0 < 1,

]{λ ∈ Spec(MN), |λ| > r} ∼ N
log 2
log 3 , MN = F∗3N

FN 0 0
0 0 0
0 0 FN

 .



Nonnenmacher–Z ’07: for a simplified quantum Baker map
corresponding to a complicated classical chaotic relation we have
the fractal Weyl law for a sequence N = 3k (the Walsh model).



Recent works in physics using variants of the quantum open maps
(and other methods):

Schomerus–Tworzyd lo ’04, Keating et al ’06, Wiersig–Main ’08,
Ramilowski et al ’09, Pedrosa et al ’09, Shepelyansky ’09,
Shomerus–Wiersig–Main ’09, Ermann–Shepelyansky ’10,
Kopp–Schomerus ’10, Eberspächer–Main–Wunner ’10, Körber et al
’13.

An interdisciplinary example:



A yet different setting: manifolds with hyperbolic ends

Resonances defined as poles of (−∆X − (n− 1− s)s)−1, continued
from Im s > (n − 1)/2; X is a manifold with hyperbolic ends.

Fractal upper bounds:

Z ’99: Γ\H2, Γ convex co-compact (based on Sjöstrand ’90)

Lin–Guillopé–Z ’04: Γ\H2, Γ a Schottky group (based on some
new Selberg zeta function techniques)

Datchev–Dyatlov ’13: any manifold with hyperbolic ends (based on
Sjöstrand-Z ’07 and a new approach to meromorphic continuation
by Vasy ’13)

Other models using zeta functions: hyperbolic rational maps. Here
the growth of zeros of the zeta function is related to the dimension
of the Julia set. Strain-Z ’03, Christianson ’05.



Borthwick ’13:



Borthwick ’13:

`1 = 10, `2 = 12, ϕ = 2π/5



Borthwick ’13
Comparison with the fractal Weyl law:



Potzuweit–Weich–Barkhofen–Kuhl–Stöckmann–Z ’12
Experimental investigation of fractal Weyl laws.



Potzuweit–Weich–Barkhofen–Kuhl–Stöckmann–Z ’12
Experimental investigation of fractal Weyl laws.

Left: The counting functions for R/a = 2, 2.25, 3.9 Fits of their
slope for high frequencies are shown in blue. The orange curve
over the lower histogram corresponds to the Weyl formula with
12% loss. Plotted in the inset is the difference between the Weyl
formula with 12% loss and the experimental counting function for
the closed system (R/a = 2).



Potzuweit–Weich–Barkhofen–Kuhl–Stöckmann–Z ’12
Experimental investigation of fractal Weyl laws.

Right: The data points correspond to the fitted exponent of the
counting function in dependence of the R/a parameter. The three
squares mark the examples which have already been presented in
the previous figures. The darker shaded blue region indicates the
R/a values without open channels; lighter shaded blue region has
only a few open channels.



This may not seem to be so succesful but it lead to an interesting
experiment about the gap between the real axis and resonances.

Barkhofen–Weich–Potzuweit–Kuhl–Stöckmann–Z ’13

We look for γ > 0 such that there are no resonances in

Im z > −γ, Re z > C0



How do we determine that gap at the high frequency limit when
the dynamics is hyperbolic?

Gaspard-Rice ’89, Lu-Sridhar-Z ’03, Barkhofen et al ’12

Ikawa ’88, Burq ’93, Nonnenmacher-Z ’09, Naud ’04,’12,
Petkov-Stoyanov ’11
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We define the topological pressure associated to the unstable
Jacobian:

J+t (ρ) = det
(
dΦt
|E+

ρ

)
PE (s) = lim

T→∞

1

T
log

∑
T−1<Tγ<T

J+(γ)−s ,

where γ are closed orbits with period Tγ .

Ikawa ’88, Nonnemacher-Z ’09, Petkov-Stoyanov ’11:
There are no resonances with Imλ > PE (1/2)
(at high energies)



There are no resonances with Imλ > PE (1/2)
(at high energies)

The decay of correlations is closely related to resonance free strips.

Potzuweit-Weich-Barkhofen-Kuhl-Stöckmann-Z, PRL ’13

Lu-Sridhar-Z ’03: concentration of decay rates at P(1)/2, PRL ’03



It is also seen in the case of scattering on hyperbolic sufaces.

Borthwick ’13:

Naud ’13: If dimK1 = 2δ + 1 then

#{sj : σ < Resj , | Im sj | < r} = O(r1+τ(σ)),

where τ(σ) < δ for σ < δ/2.

Fractal Weyl law (Z ’99, Lin-Guillopé-Z ’04, Datchev-Dyatlov ’13)
gives the bound r1+δ for all σ.



Thank you!


