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A scattering problem

3
V(X) ey Z aje_lx_le2/bj
j=1

We consider

ihd;u = —h2Au + V(x)u



ihd;u = —h2Au + V(x)u
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Newtonian dynamics:

Trapped set at energy E:

Ke = {(x.€) : €+ V(x) = E, ¢:(x,€) 00, t = £00}.




In the movies we saw the effects of Newtonian (classical) dynamics
but we also saw oscillations, concentration and decay of waves.

Quantum Resonances describe these waves resonating in
interaction regions: there exist complex numbers

zj(h) = Ej(h) = iTj(h), T;(h) >0,
and w;j(x) & L? (resonant states), such that

(P —zj(h))w; =0, w; is outgoing .



Quantum Resonances describe the resonating waves:
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Computed using squarepot.m
http://www.cims.nyu.edu/~dbindel/resonant1d/



Here is how they sound:

time = linspace(0,500,5000);
sound (real (exp (-i*z*time)))
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A real experimental example
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Resonances for three discs:

Barkhofen—Kuhl-Weich '13
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Resonances for three discs:

Barkhofen—Kuhl-Weich '13
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Resonances for three discs:

Resonant states are microlocalized on the outgoing set:
Helffer—Sjostrand '85, Bony—Michel '04, Nonnenmacher=Rubin '07.
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GEOMETRIC BOUNDS ON THE DENSITY OF
RESONANCES FOR SEMICLASSICAL PROBLEMS

JOHANNES SJOSTRAND
0. Introduction. In this paper, we shall give upper bounds on the number of
resonances in certain regions in the complex plane close to the real axis, for
semiclassical operators like
©.1) —hA + V(x),
when h is small.

Many of the phenomena are similar (or can be expected to be similar) to the
i the exterior Dirichlet (or for the Helmoltz

equation
02 (A+Kk)u=0 inR\A,

where A is bounded and has a smooth boundary (and n is odd unless otherwise
specified). Thi been a source of inspirati ourstudy of iclassi
case, and we also believe that the new results presented in this paper for the
semiclassical case, will have analogues for (0.2); 50, in order to situate our results, it
can be useful to recall some known results also for the exterior problem.

For the problem (0.2), the resonances are usually defined in the framework of the
Lax-Phillips scattering theory [LPh] as poles of the scattering matrix, but we can
also view them as certain complex values, k in the lower half plane, for which (0.2)
has a non-trivial solution in a suitable space. When studying the location of
resonances, the geometry usually enters in an essential way. If the obstacle is non
trapping in the sense that no maximal optical rays in R"\ A, (reflected according to
the rules of optics in 94,) can be contained in a bounded set, it follows from the
results on ion of mod(C™) si itie it d and Ivrii (see
the book of Hérmander [H&) and references given there) combined with the
Lax-Philips theory, that there are only finitely many resonances in a logarithmic
neighborhood of the real axis. In the case of nontrapping obstacles with analytic
boundary, Bardos-Lebeau-Rauch [BLeR] showed that there can only be finitely
many resonances inside a parabolic neighborhood of the real axis of the form
Im(k) > —C™*|Re k|'®. Under additional assumptions, they also determined the
optimal value of the constant C. Again this result is based on a result of propagation
of singularities now modulo Gevrey 3, due to Lebeau.
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In the case of trapping obstacles, Tkawa [11] studied the simplest possible case,
when A has two strictly convex components, and he found that in a strip: 0 >
Im(k) > — C,, with C, conveniently chosen, the resonances form a “string” parallel
to the real axis, and he was also able to give asymptotic expansions for the precise
location of these resonances. C. Gérard [G] improved this result by determining
the asymptotics of the resonances in any fixed strip as above, with Co arbitrary. He
found several “strings”. The geometry in this case is still very simple. (The analogue
of this result for the semiclassical case was obtained in [GS1]). There is only one
trapped optical ray, which is periodic for the natural optical flow in the cosphere
bundle, $*(R"\ 4), and the corresponding lincarized Poincaré map is hyperbolic,
that is, has no eigenvalue of modulus 1.

More complicated situations appear if we relax the assumption about strict
convexity for the components of A, or if we admit more than 2 components. In these
cases, Tkawa [12, 4] proved the existence of infinitely many resonances in a strip
along the real axis. In the case of several strictly convex obstacles, he was also able
to determine strips that can host only finitely many resonances ([13]).

As for estimates on the number of resonances, Melrose [M] showed that the
number of resonances in a disc of radius 4 is ©(4"), and he also obtained a similar
estimate when we replace the obstacle by a compactly supported potential. The
latter result was extended (in a modified form) to the even dimensional case by
Intissar [In], and Zworski [Z] was recently able in the odd dimensional potential
case to show that we have the same estimate as for the obstacle case.

In the semiclassical case, much of the work so far has been based on the method
of complex scaling of Aguilar-Combes [ACo] and Balslev-Combes [BaCo] or on
variants of this method. The works of Klein [K], Briet-Combes-Duclos [BrCoDul],
Nakamura [N1, 2] give results on the absence of resonances in certain regions,
under certain geometrical * conditions which imply (without being equivalent
t0) the natural condition, which is absence of trapped trajectories for the corre-
sponding classical Hamiltonian.

A more microlocal approach to semiclassical resonances was developed by
Helffer and the author in [HS], and Helffer and Martinez [HMa] showed that this
definition is equivalent to the more classical ones in cases of overlap. It might be
useful to recall here some ingredients of this approach, in the case of the operator
(0.1),and we refer to [HS], for the case of more general elliptic operators. (The main
theorems of the present paper apply to these more general operators.)

Let r, R € C*(R"; R) satisfy

0.3) rz1, R>0, rR21, 1%r(x)| < C,r(x)R(x)™,

10°R()| < C,R(x)' ™,
for all o = (g, .., %) € N* with [a] = &, + - + &, 8% = (&, )""... (3, )" Tn this

paper we only consider operators with real analytic coeflicients (while the general
theory of [HS] allows for coefficients which are analytic outside a bounded set), so




Sjostrand '90:

Suppose P = —h2A + V where V is analytic (and reasonable).
Suppose that the classical flow is hyperbolic on K.

Then resonances of of P, z;(h), satisfy

#{zj(h) € [E—¢, E+]—i[0,h]} < Ch™™2, 'm > dimUjgr_g<2 K.

Here the dimension is the Minkowski/box dimension: for M C R,
codim M = sup{~v : limsup e "volpk({p : d(p, M) < €}) < o0}.
e—0

Earlier, non-geometric bounds: Regge '58, Melrose '82, Intissar
'86, Z '87,'809.



Sjostrand "90:

#{zj(h) € [E—¢, E+e]—i[0,h]} < Ch™™2, m > dimUjgr_g<2 K.

Ke = {(x,€): €+ V(x) = E, e(x,€) /4 00, t — +00}.

codim M = sup{~ : limsup e "volg«({p : d(p, M) < €}) < o0}.
e—0




More recently:
Sjostrand—Z '07:

Resonances for —h>A + V where V € C°(R™; R) (and more
general operators)

#{zj(h) € [E— h,E+h] —i[0,h]} < Ch™*, 2u+1>dimKe.

Nonnenmacher—Sjostrand—Z '13:

Resonances for —A on R"\ Ule O; (and more general operators).




Numerical studies:
Lin '02:
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Figure 24: For R = 1.4: Triangles represent numerical
data, circles least squares regression, and stars the slope
predicted by the conjecture. £ ranges from 0.025 down to
0.017.



Lu-Sridhar-Z '03:
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Fractal Weyl Laws for Chaotic Open Systems

W.T. Lu,' S. Sridhar,! and Maciej Zworski?
'Department of Physics and Electronic Materials Research Institute, Northeastern University, Boston, Massachusetts 02115, USA
Department of Mathematics, University of California, Berkeley, California 94720, USA
(Received 13 August 2002; revised manuscript received 30 May 2003; published 8 October 2003)

‘We present a conjecture relating the density of quantum resonances for an open chaotic system to the
fractal dimension of the associated classical repeller. Mathematical arguments justifying this con-
Jjecture are discussed. Numerical evidence based on computation of resonances of systems of n disks on
a plane are presented supporting this conjecture. The result generalizes the Weyl law for the density of

states of a closed system to chaotic open systems.

DOL: 10.1103/PhysRevLett.91.154101

The celebrated Weyl law concerning the density of
eigenvalues of bound states is a central result in the
spectroscopy of quantum systems [1]. The Weyl formula
states that the asymptotic level number N(k), defined
as the number of levels with k, <k (where k— o),
is given after smoothing by N(k) = {k,k, <k} =
VP /(D/2)\(47)P/2 + - - - for a quantum system bounded
in a region R of D-dimensional space whose volume is V.
For closed systems with smooth boundaries, the Weyl
formula is well established, and although primarily valid
in the semiclassical limit, nevertheless can be applied

PACS numbers: 05.45.Mt, 05.45.Ac, 03.65.5q, 31.15.Gy

did not restrict ourselves to an energy surface. For closed
two-dimensional systems, we have real zeros only and
N(k) = {k,:k, =< k} ~ k%, which is consistent with (1) as
dy = 1. Then everything is trapped.

Our motivation comes from rigorous work on quantum
resonances and, in particular, from the work of Sjostrand
[4] on geometric upper bounds on their density. The
optimal nature of that bound was recently indicated by
a numerical experiment [5] involving a computation of
quantum resonances for semiclassical Schrodinger opera-
tors with chaotic classical dynamics.

The reason for showing the paper is to indicate that to
communicate an idea it helps to publish it in physics.



Dyatlov '13 (math) , Dyatlov—Z '13 (physics)

Weyl law for quasi-normal modes/resonances for perturbations of
Kerr-de Sitter metrics (rotating black holes).

P4 X




Dyatlov '13 (math), Dyatlov—Z '13 (physics)
Weyl law for quasi-normal modes/resonances for perturbations of

Kerr-de Sitter metrics (rotating black holes).
The trapped set as a changes from 0 to 1:

Wunsch—Z '11: The key property of this smooth trapped set is the
r-normal hyperbolicity for any r.

Hirsch—Pugh—Schub '77: stable under small C’ perturbations.
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Dyatlov '13 (math), Dyatlov—Z '13 (physics)
Weyl law for quasi-normal modes/resonances for perturbations of
Kerr-de Sitter metrics (rotating black holes).

When the transversal expansion rates satisfy Vmax < 2Vmin (valid
for 98% of rotation speeds of black holes) then

2

#{z; € the blue box} = (2/\7T)2v01(UE<1KE)(1 +0(1)),

------------

Sjostrand—Z '99: Asymptotics for resonances for convex obstacles
satisfying a pinching condition (cubic bands).



Dyatlov '13 (math), Dyatlov—Z '13 (physics)

Weyl law for quasi-normal modes/resonances for perturbations of
Kerr-de Sitter metrics (rotating black holes).

When the transversal expansion rates satisfy Vmax < 2vmin (valid
for 98% speeds of rotation of the black hole) then

2

#{z; € the blue box} = EE
i

vol(Ug<1KEg)(1 + o(1)),

Im 2

------------

~(min—¢)

Faure—Tsujii '13: Similar asymptotics for the Policott—Ruelle
resonances for contact Anosov flows.



Dyatlov '13 (math), Dyatlov—Z '13 (physics)
Weyl law for quasi-normal modes/resonances for perturbations of

Kerr-de Sitter metrics (rotating black holes).

When the transversal expansion rates satisfy Vmax < 2Vmin (valid
for 98% speeds of rotation of the black hole) then

2

#{zj € the blue box} = (;\7T)2VOI(UE<1KE)(1 + o(1)),

003
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Faure—Tsujii '13: Similar asymptotics for the Policott—Ruelle
resonances for contact Anosov flows.



A simpler model.

Nonnenmacher—Z '05, '07': quantized open Baker maps
(Balazs—Voros '89, Saraceno '90)

Classical relation:

q' = 3q, P =p/3, 0<qg<1/3

/ /

Quantum operator:

Fnv 0 0
My=Fjy|0 0 0
0 0 Fu

(Fp is the discrete Fourier transform on CF).



Open Baker map:

outgoing set

trapped set

incoming set

Three discs reduced to the boundary:
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Open Baker map:

Expected fractal Weyl law: for 0 < r < rp < 1,

log 2 fN 0
vt _ T
#{\ € Spec(Mp),|A| > r} ~ Niee3, My =Fzn | 0 0
0 O
N=3|r=01|r=02|{r=03|r=04|r=05|r=06|r=07|r=0.8
k=1 5 5 5 5 5 4 3 3
k=2 14 14 10 9 8 8 7 6
k=3 |32 26 23 19 16 16 14 5
k=4 |63 53 45 40 33 33 30 6
k=5 |[124 103 85 78 71 65 63 11
k=6 237 196 161 150 142 131 128 12




Nonnenmacher-Z '07: for a simplified quantum Baker map
corresponding to a complicated classical chaotic relation we have
the fractal Weyl law for a sequence N = 3k (the Walsh model).
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Recent works in physics using variants of the quantum open maps
(and other methods):

Schomerus—Tworzydto '04, Keating et al '06, Wiersig—Main '08,
Ramilowski et al '09, Pedrosa et al '09, Shepelyansky '09,
Shomerus—Wiersig—-Main '09, Ermann—Shepelyansky '10,
Kopp—Schomerus '10, Eberspacher—Main—-Wunner '10, Korber et al
'13.

An interdisciplinary example:

Fractal Weyl law for Linux Kernel architecture

L. Ermann’, A.D. Chepelianskii?, and D.L. Shepelyansky®:*

! Laboratoire de Physique Théorique (IRSAMC), Université de Toulouse, UPS-CNRS, 31062 Toulouse, France
2 LPS, Université Paris-Sud, CNRS, UMRS8502, 91405 Orsay, France

Received 11 October 2010
Published online 21 December 2010 — ©) EDP Sciences, Societa Italiana di Fisica, Springer-Verlag 2010

Abstract. We study the properties of spectrum and eigenstates of the Google matrix of a directed network
formed by the procedure calls in the Linux Kernel. Our results obtained for various versions of the Linux
Kernel show that the spectrum is characterized by the fractal Weyl law established recently for systems
of quantum chaotic scattering and the Perron-Frobenius operators of dynamical maps. The fractal Weyl
exponent is found to be v & 0.65 that corresponds to the fractal dimension of the network d ~ 1.3. An
independent computation of the fractal dimension by the cluster growing method, generalized for directed
networks, gives a close value d ~ 1.4. The eigenmodes of the Google matrix of Linux Kernel are localized
on certain principal nodes. We argue that the fractal Weyl law should be generic for directed networks
with the fractal dimension d < 2.



A vyet different setting: manifolds with hyperbolic ends

Resonances defined as poles of (—Ax — (n—1 —s)s)™*, continued
from Ims > (n—1)/2; X is a manifold with hyperbolic ends.

Fractal upper bounds:
Z '99: T\H?, I convex co-compact (based on Sjostrand '90)

Lin—Guillopé~Z '04: T\H?, I' a Schottky group (based on some
new Selberg zeta function techniques)

Datchev-Dyatlov '13: any manifold with hyperbolic ends (based on
Sjostrand-Z '07 and a new approach to meromorphic continuation
by Vasy '13)

Other models using zeta functions: hyperbolic rational maps. Here
the growth of zeros of the zeta function is related to the dimension
of the Julia set. Strain-Z '03, Christianson '05.



Borthwick '13:
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Borthwick "13:

f1=10, =12, p=2m/5 "



Borthwick '13
Comparison with the fractal Weyl law:

. 0t > 104
ST X(12,12.8,13.6) T X (12,18,14) T X(12,13.2,14.9)
21000 §0.1084 2100 §a2.1068 210 §a.1053
1-10% 1-10° 1-10*
5000 5000 5000
2000 2000 2000
1000 y 1000 ’ 1000
¥ a0 500 1000 2000 5000 7 220 500 1000 2000 5000 1' ~ 500 1000 2000 5000
000008 y(12,12,7/2) Y (12,13,7/2)
105k
100000L  0~90.0953 2-10 §~0.0913
1-10°F
50000 -
5-10+
20000 -
2-10°F
10000 - 1.104F
- 00 5000 10000 20000 2000 5000 1-100  2-10° 5100




Potzuweit—Weich—Barkhofen—Kuhl-Stéckmann—-Z '12
Experimental investigation of fractal Weyl laws.
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Potzuweit—Weich—Barkhofen—Kuhl-Stéckmann—Z '12
Experimental investigation of fractal Weyl laws.

20N * _
A

.
50 100 200 300 400 2.0 2.5 3.0 35 4.0
k [m=1] R/a

Left: The counting functions for R/a = 2,2.25, 3.9 Fits of their
slope for high frequencies are shown in blue. The curve
over the lower histogram corresponds to the Weyl formula with
12% loss. Plotted in the inset is the difference between the Weyl
formula with 12% loss and the experimental counting function for
the closed system (R/a = 2).



Potzuweit—Weich—Barkhofen—Kuhl-Stéckmann—Z '12
Experimental investigation of fractal Weyl laws.

20M * ;
A

.
50 100 200 300 400 2.0 2.5 3.0
k [m=1] R/a

Right: The data points correspond to the fitted exponent of the
counting function in dependence of the R/a parameter. The three
squares mark the examples which have already been presented in
the previous figures. The darker shaded blue region indicates the
R/a values without open channels; lighter shaded blue region has
only a few open channels.



This may not seem to be so succesful but it lead to an interesting
experiment about the gap between the real axis and resonances.

Barkhofen—-Weich—Potzuweit—Kuhl-Stockmann—Z '13
We look for v > 0 such that there are no resonances in

Imz>—v, Rez>



How do we determine that gap at the high frequency limit when
the dynamics is hyperbolic?

0.0 0.5

1.0 1.5 2.0
Im (k) [1/m]

(b)3 Disk Simulation

Gaspard-Rice '89, Lu-Sridhar-Z '03, Barkhofen et al '12

lkawa '88, Burq '93, Nonnenmacher-Z '09, Naud '04,'12,
Petkov-Stoyanov '11



We define the topological pressure associated to the unstable
Jacobian:

Ji (p) = det (dd>‘tEp+)

Pe(s) = Tlim %Iog Z JT(y)~*,

— 00
T—-1<Ty<T
where v are closed orbits with period T,.

Ikawa '88, Nonnemacher-Z '09, Petkov-Stoyanov '11:
There are no resonances with Im A\ > Pg(1/2)
(at high energies)



There are no resonances with Im A > Pg(1/2)
(at high energies)

The decay of correlations is closely related to resonance free strips.
6 "

-:\. X W, por. .l L y
-0.5 -1.0 -1.5 -0.5 -1.0 -1.5
im (k) [1/m] im (k) [1/m]

Potzuweit-Weich-Barkhofen-Kuhl-Stockmann-Z, PRL '13

Lu-Sridhar-Z '03: concentration of decay rates at P(1)/2, PRL '03

N



It is also seen in the case of scattering on hyperbolic sufaces.

Borthwick '13:

62 X(14,14,14) \

X(13,13,13)
0 |

X(12,12,12) .

X(11,11,11)

X(10,10,10)

Naud '13: If dim Ky = 26 + 1 then
#{s; : 0 < Res;,|Imsj| < r} = O(rt+7))y,

where 7(0) < § for o < §/2.

Fractal Weyl law (Z '99, Lin-Guillopé-Z '04, Datchev-Dyatlov '13)
gives the bound r!*? for all o.



Thank you!
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