
Crystalline part of the Galois cohomology of
crystalline representations

Abhinandan

Abstract. For an unramified extension F/Qp with perfect residue field, we define a syntomic
complex with coefficients in a Wach module. We show that our complex computes the crystalline
part of the Galois cohomology (in the sense of Bloch and Kato) of the crystalline representation,
of the absolute Galois group of F , associated to the Wach module.

1. Introduction

Let p be a fixed prime number and let κ denote a perfect field of characteristic p; set OF := W (κ)
to be the ring of p-typical Witt vectors with coefficients in κ and F := Frac(OF ). Let F
denote a fixed algebraic closure of F and GF := Gal(F/F ) the absolute Galois group of F . Let
V be a p-adic crystalline representation of GF (see [Fon82]). In [BK90], the authors defined
Bloch-Kato Selmer groups of V as a subspace inside the continuous GF -cohomology of V , i.e.
Hk

f (GF , V ) ⊂ Hk(GF , V ), for k ∈ N. Bloch-Kato Selmer group picks out the “crystalline
part” of the Galois cohomology of V . More precisely, let Repcris

Qp
(GF ) denote the category of

crystalline representations, then we have H1
f (GF , V ) ∼−→ Ext1

Repcris
Qp

(GF )(Qp, V ) (see Remark 2.2).
Furthermore, let Dcris(V ) denote the filtered φ-module attached to V (see [Fon82]). Then from
[BK90], we have the following:

Proposition 1.1 (Corollary 2.4). Let V be a p-adic crystalline representation of GF . Then the
complex

D•(Dcris(V )) : Fil0Dcris(V ) 1−φ−−−→ Dcris(V ), (1.1)

computes the crystalline part of the Galois cohomology of V , i.e. Hk(D•(Dcris(V ))) ∼−→ Hk
f (GF , V )

for each k ∈ N.

Now let F∞ := ∪nF (µpn) with ΓF := Gal(F∞/F ) ∼−→ Z×
p and choose a generator γ of ΓF

such that γp−1 is a topological generator of Gal(F∞/F (ζp)). Let A+
F := OF JµK equipped with

continuous (φ, ΓF )-action (see §2.1). Let T be a GF -stable Zp-lattice inside V . By the works
of Fontaine [Fon90], Wach [Wac96], Colmez [Col99] and Berger [Ber04], one can functorially
attach to T , a finite free A+

F -module NF (T ) equipped with continuous (φ, ΓF )-action satisfying
nice properties (see Definition 3.1 and Theorem 3.2). The module NF (T ) is called the Wach
module associated to T . In fact, Wach modules can be defined abstractly (see Definition 3.1),
and we denote the category of such objects, with (φ, ΓF )-compatible A+

F -linear morphisms,
by (φ, Γ)-Mod[p]q

A+
F

. Let Repcris
Zp

(GF ) denote the category of Zp-lattices inside p-adic crystalline
representations of GF . Then the Wach module functor induces an equivalence of categories
Repcris

Zp
(GF ) ∼−→ (φ, ΓF )-Mod[p]q

A+
F

(see Theorem 3.2). Moreover, after inverting p, i.e. on passing to
associated isogeny categories, the Wach module functor induces an exact equivalence of categories
Repcris

Qp
(GF ) ∼−→ (φ, Γ)-Mod[p]q

B+
F

, where B+
F := A+

F [1/p] (see Remark 3.3). Hence, it is reasonable
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to expect that one could define a complex in terms of Wach modules and whose cohomology
computes the crystalline part of the Galois cohomology of V . The goal of this paper is to realise
this expectation.

Let N := NF (T ) be the Wach module over A+
F associated to T . Define a decreasing filtration

on N called the Nygaard filtration, for k ∈ Z, as FilkN := {x ∈ N such that φ(x) ∈ [p]kq N}.
Define an operator on N as ∇q := γ−1

µ : N → N . Then for each k ∈ Z we have ∇q(FilkN) ⊂
Filk−1N (see Remark 3.7).

Definition 1.2. Define the syntomic complex with coeffcients in N as

S•(N) : Fil0N
(∇q ,1−φ)−−−−−−−→ Fil−1N ⊕N

(1−[p]qφ,∇q)⊺−−−−−−−−−−→ N,

where the first map is x 7→ (∇q(x), (1−φ)x) and the second map is (x, y) 7→ (1− [p]qφ)x−∇q(y).

Remark 1.3. Definiton 1.2 can be modified to obtain a subcomplex of the Fontaine-Herr complex
from [Her98] (see §4 and Remark 4.3). The reader should note that the Fontaine-Herr complex
computes the Galois cohomology of a representation, while the complex in Definition 1.2 or
Remark 4.3 is concerned with capturing the crystalline part inside the space of Galois cohomology.
Complexes similar to the modified complex in Remark 4.3 were studied in [Abh23c] and named
syntomic complexes. Hence, we also call the complex in Definition 1.2 as the syntomic complex
with coefficients in N .

With notations as above, the main result of this article is as follows:

Theorem 1.4 (Theorem 4.2). For each k ∈ N, we have a natural isomorphism

Hk(S•(N))[1/p] ∼−→ Hk
f (GF , V ).

Proof of Theorem 1.4 for H0 and H2 follow from direct computations (see Lemma 4.4 and
Proposition 4.6 repsectively). Proof for H1 follows from studying extension classes in the category
of Wach modules over A+

F (see Proposition 4.5).
In [Bha23, §6], Bhatt and Lurie have defined syntomic cohomology of prismatic F -gauges on

the stack Zsyn
p and, in case of reflexive F -gauges, compared it to the Bloch-Kato Selmer groups

of the associated crystalline representation of Gal(F/Qp) (see [Bha23, Proposition 6.7.3]). In
light of Theorem 1.4 and prismatic interpretation of Wach modules (cf. [Abh23b]), a natural and
interesting question is to ask for a direct (integral) relationship between Definition 1.2 and the
definition of [Bha23]. The aforementioned question and generalisation of the theory above to the
relative case, i.e. Definition 1.2 and its relationship with Galois cohomology, will be investigated
in a future work.

Acknowledgements. The work presented here was mainly carried out during my PhD at
Université de Bordeaux. I would like to sincerely thank my advisor Denis Benois for several
discussions around the content of this article. I would also like to thank Luming Zhao for helpful
discussions. This research is partially supported by JSPS KAKENHI grant numbers 22F22711
and 22KF0094.

2. Period rings and p-adic representations

Let p be a fixed prime number and let κ denote a perfect field of characteristic p; set OF := W (κ)
to be the ring of p-typical Witt vectors with coefficients in κ and F := Frac(OF ). Let F

denote a fixed algebraic closure of F , Cp := F̂ the p-adic completion and GF := Gal(F/F ) the
absolute Galois group of F . Moreover, let F∞ := ∪nF (µpn) with ΓF := Gal(F∞/F ) ∼−→ Z×

p and
HF := Gal(F/F∞). Choose a generator γ of ΓF such that γp−1 is a topological generator of
Gal(F∞/F (ζp)).
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2.1. Period rings. In this section we briefly recall the period rings to be used in this paper
(see [Fon90; Fon94] for details). Let Ainf(OF∞) := W (O♭

F∞) and Ainf(OF ) := W (O♭
F

) admitting
the Frobenius on Witt vectors and continuous GF -action (for the weak topology). Moreover,
we have Ainf(OF∞) = Ainf(OF )HF (see [And06, Proposition 7.2]). We fix µ := ε − 1, where
ε := (1, ζp, ζp2 , . . .) ∈ O♭

F∞ and let µ := [ε] − 1, ξ := µ/φ−1(µ) ∈ Ainf(OF∞). For g ∈ GF , we
have g(1 + µ) = (1 + µ)χ(g), where χ is the p-adic cyclotomic character. Furthermore, we have
a GF -equivariant surjection θ : Ainf(OF ) → Cp with Kerθ = ξAinf(OF ). The map θ further
induces a ΓF -equivariant surjection θ : Ainf(OF∞)→ O

F̂∞
.

We set Acris(OF∞) := Ainf(OF∞)⟨ξk/k!, k ∈ N⟩. Let t := log(1 + µ) ∈ Acris(OF∞) and set
B+

cris(OF∞) := Acris(OF∞)[1/p] and Bcris(OF∞) := B+
cris(OF∞)[1/t]. These rings are equipped

with a Frobenius endomorphism and continuous ΓF -action, a decreasing filtration and an appro-
priate extension of the map θ. Moreover, we set B+

dR(OF∞) = limn(Ainf(OF∞)[1/p])/(Kerθ)n

and BdR(OF∞) = B+
dR(OF )[1/t]. These rings are equipped with a ΓF -action, a decreasing fil-

tration and an appropriate extension of the map θ. We have (φ, ΓF )-equivariant inclusions
B+

cris(OF∞) ⊂ B+
dR(OF∞) and Bcris(OF∞) ⊂ BdR(OF∞). One can define variations of these

rings over OF as well. From [MT20, Corollary 4.34] we have a (φ, ΓF )-equivariant isomorphism
Acris(OF∞) ∼−→ Acris(OF )HF . Moreover, from [Fon94, Théorème 5.3.7] we have the following
(φ, GF )-equivariant fundamental exact sequence

0 −→ Qp −→ Fil0Bcris(OF ) 1−φ−−−→ Bcris(OF ) −→ 0. (2.1)

Let A+
F := OF JµK equipped with a Frobenius endomorphism φ, given by Witt vector

Frobenius on OF and setting φ(µ) = (1 + µ)p − 1 and a continuous action of ΓF given as
g(µ) = (1 + µ)χ(g) − 1 for g ∈ ΓF and χ the p-adic cyclotomic character. We have a natural
embedding A+

F ⊂ Ainf(OF∞) compatible with Frobenius and ΓF -action. Set AF := A+
F [1/µ]∧,

where ∧ denotes the p-adic completion. The Frobenius endomorphism φ and continuous action of
ΓF on A+

F naturally extend to AF . Let Ã := W
(
C♭

p

)
and B̃ := Ã[1/p] admitting the Frobenius

on Witt vectors and continuous GF -action (for the weak topology). We have natural Frobenius
and ΓF -equivariant embeddings A+

F ⊂ Ainf(OF∞) which extends to an embedding AF ⊂ ÃHF

and we set BF = AF [1/p]. Let A denote the p-adic completion of the maximal unramified ex-
tension of AF inside Ã and set B := A[1/p] ⊂ B̃. The rings A and B are stable under Frobenius
and GF -action on B̃ and we equip them with induced structures. We have AF = AHF and
BF = BHF . Moreover, set A+ := Ainf(OF ) ∩ A ⊂ Ã and B+ := A+[1/p] stable under the
Frobenius and GF -action on B, then we have A+

F = (A+)HF and B+
F = (B+)HF .

2.2. p-adic representations. Let T be a finite free Zp-representation of GF . By the
theory of étale (φ, ΓF )-modules (see [Fon90]) one can functorially associate to T a finite free
étale (φ, ΓF )-module DF (T ) := (A ⊗Zp T )HF over AF of rank = rkZpT . Moreover, we have a
natural (φ, ΓF )-equivariant isomorphism A ⊗AF DF (T ) ∼−→ A ⊗Zp T . These constructions are
functorial in Zp-representations and induce an exact equivalence of ⊗-categories

RepZp
(GF ) ∼−→ (φ, ΓF )-Modét

AF
, (2.2)

with an exact ⊗-compatible quasi-inverse given as TF (D) := (A⊗AF D)φ=1 = (Ã⊗AF D)φ=1.
Similar statements are also true for p-adic representations of GF . Furthermore, let D+

F (T ) :=
(A+⊗Zp T )HF be the (φ, ΓF )-module over A+

F associated to T and for V := T [1/p] let D+
F (V ) :=

D+
F (T )[1/p] be the (φ, ΓF )-module over B+

F associated to V .
From p-adic Hodge theory of GF (see [Fon82]), one can attach to a p-adic representation

V a filtered φ-module over F of rank ≤ dimQp V given as Dcris(V ) := (Bcris(OF ) ⊗Qp V )GF .
The representation V is said to be crystalline if the natural map Bcris(OF ) ⊗F Dcris(V ) →
Bcris(OF )⊗Qp V is an isomorphism, or equivalently, V is crystalline if and only if dimF Dcris(V ) =
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dimQp V . Restricting Dcris to the category of crystalline representations of GF and writing
MFwa

F (φ) for the category of weakly admissible filtered φ-modules over F (see [CF00]), we obtain
an exact equivalence of ⊗-categories (see [CF00, Théorème A])

Dcris : Repcris
Qp

(GF ) ∼−→ MFwa
F (φ), (2.3)

with an exact ⊗-compatible quasi-inverse given as Vcris(D) := (Fil0(Bcris(OF )⊗F D))φ=1.

2.3. Fontaine-Herr complex. Let T be a Zp-representation of GF , and let DF (T ) denote
the associated étale (φ, ΓF )-module over AF . In [Her98], Herr obtained a three term complex
computing continuous GF -cohomology of T in terms of DF (T ). More precisely, recall that γ is
a topological generator of ΓF and consider the following complex:

C•(DF (T )) : DF (T ) (γ−1,1−φ)−−−−−−−→ DF (T )⊕DF (T ) (1−φ,γ−1)⊺−−−−−−−−−−→ DF (T ), (2.4)

where the first map is x 7→ ((γ−1)x, (1−φ)y) and the second map is (x, y) 7→ (1−φ)x−(γ−1)y.
Then the complex C•(T ) computes the continuous GF -cohomology of T in each cohomological
degree, i.e. for each k ∈ N, we have natural (in T ) isomorphims Hk( C•(T )) ∼−→ Hk

cont(GF , T ).
From the complex it is clear that Hk

cont(GF , T ) = 0 for i ≥ 3. To ease notations, from now
onwards we will write Hk(GF , V ) instead of Hk

cont(GF , T ).
Note that for a Zp-representation T of GF , the space H1(GF , T ) classifies all extension classes

of Zp by T in the category of Zp-representations of GF . Similarly, for an étale (φ, ΓF )-module
D, the space H1( C•(D)) classifies all extension classs of AF by D in the category of étale
(φ, ΓF )-modules over AF . In particular, we have natural isomorphisms

H1(GF , T ) ∼−→ Ext1
RepZp

(GF )(Zp, T ) ∼−→ Ext1
(φ,ΓF )-Modét

AF

(AF , DF (T )) ∼←− H1( C•(DF (T )).

2.4. Bloch-Kato Selmer groups. In this section we will recall the definition of Bloch-
Kato Selmer groups from [BK90]. Let V be a p-adic crystalline representation of GF . Then we
have a natural GF -equivariant map V → Bcris(OF )⊗QpV sending x 7→ 1⊗x. Considering the con-
tinuous GF -cohomology groups, we obtain natural maps Hk(GF , V ) → Hk(GF , Bcris(OF ) ⊗Qp

V ), for each k ∈ N.

Definition 2.1. Define the Bloch-Kato Selmer groups of V denoted Hk
f (GF , V ) ⊂ Hk(GF , V ),

for k ∈ N, by setting H0
f (GF , V ) = H0(GF , V ), Hk

f (GF , V ) = 0 for k ≥ 2 and

H1
f (GF , V ) := Ker

(
H1(GF , V )→ H1(GF , Bcris(OF )⊗Qp V )

)
.

Remark 2.2. For k ∈ N, the subspace Hk
f (GF , V ) ⊂ Hk(GF , V ) are also referred to as the

crystalline part of the Galois cohomology of V . Notably, the subspace H1
f (GF , V ) ⊂ H1(GF , V )

classifies all crystalline extension classes of Qp by V , i.e. we have natural isomorphisms

H1
f (GF , V ) ∼−→ Ext1

Repcris
Qp

(GF )(Qp, V ) ∼−→ Ext1
MFwa

F (φ)(F, Dcris(V )),

where the last isomorphism follows from exactness of functors Dcris and Vcris (see §2.2).
Now we note that we have a natural GF -equivariant map V → Fil0Bcris(OF )⊗Qp V sending

x 7→ 1⊗ x and it induces a natural map H1(GF , V )→ H1(GF , Fil0Bcris(OF )⊗Qp V ).

Proposition 2.3. The following natural map is an isomorphism:

Ker
(
H1(GF , V )→ H1(GF , Fil0Bcris(OF )⊗Qp V )

) ∼−→ H1
f (GF , V ).
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Proof. By naturality of GF -action we have a commutative diagram

H1(GF , V ) H1(GF , Fil0Bcris(OF )⊗Qp V )

H1(GF , Bcris(OF )⊗Qp V ).

(2.5)

To show the claim it is enough to show that the right vertical arrow is injective. Now consider
the following exact sequence:

0 −→ Fil0Bcris(OF ) −→ Bcris(OF ) −→ Bcris(OF )/Fil0Bcris(OF ) −→ 0.

Upon tensoring this exact sequence with V and taking continuous GF -cohomology we obtain an
injective map of F -vector spaces

α : Dcris(V )/Fil0Dcris(V ) −→
(
Bcris(OF )/Fil0Bcris(OF )⊗Qp V

)GF , (2.6)

and we see that the vertical map in (2.5) is injective if and only if (2.6) is bijective. Since
BdR(OF ) = Fil0BdR(OF )+Bcris(OF )φ=1 (see [BK90, Proposition 1.17]), we have GF -equivariant
isomorphisms

Bcris(OF )/Fil0Bcris(OF ) ∼−→ BdR(OF )/Fil0BdR(OF ) ∼−→ ⊕k<0Cp · tk,

where the last isomorphism follows from [Fon94, §1.5.5]. Therefore, the codomain of the map (2.6)
can be written as

(
Bcris(OF )/Fil0Bcris(OF )⊗QpV

)GF = (⊕k<0tkCp⊗QpV )GF = ⊕k<0grkDcris(V ).
Counting dimensions, we note that we have

dimF (Fil0Dcris(V )) + dimF (⊕k<0grkDcris(V )) = dimF Dcris(V ),

so the domain and codomain of the F -linear injective map in (2.6) have the same dimension.
Hence, (2.6) is bijective.

Corollary 2.4. Let V be a p-adic crystalline representation of GF . Then the following complex

D•(Dcris(V )) : Fil0Dcris(V ) 1−φ−−−→ Dcris(V ), (2.7)

computes the crystalline part of the Galois cohomology of V , i.e. Hk(D•(Dcris(V ))) ∼−→ Hk
f (GF , V )

for each k ∈ N.

Proof. Tensoring the fundamental exact sequence in (2.1) with V , we obtain a GF -equivariant
exact sequence

0 −→ V −→ Fil0Bcris(OF )⊗Qp V
1−φ−−−→ Bcris(OF )⊗Qp V −→ 0.

By taking the continuous Galois cohomoloy of the terms above, we obtain a long exact sequence

0 −→ H0(GF , V ) −→ Fil0Dcris(V ) 1−φ−−−→ Dcris(V ) −→ H1(GF , V ) −→
−→ H1(GF , Fil0Bcris(OF )⊗Qp V ).

(2.8)

The claim now follows from Proposition 2.3.
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3. Wach modules
In this section we will recall the definition of Wach modules, their relation to p-adic crystalline
representations and prove some results on the Nygaard filtration on Wach modules. From §2.1
recall that we have A+

F = OF JµK equipped with a Frobenius endomorphism φ and a continuous
action of ΓF . Set q := 1 + µ and [p]q := ξ̃ = φ(µ)/µ.

Definition 3.1. Let a, b ∈ Z with b ≥ a. A Wach module over A+
F with weights in the interval

[a, b] is a finite free A+
F -module N equipped with a continuous and semilinear action of ΓF

satisfying the following:

(1) ΓF acts trivially on N/µN .

(2) There is a Frobenius-semilinear operator φ : N [1/µ] → N [1/φ(µ)] commuting with the
action of ΓF such that φ(µbN) ⊂ µbN and cokernel of the induced injective map (1⊗ φ) :
φ∗(µbN)→ µbN is killed by [p]b−a

q .

Define the [p]q-height of N to be the largest value of−a for a ∈ Z as above. Say that N is effective
if one can take b = 0 and a ≤ 0. A Wach module over B+

F is a finite module M equipped with a
Frobenius-semilinear operator φ : M [1/µ]→ M [1/φ(µ)] commuting with the action of ΓF such
that there exists a φ-stable (after inverting µ) and ΓF -stable A+

F -submodule N ⊂ M with N a
Wach module over A+

F (equipped with induced (φ, ΓF )-action) and N [1/p] = M .

Denote the category of Wach modules over A+
F as (φ, Γ)-Mod[p]q

A+
F

with morphisms between
objects being A+

F -linear, ΓF -equivariant and φ-equivariant (after inverting µ) morphisms. Ex-
tending scalars along A+

F → AF induces a fully faithful functor (φ, Γ)-Mod[p]q
A+

F

→ (φ, Γ)-Modét
AF

(see [Abh23a, Proposition 3.3]).

3.1. Relation to crystalline representations. Let Repcris
Zp

(GF ) denote the category
of Zp-lattices inside p-adic crystalline representations of GF . To any T in Repcris

Zp
(GF ), Berger

functorially attaches a unique Wach module NF (T ) over A+
F in [Ber04]. Then we have the

following:

Theorem 3.2 ([Wac96, Wach], [Col99, Colmez], [Ber04, Berger]). The Wach module functor
induces an equivalence of ⊗-catgeories

Repcris
Zp

(GF ) ∼−→ (φ, ΓF )-Mod[p]q
A+

F

, T 7−→ NF (T ),

with a ⊗-compatible quasi-inverse given as N 7→ TF (N) =
(
W (C♭

p)⊗A+
F

N
)φ=1.

Remark 3.3. In Theorem 3.2 note that we do not expect the functor NF to be exact. How-
ever, after inverting p, the Wach module functor induces an exact equivalence of ⊗-categories
Repcris

Qp
(GF ) ∼−→ (φ, Γ)-Mod[p]q

B+
F

, via V 7→ NF (V ) and with an exact ⊗-compatible quasi-inverse

given as M 7→ VF (M) =
(
W (C♭

p)⊗A+
F

M
)φ=1 (see [Abh23a, Corollary 4.3]).

Remark 3.4. Let N be a Wach module over A+
F and T = TF (N) the associated Zp-representation

of GF from Theorem 3.2. Then for each r ∈ Z, we have that µ−rN(r) is a Wach module over
A+

F and TF (µ−rN(r)) ∼−→ T (r), where (r) denotes twist by χr.
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3.2. Nygaard filtration on Wach modules. Let N be a Wach module over A+
F .

Define a decreasing filtration on N called the Nygaard filtration, for k ∈ Z, as FilkN :=
{x ∈ N such that φ(x) ∈ [p]kq N}. From the definition it is clear that N is effective if and
only if Fil0N = N . Similarly, we define Nygaard filtration on M := N [1/p] and it satisfies
FilkM = (FilkN)[1/p].

Now note that (N/µN)[1/p] is a φ-module over F since [p]q = p mod µN and N/µN is
equipped with a filtration Filk(N/µN) given as the image of FilkN under the surjection N ↠
N/µN . We equip (N/µN)[1/p] with induced filtration, in particular, it is a filtered φ-module
over F . From [Ber04, Théorème III.4.4] and [Abh23a, Theorem 1.7 & Remark 1.8] we have:

Theorem 3.5. Let N be a Wach module over A+
F and V := TF (N)[1/p] the associated crys-

talline representation from Theorem 3.2. Then we have (N/µN)[1/p] ∼−→ Dcris(V ) as filtered
φ-modules over F .

From Theorem 3.5 we have a surjection FilkN [1/p] ↠ FilkDcris(V ) and we would like to
determine its kernel.

Lemma 3.6. Let N be a Wach module over A+
F and j, k ∈ N≥1. Then we have

µ−jFilkN ∩ µ−j+1N = µ−j+1Filk−1N.

Similar statement is true for the Wach module N [1/p] over B+
F . Moreover, for each k ∈ Z, we

have an exact sequence

0 −→ µFilk−1N −→ FilkN −→ Filk(N/µN) −→ 0. (3.1)

In particular, Ker(FilkN [1/p] ↠ FilkDcris(V )) = µFilk−1N [1/p].

Proof. First part of the claim follows from [Abh23c, Lemma 3.4] and the exactness of (3.1) easily
follows from the first part. Rest is obvious.

Remark 3.7. The Nygaard filtration on a Wach module N over A+
F is stable under the action of

ΓF . Therefore, for g ∈ ΓF and k ∈ Z, we have (g − 1)FilkN ⊂ (FilkN) ∩ µN = µFilk−1N .
Finally, we will check the compatibility of Nygaard filtration with exact sequences of Wach

modules over A+
F . So consider an exact sequence of Wach modules over A+

F as

0 −→ N1 −→ N2 −→ N3 −→ 0. (3.2)

Lemma 3.8. For k ∈ Z, we have N1 ∩ FilkN2 = FilkN1.

Proof. Let Di := AF ⊗A+
F

Ni, for i = 1, 2. Note that we have N1 := D1 ∩ N2 ⊂ D2. So if
x ∈ N1∩FilkN2 then φ(x) ∈ D1∩ [p]kq N2, i.e. [p]−k

q φ(x) ∈ D1∩N2 = N1. Hence, x ∈ FilkN1.

Remark 3.9. For j, k ∈ Z, we have N1 ∩ µjFilkN2 = µjFilkN1. Indeed, using the same notation
as in the proof of Lemma 3.8, we note that if x ∈ N1 ∩ µjN2 then x = µjy for y ∈ N2 and
y = µ−jx ∈ D1 ∩N2 = N1, i.e. x ∈ µjN1. Combining this with Lemma 3.8 we get the claim.

We can obtain a stronger statement after inverting p. More precisely, let Mi := Ni[1/p] for
i = 1, 2, 3, be Wach modules over B+

F , where Ni are as in (3.2). Then we have,

Lemma 3.10. The following sequence is exact for each k ∈ Z

0 −→ FilkM1 −→ FilkM2 −→ FilkM3 −→ 0. (3.3)
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Proof. For i = 1, 2, 3 and r ∈ Z, from Remark 3.4 note that µ−rNi(r), where (r) denotes a twist
by χr, are again Wach modules over A+

F and (3.2) is exact if and only if the following is exact

0 −→ µ−rN1(r) −→ µ−rN2(r) −→ µ−rN3(r) −→ 0.

Moreover, from [Abh21, Lemma 4.17] we have Filk−r(µ−rMi(r)) = µ−rFilkMi(r) and therefore
(3.3) is exact if and only if the following is exact

0 −→ Filk−r(µ−rM1(r)) −→ Filk−r(µ−rM2(r)) −→ Filk−r(µ−rM2(r)) −→ 0.

In particular, without loss of generality we may assume that Mi are effective Wach modules over
B+

F for each i = 1, 2, 3, in particular, Fil0Mi = Mi. We will prove the claim by induction on
k ∈ N. So let us assume the claim for k − 1 and consider the following diagram

0 0 0

0 µFilk−1M1 FilkM1 Filk(M1/µM1) 0

0 µFilk−1M2 FilkM2 Filk(M2/µM2) 0

0 µFilk−1M3 (FilkM2)/(FilkM1) Filk(M3/µM3) 0

0 0 0.

(3.4)

Note that first and second rows are exact by Lemma 3.6 and the first column is exact by induction
assumption. In the second column, using M1 = (BF ⊗B+

F
M1) ∩M2 ⊂ BF ⊗B+

F
M2, it easily

follows that FilkM1 ⊂ FilkM2. Now let Vi := VF (Mi), for i = 1, 2, 3. Then from Theorem 3.5 we
have filtered isomorphisms Filk(Mi/µMi)

∼−→ FilkDcris(Vi). Recall that Dcris is an exact functor
and in the category MFwa

F (φ) exact sequences are compatible with filtration. So we get that the
third column is also exact. Hence, it follows that the third row is exact and from Lemma 3.6 we
conclude that (FilkM2)/(FilkM1) ∼−→ FilkM3, proving the claim.

4. Syntomic complex and Galois cohomology
In this section we will define a syntomic complex with coefficients in a Wach module and show
that, after inverting p, it computes the crystalline part of the Galois cohomology of the associated
crystalline representation.

Let N be a Wach module over A+
F and define an operator ∇q := γ−1

µ : N → N . From
Remark 3.7 note that we have ∇q(FilkN) ⊂ Filk−1N for each k ∈ Z.

Definition 4.1. Define the syntomic complex with coeffcients in N as

S•(N) : Fil0N
(∇q ,1−φ)−−−−−−−→ Fil−1N ⊕N

(1−[p]qφ,∇q)⊺−−−−−−−−−−→ N, (4.1)

where the first map is x 7→ (∇q(x), (1−φ)x) and the second map is (x, y) 7→ (1− [p]qφ)x−∇q(y).

The goal of this section is to show the following claim:

Theorem 4.2. Let N be a Wach module over A+
F and V = TF (N)[1/p] the associated p-adic

crystalline representation of GF from Theorem 3.2. Then we have a natural isomorphism for
each k ∈ N

Hk(S•(N))[1/p] ∼−→ Hk
f (GF , V ).
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Proof. The claim for H0
f follows from Lemma 4.4. For H1

f recall that from Remark 2.2 we have
a natural (in V ) isomorphism

H1
f (GF , V ) ∼−→ Ext1

Repcris
Qp

(GF )(Qp, V ).

Moreover, from Remark 3.3 the functors NF and its quasi-inverse VF are exact. Therefore, we
have a natural (in V ) isomorphism

Ext1
(φ,ΓF )-Mod[p]q

B+
F

(B+
F , N [1/p]) ∼−→ Ext1

Repcris
Qp

(GF )(Qp, V ).

Combining these observations with Proposition 4.5 (after inverting p) we get a natural (in V )
isomorphism

H1(S•(N, r))[1/p] ∼−→ H1
f (GF , V ).

Finally, note that the Wach module N [1/p] over B+
F can always be written as a twist of an effective

Wach module over B+
F and similarly, the representation V is the twist of the corresponding

positive crystalline representation by a power of the cyclotomic character (see Remark 3.4).
Therefore, the claim for H2

f follows from Proposition 4.6.

Remark 4.3. The complex in (4.1) is isomorphic to the complex

Fil0N
(γ−1,1−φ)−−−−−−−→ µFil−1N ⊕N

(1−φ,γ−1)⊺−−−−−−−−→ µN,

which can be seen as a subcomplex of the Fontaine-Herr complex of AF ⊗A+
F

N (see §2.3).

4.1. Comparing H0 and H1. In this section we will compute H0 and H1 of the complex
S•(N).

Lemma 4.4. Let N be a Wach module over A+
F and T = TF (N) the associated Zp-representation

of GF from Theorem 3.2 such that T [1/p] is crystalline. Then we have a natural isomorphism

H0(S•(N)) = (Fil0N)φ=1,∇q=0 ∼−→ T GF .

Proof. A simple computation shows that (Fil0N)φ=1,∇q=0 = (Fil0N)φ=1,γ=1 = Nφ=1,γ=1 =
Nφ=1,ΓF , where the last equality follows from the continuity of ΓF -action on N . Now from
[Ber04, Proposition II.1.1] we have N [1/µ] ∼−→ D+

F (T )[1/µ]. Note that (A+[1/µ])φ=1 = Zp,
therefore it follows that

(N [1/µ])φ=1,γ=1 = (D+
F (T )[1/µ])φ=1,γ=1 ∼−→ T GF .

We claim that Nφ=1,γ=1 = (N [1/µ])φ=1,γ=1, which is enough to prove the lemma. Indeed, let
(x/µk) ∈ N [1/µ]φ=1,γ=1 for some x ∈ N and k ∈ Z. Then it is enough to show that x ∈ µkN .
Note that g = γp−1 is a topological generator of Gal(F∞/F (ζp)) and we have g(x) = (g(µ)k/µk)x.
Reducing modulo µ, we obtain g(x) = χ(g)kx mod µN . Since ΓF acts trivially on N/µN and
χ(g)k − 1 is a unit in B+

F , we obtain that x ∈ µN [1/p] ∩ N = µN . Iterating this k times we
obtain x ∈ µkN as desired.

Proposition 4.5. Let N be a Wach module over A+
F . Then we have a natural (in N) isomor-

phism
H1(S•(N)) ∼−→ Ext1

(φ,ΓF )-Mod[p]q
A+

F

(A+
F , N).
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Proof. We will construct a map

α : H1(S•(N)) −→ Ext1
(φ,ΓF )-Mod[p]q

A+
F

(A+
F , N), (4.2)

and show that it is bijective by constructing an inverse map. Let (x, y) represent a class in
H1(S•(N)), i.e. we have x ∈ Fil−1N and y ∈ N such that (1 − [p]qφ)x = ∇q(y). Set E1 =
N ⊕ A+

F · e with γ(e) = µx + e and φ(e) = y + e. Clearly, E1 is a Wach module over A+
F .

Moreover, by sending e to 1 ∈ A+
F we have an exact sequence of Wach modules over A+

F

0 −→M −→ E1 −→ A+
F −→ 0,

This represents an extension class of A+
F by N in the category (φ, ΓF )-Mod[p]q

A+
F

and we set
α[(x, y)] = [E1], where we represent cohomological classes with “[ ]”. To show that α is well-
defined we must show that the extension class [E1] is independent of the choice of presentation
(x, y). Indeed, let (x′, y′) denote another presentation such that x′−x = ∇q(w), y′−y = (1−φ)w
for some w ∈ Fil0N . Then similar to above E2 = N ⊕ A+

F · e′, with γ(e′) = µx′ + e′ and
φ(e′) = y′ + e′, is a Wach module over A+

F and an extension of A+
F by N . Let us define a map

f : E1 → E2 given as identity on N and letting f(e) = e′ − w. Then f is bijective since we
have f−1 : E2 → E1 given as identity on M and letting f−1(e′) = e + w and f ◦ f−1 = id and
f−1 ◦ f = id. From the formulas x′− x = ∇q(w) and y′− y = (1−φ)y it is easy to verify that f
and f−1 are (φ, ΓF )-equivariant. Now consider the following diagram with A+

F -linear maps and
exact rows

0 N E1 A+
F 0

0 N E2 A+
F 0.

f ≀

The left square commutes by definition of f . Moreover, the A+
F -linear map E1 → A+

F sends
e 7→ 1 and the A+

F -linear map E2 → A+
F sends e′ 7→ 1, therefore its follows that right square

commutes as well. Hence, E1 and E2 represent the same extension class of A+
F by N in the

category (φ, ΓF )-Mod[p]q
A+

F

. In particular, α is well-defined.
Now we will construct an inverse of α which we will denote by β. Consider an extension of

Wach modules over A+
F as

0 −→ N −→ E1 −→ A+
F −→ 0.

We write E1 = N ⊕ A+
F · e, where e ∈ E1 is a lift of 1 ∈ A+

F and we have (γ − 1)e = z and
(1 − φ)e = y for some y, z ∈ N . But then φ(e) = e − y ∈ E1, i.e. e ∈ Fil0E1. Therefore,
z = (γ − 1)e ∈ N ∩ µFil−1E1 = µFil−1N , where the last equality follows from Remark 3.9. In
particular, we have ∇q(e) = γ−1

µ e = x, for some x ∈ Fil−1N . By the commutativity of φ and γ,
we get that (1− [p]qφ) ◦ ∇q(e) = ∇q ◦ (1− φ)e, or equivalently,

(1− [p]qφ)x = ∇q(y).

Therefore, (x, y) represents a cohomological class in H1(S•(N)) and we set β([E1]) = [(x, y)].
Let us first show that the class [(x, y)] is independent of the lift e ∈ E1 of 1 ∈ A+

F . So let
e′ ∈ E denote another lift of 1 ∈ A+

F , then arguing as above we have e′ ∈ Fil0E and there
exist x′ ∈ Fil−1N and y′ ∈ M such that ∇q(e′) = x′, (1 − φ)e′ = y′ and (1 − [p]qφ)x = ∇q(y).
Moreover, from Lemma 3.8 we note that w = e′ − e ∈ Fil0E ∩N = Fil0N , in particular, we get
that x′ = x+∇q(w) and y′ = y+(1−φ)w. Since (1− [p]qφ)◦∇q = ∇q ◦(1−φ), we conclude that
(x, y) and (x′, y′) represent the same class in H1(S•(N)). Now to show that α−1 is well-defined
we must show that the class [(x, y)] is independent of the presentation E1 of the extension class.



Crystalline part of the Galois cohomology 11

So let E2 denote another presentation of the extension class [E1], i.e. E2 is a Wach module over
B+

F and there exists a (φ, ΓF )-equivariant isomorphism f : E1
∼−→ E2 fitting into the following

commutative diagram with exact rows

0 N E1 A+
F 0

0 N E2 A+
F 0.

f ≀

Let e′′ ∈ E2 denote a lift of 1 ∈ A+
F and arguing as above we have e′′ ∈ Fil0E2 and there exist

x′′ ∈ Fil−1N and y′′ ∈ N such that∇q(e′′) = x′′, (1−φ)e′′ = y′′ and (1−[p]qφ)x′′ = ∇q(y′′). From
the commutative diagram above we note that f−1(e′′) ∈ E1 denotes a lift of 1 ∈ A+

F and it follows
that f−1(e′′) ∈ Fil0A1 and ∇q(f−1(e′′)) = x′′, (1− φ)f−1(e′′) = y′′ and (1− [p]qφ)x′′ = ∇q(y′′).
Using the independence from choice of a lift in E1 of 1 ∈ A+

F , it follows that (x, y) and (x′′, y′′)
represent the same cohomological class in H1(S•(N)). Hence, β is well-defined.

Finally, we need to show that the two constructions described above are inverse to each other,
i.e. α ◦ β = id and β ◦ α = id. Note that starting with a class [(x, y)] in H1(S•(N)) we can
construct an E an extension of A+

F by N in (φ, ΓF )-Mod[p]q
A+

F

, such that [E] = α[(x, y)], i.e. E

can be described using (x, y) as above. After applying β we obtain a class β([E]) = [(x′, y′)] in
H1(S•(N)) with a presentation (x′, y′) depending on the choice of a lift in E of 1 ∈ A+

F . By
construction, E admits a description using (x, y) and (x′, y′) depending on the choice of a lift in
E of 1 ∈ A+

F . Since [E] is independent of this choice, it follows that [(x′, y′)] = β([E]) = [(x, y)]
in H1(S•(N)). Next, starting with E an extension of A+

F by N in (φ, ΓF )-Mod[p]q
A+

F

we can
construct a class [(x, y)] = β([E]) in H1(S•(N)). After applying α, we obtain an extension
class [E′] = α[(x, y)] where E′ is an extension of A+

F by M in (φ, ΓF )-Mod[p]q
A+

F

. By construction,
E = N ⊕ A+

F · e with ∇q(e) = x and (1 − φ)e = y, and E′ = N ⊕ A+
F · e′ with ∇q(e′) = x

and (1 − φ)e′ = y. Therefore, f : E → E′ defined by identity on N and letting f(e) = e′ is a
(φ, ΓF )-equivariant isomorphism, in particular, [E′] = α[(x, y)] = [E]. In conclusion, we have
shown that α is a natural (in N) bijective map.

4.2. Rational comparison. For convenience in computations in this section, we rephrase
our goal. Let V be a p-adic positive crystalline representation of GF , i.e. all its Hodge-Tate
weights ≤ 0 and let T ⊂ V be a GF -stable Zp-lattice. Set V (r) = V ⊗Qp Qp(r) and T (r) = T ⊗Zp

Zp(r) for r ∈ Z. From Theorem 3.2 we have Wach modules NF (T ) and NF (V ) = NF (T )[1/p],
such that NF (T (r)) = µ−rNF (T )(r) and NF (V (r)) = µ−rNF (V )(r). Let us denote the complex
S•(µ−rNF (T )(r))[1/p] by S•(NF (V ), r). Then our goal is to show the following claim:

Proposition 4.6. The cohomology group H2(S•(NF (V ), r)) vanishes. In particular, we have
H2(S•(NF (V ), r)) = H2

f (GF , V (r)) = 0.

Proof. Let x ∈ NF (V (r)), then to prove the claim it is enough to show that we can write
x = ∇q(y)− (1− [p]qφ)z for some y ∈ NF (V (r)) and z ∈ Fil−1NF (V (r)). Write x = x′

µr ⊗ ϵ⊗r,
where ϵ⊗r denote a Qp-basis of Qp(r). The from Lemma 4.8 there exist y′, z′ ∈ NF (V ) such that

x′

µr ⊗ ϵ⊗r = ∇q
( y′

µr−1 ⊗ ϵ⊗r)− (1− [p]qφ)(z′ ⊗ ϵ⊗r).

Letting z = z′⊗ϵ⊗r and y = y′

µr−1 ⊗ϵ⊗r, we get that x = ∇q(y)−(1− [p]qφ)z with y ∈ NF (V (r))
and z ∈ NF (V )(r) ⊂ NF (V (r)). However, note that [p]qφ(z) = x + z +∇q(y) ∈ NF (V (r)), in
particular, z ∈ Fil−1NF (V (r)). Hence, we get the claim.
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Remark 4.7. For any x ∈ NF (T ) there exists some y ∈ NF (T ) such that (1 − [p]qφ)y = x
because the series (1 + [p]qφ + ([p]qφ)2 + · · · ) converges as series of operators on NF (T ) since∏n

k=0 φk([p]q) ∈ (p, µ)n+1 for all n ∈ N. In particular, ([p]qφ)n is (p, µ)-adically nilpotent and we
can take y = (1 + [p]qφ + ([p]qφ)2 + · · · )x ∈ NF (T ). Similar claim is also true for NF (V ).

Let ϵ⊗r denote a Qp-basis of Qp(r). Then the following result was used in Proposition 4.6:

Lemma 4.8. Let x ∈ NF (V ) then for 1 ≤ k ≤ r there exist y, z ∈ NF (V ) such that

x
µk ⊗ ϵ⊗r = ∇q

( y
µk−1 ⊗ ϵ⊗r)− (1− [p]qφ)(z ⊗ ϵ⊗r).

Proof. Note that g = γp−1 is a topological generator of Gal(F∞/F (ζp)), in particular, we have
that χ(g)− 1 ∈ pZp. Moreover, we can write g− 1 = γp−1− 1 = (γ− 1)(1 + γ2 + · · ·+ γp−2) and
up to multiplying by some power of p we may assume that x ∈ NF (T ). Therefore, it is enough
to show that for x ∈ NF (T ) there exist y, z ∈ NF (V ) such that

x
µk ⊗ ϵ⊗r = g−1

µ

( y
µk−1 ⊗ ϵ⊗r)− (1− [p]qφ)(z ⊗ ϵ⊗r). (4.3)

Let (g − 1)x = µx1 for some x1 ∈ NF (T ) and we will prove the claim by induction on k. So let
k = 1 and consider the following

g−1
µ

(
x

χ(g)r−1 ⊗ ϵ⊗r) =
(

x
µ + χ(g)rx1

χ(g)r−1
)
⊗ ϵ⊗r =

(
x
µ + (1− [p]qφ)z1)⊗ ϵ⊗r,

where z1 ∈ NF (V ) following Remark 4.7. Upon rearranging the terms we see that (4.3) holds
for k = 1. Now we write u = (χ(g)µ)/g(µ) ∈ 1 + pµA+

F , let 1 < k ≤ r and assume (4.3) holds
for k − 1. Then we have

g−1
µ

(
x

µk−1(χ(g)r−k+1−1) ⊗ ϵ⊗r) = uk−1χ(g)r−k+1−1
µk(χ(g)r−k+1−1) x⊗ ϵ⊗r + uk−1χ(g)r−k+1

µk−1(χ(g)r−k+1−1)x1 ⊗ ϵ⊗r

=
(

x
µk + xk

µk−1

)
⊗ ϵ⊗r

= x
µk ⊗ ϵ⊗r + g−1

µ

( yk

µk−2 ⊗ ϵ⊗r)− (1− [p]qφ)(zk ⊗ ϵ⊗r),

for some xk, yk, zk ∈ NF (V ) and the last equality follows from induction hypothesis. By rear-
ranging the terms we get that (4.3) also holds for any 1 < k ≤ r. This concludes our proof.
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