CRYSTALLINE REPRESENTATIONS AND WACH MODULES
IN THE RELATIVE CASE

ABHINANDAN

Abstract. We study the notion of Wach modules in the relative setting, generalizing the
arithmetic case. Over an unramified base, for a p-adic representation admitting such struc-
ture, we examine the relationship between its relative Wach module and filtered (p, d)-module.
Moreover, we show that such a representation is crystalline (in the sense of Faltings-Brinon),
and one can recover its filtered (p,d)-module from the relative Wach module. Conversely,
for low Hodge-Tate weights [0, p — 2], we construct relative Wach modules from free relative
Fontaine-Laffaille modules (in the sense of Faltings).
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1. Introduction

The theory of Wach modules for p-adic crystalline representations of the absolute Galois group of
a finite unramified extension of @, was introduced in the paper of Fontaine [Fon90]. This notion
was further developed by Wach [Wac96; Wac97] and Berger [Ber04]. Over the years, this theory
has found many applications, for example, to the Iwasawa theory of crystalline representations
in [Ben00; BB08], and in the study of the p-adic local Langlands program [BB10]. Wach modules
were also among one of the motivations for Scholze’s idea of g-deformations [Sch17], which in
turn paved the way for the theory of prisms and prismatic cohomology of Bhatt and Scholze
developed in [BS22].

Our goal in this article is to upgrade the notion of Wach modules to the relative case by
which we mean certain étale algebras over a formal torus (see §1.4 for precise setup). But before
examining the relative case, let us recall the relation between Wach modules and crystalline
representations in the arithmetic case.

1.1. The arithmetic case. Let p be a fixed prime number and let x denote a finite field
of characteristic p; set Op = W (k) to be the ring of p-typical Witt vectors with coefficients

in Kk and F = Fr(Op). Let F denote a fixed algebraic closure of F, C, := F the p-adic
completion, and G = Gal(F/F) the absolute Galois group of F. Further, let Foo = Uy, F'(ppn)
with I'p 1= Gal(Fy/F) and Hp = Gal(F/F.). Finally, let C, denote the tilt of C,.

1.1.1. (¢,I'r)-modules. Using a certain period ring A C W((CII’,) stable under the Frobenius
on Witt vectors and the Gp-action (see §3.1 for precise definition), Fontaine functorially at-
tached to any Z,-representation T" of G (i.e. finitely generated Z,-modules equipped with a lin-
ear and continuous Gp-action), the module D(T') = (A®z, T)#F over the two dimensional local
ring Ar = A7, The module D(T) is equipped with a (induced from A) Frobenius-semilinear
operator ¢ such that the image of ¢ generates D(T'), i.e. D(T) is étale. Moreover, D(T) is
equipped with a continuous and semilinear action of I'r and if T is free the A p-rank of D(T")
equals the Z,-rank of T In [Fon90] Fontaine estalished an equivalence of categories between
Zy-representations of Gp and étale (¢,I'r)-modules over Ap. Furthermore, this construction
naturally extends to p-adic representations of Gg. Namely, using the period ring B = A[%},
Fontaine functorially attached to any p-adic representation V' of G an étale (p,I'r)-module
D(V) = (B®g, V) over Bp = BfF (i.e. there exists a Z-lattice T C V such that D(T)
is an étale (¢,'r)-module over Ap). Moreover, he showed that this induces an equivalence
between p-adic representations of G and étale (¢, 'p)-modules over Bp.

1.1.2. Crystalline representations of Gr. Using another period ring Bis also equipped
with a Frobenius and continuous G g-action (see §2.2 for precise definition), Fontaine functorially
attached to any p-adic representation V' of G an F-vector space Deis(V) = (Bais ®q, V)Gr,
The F-vector space Deyis(V) is a filtered p-module, i.e. it is equipped with a (induced from
B.;is) Frobenius-semilinear operator ¢ and a filtration. In case dimp Deis(V) = dimg, V, such
a representation is said to be crystalline (the terminology crystalline comes from the fact that for
a smooth proper scheme X/Op and i € N the p-adic étale cohomology group of the generic fiber
Vi=H ét(XFa Qp) is crystalline as a G'p-representation and the crystalline cohomology group of
the special fiber H! (X, /F) is naturally isomorphic to D¢:is(V;)). Restricting the functor Deyis
to the subcategory of crystalline representations, in [Fon82] Fontaine observed that the asso-
ciated filtered ¢-modules are weakly admissible (a property relating the endomorphism ¢ and
filtration on Deis(V) in a non-trivial manner). In fact, in [CF00] Colmez and Fontaine showed
that crystalline representations of G are equivalent to weakly admissible filtered p-modules.
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1.1.3. Arithmetic Wach modules. From the discussion above, it is a natural question to
ask: Does there exist some direct relation between the étale (¢, I')-module of a crystalline rep-
resentation and its associated weakly admissible filtered ¢-module? For a fixed representation,
this question could be rephrased in terms of comparing certain elements of the period rings B
and B;is. However, the rings B and B are not comparable. So to answer this question,
Fontaine considered a smaller period ring BT C B stable under Frobenius and G p-action and
such that BT — B;s stable under Frobenius and Gp-action. Using BT he defined: a p-adic
representation V' of G is said to be of finite height if the associated (p,I'r)-module D(V)
admits a (¢, g)-stable lattice over the subring Bf, = (B*)#r C By (see §4.1 for precise
definitions).

In [Fon90] Fontaine conjectured that for a crystalline representation V' of Gp there exist
lattices inside D(V') over which the action of I'p admits a simpler form. More precisely, finite
height and crystalline representations of G are related as follows:

Theorem 1.1 ([Wac96, Wach], [Col99, Colmez|, [Ber04, Berger]). Let V' be a p-adic represen-
tation of Gp. Then V is crystalline if and only if it is of finite height and there exists r € Z
and a free B}-submodule N c D(V) of rank = dimg, V', stable under the action of I'r and
such that T'p acts trivially over (N/xwN)(—r).

Here (—r) denotes the Tate twist. Note that in the situation of Theorem 1.1, the module
N is not unique. A functorial construction was given by Berger in [Ber04], i.e. to any p-adic
crystalline representation V' of G he attached a canonical Bf.-submodule N (V) € D(V) which
he called the Wach module of V. Moreover, Berger established an equivalence of categories
between crystalline representations of Gp and Wach modules over B;. Furthermore, Berger
obtained an integral version of his result by considering the period ring At = ANBT™ Cc B
stable under Frobenius and Gg-action. He showed that for a crystalline representation V' of
G, there exists a bijection between G p-stable Zy-lattices T C V' and integral Wach modules
N(T) € N(V) where N(T') is defined over the integral subring A} = (AT)”r. Finally, given
N(V') one can canonically recover the other linear algebraic object attached to V', i.e. Deyis(V)
(see [Ber04, Propositions 11.2.1 & 111.4.4]).

1.2. The relative case. The motivation for defining Wach modules in the relative case
and exploring its relation with ODy¢is(V') (see §2 for notations) comes from the hope of com-
puting Galois cohomology of p-adic representations using syntomic complexes with coefficients
in OD¢;s(V). Using syntomic complexes and techniques from the theory of (¢, T')-modules,
this was done for the trivial representation by Colmez and Niziol [CN17]. A generalization of
these complexes to non-trivial coefficients can be found in [Abh23] and [Abh21, Chapter 5].

In this article, we are interested in the p-adic Hodge theory of an étale algebra over a
formal torus defined over Op. More precisely, let d € N and X = (X1, Xo,...,Xy) be some
indeterminates, Or{X, X!} the p-adic completion of a d-dimensional torus over Op and let
R denote the p-adic completion of an étale algebra over Op{X, X!} with non-empty and
geometrically integral special fiber. Next, let Gr denote the étale fundamental group of R[%]
and I'r the Galois group of the cyclotomic tower over R and Hr = Ker (G — I'g) (see §3.1
for precise definitions). In the relative setting, on one hand Brinon has developed the theory of
crystalline representations of G [Bri08], while on the other hand Andreatta, Brinon and Iovita
have developed the theory of (¢, I'r)-modules in [And06; AIOS].

Remark 1.2. Note that in Theorem 1.1 it is important to restrict to an unramified extension
F/Q,. For ramified extensions, such a statement does not hold in general. Therefore, in the
relative setting we consider an analogue of “unramified extension of Q,” (indeed, by removing
the geometric coordinates one obtains R = Op).
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1.2.1. (¢,I'g)-modules. Analogous to the arithmetic case, we have relative period rings
ACBDOB"and AT = ANB*" C B (see §3.1 for precise definition) equipped with Frobenius
and a continuous action of Gr. Let V be a p-adic representation of Gg, then one can functorially
attach to V a projective and étale (o, I'z)-module D(V) = (B®g, V)#* over B = BA® of rank
= dimg, V' equipped with a Frobenius-semilinear operator ¢ and a semilinear and continuous
action of I'g. This induces an equivalence of categories between p-adic representations of Gr
and étale (¢, 'g)-modules over Bg. Similarly, using the period ring A one can functorially
attach to any Zy-representation T of G an étale (p,I'g)-module D(T) = (A ®z, T)"® over
the period ring Ar = AR, Again, this induces an equivalence between Zy-representations of
Gr and étale (¢, 'g)-modules over Apg.

1.2.2. Relative Wach modules. Using the period ring AT we set D™(T) = (A* ®z, T)"x,
which is a (¢, T'g)-module over A}, = (AT)HR and let ¢ = €M) where r is the usual element in

T )
Fontaine’s constructions (see §2.1 for notations). Note that for a finite free Z,-representation
T of Gr the Ag-module D(T) is finite projective, however it is not known whether D*(T') is

projective. So, we introduce the following definition:

Definition 1.3. A positive finite q-height representation is a p-adic representation V of Ggr
admitting a Zy-lattice T C V such that there exists a finite projective A}-submodule N(T') C
D*(T) of rank = dimg, V' satisfying the following conditions:

(i) N(T) is stable under the action of ¢ and ' and Ag Dat N(T) = D(T);

(ii) The Aj-module N(T)/¢*(N(T)) is killed by ¢* for some s € N;
(iii) The action of I'g is trivial on N(7")/7IN(T');
(iv) There exists R’ C R finite étale over R such that the Af,-module AL, ® AL N(T) is free.

The module N(T) is a Wach module associated to T and we set N(V) := N(T)[%] which

satisfies analogous properties. The height of V' is the smallest s € N satisfying (ii) above.

Remark 1.4. (i) A finite g-height representation is twist of a positive one by some power of
the p-adic cyclotomic character (see Definition 4.9 for details). The terminology “positive”
refers to the fact that the Wach module N(T) is stable under the Frobenius-semilinear
operator . It is motivated by the fact (and as we will show) that V' is positive crystalline
(see Theorem 1.6).

(ii) In the arithmetic case, i.e. R = Op, the notion of finite height representations in The-
orem 1.1 and finite g-height representations in Definition 1.3 are related. In fact, in the
arithmetic case using Definition 1.3 one obtains the functorial Wach module of Berger
mentioned above (see [Ber04, Proposition II.1.1]).

1.2.3. Crystalline representations of Gr. Using the period ring OB;s(R) Brinon func-
torially attaches to any p-adic representation V of Gr an R[%]—module
- G
ODcris(V) = (OBCﬁS(R) ®Qp V) R,

The module ODgis(V) is called a filtered (¢, d)-module, i.e. it is equipped with a filtration,
a Frobenius-semilinear endomorphism ¢ and a quasi-nilpotent integrable connection 0 satisfy-
ing Griffiths transversality with respect to the filtration (see §2.3 for precise definitons). The
representation V is said to be crystalline if the natural map is an isomorphism

OBcris(R) ®R[1/p} ODcris(V) ; OBcris(R) ®Qp ‘/a
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compatible with Frobenius, filtration, connection and the action of G on each side. More-
over, Brinon also defined the notion of weak admissibility in the relative case and showed that
OD.,is(V) is weakly admissible for crystalline representations (see [Bri08, Chapitre 8] for more
details).

Notation 1.5. We use period rings such as OBgis(R) which is a modified version of Fontaine’s
relative period ring Beris(R) (see §2.2 for details). The notation O here indicates that apart
from Frobenius, filtration and Gg-action, we have a connection over OB s (R) and we will call
such rings fat relative period rings. However, note that in [Bri08] Brinon denotes these rings as
Beris(R) and BY..(R), respectively. Similarly, we will use the notation OD (V) and Dyis(V)

for modules instead of Brinon’s Deyis(V) and DY (V), respectively. We hope it is not confusing
for the reader.

1.2.4. Main result. Our aim is to show that for positive finite g-height representations,
the BL-module N(V) and the R[%]—module ODyis(V) are related in a precise manner and the
latter can be recovered from the former. To relate these objects we consider the ring R[w] where
@ = (p—1 for a primitive p-th root of unity ¢, (take & = (2 —1if p = 2 for a primitve p%-th root
of unity (,2), and using this ring we construct a fat relative period ring OA%% C OBuis(R)
equipped with compatible Frobenius, filtration, connection and the action of I'r (see §4.3 for

precise definitions). The main result of this article is as follows:

Theorem 1.6 (see Theorem 4.25). Let V' be a positive finite q-height representation of Gg,
then

(i) V is a positive crystalline representation.

(ii) Let M := ((’)A%%, ®at N(T))FR, then after extending scalars to (’)A%I’?ﬂ and inverting
p, we obtain a natural isomorphism

OARL @r M[}] —+ OARL ®,4 N(V),
compatible with Frobenius, filtration, connection and the action of I'r on each side.

(iii) We have an isomorphism of R[}%} -modules

~ PD r
ODCI‘iS(V) — (OAR;W ®A§ N(T)) " [%a}’
compatible with Frobenius, filtration, and connection on each side. Therefore, we obtain
a comparison isomorphism

OAR> @4+ N(V) =5 OARL @) ODeg(V),
compatible with Frobenius, filtration, connection and the action of I'r on each side.

Let us mention the idea of the proof. In case N(T) is free, we proceed in two steps: First,
we describe a process (see Proposition 4.28 for details) by which we can recover a submodule
of ODgis(V) starting with the Wach module N(T), establishing a comparison over (’)A%BU
between the submodule obtained and the Wach module. Next, the claims made in the theorem
are shown by exploiting properties of Wach modules and the comparison obtained in the first
step. In the first step, one can take two approaches to obtain generators of the promised
submodule of OD¢yis(V): either by taking I'z-fixed points of OALD @ AL N(T') (by successively
approximating for I'g-action on a basis of N(T')); or by taking elements killed by differential
operators defined using topological generators of I'p (see Lemma 4.41 for details). In this paper,
we take the latter approach whereas the former approach is detailed in [Abh21, Chapter 3]. In
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the general case when N(T') is projective, using property (iv) in Definition 1.3 one can pass to
an extension AE C AE, to obtain a free Wach module, then use the preceding argument and
finally apply Galois descent to obtain the theorem (see Proposition 4.28 for details). Finally,
we also show that all one-dimensional crystalline representations are of finite g-height and for
such representations one can directly compare ODis(V') and the Wach module N(V).

1.3. Relative Fontaine-Laffaille modules. After obtaining Theorem 1.6 above, it is
natural to wonder if a converse statement could be true, i.e. starting with a lattice T' C V
of a crystalline representation G, is it possible to construct the Wach module N(7")? In the
arithmetic setting, for p-adic crystalline representations of G, this was shown to be true by
Wach [Wac96], and the statement was refined by Berger [Ber04]. In the relative case, the picture
is quite encouraging when we restrict to Hodge-Tate length < p — 2 (also see Remark 1.9).

For a p-adic crystalline representation of Gr with Hodge-Tate length < p — 1, there exists
a canonical Op-lattice inside D¢s(V) called the Fontaine-Laffaille module defined in [FL82].
In this case, Wach constructed Wach modules out of Fontaine-Laffaille data in [Wac97]. In
the relative setting, Faltings studied relative Fontaine-Laffaille modules in [Fal89] and used
them to functorially recover Zjy-lattices inside crystalline representations of Gr. Recently, for
free relative Fontaine-Laffaille modules of filtration length < p — 2, adapting techniques from
Wach’s computations, Tsuji has constructed generalized representations of Gr over Ap¢(R)
(see [Tsu20]). In fact, it is possible to show that starting with a free relative Fontaine-Laffaille
module, one can obtain a free relative Wach module over AE.

Theorem 1.7 (see Theorem 5.5). Let M be a free relative Fontaine-Laffaille module over R of
level [0,p—2], and let Teyis(M) denote the associated Zy-representation of Gr. Then, the p-adic
representation Veis(M) = Qp ®z, Tais(M) is a positive finite q-height representation.

Twisting the representation thus obtained by powers of the cyclotomic character, generalizes
the statement to all free Fontaine-Laffaille modules with filtration length < p — 2.

The proof of the theorem crucially exploits the computation of Fontaine [Fon94], Wach
[Wac97] and Tsuji [Tsu20]. It follows in three steps: First, starting with a Fontaine-
Laffaille module, we obtain an Ag]?w—module using formal properties of crystalline site for
maps 0 : Al;){],)w — R and 0p : OA%B_J — R (see §5.3.1 for details). Next, we exploit
equivalence of categories obtained in Theorem 5.21 by extending scalars along the maps
AEBZ — Ag%/l(p_l)A%% < AE’w/I(p_l)AE,w “ AE@ (see Proposition 5.12 for explana-
tions). This gives us an Agjw—module with precise description of the Frobenius and the action
of I'p. Finally, we descend over to the ring AE by exploiting the Frobenius and I'g-action, thus
obtaining a Wach module over A}, and proving the theorem (see §5.3.2).

Remark 1.8. In a recent work, Morrow and Tsuji have developed a theory of coefficients for
integral p-adic Hodge theory in [MT20]. Extending scalars of relative Wach modules along
Op|[[r]] = Ainr(O) would yield generalized representions over AL (R) in the sense of Morrow-
Tsuji.

Remark 1.9. Recent developments in the theory of prismatic crystals [BS21; DLMS22; GR22],
indicate that to obtain a full converse statement, i.e. to construct Wach modules from lattices
inside crystalline representations, one needs to generalize Definition 1.3 slightly. This is a work
in progress and we will report further on this line of investigation in future.

1.4. Setup and notations. In this section we will describe the setup for the rest of the
text and fix some notations.

Convention. We will work under the convention that 0 € N, the set of natural numbers.

Let p be a fixed prime number, £ a finite field of characteristic p, W := W (k) the ring
of p-typical Witt vectors with coefficients in x and F := W[%], the fraction field of W. In
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particular, F' is an unramified extension of Q, with ring of integers Op = W. Let F be a
fixed algebraic closure of F' so that its residue field, denoted as %, is an algebraic closure of k.
Further, we denote by Gr = Gal(F'/F), the absolute Galois group of F.

Let Z = (Zy,...,Zs) denote a set of indeterminates and k = (k1,...,ks) € N® be a multi-
index, then we write Z¥ := Zfl -+ Zks. For k — 400 we will mean that 3 k; — +oo. Now for
a topological algebra A we define

NMZ} = { Z arZ¥, where ai € A and a;, — 0 ask — —|—OO}.
keNs

We fix d € N and let X = (X1, X2,...,X4) be some indeterminates. Let R be the p-adic
completion of an étale algebra over Op{X, X~} with non-empty geometrically integral special
fiber. In particular, we have a presentation

R=O0p{X, X "HZ,...,Z}/(Q1,...,Q,),

where Q;(Z1,...,Zs) € Op{X, X '} Z1,...,Z] for 1 < i < s are multivariate polynomials

such that det (gg?)l <; icq 18 invertible in R. The algebra R[1] is the relative analogue of “finite
J )58 p
unramified extension of Q,” (indeed, by removing the geometric coordinates we will obtain
R[i]=F).
p

Remark 1.10. Note that Theorem 1.1 serves as our main motivation for the theory developed in
this article. The assumptions we put on R generalizes the fact that “F' is unramified over Q,".

The p-adic Hodge theory over R is the study of p-adic representations of the étale funda-
mental group of R[%}, which we introduce next. We fix an algebraic closure Fr(R) of Fr(R)
containing F. Let R denote the union of finite R-subalgebras S C Fr(R), such that S [}D]

is étale over R[%]. Let 77 denote a geometric point of the generic fiber SpecR[%] and let
Gp =7t (SpecR[%] ,7) denote the étale fundamental group. By [Gro63, Exposé V, §8], we can
write this étale fundamental group as the Galois group (of the fraction field of R[] over the

1
P
fraction field of R[Zl;])

G = n{!(Spec R[], 7) = Gal(R[L] /R[2)).

For n € N, let F), := F(up»). From now onwards, we will fix some m € N>; (take m € N>
if p = 2) and set K := F,,,, with its ring of integers Ok . The element w = (,m» — 1 € Ok is a
% is an Eisenstein polynomial
in W[X] of degree e := [K : F] = p™ }(p—1). Finally, for S = R[w] = Ox ®0, R we have that
R[w] is totally ramified at the prime ideal (p) C R[w]. And similar to above, we obtain Galois
groups G <G and Gg < Gp respectively, such that Gr/Gs = Gr/Gx = Gal(K/F). Finally,
we have that R and R[w]| are small algebras in the sense of Faltings (see [Fal89, §II (a)]).

For k € N, let Q’jf% denote the p-adic completion of module of k-differentials of R relative to

Z. Then, we have

uniformizer of K, and its minimal polynomial P (X) =

d k

QL = @ RdlogX;, and QF% = AQL.
1=1 R

We also have that R/pR — S/wS and for all n € N, R/p"R is a smooth Z/p"Z-algebra.

Finally, we have a unique lift ¢ : R — R of the absolute Frobenius x +— zP over R/pR such that

o(X;) = XP for all 1 <i <d (in general, a lift of Frobenius modulo p need not be unique, see

[Bri0s, p.9]).

Convention. Let A be a ring and I C A an ideal. We say that an A-module M is [-adically
complete if and only if M — lim,, M/I"M.
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2. p-adic Hodge theory

In this section we will recall some constructions and results in relative p-adic Hodge theory
developed in [Bri0g], albeit in a simpler setting compared to Brinon’s book. As we will be using
different notations compared to Brinon, we will make most of the definitions explicit.

We are interested in exploring the relationship between p-adic crystalline representations
and finite height representations of Gr. This will be detailed in §4 and §5. To carry out some
computations in the aforementioned sections, we will need to extend our base field (hence the
base ring) by adjoining some p-power roots of unity (see the field K and the ring S = R[w] in
§1.4). As a consequence, we will also require the corresponding period rings defined for such
rings. However, in §2.1, §2.2 & §2.3 we will only recall results from [Bri08] by fixing our base as
R. As we shall see the period rings will only depend on R and we have S = R C Fr(R) = Fr(9),
therefore fixing our base as R is sufficient (see [Bri08] for general constructions).

2.1. The de Rham period ring. We will recall definitions and properties of the relative
version of Fontaine’s period ring Bgr (see [Fon94] for classical case).

2.1.1. The ring C*(R) and its tilt. Let C, denote the p-adic completion of F. Recall

that R is the union of finite R-subalgebras S C Fr(R) = Fr(R[w]), such that S[%] is étale
over R[%]. Let C*(R) denote the p-adic completion of R and C(R) = C*(R) [%] We de-
fine the tilt CT(R)" := limgyer CT(R)/p = limgser R/p and equip it with the inverse limit
topology (where we equip R/p with the discrete topology) and let C(R)” = C* (R)b[ﬁ} for

P o= (p,pl/p,pl/p2, ...) € C*(R)’ and equipped with the coarsest ring topology such that
C*(R) is an open subring. Note that an element # € C(R)” can be described as a sequence
(Tn)nen, with z, € C(R) and 2? y1 = wp for all n € N. These rings admit a continuous
G r-action for the topology described.

We will fix some choices of compatible p-power roots which will appear in the sequel. Let
= (1,6 Gy ) € X2 = (X5, X2 XM7Y € C(R) for 1 < i < d. We set Ay (R) =
W (C*(R)?), the ring of p-typical Witt vectors with coefficients in C*(R)” equipped with weak
topology (see [AI08, §2.10]). The absolute Frobenius on C*(R)® lifts to an endomorphism
¢ Aint(R) — Aje(R) and the Gr-action extends to Aj,¢(R) such that the action is continuous
for the weak topology. For z € C*(R)", let [z] = (x,0,0,...) € Ajut(R) denote its Teichmiiller
representative. So we have [¢] € Ap¢(R) with gle] = []X) for g € G and x : G — Z, the
p-adic cyclotomic character and ¢([g]) = [¢]?. Now any element z € Aj,r(R) can be uniquely
written as @ = Y ey PF[1] for zp € CT(R)’. So we set 7 := [¢] — 1, 71 := ¢~ }(m) = [¢'/7] — 1,
and ¢ := . Clearly we have g(m) = (1 + X9 —1 for g € Gr and p(r) = (1 4 7)? — 1.

2.1.2. Definition of OB4r(R). We have Fontaine’s §-map defined as 0 : Aj,¢(R) — CT(R)

sending > .cn pFlog] = > keN pk:cgc, it is a Gr-equivariant surjective ring homomorphism whose
kernel is principal and generated by, for example, p — [p°] or & (see [Fon82, Proposition 2.4 (ii)]).
By Q,-linearity, the map 6 can be extended to 6 : Aj,¢(R) [%] — C(R) and we define

B (R) = lim Aur(B)[1]/ (Ker 0)",

as the (Ker #)-adic completion of Aj¢(R) [%] The ring Bl (R) is an F-algebra and admits
a Gpr-action. The map 6 further extends to a Ggr-equivariant surjective ring homomorphism
0 : Bl (R) — C(R) with Ker § = tBJ (R), where ¢ := log[e] = log(1 +7) = ZkeN(—l)k7};%1

B (R) such that g € Gg acts by g(t) = x(g)t. By functoriality of the construction of BJ; (R),
the homomorphism Oz — R induces an injection Bz (Oz) — BIz(R). The ring Bl (R) is
t-torsion free, so we set Byr (R) := BJ; (R)[1]. The Gp-action extends to Bqr(R) and the ring
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B (R) admits a natural G g-stable filtration given as Fil"Bar(R) := t"B1z (R) for r € Z and
we equip B (R) with the induced filtration (see [Bri08, §5.1] for details).

We can extend the map 0 : Ap¢(R) — CH(R) by R- hnearlty to obtain a ring homomorphism
Or : R ®7 Aint(R) — CH(R). Let OAjy(R) denote the 05" (pC*(R))-adic completion of R @z,
Aint(R) (the ideal 65" (pCT(R)) is generated by p and Ker Or), then 0r extends to a surjective

homomorphism g : OA¢(R) [%] — C(R). Define
OB (R) :=1lim OAu(R)[1]/ (Ker 6r)",

as the (Ker fg)-adic completion of OAinf(R)[%]. The ring OBl (R) is an R[%]—algebra
and admits a Gpg-action. The homomorphism 0 extends to a Gpr-equivariant surjective
homomorphism g : OBIz(R) — C(R). The ring BIz(R) is t-torsion free and we set
OB4r(R) := OBz (R) [ﬂ Moreover, the G g-action extends to OBgr(R).

2.1.3. Structure and properties of OB4gr(R). A more explicit description of the ring
OB (R) can be given. Note that X; ®1-1® [XELE Ker 0r C R ®Z7Ainf(ﬁ) for 1 <i<d
and let z; denote its image in OAiy¢(R) C OBJR(R). Since OBdR( ) is complete for the
(Ker 0g)-adic topology, the homomorphism B (R ) — OB (R) extends to a homomorphism

fiBRBIT,...,Ty) — OBR(R)
T, —> z;, forl <i<d.

In fact, f is an isomorphism and Ker g = (t,21,...,24) C OBIz(R). Therefore, one
can identify Bz (R) with a subring of OBz (R). There is a natural Gg-stable filtration
on OBdR(i) given by Fil'OBI;(R) = (Ker 0g)" for r € N. We set Fil'OB4r(R) =
SIS tTFI"OBIR (R) = OBjR(R)[2, ..., %] and FiI"OBgg (R) —t’”FﬂO(’)BdR( ) forr € Z,
satlsfymg the same conditions. Moreover, the induced filtrations on OB (R), B (R) and
Bgr(R) match with the ones defined before. Finally, we have (OBdR(E))GR = R[%} (see
[Bri08, §5.2] for details).

We can equip the rings OB?{R(i) R) and OBgg(R) with a connection. Let N; denote the unique
(Ker fp)-adically continuous, By (R)-linear derivation on OB (R) given as N;(z;) = 6;;X;
for 1 <4,j < d, where ¢;; denotes the Kronecker delta symbol. Furthermore, the derivation IV;
extends to a Bgr (R)-linear derivation on OBggr(R), since N;(t) = 0. Define a connection

0: OB4r(R ) — OBdR(R) ®R[l] Q}%[%]

d
=1

The connection 0 is Ggr-equivariant and satisfies Griffiths transversality with respect to the
filtration, i.e. O(Fil"OBgr(R)) C Fil' 'OB4r(R) ®RP} Q}_—i[%} Its restriction to R[%]

P

is the canonical differential operator. Moreover, we have (OB?{R(R))QZO = BIz(R) and
(OBdR(R))azo = Bar(R) (see [Bri0g, §5.3] for details).

2.2. The crystalline period ring. In this section, we will recall the definition and prop-
erties of crystalline period rings following [Bri08]. Note that Brinon defines these rings under a
certain assumption on his base ring (see condition (BR) on [Bri08, p. 9]) which is always true
in our setting.
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kernel is a principal ideal generated by ¢ or p — [p’]. Let us denote z!* := ITIT for z € Ker 0 C

Ai(R) and k € N. The divided power envelope of Aj,¢(R) with respect to Ker @ is given as
Ains(R) [z, & € Ker 6], = Aune(R)[¢M], . We define

2.2.1. Definition of OBg.s(R). Let us consider the map 6 : Aj(R) — CT(R) whose

keN

Ais(R) := p-adic completion of Aj,s(R)[€ [k]] LeN

This is a W (k)-algebra equipped with a continuous action of Gg. The ring As(R) is p-torsion
free and the Frobenius on Aj,¢(R) extends to Acis(R). The homomorphism € in §2.1.2 extends
to a surjective homomorphism 0 : As(R) — CT(R). Also, we have t = log(1 + ) € Ker 6 C
A ;is(R) and the Frobenius ¢ on this element is given as ((t) = pt. Moreover, Ker 6 C Acrls (R)
is a divided power ideal. Further, the ring Aqs(R) is t-torsion free, so we set gp( ) = Ft and
define B (R) := Acris(ﬁ)[%] and Beis(R) := Bl (R)[1]. These are F-algebras, equipped
with a continuous action of Gr and the Frobenius ¢ (see [Bri08, §6.1 and §6.2] for details).
Next, let us consider the map 0 : R®zAju(R) — CT(R). The kernel of this map is an ideal
generated by {1 ® €, 21, ...,24}, where z; = X; ® 1 — 1 ® [X?] for 1 < i < d. The divided power
envelope of R®z Aj¢(R) with respect to Ker O is given as R®z At (R) [:c[k], z € Ker 6]

We define

keN”

OA .is(R) := p-adic completion of R ®z Aj¢(R) [l‘[k], z € Ker 0g] ren-

This is an R-algebra equipped with a continuous action of G. Taking the diagonal action of
the Frobenius on R ®7 Ajy¢(R) it can be shown that the Frobenius extends to OAis(R) and
we denote this extension again by ¢. The homomorphism 6 from §2.1 extends to surjective
homomorphism 0r : OAis(R) — CT(R) (see [Bri08, p. 64] for details).

2.2.2. Structure and properties of OBs(R). Let T = (Ti,...,Ty) be some indeter-
minates as in §2.1.3 and let us denote by Acs(R)(T)" the p-adic completion of the divided
power polynomial algebra in indeterminates T and coefficients in A¢ps(R). Then we obtain an
isomorphism of A,s(R)-algebras (see [Bri08, Proposition 6.1.5])

fcris : Acris (R) <T>A — OAcris (E)
T,— z for 1 <q¢<d.

The ring OAqis(R) is p-torsion free as well as t-torsion free, so we set OB} (R) :=

OAcris(R)[;D] and OBgis(R) := OB (R)| t]. These R[p] -algebras are equipped with a con-
tinuous action of Gr and the action of Frobenius extends to these rings and we denote this
extension again by ¢ (see [Bri08, §6.1 and §6.2] for details).

Note that there exist natural morphisms of rings Acis(R) — BIz(R) and OAqis(R) —
OBz (R). So we obtain induced homomorphisms B} (R) — B (R), OB (R) - OB (R),
Beis(R) — Bgr(R) and OBgis(R) — OBgr(R), which are injective and Gg-equivariant.
Using this, we get induced filtrations on crystalline period rings as Fil"Beis(R) := Beis(R) N
Fil'Bgr(R) and Fil"OBeis(R) := OBeis(R) N Fil"OBgr(R) for r € Z (see [Bri0s, §6.2] for
details).

Next, we will consider a connection on OB;s(R) induced from the connection on OBgg(R).
For n € N, we have 0(z; [n ]) = z[n U®dX; for 1 < i < d, so we get that for any z € OA.is(R) =

Ais(R) <T>/\ we have 3( ) € OAmS( ) ®@g Q%. This gives us an induced connection
8 OBCI‘]S( ) — OBcrls( )®R[ ]QR[ ]

The connection 9 is G gr-equivariant and satisfies Griffiths transversality with respect to the
filtration, since the same is true over (’)BdR(F). Its restriction to R[H is the canonical dif-

ferential operator. Moreover, taking horizontal sections we get (OAZ (R ))8 0 _ Ais(R),

Cris
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(R ))(9 "= B} (R) and (OB.yis(R ))8 0= = Buis(R). We equip Q) [1] with the unique

Cris

(OBé’;lS
Frobenius-linear map ¢ satisfying ¢(dx) = dp(z) for * € R. Then, over OB¢s(R) the Frobe-
nius operator commutes with the connection, i.e. pd = J¢ (see [Bri08, Proposition 6.2.5]).
Furthermore, we have ((’)Bcris(ﬁ))GR = R[Z%]. Finally, the natural map R[%] — OBuis(R) is
faithfully flat (see [Bri08, §6.2 and §6.3] for details).

2.3. p-adic representations. In this section we will recall results on linear algebra data
associated to p-adic de Rham and crystalline representations of the Galois group Gr. We will
use the Gg-regularity of a topological Q,-algebra B in the sense of [Bri0g8, p. 106]. If V is a
p-adic representation of G, we set

Dg(V) := (B ®g, V)°".
This is a B%-module and we have a natural morphism of B-modules, functorial in V'

ap(V): B K paor Dp(V) — B ®qQ, %4
b®d+— bd.

The representation V is said to be B-admissible if ap is an isomorphism.

2.3.1. Unramified representations. Let R" denote the union of finite étale R-subalgebras
S C R, and let RY denote its p-adic completion. It is an R-subalgebra of C(R) equipped with
a continuous action of Gg. Further, we have (R [p] )GR = R[%] and R [%] is Gp-regular. Let
us set G = Gal(R"™/R) which is a quotient of Gr. A p-adic representation p : Gr — GL(V)
is said to be unramified, if p factorizes through Gp — G%.

Let V be a p-adic representation of Gr and we set

D (V) := (R¥[1] @g, V)",

which is an R[%]—module and we say that V is unramified if and only if V is R [%]—admissible
(see [Bri0g, §8.1]).

Remark 2.1. Let V be an h-dimensional p-adic representation of Gr and T' C V a Zy-lattice
stable under the action of Gr such that the action is trivial modulo p. Consider the associated
continuous cocycle f : G{ — GLh(}/Bu\r) describing the action of G over Rw ®gz, T. Since V'
is unramified, f is cohomologous to the trivial cocycle and from [Bri08, proof of Proposition
8.1.2], there exists b € 1+ p-Mat(h, }/?u\r) such that f is given as g — f(g) = g(b)b~! for g € Gg.
In this case, we say that f is trivialised by b € 1+ p - Mat(h, }’gﬁ)

2.3.2. de Rham representations. Note that OBgr(R) is a Gg-regular R[%]—algebra. We
set
G
ODgr(V) == (OB4r(R) ®g, V)"

The representation V is said to be de Rham if it is OBgr(R)-admissible. The R[%]—module
ODggr(V) is equipped with a decreasing, separated and exhaustive filtration induced from the
filtration on OBggr(R) ®g, V where we consider the Gg-stable filtration on OBgr(R) from
§2.1.3. Moreover, the module ODgr (V) is equipped with an integrable connection, induced
from the Gpr-equivariant integrable connection

8:V®Qp OBdR( )—)V@Q OBdR( )®R[ ]QR[ ]
v@br— v ®9I(D).
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We denote the induced connection on ODggr (V') again by 0. Since the connection 0 on OBgygr(R)

satisfies Griffiths transversality, the same is true for ODgr(V), ie. I(Fil"ODgr(V)) C

Fil" 'ODgr(V) ® R[] Q}%[%] Further, ODggr (V) is projective of rank < dim(V) over
p

(OB4r(R))“" = R[}]. If V is de Rham then for all r € Z, the R[;]-modules Fil"ODggr(V)
and gr"ODggr (V') are projective of finite type and for such a representation the collection of
integers r; for 1 < i < dimg, (V') such that gr="*ODgr(V) # 0 are called Hodge-Tate weights
of V. Moreover, we say that V is positive if and only if r; < 0 for all 1 < i < dimg, (V) (see

[Bri08, §8.3] for details).

2.3.3. Crystalline representations. Note that OB;s(R) is a Ggr-regular R[%]—algebra.
We set B .
ODcris(V) = (OBCriS(R) ®Qp V) R'

The representation V' is said to be crystalline if it is OB.is(R)-admissible and we denote the
category of all crystalline representations of G by Reprf;S(G r). The R[%]—module ODy,is(V) is
equipped with a Frobenius-semilinear operator ¢ induced from the Frobenius on OBis(R) ®Q,
V', where we consider the Gg-equivariant Frobenius on OBgis(R). Further, ODgis(V) is an
R[%]—submodule of ODgyr(V), and we equip the former with induced filtration and connection
which satisfies Griffiths transversality with respect to the filtration. Additionally, we have
0 = 0 over ODis(V) (see [Bri08, §8.3] for details).

The R[%]—module ODgis(V) is projective of rank < dim(V). If V is crystalline, then the
R[%]—linear homomorphism 1 ® ¢ : R[%] ®R[%],<P ODis(V) = OD¢is(V) is an isomorphism
and OD¢,;s(V) is called a filtered (¢, d)-module. The inclusion OBis(R) — OBgr(R) induces
the inclusion ODy¢is(V) — ODgr(V). Let V be a non-trivial de Rham representation of G,
then the inclusion ODis(V) — ODgr (V) # 0 is surjective if and only if V' is crystalline (see
[Bri08, §8.2 and §8.3] for details).

In conclusion, we have a functor

ODyyis : Repgl‘:ris(GR) — filtered (¢, @)-modules over R[%].

Objects in the essential image are called admissible filtered (¢, 0)-modules and the functor
induces an equivalence of categories with the essential image (see [Bri08, Théorémes 8.4.2,
8.5.1]).

Remark 2.2. In the arithmetic case, the essential image of Dg;s, i.e. admissible filtered
(p-modules can be described more explicitly. In particular, using certain invariants attached
to filtered p-modules one considers the full subcategory of weakly admissible filtered ¢-modules
and it is a result of Colmez and Fontaine that weakly admissible filtered ¢-modules are admissi-
ble (in the sense above, see [CF00, Théoréeme A)]). In the relative case, Brinon gave a definition
of weakly admissible filtered (¢, d)-modules (see [Bri08, p. 136]). However, the notion is not
completely satisfactory as one does not obtain an equivalence between admissible and weakly
admissible filtered (¢, d)-modules (see [Mool8, Theorem 1.3]).

2.3.4. One dimensional de Rham and crystalline representations. In the 1-
dimensional case, it is possible to classify all crystalline representations:

Proposition 2.3 ([Bri08, Propositions 8.4.1, 8.6.1]). Let n: Gr — Z, be a continuous char-
acter.

(i) n is de Rham if and only if we can write n = Ny X™ where 1¢ is a finite character, Ny, is
an unramified character taking values in 1+ pZ, (therefore trivialized o € 1 + pR™, see
Remark 2.1) and x is the p-adic cyclotomic character and n € 7Z.
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(ii) n is crystalline if and only if we can write n = Ny X" where ne is a finite unramified
character, nuy is an unramified character taking values in 1+ pZ, (therefore trivialized by
some o € 1 + pR™, see Remark 2.1) and x is the p-adic cyclotomic character and n € Z.

In particular, a 1-dimensional de Rham representation is potentially crystalline.

(i) Let V = Qp(n) be a one-dimensional crystalline representation. Then there exists a finite

étale extension R — R' such that the R’[%]—module R’[%] ®p[L) ODyis(V) is free. In
particular, if ne is trivial then ODeis(V) is a free R[%]—module of rank 1.
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3. (p,I')-modules and crystalline coordinates

We will keep the setting and notations of §2. In particular, we have that F' is a finite un-
ramified extension of Q, and K = F(upm) for a fixed m € N> (fix m € Nso if p = 2).
Recall that R is étale over Op{X, X!} and we have multivariate polynomials Q;(Z1, ..., Zs) €
Op{X, X 1}[Z,...,Z] for 1 <i < s such that det ( ’) is invertible in R. In particular, the

ring Op{X, X!} provides a system of coordinates for R.

3.1. (p,I')-modules. In this section, we briefly recall the theory of relative (¢, I')-modules
from [And06; AIOS].
Let F,, = F(ppn) for n € N and Foo = U, F,. We take R,, to be the integral closure of

R®0,x+1 OF, [X{'_", . Xfi’_n] inside R[l] and set Ro := Up>m Ry, noting that Fi, C Roo [%}
From §2.1.2 recall that C(R) = (C+(R)[f] and C(R)” denotes its tilt. The ring C(R)
perfect of characteristic p and we set Ag : W(C(R) ), the ring of p-typical Witt vectors

with coefficients in C(R)” and endowed with the weak topology (see [AI08, §2.10]). The ab-
solute Frobenius over C(R)” lifts to an endomorphism ¢ : Ay — A4, which we again call
the Frobenius. The action of G on C(R)’ extends to a continuous action on A4 com-
muting with the Frobenius. The inclusion F C E[%] induces inclusions (C?D C C(R)* and

A% C Ag. Recall that we set Ayy¢(R) := W(CH(R)"). The inclusion Oz C R induces inclu-
sions O(If:p C CT(R)> and Ain(OF) C Aine(R).

3.1.1. The group I'g. The ring R [l] is a Galois extension of R[l} with Galois group
I'p := Gal(R [ ]/R[ ]) isomorphic to the semidirect product of 'y and I, where I'r =
Gal(Fw/F) and F’R = Gal( [ ]/F. R[ ]). In particular, we have an exact sequence

1—Th —Tgr—Tp—1, (3.1)
where (see [Bri08, p. 9] and [And06, §2.4])

= Gal(Rx 3]/ FxR[}]) = 73,
X : I‘F = Gal(F/F) = Z;.
The group I'r can be viewed as a subgroup of I'g, i.e. we can take a section of the projection

map in (3.1) such that for v € I'p and g € I, we have ygy~ ! = gX). So we can choose
topological generators {v,71,...,7q4} of ' such that

v(e) =X, y(e) =€ for1 <i<d,

Y(X2) = eX?, (X2 = X0 fori#jand1<j<d,

and that y9 = ¢ with x(70) = exp(p™), is a topological generator of I'x = Gal(K~ /K ), where
Ko = F and e = [K : F]. Tt follows that {y1,...,74} are topological generators of I, v is a
lift of a topological generator of I'r, and g is a topological generator of I'x. In particular,

X : Tk =Gal(Fy/K) = 1+p"Z,.

3.1.2. Setup. In [FW79b; FW79a; Win&3], using the field-of-norms functor, Fontaine and
Wintenberger constructed a non-archimedean complete discrete valuation field Ex C f(\boo of
characteristic p with residue field £ and admitting a continuous action of ' (notation is a
bit unfortunate as Ex depends only on K). Utilizing the isomorphism of Galois groups
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Gal(F/Ks) — Gal(ExY /Ek) (also see tilting correspondence in [Sch12] for a modern treat-
ment), Fontaine classified mod-p representations of Gg in terms of étale (p,I'x)-modules
over Ex. By some technical considerations one can then lift this to the classification of
Zy-representations of Gp in terms of étale (p,I'k)-modules over a certain two dimensional
regular local ring Ax C W(KZ,) (see [Fon90] for details).

We have an analogous theory in the relative setting, to describe which we need to consider
generically étale algebras over finite extensions of R in the cyclotomic tower R../R. More
precisely, let S C R be a finite R,-algebra with S[%] étale over Rn[%]. For k > n denote by
Sk the integral closure of S ®g, Ry in R[%] and set Seo := Ug>,Si. We have that S is a
normal R..-algebra and an integral domain as a subring of R. As in the case of R, for S we
define Gg := Gal(ﬁ[%}/S[%D, I's := Gal(Sx [%}/S[%]) and Hg := Ker (Gg — I's). Again, I'g
is isomorphic to the semidirect product of I'p, and I'y, where I'y = Gal(Soo [%} /FsoS [%]) is a

finite index subgroup of Iy — Zg.

3.1.3. Rings in characteristic p. In the relative setting, Andreatta in [And06] constructed
an analogue of the subfield Ex C f(\boo, i.e. to any S as above, he associated a ring Eg C Fr §go
functorial in So,. Let us recall his definition: Let E}t denote the valuation ring of Er and we
have 7 € W(ﬁ'go) such that its reduction modulo p, denoted as T = € — 1, is a uniformizer of
E;. Depending on S, let § € QN [0,1] small enough and N € N large enough (see [And06,
Definition 4.2] for precise formulations of 6 and N), and define the ring

Eg = (ao,...,ak,...) Egb

[e.oh)

such that aj, € Sy /p°Sy, for all k > N}.

The ring E}' is finite and torsion free as an EE-module. It is a reduced Noetherian ring which
is T-adically complete. By construction, it is endowed with a 7-adically continuous action of I'g
and a Frobenius endomorphism ¢, commuting with each other and compatible with respective
structures on §go Moreover, E;C is a normal extension of E},, étale after inverting 7 and of
degree equal to the generic degree of R, C S. Further, the set of elements {7, X {, o ,XZ} form
an absolute p-basis of EE (see [And06, Proposition 4.5, Corollaries 5.3 & 5.4]). The ring §'C’>O
coincides with the 7-adic completion of the perfect closure of E; and the extension E; — §'C’>O
is faithfully flat. Finally, set Eg := Ef[2].

Definition 3.1. Define Et := UgE?, where the union runs over R,-subalgebras S C R for

some n € N such that S is normal and finite as an R,-module and S [%] is étale over Rn[%].
Also, we set E := ET[1]. These rings are T-adically complete and equipped with a Frobenius
and a continuous G g-action.

Remark 3.2. From [AI08, Proposition 2.9], we have (C+(§))HR = R, (C+(§)b)HR = R,
(C(RY)"™™ = R, [L], (B)/n = Bf, and Er = Ep,.

Remark 3.3. We will describe C*(R)” as the ring of power-bounded elements inside C(R)” (for

the spectral norm). Recall that R is the union of finite R-subalgebras S C Fr (R) such that S [2%]
is étale over R[%]. Since R is an integral domain and p-adically separated, i.e. Ngenp*R = 0,
we obtain that the filtration by powers of the ideal pR C R induces a sub-multiplicative norm
(see [BGR84, §1.3.3, Proposition 1]) which extends to E[%] A further “smoothening” of the

aforementioned norm yields a power-multiplicative norm on E[%] (see [BGR&4, §1.3.2]) which
we call the spectral norm on R[}%] Let C denote the completion of E[%] for the spectral norm
and C° its power-bounded elements.

Next, one can show that under the spectral norm the power-bounded elements (or equiva-

lently, the closed unit ball) of R[%] written as (E[%] )° is exactly R. Indeed, we have the obvious
inclusion R C (E[%DO and for the converse taking = € (E[%])O, one can reduce the claim to
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a finite R-subalgebra S C R integrally closed in R[%] and such that z € S [%] Then it easily
follows that S = (S[%])O = S[}%] N (R[%])O C R[%]. So we obtain that the topology induced

by the spectral norm is equivalent to the p-adic topology on R[%], therefore C = C(R) and
C° = C*(R) and (C(R),C"(R)) is a uniform adic Banach Q,-algebra (see [[XL15, Definitions
2.4.1 and 2.8.1]).

Finally, by the perfectoid correspondence of uniform adic Banach algebras in [K1.15, Theo-
rem 3.6.5], we obtain that (C(R)?,CT(R)’) is a uniform adic Banach F,-algebra such that the
topology induced by the spectral norm (arising from the sub-multiplicative norm induced by
the ideal p’C*(R)” ¢ C*(R)") is equivalent to the topology on (C(R)?,C*(R)?) described in
§2.1.2. Finally, since CT(R) is the ring of power-bounded elements in C(R) we obtain that the
its tilt CT(R)” is the ring of power-bounded elements in C(R)".

Remark 3.4. Let us denote the natural valuation on C; by ©°. Then one can show that v°(7) =

-25 > 0, ie. 7 is not invertible in O(bcp. Since O(bcp = CE) NC*(R)” ¢ C(R)’, we obtain that
7 is not invertible in C*(R)”. Moreover, as CT(R)® is the ring of power-bounded elements in

C*(R)® (see Remark 3.3) we conclude that Et = ENC*H(R)* ¢ C(R)".

3.1.4. Rings in characteristic 0. We have liftings of the rings discussed above to charac-

teristic 0. In other words, there exists a Noetherian regular domain Ar C W (R’ [£]), complete

for the weak topology and endowed with a continuous action of I'g and a Frobenius such that
ARr/pAgr = Eg. Moreover, A contains a subring AJISL lifting EE complete for the weak topol-
ogy with 7, [X3],...,[X}] € A}, (see [And06, Appendix C]). Furthermore, for S as in Definition
3.1 let Ag denote the unique finite étale A g-algebra lifting the finite étale extension Er C Eg.
It is a Noetherian regular domain, complete for the weak topology and endowed with a con-
tinuous action of I'g and a Frobenius, lifting the ones defined on Eg. Moreover, it contains a
subring A; lifting Ejgr so that the former is complete for the weak topology. In characteristic
0, we set By := Aﬁ[fﬂ = Ujenp ? Ag equipped with the direct limit topology (see [And06, §7]
for details).

Definition 3.5. Define A := completion of UsAg C A for the p-adic topology, where the
union runs over all R,-subalgebras S C R as in Definition 3.1. Equip A with the weak topology
induced by the inclusion A C Ag. Moreover, we set A* := AN Aye(R), BT := AT [%} and
B = A[%] equipped with induced weak topology. These rings are stable under ¢ and admit a
continuous G r-action.

Remark 3.6. In Definition 3.5 one can take the base ring as R[w] instead of R to obtain period
rings AL C A, (instead of AT C A). In particular, one has that 7, = ¢~™(7) € AL and it
easily follows that AT C AL C Aj¢(R) compatible with Frobenius and Gg-action.

Remark 3.7. (i) Tt follows from definitions that pA™ = pA N Ajy(R) = A N pAiue(R) =
p(A N Aine(R)). Therefore, from Remark 3.4 it easily follows that AT /pA*T = E™T.

(ii) From [AI08, Lemma 2.11] we have A#® = A and (A*)Hr = A7

3.1.5. Some lemmas on matrices. Let us note some results which will be useful in the
proof of Proposition 4.11.

Lemma 3.8. Let h € N and matrices Y € Mat(h,E) and X, Z,W € Mat(h,ET) such that
o(Y)=XYZ+ W, then Y € Mat(h,E").

Proof. From Remark 3.4 we have E* = E N CT(R)’. So it is enough to show that Y &
Mat(h, C*(R)?). Recall that we have C(R)” = C*(R)” [ﬁ} Therefore, for some smallest k € N,

we can write Y = ﬁ)ﬁ with Y1 € Mat(h, C*(R)"). Now, applying ¢ we get that (p(ﬁ}ﬁ) =
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ﬁXYlZ—i—W, which can be rewritten as g}g: Y1 = o HXY1Z+ (p°)FW), where p} = o1 (p).
In the last equality, note that the expression on the left g E;: Y; € Mat(h,C(R)?), whereas
the expression on the right ¢~ (XY1Z + (p*)*W) € Mat(h, o~} (CT(R)?)) = Mat(h,C*(R)")
since C*(R)” is perfect. So we obtain that gé;:lfl € Mat(h,Ct(R)"), ie. Y = ﬁlﬁ €
Mat (h, (p'il)k C*(R)"). Next, we write Y = @Yg with Yo € Mat(h, C*(R)?). Again, applying
¢ and arguing as above, one gets Y € Mat(h, (pgl)k(CJr(E)b), where py = ¢ 2(p’). Now, it
easily follows by induction on n € N that Y € Mat(h, (p;)kCﬂﬁ)b), where p, = o " (p").
Therefore, Y € Mat(h, ﬂneNmCﬂﬁ)b) C Mat(h,C(R)?). But since C*(R)” is the ring of

power-bounded elements in C(R)®, we obtain that N,en ﬁ(fr(ﬁ)b = C*(R)". Hence, we get

Y € Mat(h, C*t(R)") as desired. [

Lemma 3.9. Let h € N and matrices Y € Mat(h,A) and X, Z, W € Mat(h, AT) such that
o(Y)=XYZ+ W, thenY € Mat(h,A™).

Proof. Reducing the equation modulo p we have p(Y) = XY Z + W, with Y € Mat(h, E)
and X,Z, W € Mat(h,ET). Therefore, from Lemma 3.8 we obtain that Y € Mat(h,ET). As
we have AT /pAT = ET (see Remark 3.7 (ii)), let Vo € Mat(h, A") such that Y = V; and
o(Vo) = X Vo Z +W. So we can write Y = Vy + pY; with Y3 € Mat(h,A), and obtain
that (Vo + pY1) = X (Vo + pY1)Z + W. Simplifying the latter expression, we have ¢(Vp) —
(XWVoZ + W) = p(XY1Z — p(Y1)). Since o(Vo) — (XVoZ + W) € Mat(h,pA™), we conclude
that p(Y1) — XY1Z € Mat(h, A"). In other words, we have an equality (Y1) = XY1Z + W,
with Y1 € Mat(h,A) and X, Z, W) € Mat(h, AT). Repeating the argument as above, we get
that Y, € Mat(h, ET) and we can take a lift to write Y; = V; + pYs with V; € Mat(h, A™) and
Y, € Mat(h, A). This gives us that Y = V + pVi + p?Ya. Now, it easily follows by induction
onn €Nthat Y = Vo +pVj + -+ +p" 1V, 1 + p"Y, with V; € Mat(h,AT) for 0 <i <n—1
and Y,, € Mat(h, A). Letting n — +o00 and noting that AT is p-adically complete, we obtain
that Y € Mat(h, A™) as desired. [

3.1.6. Etale (p,I'g)-modules.

Definition 3.10. A (p,T'r)-module D over Ay is a finitely generated module equipped with
(i) A semilinear action of I'p, continuous for the weak topology,
(ii) A T'g-equivariant Frobenius-semilinear endomorphism ¢.

We say that D is étale if the natural map 1 ® ¢ : Agr ®aze D — D is an isomorphism of
A p-modules.

Denote by (¢, FR)-Mod‘j{R the category of étale (¢, 'g)-modules over A with morphisms
between objects being continuous, (¢, I'g)-equivariant morphisms of A gp-modules. Next, denote
by Repz, (GR) the category of finitely generated Z,-modules equipped with a linear and con-
tinuous action of Gg, with morphisms between objects being continuous and G g-equivariant
morphisms of Zy,-modules.

Let T be a Zy-representation of Gg. The Agr-module D(T) := (A ®z, TYH~R is equipped
with a semilinear operator ¢ and a continuous (for the weak topology) and semilinear action of
I'g, commuting with each other. Moreover, D(T) is an étale (¢, I'g)-module. Furthermore, if T'
is free of finite rank, then D(T') is a projective module of rank = rkz, T" (see [And06, Theorem
7.11]). The functor /

D : Repz, (Gr) — (¢,Tr)-Mody . (3.2)
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induces an equivalence of categories (see [And06, Theorem 7.11]), and the natural map A ®a,
D(T) — A ®z, T is an isomorphism of A-modules compatible with Frobenius and the action
of G on each side.

3.2. Crystalline coordinates. In this section we will introduce certain “coordinate”
rings. As we shall see in the next section, these rings are related to period rings appearing
in §2 and §3.1.

Let 7% and r,, denote the algebras Op[[Xo]] and Op[[Xo]]{Xy'}. Sending X, to @ induces
a surjective homomorphism r} — Og. Let R;D denote the completion of Op[Xg, X, X 1]
for the (p, Xo)-adic topology. Sending Xy to w induces a surjective homomorphism R;,D —
Or{X,X 1}, whose kernel is generated by P = P,(Xp). This provides a closed embed-
ding of Spf Ox{X, X'} into a formal scheme Spf R;,D’ which is smooth over Op. Recall
that R is étale over Op{X, X'} and we have multivariate polynomials Q;(Z1,...,7Zs) €

Op{X, X 1}[Z,...,Z] for 1 < i < s such that det (g%) is invertible in R. So we can set
RE to be the quotient by (Q1,...,Qs) of the completion of R;D[Zl, ..., Zg| for (p, Xo)-adic

topology. Again, we have that det (3%) is invertible in RE (since R ~— R%). Hence, R% is
J

étale over R;D and smooth over Op. Sending Xy to w induces a surjective homomorphism
R} — R|w] whose kernel is generated by P = Pg(Xp). This can be summarized by the
commutative diagram

Spf R[w)| Spf Rt

Spf R

!

Spf Op{X, X~}

T

Spf O {X, X1} Spf RL 1,

where the vertical arrows are étale extensions and the horizontal maps are obtained by sending
Xo +— @, and the rest are natural maps. Finally, we set R, = p-adic completion of R} [X%)]

. k
Next, since P = X§ mod p, we have Rg[%]keN = R;[%}%N.

p-adic completion of R;[%]k N In summary, we have a diagram of formal schemes where
the horizontal arrows are closed embeddings into formal schemes smooth over O, obtained by
sending Xy — w on the level of algebras,

PD ._
So, we set R~ :=

Spf REP

T

Spf R[] Spf R

Spf O {X, X1} Spf RL

Spf Ok Spf rt

——

Spf OF
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Recall that P generates the kernel of the surjective map RE — R[w] and divided powers of
P generate the kernel of the surjective map REP — R[w].

Definition 3.11. Endow the ring RPP with a filtration by divided power ideals as
Fil* RPP = (PI") n > k) ¢ REP for k e N.

In other words, the filtration on REP is given by divided powers of the kernel of REP — R[w].
Furthermore, the ring R} is endowed with the induced filtration

Fil*R := R NFil*REP = P*RT for k € N,
where the last equality follows since P generates the kernel of Rf, — R[w].

3.3. Cyclotomic embedding. In this section, we will describe the relationship between
RX for * € {,+,PD} and the period rings discussed in §2 and §3.1. We start by defining
the (cyclotomic) Frobenius endomorphism on the former rings. Over R;}D define a lift of the

absolute Frobenius on R} 4/p by

@:R;,DHR;,D
X0>—>(1—|-X0)p—1
Xi>—>X1P, for 1 <14 <d,

which we will call the (cyclotomic) Frobenius. Clearly, p(x) — 2P € pR;’D for z € R;,D. Using
the implicit function theorem for topological rings [CN17, Proposition 2.1], we can extend the
Frobenius homomorphism to ¢ : R — RE. By continuity, the Frobenius endomorphism ¢
admits unique extensions ¢ : REP — RPP and ¢ : Ry, — Ry

3.3.1. The rings AE’W. We will describe the (cyclotomic) embeddings of RX into various
period rings discussed in §2 and §3.1. Define an embedding

leyel - R;ﬂ — Ainf(R)
Xo— mm =@ (),
X;— [X7], for 1<i<d.

Lemma 3.12. The map tcya has a unique extension to an embedding Rt — Ainf(R) such that
0 0 teyer is the projection RY — R[w].

Proof. We can use the implicit function theorem [CN17, Proposition 2.1] to extend the embed-
ding to teya @ RE — Aine(R). Next, from defintions we already have that 6 o tcyq : R;}D —»
Ok {X, X'} coincides with the canonical projection and R} is étale over R; 0, hence the
second claim follows. 7 [ |

This embedding commutes with Frobenius on either side, i.e. eyl 0 9 = @ 0 teya. By
continuity, the morphism t¢y¢ extends to embeddings tcye : R};D — Aqis(R) and Leyel @ R —
A4. Denote by AJ}SW and Apg o the image in éﬁ of RY and R, respectively, under the map
Leyel- Similarly, let AIP;%, = Lyl (REP) C Acyis(R). These rings are stable under the action of I'p
(see [CN17, §2.5.3]). Moreover, these embeddings induce a filtration on AE,w for » € {+,PD}

and r € Z (use Definition 3.11).

Remark 3.13. Note that we write AEW and so on instead of slightly cumbersome notation

AE[W} or simpler notation A; for S = R[w], in order to emphasize the choice of root of unity
in the definition.
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We note a simple lemma that will be useful later.
t . . APD PD
Lemma 3.14. - is a unit in Ap_ C AR

Proof. We can write the fraction

t_ log(1 + ) _ Z(—l)k”—k.

7T 7T

Formally, we can write

™

= =1+0b bor? 4 by 4 - -
i " log(1+m) + 017 + 09" + b3 + )

where vy (by) >

k- for all k > 1. Since 7 = (1 + my)P" — 1, we get that 7 € (p,ﬂﬁlm)A;w
(as m > 1). By induction over k, we can easily conclude that 7% € (p, m)kA;% Using this,
we can re-express the series >, be* as a power series in m,,, written as > cimlh,. We need to
check that this re-expressed series converges in Al;?z. To do this, we collect the terms with
coefficients having the smallest p-adic valuation for each power of 72" in the re-expressed series.
For k > 1, by, has the smallest p-adic valuation among the coefficients of 72 ¥, and therefore it
has the least p-adic valuation among coefficients of 7%, for p™k < i < p™(k + 1). We write the
collection of these terms as

m m 10 "k
Z(_l)k+1bkﬂfn b= Z(_l)kJrlbk Lpekj mek:/eJ" (3'3)

k>1 k>1

and by the preceding discussion it is sufficient to show that these coefficients go to 0 as k — +o0.
Moreover, for (3.3) it would suffice to check the estimate for k = (p—1)j as j — +oo (this gets
rid of the floor function above). With the observation in Remark 3.15, we have

op (01 [ Z2E]1) = vp (k) + vp((p)!) > — 0 - PEth = Fmeil) = (1),

which goes to +o00 as j — +o00. Hence, } converges in Af;]?ﬂ and is an inverse to % |

The following elementary observation was used above,

Remark 3.15. Let n € N, so we can write n = Z?:o n;p* for some k € N, where 0 < n; <p—1
for 0 <4 < k. Let us set s,(n) = Y& n;. Then we have

k k

v =>_[F]=>"1 Z“"’p => > mip'™’

j>1 7>0 j=1li=j
- Y3 = 3wt =
v tp—1 7 p—1

=1 j=1

Also, note that we have s,(pn) = sp(n) for any n € N.
Lemma 3.16. Leti € {0,1,...,d}. Then (v —1)A%  C mA% _ for x € {+,PD};
Proof. First, let i = 0. Then we have
(Yo = 1)t = (1 + 7n) (1 + 71 ) X071 — 1) = (1 + ) (1 + )P — 1)
= (L4 m) (L +m)% = 1) = (1 + mp) (am + D& 0R2 4 20D 73 4y — g

for some x € AEw, ie. (0 —1)mm, € FA;’W. Then it follows that (v — 1)A}"w C FA;,W for
* c {+,PD}

Next, for i € {1,...,d} we have (y; — 1)[X?] = 7[X?] € 7A} R and (v — D(X =
—r(1+7)7 X e WAE’W. Therefore, we get the claim. [
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3.3.2. The ring A%. The preceding discussion works well for R[w] where @ = (,m — 1 for
m € N>; (m € N>g if p = 2). For R one can repeat the construction above to obtain the
period ring A} C AE@ (the embedding R — Aj¢(R) for R sends Xy — 7). Moreover,
restriction of the map 6 gives us a surjective map 6 : AE — R whose kernel is principal
and generated by 7 (since 6 o teyet = id on R). Next, over AE@ the filtration is given as
FilkAEw = §kAE7w, where £ = Fll However, £ & AE. Therefore, we equip AE with the
induced filtration FilkAE = AE N FilkAEw. Then describing the filtration as kernel of the
map, we obtain

Lemma 3.17. Fil*A}, = 7*A}.

Remark 3.18. Let AT be the ring from Definition 3.5 and AL be the ring defined in Remark
3.6. From the definitions it follows that A}, _ ®,+ AT =+ AL compatible with Frobenius and
’ R

G g-action. Moreover, we have A} = (AT)77 and A}, = (AL)"~= where Hp o, = Hg. Now,

if we equip AT C AL C Aj¢(R) with the induced filtration, then we see that the isomorphism

A} _®,+ AT =5 AT is compatible with filtrations as well (where on the left we consider the
’ R

tensor product filtration).

3.4. Fat period rings. In this section we will introduce an alternative construction of fat
period rings. This will be helpful in constructing some auxiliary rings in the proof of Proposition
4.28. Let S and A be p-adically complete filtered Op-algebras. Let ¢ : S — A be a continuous
injective morphism of filtered Op-algebras and let f : S ® A — A be the morphism sending
r®y = u(r)y.

Definition 3.19. Define SA to be the p-adic completion of the divided power envelope of S® A
with respect to Ker f.

Now, let S = R, R};D, where over R we consider the trivial filtration, whereas over R};D we
consider the filtration described in Definition 3.11. Then we have,

Remark 3.20. (i) The ring SA is the p-adic completion of S® A adjoined (z®1—1® u(z)),
for z € S and n € N and (V; — 1)I¥ forlgigdandkeN,Where%:lgLZ’i&i)for
1<i<d.

(ii) The morphism f: S ® A — A extends uniquely to a continuous morphism f : SA — A.

(iii) There is a natural filtration over SA where we define Fil"SA to be the topological closure
of the ideal generated by the products of the form xixo [T(V; — 1)[1”}, with 1 € Fil™.S,
xo € Fil?Aand ri + 1o+ > k; > r.

(iv) From [CN17, Lemma 2.36], we have that any element x € SA can be uniquely written
as © = Ypena (1 — V)Pl (1 — Vp)lkdl with x € A for all k = (ky,...,kq) € N
and 2 — 0 as [k| = 2% | k; — +00. Moreover, an element z € Fil"SA if and only if
7 € Fil"" %A for all k € N4
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4. Finite height representations

In this section we will study Wach modules and their relationship with crystalline modules for
crystalline representations.

4.1. The arithmetic case. Recall that we have Gr = Gal(F/F) as the absolute Galois
group of F, ' := Gal(Fx/F) and Hp := Gal(F/F), where F, = Up F(ppn). From the theory
of (¢,I'r)-modules, we have a two dimensional local ring A given as the p-adic completion
of Op[[r]][2] and Bp := AF[%] is a complete discrete valuation field with uniformizer p and
residue field x((7)), the field of Laurent series with uniformizer 7 (the reduction of = modulo
p)-

Next, we have certain subrings A}, := Op[[r]] C Ar and Bf. = A}, [1%] C Bp, stable under
the action of ¢ and I'r. Let V be a p-adic representation of Gp, then D*(V) = (BT ®q,
V)HF is a free module over the principal domain B;; of rank < dimg, V, equipped with a
Frobenius-semilinear endomorphism ¢ and a continuous and semilinear action of I'p. Further,
let D(V) = (B ®g, V)"F be the associated (p,I'r)-module which is a Bp-vector space of
dimension = dimg, V', equipped with a Frobenius-semilinear endomorphism ¢ and a continuous
and semilinear action of I'r. We have a Bf-linear inclusion D (V) € D(V) compatible with
the action of ¢ and I'p. We say that V is of finite height if DT (V) is a Bf-lattice inside D(V').

Similarly, if 7 C V is a free Z,-lattice, stable under the action of G, then D (T) =
(AT @z, T)HF is a free Af-module of rank < dimg, V, stable under the action of ¢ and I'p
(see [Fon90, §B.1.2]). Moreover, D(T) = (A ®z, T)"* is a free Ap-module of rank = dimg, V
equipped with a Frobenius-semilinear operator ¢ and a continuous and semilinear action of I'p,
and we have D™(T') c D(T).

Fontaine showed that V is of finite height if and only if there exists a finite free Bj-submodule
of D(V') of rank = dimg, V, stable under the operator ¢ (see [Fon90, §B.2.1] and [Col99, §II1.2]).
Moreover, if T C V is a free Z,-lattice as above and V of finite height, then D¥(T) is a free
Af-module of rank = dimg, V such that Ap ® AL D™ (T) = D(T) (see [Fon90, Théoréme
B.1.4.2]).

For crystalline representations there exist submodules of D* (V') admitting a simpler action
of I'r. Finite height and crystalline representations of G are related by the following result:

Theorem 4.1 ([Wac96], [Col99], [Ber04]). Let V' be a p-adic representation of Gp. Then V
is crystalline if and only if it is of finite height and there exists r € Z and a B}—submodule
N Cc D(V) of rank = dimg, V, stable under the action of I'r, such that I'r acts trivially over
(N/mN) ().

In the situation of Theorem 4.1, the module N is not unique. A functorial construction was
given by Berger:

Proposition 4.2 ([Ber04, Proposition I1.1.1]). Let V' be a positive crystalline representation of
GF, i.e. all Hodge-Tate weights of V are < 0. Let T C V be a free Zy,-lattice, stable under the
action of Gp. Then there exists a unique Af-module N(T) C D(T), which is free of rank =
dimg, V, stable under the action of ¢ and I'r, and the action of I'r is trivial over N(T') /7N(T).
Moreover, there exists s € N such that DT (T) C N(T). Finally, set N(V) := B}, DAt N(T),

then N(V) is a unique Bf:-submodule of DT (V') satisfying analogous properties.

Notation 4.3. For an algebra S admitting an action of the Frobenius and an S-module M
admitting a Frobenius-semilinear endomorphism ¢ : M — M, we denote by ¢*(M) C M the
S-submodule generated by the image of ¢.

Remark 4.4. (i) In Proposition 4.2 for positive crystalline representations, Berger applies

Theorem 4.1 with 7 = 0 to define N(V) := D¥(V) N N[t elm)

<p”_1(q)}n21’ where ¢ = =
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Using this one can take N(7") := N(V)ND(T) and it can be shown to satisfy the desired
properties.

(ii) Berger further showed that in the setup of Proposition 4.2, if we take s to be the maximum
among the absolute values of Hodge-Tate weights of V, then N(T") /¢*(IN(T")) is killed by
¢® and we have that A" @z T C A* ®at N(T) (see [Ber04, Théoréme I11.3.1]). The
former observation can be thought of as a finite ¢-height property of Wach modules. We
will impose it as one of the main conditions for defining finite g-height representations in
the relative case (see 4.9).

Definition 4.5. Let a, b € Z with b > a. A Wach module with weights in the interval [a, ]
is a finite free A;,C—module or a BJIS—module N, equipped with a continuous and semilinear
action of I'p such that the action of I'g is trivial on N/7N and a Frobenius-semilinear operator
¢ :N[i] — N[ﬁ] commuting with the action of I'p, ¢(7°N) C 7°N and 7°N/p*(7°N) is
killed by ¢*~¢.

Remark 4.6. The definition of the functor N can be extended to crystalline representations
of arbitrary Hodge-Tate weights quite easily. Indeed, let V' € Rep?Qf;S(G r) with Hodge-Tate
weights in the interval [a,b] and let T C V a free Z,-lattice, stable under the action of Gp.

Then N(T) = 7 "N(T(—b)) ®z, Zp(b) is a Wach module over A}, with weights in the interval
[a, b].

As it turns out, one can recover the crystalline representation from a given Wach module:

Proposition 4.7 ([Ber04, Proposition 111.4.2]). The functor

N : Rep?Qf;S(G F) — Wach modules over B}
Vi— N(V),

establishes an equivalence of categories with a quasi-inverse given by N — (B®g+ N)#=1. These
F

functors are compatible with tensor products, duality and preserve exact sequences. Moreover,
for a crystalline representation V', the map T — N(T') induces a bijection between Z,-lattices
inside V' and Wach modules over AL contained in N(V).

We have a natural filtration on Wach modules given as
Fil*N(V) = {z € N(V) such that ¢(z) € ¢*N(V)} for k € Z.
If V is positive crystalline, i.e. all its Hodge-Tate weights are < 0, then for » € N we have
Fil"N(V (r)) = Fil*77"N(V)(r) = 7 "Fil*™" N (V) ().

Using this filtration on N(V'), one can also recover the other linear algebraic object associated

to V, i.e. the filtered p-module Dgis(V): Let Bjig,F C F[[n]] denote the subring of convergent
power series over the open unit disc. Then we have Deyis(V) C B, » ®p+ N(V) and this gives
F

rig,
Dais(V) = (Bjig,F ®pt N(V))FF (see [Ber04, Proposition I1.2.1]). Moreover, the induced map

Deris(V) — (Bjig,F ®B; N(V))/W(Bxg,F ®B; N(V)) = N(V)/mN(V),

is an isomorphism of filtered p-modules (see [Ber04, Proposition I11.4.4]).
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4.2. The relative case. In this section, we will introduce the notion of relative Wach
modules and study representations of finite height. Recall that we fixed m € N> (fix m € N>o
if p = 2) and we have K = F,;, = F((pm). The element w = (m — 1 is a uniformizer of K. We
have X = (X1,...,Xy) a set of indeterminates and we defined R to be the p-adic completion
of an étale algebra over Or[X, X ~!] having non-empty and geometrically integral special fiber
and R[w] = O ®o, R. For R and R[w]|, we can use the (p,I')-module theory discussed in
§3.1, as well as the constructions in §3.2 and §3.3.

Setting ¢ = @ and using the formulation in Definition 4.5, we define relative Wach mod-
ules:

Definition 4.8. Let a, b € Z with b > a. A Wach module over A}, (resp. Bf) with weights
in the interval [a,b] is a finite projective A f-module (resp. Bj-module) N, equipped with a
continuous and semilinear action of I'g such that the action of I'g is trivial on N/7N. Further,
there is a Frobenius-semilinear operator ¢ : N[1] — N [ﬁ] commuting with the action of I'p
such that o(7°N) C 7N and 7°N/@*(7°N) is killed by ¢*~.

Let V' be a p-adic representation of the Galois group Gr admitting a Z,-lattice 7' C V
stable under the action of Gg. Then we have the finitely generated Aj-module D¥(T) :=
(AT ®g, T)"%. We introduce the following definition:

Definition 4.9. A positive finite q-height representation is a p-adic representation V of Ggr
admitting a Zy-lattice T C V such that there exists a finite projective A}-submodule N(T') C
D*(T) of rank = dimg, V satisfying the following conditions:

(i) N(T) is stable under the action of ¢ and I'r, and Ag ®at N(T) = D(T);

ii) The Af-module N(T)/¢*(N(T)) is killed by ¢* for some s € N;
R
(iii) The action of I'g is trivial on N(T")/7IN(T);
iv) There exists a R’ C R finite étale over R such that the AT,-module AL, ® ,+ N(T) is free.
NS

The module N(T') is a Wach module associated to T with weights in the interval [—s, 0] and
we set N (V') := N(T) [%] satisfying properties analogous to (i)-(iv) above. The height of V is
defined to be the smallest s € N satisfying (ii) above.

For r € Z, we set V(r) := V ®q, Qp(r) and T(r) := T ®z, Zy(r). We will call these twists
as representations of finite g-height and define

N(T(r)) :== LN(T)(r) and N(V(r)) := ZN(V)(r).

Since N (V') and N(T') are Wach modules with weights in the interval [—s, 0], twisting by r gives
us Wach modules in the sense of Definition 4.8 with weights in the interval [r — s,r]. We will
say that height of V(r) = (height of V') — r.

Remark 4.10. (i) In the arithmetic case, i.e. R = Op, the notion of finite height representa-
tions in Theorem 4.1 and finite ¢-height representations in Definition 4.9 are related. In
fact, in the arithmetic case using Definition 4.9 one obtains the functorial object of Berger
mentioned above (see [Ber04, Proposition 11.1.1]).

(ii) In Definition 4.9 conditions (i), (ii) and (iii) are motivated from the definition of finite
height representations of G admitting a Wach module structure. The last condition, i.e.
(iv) is inspired by Brinon’s definition of weak admissibility in the relative case (see [Bri08,
p. 136]).
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(iii) In Definition 4.9 following Remark 4.4 (i), one can first define Wach module for the
representation V' and then consider the module N(T") = N(V) N D(T) associated to 7.
However, it is not clear whether the latter module, defined in this fashion, is a projective
AJ}%—module. Therefore, we impose the condition on N(7T') to be projective, which is
required in establishing several results in this section.

4.2.1. Some properties of Wach modules. Let us note some important properties of
Wach modules associated to finite ¢-height representations

Proposition 4.11. Let V' be a positive finite q-height representation and T C V' a Gg-stable
Zp-lattice. Then we have T°A* ®z, T C AT ®,+ N(T), where s € N is the height of the
R

representation V.

Proof. To show the claim, we can assume that N(7T') is free by base changing to the period
ring corresponding to the finite étale extension R’ of R. Then AT ®,+ (AL, ®,+ N(T)) =
R’/ R

AT ® A+ N(T) is free. Since the discussion of previous chapters hold for the p-adic completion
R

of a finite étale extension of R (see [Bri08, Chapitre 2] and [AI08, §2] for more on this), base
changing to R’ is harmless. So with a slight abuse of notation, below we will replace R’ obtained
in this manner by R and assume N(T') to be free of rank h = dimg, V over A},.

Note that by definition we have N(T) C D™(T) = (AT ®z, T)"r C At @z, T. So let
A € Mat(h, A™) be the matrix obtained by expressing a basis of N(T') in a chosen basis of T'.
Also, let P € Mat(h, AL) be the matrix of ¢ in the basis of N(T'). Then we have p(A) = AP and
therefore p(mA~1) = (¢*P~1)(m*A~1). The fact that N(T)/¢*(N(T)) is killed by ¢° implies
that ¢°P~! € Mat(h, A}), therefore from Lemma 3.9 we obtain that m*A~! € Mat(h, AT).
Hence, we conclude that ™A+ @z, T C AT Dpt N(T). |

Corollary 4.12. By taking H-invariants in Proposition /.11 it follows that 7*D™(T) C N(T).

Proposition 4.13. Let V be a finite q-height representation Gg. The Wach module N(V') over
B}, is unique. Same holds true for the A% -module N(T).

Proof. The argument carries over from the classical case [Ber04, p. 13]. First note that we
can assume that V is positive, since by definition the uniquess of Wach module for such a
representation is equivalent to uniqueness for all its Tate twists. In this case, let N1 and Ny be
two A f-modules satisfying the conditions of Definition 4.9 (the proof stays the same for N(V)).
By symmetry, it is enough to show that Ny C Ny. Since we have 75Ny C 75D*(T) C Na (see
Corollary 4.12) and Na is m-torsion free, therefore for any x € Nj there exists k < s such that
7*x € Ny but ©Fz ¢ mNy. Varying over all z € Ny \ N1, we can take k < s to be the minimal
integer such that 78N, € Ny. Since 7%z € Ny and 'y acts trivially on No/mNa, we have that
(v0 — 1)(7*x) € 7N,. So we can write

(70 — D(7"2) = v0(7*) (v0(z) — 2) + (yo(7*) — 7")a.

Since I'p also acts trivially on Ny /7Ny and 78Ny C Na, we see that vo(7*)(y0(z) — x) € TN,
therefore (yo(7*) — %)z € m Ny, which means that (x(y0)* — 1)7*z € mNo. But 74 (x(70)* —1)
if £k > 1, and 7wk ¢ wINo. Hence, we must have k = 0, i.e. N1 C Ns. [ |

The uniqueness of Wach modules helps us in establishing compatibility with usual opera-
tions:

Proposition 4.14. Let V and V' be two finite q-height representations of Gr. Then we have
that N(V & V') = N(V) @ N(V') and N(V @ V') = N(V) @ N(V'). Similar statements hold
for N(T') and N(T").
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Proof. We note similar to previous lemma that it is enough to show the statement for V and
V' such that both representations are positive. By uniqueness of Wach modules proved in
Proposition 4.13, it is enough to show that direct sum and tensor product of finite g-height
representations are again of finite g-height.

First, it is straightforward to see that N(T)&N(T”") C DT(T'®T") is a projective A L-module
of rank rkz (T ®T") such that Ag DAt (N(T) ®N(T")) = D(T) ® D(T"). Similarly, we have
that N(T) ® N(T") € DY(T ® T") is a projective Ajf-module of rank rky, (T ® T") such that
Ap Dpt (N(T) ® N(T")) — D(T) ® D(T").

Next, let s and s’ denote the height of representations V' and V' respectively and let i :=
max(s, s'). Then we see that (N(T") ® N(T"))/*(N(T) @ N(T")) is killed by ¢' and (N(T) ®
N(T"))/¢*(N(T)®N(T")) is killed by ¢***". Further, I'g acts trivially modulo 7 on N(T)&N(T")
and N(7') ® N(7"). This verifies conditions (i), (ii) and (iii) for these modules. For condition
(iv), note that given any two finite étale extensions R’ and R” of R, there exists a finite étale
extension S over R such that S is finite étale over R’ as well as R”. Hence, we get the claim. H

Corollary 4.15. Let V be a finite q-height representation of Gr. Then, for k € N the repre-
sentations Sym* (V) and AFV are of finite q-height.

Proof. Note that the compatibility with tensor products in Proposition 4.14 is enough to estab-
lish the compatibility with symmetric powers and exterior powers because then we can set

N(Sym*(T)) := Sym*(N(T)), and N(A*T) := A*N(T).

We have N(Sym"*(T)) < Sym*(D*(T)) ¢ D*(Sym*(T)), since A* Dat Sym*(DH(T)) ¢
At DAt D* (Sym®(T)). Similarly, N(A*T) c D*(A*T). Rest of the assumptions of Definition

4.9 follows in a same manner as in the proof of Proposition 4.14. This establshes that Sym* (V")
and APV are finite g-height representations and gives us the corresponding Wach modules. W

4.2.2. Filtration on Wach modules. There is a natural filtration on Wach modules as-
sociated to finite g-height representations. We will introduce this filtration next and prove a
lemma concerning this filtration.

Definition 4.16. Let V be a positive finite g-height represenation of G and r € N. Then
there is a natural filtration on the associated Wach modules given as

Fil*N(V(r)) := {z € N(V(r)), such that o(z) € ¢*N(V(r))} for k € Z,

and we set Fil*N(T'(r)) := Fil*N(V(r)) N N(T(r)), where the intersection is taken inside
NV (r)).
Lemma 4.17. With notations as above, we have

(i) Fil*N(T(r)) = {x € N(T'(r)), such that p(z) € ¢*N(T(r))}.

(i) Fil*N(V(r)) = Fil*z"N(V)(r) = 7 "Fil*""N(V)(r) and similarly for Fil*N(T(r)).
Proof. (i) For k <0, the claim is obvious, so we assume that & > 0. Then we are reduced to

showing that ¢*N(V (r)) N N(T(r)) = ¢*N(T(r)).

To prove the latter claim, note that it is enough to work under the assumption that

N(T(r)) is free. Indeed, for any finite ¢-height representation V(r), there exists a finite

étale R-algebra R’ such that A}, ® ,+ N(T(r)) is free. Since A}, is faithfully flat over A},
R

the claim is equivalent to showing that A}, ®,+ (¢*"N(V) N N(T)) = ¢* A}, ® 4+ N(T).
R R
: : + k — (kAT +
But one can easily obtain that A}, ®at (¢"N(V)NN(T)) = (¢"A} ®A§N(V))D(AR'®A;
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N(T)) (or see [Mat86, Theorem 7.4 (i)]) as submodules of A}, ®at N(V). So below we

will assume that N(T'(r)) is free over A}, with a basis {f1, ..., fa}, where h = dimg, V(r).
Let 2 = Y0 o fi € ¢*N(V(r)) N N(T(r)) with z; € Af. Since {f1,..., fn} is also a
Bf-basis of N(V(r)), we can write z = 7" Z?:l y; f; with y; € Bf,. Comparing the two
expressions for  we obtain that ¢*y; = z; € AE, ie. y; € Ap for 1 < ¢ < h. But this
just means that y; € BJI_EL NAgr= AE, therefore z; = ¢*y; € qkAJ}_-E for 1 < ¢ < h. Hence,
x € ¢*N(T(r)) as desired. The other inclusion is obvious.

(ii) Note that the inclusion 7 "Fil**"N(V)(r) C Fil*z~"N(V)(r) is obvious. To show the
converse let 77 7x®e®" € Filkr"N(V)(r), with z € N(V) and ¢®" being a basis of Q,(r).
Then we have that p(7 772 ® €¥7) = ¢ "1 "p(r) @ € € ¢*77"N(V)(r). Therefore, we
obtain that ¢(z) € ¢*T"N(V), i.e. z € FilFF"N(V).

|

Remark 4.18. For V' = Q, the filtration in Definition 4.16 coincides with the filtration in Lemma
3.17

Proof. We have T = Z,, and N(T) = AL and let @ = ¢, — 1 (let w = Cp2 — 1 if p = 2) in this
proof. Since 7* A} C Fil*N(T') (where the term on right is the filtration in Definiton 4.16), we
only need to show that Fil*N(T) c n*A} = AL N §kAEw Let © € A} such that p(z) = ¢*y

for some y € A%, As we have Af; C Ag », we can also write p(z) = (§k)y € o(ARpw) C Ag,
ie. y € o(Apw) N AL = p(AL ) (where the intersection is taken inside Ag). Therefore, we

obtain that y = ¢(z) for some z € AE’W. Since ¢ : AE,’W — AJ}%,w is injective, we must have
r==¢k2¢ AE N §kAEw, as desired. |

4.3. Statement of the main result. In this section, we will relate the notion of crys-
talline and finite ¢-height representations. As we will see, we can recover the R[%]-module
ODis(V) from the Af-module N(T') after passing to a larger period ring and inverting p. We
begin by introducing this ring below.

Recall from §1.4 that we have F' as a finite unramified extenion of Q, with ring of integers
Or and we take K = F((ym) for a fixed m € N>; (fix m € N>y if p = 2). Note that the
formulation of the results and proofs depend on m and it is necessary to have m > 1 (m > 2 if

= 2) for the discussion below to make sense.

4.3.1. The ring OAE%. In this section, we will work with the ring AEW defined in §3.3,
equipped with an action of the Frobenius ¢ and a continuous action of I'g. Since we have a
natural injection AE - — Ainf(R), we obtain a G g-equivariant commutative diagram

A}, —"— Rl=|

|

Ainf(ﬁ) —» (C+(R
By R-linearity, extending scalars for the map 6 above, we obtain a ring homomorphism
0 R: 'R &7z A —> R[w],

sending X; @ 1 = X;, 1 ® [Xf] — X; for 1 <i<dand1®my, — (» —1. Note that we have
inclusion of ideals (¢, X; ® 1 —1® [X?], for 1 <i < d) C Ker §g C R®gz AE’W, where § = T-.
We have A}E C Ain(R) and g above is the restriction of 0 : R ®z Ape(R) - CT(R) (see
§2.2.1). So similar to OAj;¢(R) in §2.1.3 and OAis(R) in §2.2.2 we define the following rings:
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Definition 4.19. (i) Define OAE@ to be 05! (pR[w])-adic completion of R @y AE@

(ii) Let " := z"/n! for z € Ker 0. Define OAE]’?Z to be the p-adic completion of the
divided power envelope of R ®z A+ with respect to Ker 0p.
Note that we have (’)AEW = OAu(R ) N (’)A ) C OAuis(R).

Taking the divided power envelope of 8r/p", note that OAP D /o™ — OAis(R)/p™. Since

we have (’)APD = lim,, (’)APD > /p" and OAgis(R) = lim, (’)Ams( R)/p", and (projective) limit
is 1eft exact, it follows that for the p-adic completlon of divided power envelope of 0, we have
OA - C (’)Ams(i). Now, over the ring OAEP R We can consider the induced action of I'p
under Wthh it is stable, and it admits a Frobenius endomorphism arising from the Frobenius
on each component of the tensor product. In particular, from the diagram above we obtain a
G'r-equivariant commutative diagram

OARD %%, Riw]

L

OAcris (E) *»R (C+ (E) .

Note that the left vertical arrow is Frobenius-equivariant.
Next, we will give an alternative description of the ring (’)A%{?ﬂ. Let T = (T4,...,Ty) denote

a set of indeterminates and let A is(R)(T)" denote the p-adic completion of the divided power
polynomial algebra A is(R)(T) = Acis(R) [Ti[n], n €N, 1 <i<d]. Recall from §2.2.2 that we
have an isomorphism of rings

fcris : Acris(ﬁ) <T>/\ L> OAcris (E)
Ti— X;®1—-10[X?], for1 <i<d.

Now recall that A%% is the p-adic completion of the divided power envelope of the surjective
map 6 : AE’W — R[w] with respect to its kernel (see §3.2). Next, let A%%(T)/\ denote the p-adic
completion of the divided power polynomial algebra A}%Bz (T) = A%% [Ti[n], neN, 1<i<d|.
Then Via the isomorphism fFP (see Lemma 4.20 below), we will show that the preimage of
OAPP R under fois is exactly Ag{?ﬂ (T)". In other words,

Lemma 4.20. The morphism of rings

fIP ARD (T — OARY,
Ti— X;®1—1®[X7], forl<i<d,

s an tsomorphism.

Proof. The proof follows [Bri08, Proposition 6.1.5] closely.
Recall that we have a surjective ring homomorphism 6 : AE% — R[w]|, which is the re-

striction of the map 6 : Aqis(R) - CT(R) defined in §2.2. This can be extended in a unique
manner into the homomorphism 6 : Ai5(R)(T)" — CT(R). Restriction of the latter map gives
us 6 : ARD (T)" — R[] such that 6(T") =0 for 1 <i < d and n > 1.

First, we will show that the Op{X¥*!}-algebra structure on AIP;L]73W<T>A given by
X, = [XZb | + Ti, extends uniquely to an R-algebra structure. Let A :=
(Ef /T " ER T, .., Tal /(TY, ..., TY). We have a surjective map 6 : A%, _ — R[w] and its
reduction modulo p is given as 6 : ERw R[w]/pR[w]. Since (P = 7#P~! mod p, where ¢ = =
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is a generator of Ker 6 C AJr , we obtain that 6 factors as @ : EJr /TP 1ER - = Rlw]/pR[w].

This can be extended to a map 6 : A - R[w]/pR[w] by setting 9( ;) =0 for 1 <i<d. The
kernel Z = Ker 0 C A is generated by ¢ = ﬁ’l’_l mod p and {T;}i<i<q. Now from the natural
inclusion R/pR — R[w]/pR[w] and the isomorphism A/Z — R[w]/pR[w] via 0, we obtain a
map g : R/pR — A/T such that g(X;) = X;, which is the image of X? € A under the map 6.
So we obtain a commutative diagram

RXE] —— 5 A

b
A

_ -

-
g .-
.
-
-
-
-
-
-
-
-

R/pR —— A/T

where the top horizontal arrow is the map X; — Xl»’ + T;. Note that ZWHDP = 0. Since
R/pR is étale over x[X*!], there exists a unique lift of : R/pR — A/Z to a homomorphism
g: R/pR — A (which we again denote by g by slight abuse of notations).
Further, by the description of divided power envelope in [Bri08, Proposition 6.1.1] we have
that
AE,W[YE% Y17 . ']/(pYO - gpprn+1 - an)n21 = A%Dw
pntl

Y, >—>§n+1.

Therefore,
(EE,w/ﬁp_lEE,w)[Yo’ Y17 ot ]/(Y )n>1 —> A /pAR ,Tw )

Similarly, we have
(ARLITy, . T Ti0, Tins - -1/ (0Ti0 — TP, pTimsr — TV )1<i<d, nen — AR (T).
Therefore,
(AR /PAR LT, - Tal[Ti0, Tins - )/ (T T 1<i<d,nen — AR (T) /AR L(T).
In conclusion, we have
no ,n

A[Ybayla s 7E,Oan,17 . ]/(Yp 17’ )1§i§d,n6N L> A%%<T>/pA]%]3v<T>

From the discussion above we obtain a natural map of x[X*!]-algebras by composition g :
R/pR — A — A%%(T)/pAZ%(T>.

Now let n € N, then modulo p" we have a natural map Op{X*'}/p"Op{X*'} —
AZ%(TVp”A%%(T). Again, since R/p"R is étale over Op{X*'}/p"Or{X*1}, we have a
unique lift of g,, : R/p"R — A%%(T) / p"A%]?w<T> in the commutative diagram

Op{X=1}H/p"Op{ X} ——— AR (T)/p" AR L(T)

R/p"R - ARL(T) /pARAT).

Via this lifting, the following diagram commutes

Rfp™1 R ——— ARD(T)/p ARD(T)

| |

R/p"R ———— AL (T)/p" AR (T),
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where the vertical arrows are natural projection maps. From the universal property of inverse
limit of the right side of the diagram, we obtain a natural map of Op{X*!}-algebras

g:R— 1i£n A%%(T)/p"A%%<T) = AZ%(T)A.

Now, let 6 : Ag%<T> / pA%%(T) — R|w]/pR[w] denote the reduction of # modulo p. Recall
that by construction, § o g is the inclusion of R/pR in R[w]/pR[w]. Therefore, the reduction
modulo p of § o g and the natural inclusion R — R[w] coincide. Since R is p-torsion free,
arguing as above we obtain that for each n € N, the natural inclusion and 0 o g coincide modulo
p".

Next, by A}, _-linearity, g can be extended to a map g : R®o, AL _ — AYD (T)". From the
discussion above and the definition of 0k, we have that Og coincides with the homomorphism
fog: R®o, A} — R[w|. In particular, g(Ker 6r) C Ker § C A%%(T)A. Since Ker 6
contains divided pé)wers, the map g extends to a map

g:(R®o, Aﬁw)[x[”],:c € Ker Og,n € N] — AEPW<T>A.

Finally, since AE%( )" is p-adically complete, g extends to a map g : (’)A > — AFRD (T
Now by uniqueness of g : R — AE%( ), the composition
g fFP
OARL, 5 ARD (Y —— OALRY,
coincides with the identity over R C OAFZ%- Since it also coincides with identity on the
image of AE,W (by A+ _-linearity), we obtain that fP o g = id over OAZ%. Similarly, the
homomorphism g o fPD coincides with identity over A} Rw as well as over Op{X*'} (since g
lifts the map Op{X*'} — AR@,( ), therefore it is identity over AE%(TY\. This establishes
that fFP is an isomorphism of rings. |

Remark 4.21. We can give an alternative construction of the ring OAE?D. Note that we have
a ring homomorphism ¢ : R — A%%,, where X; — [Xf] for 1 <4 < d. As in Definition 3.19,
we define a map g : R ®z ARw — A%%, where x ® y — (x)y. We obtain that Ker g =
(Xi®l-1® [Xf], for1 <i<d) C Ker g C OAqis(R). Since R ®z ARw already contains
divided powers of &, from Deﬁnition 4.19 we obtain that the p-adic completlon of the divided
power envelope of R ®y A - with respect to Ker g is the same as OA

There is a natural ﬁltratlon over OA - by I'g-stable submodules:

1[X!]

Definition 4.22. Let U; := X, 00

for 1 <7 <dand r € Z, define the filtration over OA%%, as
d
Fil' OARY, = ((a@b) H Ui—1)E € OARY, such that a € R, b€ FIVARD,, and j+3 " ki > 7).

Remark 4.23. The filtration over A%’?ﬂ (via its identification with REP see §3.3 and Definition
3.11) coincides with the filtration induced from its embedding in Ais(R). Indeed in both
cases we have FilTAg]’D = (&%, Kl | < r) C A - for r > 0, whereas FIITA%% = A - for r <0.
Next, the filtration on OA s (7) is defined as the induced filtration from its embeddlng inside
OB (R) and the filtration on the latter ring is given by powers of Ker 0 (see §2.1 & 2.2 for
definition and notation). The induced filtration over OA;s(R) is therefore given by divided
powers of the ideal Ker 0 C OA;s(R). Since the filtration over (’)A%BU in Definition 4.22
is again given by divided powers of the ideal Ker 0 C OAZ?E, we infer that this filtration

coincides with the one induced by its embedding into OA s(R).
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Lemma 4.24. (i) The action of T g & is trivial on OAED /™, whereas I'r /T g o acts trivially
over OAE%/T[’m.

(ii) We have (OAEBZ)FR = R and (FﬂlOA%D)FR —0.

Proof. (i) The first part follows from the definition of OALD

A%{?ﬂ (see Lemma 3.16). The second part follows from observing that I'r/T'r o = 'r/T'k
m—1 (
p

R and the action of I'p. on

is a finite cyclic group of order [K : F] =p
I'r/T R acts as g(my) = (1 + T )X9) — 1.

— 1), and a lift g € I'r of a generator of

(ii) This is straightforward, since R C ((’)A )FR C (OAqis(R ))GR = R and

(FﬂlOAPD)FR C (Fil'OBeuis(R))R C (FIIIOBdR( ))GE = 0 (for last equality see the
proof of [Bri08, Proposition 5.2.12]).
|

Next we consider a connection over OA ?_induced by the connection on OA is(R),

0: (’)A —>(’)A ) ®QF,

where we have 9(X;®1— 1®[Xb])[n] (Xi®1— 1®[Xb})[n ' dX;. This connection over OALD
satisfies Griffiths transversality with respect to the filtration since it does so over OAcrls(R)

4.3.2. Main result.
Theorem 4.25. Let V' be a positive finite q-height representation of Gr, then

(i) V is a positive crystalline representation.

(ii) Let M := (OA = @At N(T )) . then after extending scalars to (’)ARW and inverting
p, we obtain a natuml zsomorphzsm

OARD, @p M[1] = OARY, @1 N(V),
compatible with Frobenius, filtration, connection and the action of I'r on each side.

(iii) We have an isomorphism ofR[%} -modules
~ r
ODcris (V) «— (OA%BU ®A§ N(T)) R[%L

compatible with Frobenius, filtration, and connection on each side. Therefore, we obtain
a comparison isomorphism

OA ®A+ N( ) —> OA ®R ODCI‘IS( )

compatible with Frobenius, filtration, connection and the action of I'r on each side.
Remark 4.26. The statement of Theorem 4.25 can be seen an analogue of the result of Berger
[Ber04, Proposition I1.2.1] (see the discussion after Proposition 4.7).

Recall that from Definition 4.9 any finite g-height representation is a twist of a positive finite
¢-height representation by Q,(r), for r € N. Since twist by Q,(r) of crystalline representations
are again crystalline, we obtain that:

Corollary 4.27. All finite q-height representations of Gr are crystalline.
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The proof of Theorem 4.25 will proceed in two steps: First, we will describe a process by
which we can recover a submodule of OD,i5(V') starting from the Wach module (see Proposition
4.28), here we establish the comparison displayed in (ii). Next, the remaining claims made in
the theorem are shown by exploiting some properties of Wach modules and the comparison
obtained in the first step.

In §4.6, we will explicitly state the structure of Wach module attached to a one-dimensional
finite g-height representation and we will also show that all one-dimensional crystalline repre-
sentations are of finite ¢g-height and one can recover ODy,is(V') starting with the Wach module
N(V). Combining this with the theorem above, we will obtain that the notion of crystalline
representations and finite g-height representations coincide in dimension 1.

4.4. From (¢,I')-modules to (¢, d)-modules. The objective of this section is to prove
the following:

Proposition 4.28. Let V' be an h-dimensional positive finite q-height representation of G,
T C V a Zy-lattice of rank h stable under the action of Gr and N(T') the associated Wach
module. Then

(i) M := (OAR, N N(T))FR is a finitely generated R-module contained in ODeyis(V).
(ii) M[%] is a finitely generated projective R[%]—module of rank h and the natural inclusion
OARD, @ M[L] — OARD, &, N(V),

is an isomorphism compatible with Frobenius, filtration, connection and the action of I'g.

(iii) If N(T) is free over AL then there exists a free R-module My C M such that MO[I%] =
M[%] are free modules of rank h over R[%].

Proof. We will use the notation of Definition 4.9 without repeating them. The first claim is
easy to establish. Since Hr = Gal(R [ |/ Roo [ ]), therefore we can write

M = (OAR, ©,: N(T ) C (OARD - ©p DHT N C (OAs(R)F @, - DT 7)) "

- (OAcris( ) R A; (A ®Zp T) ) (OACI‘IS( )®Zp T) C ODcris( )
(4.1)

The module (OAs(R) ®z, T )GR is finitely generated over R. Since R is Noetherian, M is
finitely generated.

Independently, we have that R[%] is Noetherian and OD¢s(V) is a finitely generated
R[%]-module, therefore M [21;] C ODy¢,is(V) is finitely generated over R[%]' Moreover, the mod-
ule OA%PW DAt N(T) is equipped with an Al%%—linear and integrable connection Oy = 9 ® 1,
where 0 is the connection on OA}EB; described after Lemma 4.24. Therefore, we can consider the
induced connection on M [ |, which is integrable since it is integrable over OA - ® A% N(T).

This connection is compatible with the one on ODg:s(V') since the connection over OAIP}% is
induced from the connection over OA;is(R). So by [Bri08, Proposition 7.1.2] we obtain that
M [%] must be projective of rank < h. Furthermore, the inclusion M [ | € ODgyis(V) is com-
patible with natural Frobenius on each module since all the 1nc1u810ns in (4.1) are compatible
with Frobenius.

Next, we will show that the rank of M [%] as a projective R[%]—module is exactly h. But first
let us prove that it is enough to show that the rank is h after a finite étale extension of R. Let
us consider R’ to be a finite étale extension of R such that the corresponding scalar extension
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Al ®at N(T) is a free module of rank h (see Definition 4.9) and R’[%]/R[%} is Galois. The
discussion of previous chapters hold for R’ (see [Bri08, Chapitre 2] and [AI08, §2] for more on
this). In particular, for R'[cw] we have rings AE,, AE’,W’ A%l,?w and OA?,?W. Let R/ [%D] denote
the cyclotomic tower over R’ [2%] and
Ir = Gal(RL[]/R'[}]) and Hp =Ker (Gr — Twr).
Similarly, we have Galois groups I'gs and Hp/. Let
r_ ! 17 _ / 1 17 _ e 1
G = Gal(Ry [;]/Reo[3]) = Gal(R'[w][;] /R[] []) = Gal(R'[]/R[;]),
then we have that Hg /Hp » = Hr/Hpr = G'. So we obtain that
AJ}% _ (A+)HR — ((A+)HR/)HR/HR/ _ (AE/)G,-

Moreover, for the base ring R[w] (instead of R) one can consider the ring AL as in Remark
3.6. Then we have
Hp o H H ,w/H ! G’
A;,w = (A;) o = ((A;) R’w) a e = (AE/,w) :
From these equalities and the description of the action of I'r on & = FLN it is clear that
ARD = (APP)Y and therefore OARD = (OARP )"

Now, since N(T') is projective and G’ acts trivially on it, we obtain that

(OAEi]’:?w QA+ (AL ©at N(T)))Gl = OA%% ©at N(T)
R/
(OARP @ (R @ M[1])" = OARR @ M[L].

In particular, base changing to AE, to obtain N(7T') as a free module is harmless. For the
convenience in notation, below we will replace R’ obtained in this manner by R and assume
N(T) to be free over A}.

In order to show that the rank of M [}D] is at least h, we will find I'g-fixed elements of
(’)A%BE ®at N(T) corresponding to a basis of N(7'), which are linearly independent elements

of M [%} To carry this out, first we will define several new rings following [Wac96, §B.1] and
examine their relation with (’)Ag]?w. After extending scalars of N(T'), we will define differential
operators on the obtained module, corresponding to the topological generators of I'r. Next,
for any element of N(7T'), we will write down a corresponding element killed by the differential
operators which we will show is fixed by I'p.

Remark 4.29. Note that the I'g-fixed elements of (’)AE% ® A% N(T') can be obtained by suc-

cessive approximation as well. This computation was carried out in [Abh21, §3.2.3].

4.4.1. Auxiliary rings and modules. For n € N, let us define a p-adically complete ring

PD ._ A+sm w2 k
Sn .—AR F’W"'.’W""}.

Let L[ﬂ denote the ideal of S'P generated by kl’;% for k > 7 and we set

SPP .= 1im SPP /111, (4.2)



CRYSTALLINE REPRESENTATIONS AND WACH MODULES 35

Note that SFP is p-adically complete as well. Further, note that we can write p(7) = (147)P —
1 = 7P + prx for some z € A;C, therefore

p(rh) (P +pra)k T () - (pra)h

klpkn — klpkn kphkn
2’“: (k+ (p ) )pi(ne—1)=p) ' skt (p=1)ipk—i c gD
= ] (k+ (p— Dlptee Dy < S

Using this, the Frobenius operator on S can be extended to a map ¢ : §5D GPD

=1, which

we will again call Frobenius. The ring §5D readily admits a continuous action of I'p which
commutes with the Frobenius.

Lemma 4.30. The ring S¥P is a subring of ARw, and therefore o™ (SPP) Ag%
Proof. The first claim is true because we have
pi

L i—1 ;
7 = 7 mod pAEw7 which gives 77 =77 ~ mod pZA}’w.

So for k > p' we can write

7Tk _ gkﬂ_k fk i pz‘—l
W= T

it (k4 p 1) gkﬂ’“

p

z 1
k" AFW’

+p'a) = p' a7r1
for some a € AEW. Therefore, we get that I(gp e piflA%D

oPD PD
= and hence 557 C Ap— . The
second claim is obvious. [ |

In the relative setting, we need slightly larger rings. Let us consider the Op-linear homo-
morphism of rings

t: R — SFP

Xj— [X]] for1 <j<d.
Using ¢ we can define an Op-linear morphism of rings

f:R®o, SiP — §7P

n
a®br— i(a)b.
Let OS,, SPD denote the p-adic completion of the divided power envelope of R®0,. S, SPD with respect
to Ker f. Further, the morphism f extends uniquely to a continuous morphism f : OSEP —
SPD . Now, it easily follows from the discussion in §3.4 that the kernel of the morphism f is

generated by divided powers of the ideal generated by (1 — Vi,...,1 —Vy), where V; = 122[%}
j

for 1 < j < d. The Frobenius operator extends to (’)§}j D as well as the continuous action of I'p.

From the discussion above we have ©"(SFP) ¢ SFP A%?E, and following the description of
OSPP in §3.4 and of OA%BU from Remark 4.21, we obtain that

OSEP ¢ OALD, and " (OSEP) c OALY,

Moreover, we have a canonical inclusion of §,}f bc (’)g}f D compatible with all the structures.
Now let us take n € N>; and consider the ring OSEP below. Set

J:= (5,1

> —1/1,...,1—Vd)CO§5D,
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and its divided power as

d d
Ji = <;:Q’jf(j [T -v)"!, k= (ko,k1,....kq) € N*™! such that Y k; > z> c OSPP,
j=1 =0

By construction of OS’SD, it is clear that a summation ) ;. z;a; with a; € J [ and xT; € §5D
goes to 0 as i — 400, converges in OS'P. Moreover, every x € OSF'P has a presentation as
[kol .
T =) keNd+1 :Bk;n—,% H?zl(l — V)il where zy, € A}, goes to 0 as k| = > ki — +oo.
Next, we set

ONPP .= O8FP ® a1 N(T).

Again,A (’)N}; D s p—adicallyAcomplete and it is equipped with a Frobenius-semilinear operator

©: OSFP @, N(T) — OSEP, ® ,+ N(T) and a continuous and semilinear action of I'r. Now
R R

recall that we fixed m € N> (fix m € N>g if p = 2) such that K = F({,m). So we take

M’ = (ONEP)™ and M" = (M")'F = (ONFP)"™,

Since we assumed N(7T') to be free, therefore ONP is a free (’)S'\ELD—module of rank h. As we
have ¢ (OSPP) ¢ OALD so we get that ¢™(M") C (OARY Dt N(T))FR = M. Therefore,
to show that the R[%]—rank of M[%] is at least h, it is enough to show that for each z € N(T)
there exists unique "/ € M” ¢ ONPP fixed by I'g and z = 2/ mod JMONEP (see Lemma
4.43).

4.4.2. Infinitesimal action of I'g. From §3.1 recall that we have {v,v1,...,74} as a set of
topological generators of I'g such that {v1,...,74} generate Iy topologically, and  is a lift of a
topological generator of I'p where v¢ = g is a lift of a topological generator of I'r, e = [K : F]
and x(y0) = exp(p™) where we fixed m € N>p (fix m € N>g if p = 2). Further, we have the
identity vov; = 7}(%)70 for 1 <4 < d. In this section we will study the infinitesimal action of
I'r on the rings and modules constructed in previous section.

Lemma 4.31. Let k € N, n > m and i € {0,1,...,d}. Then (y; — 1)(p™, 7)*SPP
(™, m)FHSEP.

Proof. First, let i = 0. Recall that we have x(y9) = exp(p™) = 1+ p™a € 1 + p™Z,. So we can
write

(yo — 1) = (1 +m)*00) — (1 4 7)
= (x(y0)7 + X(’Yo)();(!’Yo)—l)WZ + x(vo)(x(%)g!l)(x(vo)—% pos. I -7

= (x(vo)u — L),

for some u = 1+ 7z € 1+ WAE. Therefore, x(y0)u — 1 = p™a + mx + pTanx € (pm,ﬂ)AE
which gives us that (yo — 1)7 € (p™, m)mA%. Now we have (79 — 1)A} C AL C (p™,m)AL,
so proceeding by induction on k£ > 1 and using the fact that v — 1 acts as a twisted derivation
(ie. (o — Day = (y0 — Dz -y +70(z)(y0 — 1)y for z,y € A}), we conclude that

k
(o = 1)(p™, ™) A% € (p, m)" AL

Next, any f € §5D can be written as f = > .y fss!;r)% such that fs € AE goes to 0 as
s — +o00. Clearly we have
m (x(70)°w® — 1) " gPD

s
_ m
(’YO B 1)8!])”5 - slpns € (p ’ﬂ—) slpns n




CRYSTALLINE REPRESENTATIONS AND WACH MODULES

37

Combining the discussion for AJ]SL and s!’;%, using induction on k£ > 1 and using the fact that

Y0 — 1 acts as a twisted derivation, we conclude that

ka k a
(o — D)™, kS C (™, m)F TSP,

Finally, for i € {1,...,d} we have (y; — 1)[X?] = 7[X?] € (™, 7)A} and (v — 1)([X?]7}) =
—r(14+m) X e (p™, m)A}. Again by induction on k > 1 and using the fact that v; — 1

acts as a twisted derivation, we get that

(vi = 1)(p™, m)F AL, € (™, )AL

Now any f € §5D can be written as f =) oy fssl’;% such that f; € AE goes to 0 as s — 400,

and ~; acts trivially on 7 for 1 < ¢ < d, so we conclude that

(i — D) (p™, m)*SEP < (p™, m)F ISP,

Lemma 4.32. Forn>m andi € {0,1,...,d} the operators

o _ k(vi—1)k+!
Vi=logy = Y (-1)F O
keN
: §PD
CONVETGE aS SETIES Of opemtors on n -

Proof. From Lemma 4.31, we have that for k € N

(v = (@™, ) 5P C (p, m)FHSEP.

Therefore, using the fact that v; — 1 acts as a twisted derivation (i.e. (v; — 1)ay = (1 — 1)z -

y+vi(x)(y — 1)y for z,y € §£’D), we obtain that for x € §ED
(i — ¥ (@) € (p7, m) SR

Therefore, the following series converges in §5D
i_l k+1 xT
Vilz) = > (-1,

This allows us to conlcude.

(4.3)

Remark 4.33. Note that I'g acts trivially modulo 7 on AE. Therefore, we also get that it acts
trivially modulo 7 over SYP. Hence, for 0 < i < d we have V;(SFP) ¢ 7SFP = tSPDP | where

the last equality follow from the fact that £ is a unit in SPD (see Lemma 4.35 below).

Remark 4.34. The operators V; for 0 < i < d, defined in Lemma 4.32, describe the action of

the Lie algebra Lie ' on §5D, i.e. V; acts as a differential operator on §5D.

Lemma 4.35. £ is a unit in §5D forn >m.

Proof. We can write the fraction

b log(1 + ) _ Z(_l)k ok

7T m

Formally, we can write

T m
= = by b+ bom? F by 4 -
; Tog(1 +7) 0+ 017 + bom” + 037" + )
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where by = 1 and v,(by) > — p%l for all £ > 1. But rewriting the series as a power series in

ﬁik, we get that

m nk _mk
n - Z bk!p klpnk *
keN

The p-adic valuation of coefficients in the series above is given as
Up(brk!p™) > S 4 nk + vy (k!) = E=ink + vy(kY),

which clearly goes to +o00 as k — +o0. Hence, 7 converges in SPD and is an inverse to % |

Now let us consider the ring O§}j D and divided power ideals

d d
<7f[k°] [Tt — V)Rl k = (ko, ki, ... kg) € N**1 such that > k; > z> c OSFP.
j=1

pnko

Jhl .

J=0

Arguments similar to Lekmmas 4.31 and 4.32 show that for 0 < i < d the series of operators
1 >
V; =logvy; = ZkeN(—l)k% converge over OSPP. Moreover, from Remark 4.33 we obtain

that for 0 < 7 < d, we have VZ-(O@E)D) C tOg,E’D. Also, it is easy to observe that we have
Vo(t) =log(x(10))t = p™t and V;(V;) = tV; for 1 < i < d. Finally, recall that ~;v; = ;v; for

1<i,j7<dand~yy = 72‘(70)70, therefore we conclude that

[vi7 v]] = 07
[Vi, Vo] = log(x(70))Vi = p™V;.

Now we will adapt the discussion above to scalar extension of Wach module N(7) to OSPP,
i.e. for ONJP := OSFP @, + N(T).
R

Lemma 4.36. Forn>m andi € {0,1,...,d} the operators

. __1)k+1
Vi — log/}/z — Z(_l)k+1 ('szi)l
keN

converge as series of operators on ONPP.

Proof. For 0 < ¢ < d, observe that v; — 1 acts as a twisted derivation, i.e. for a € ng;D and
x € N(T'), we have

(vi = D(az) = (i = Va -z +7i(a)(vi — Dz

The action of I'g is trivial on N(T")/7N(T'), so we can write (y; — 1)x = 7y, for some y € N(T),
ie. (v —1)ONLP c (p™, 7)ONFP. From the proof of Lemma 4.32 and (4.3) and induction
over k > 1, it follows that

(vi = (@™, )" ONSP C (p™, m) TONLP.
Next, using the fact that v; — 1 acts as a twisted derivation, we obtain that
(i = D (az) C (p", m)*TONLP.
Therefore, the following series converges in ONFP

— 1)kt (az
Vilaz) = Y (-1l en),

This allows us to conlcude. |
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Remark 4.37. Note that I'p acts trivially modulo = on @SPP and N(T'). Therefore, we also
get that it acts trivially modulo 7 over ONPP. Hence, for 0 < i < d we have V;(ONIP) c
TONSP =tON}FP, where the last equality follows from the fact that £ is a unit in OSFD (see
Lemma 4.35).

Again, over ONFP we have
Vi, V;] =0,
[Vi, Vol = log(x(70)) Vi = p" Vi,

which enables us to define differential operators 9; over ONFP using the formula

5 — —t7'Vy  fori=0,
T WY forl1 <d<d,

where V; = 1{3[?}1?] for 1 < i < d. Note that 9; is well defined since V;(ONP) c tONEP (see

Remark 4.37).

Lemma 4.38. For n > m, the differential operators defined on ONFP commute, i.e. 0; 0 0; =
ajoai fOTOSi,de.

Proof. From above we have [V;, V] = 0for 1 <1, j < d, whereas [Vq, V;] = p"V;, for 1 <i <d.
So it follows that over ONIP we have the composition of operators

t2ViV;(9i 0 0; — 8j 0 0;) = tVi0; 0 tV;0; — tV;0; 0 tVid; = V;0V; = VoV, =0, forl<i,j <d.
Next, for 1 <4 < d, we have
VooV; —=V,;oVy=—tdyo (tV;0;) + tV;0; o (tdy)
= —p"™tV;8; — t*V;0p 0 0; + t2V;0; 0 9y = p"'V; — tQVi((?o 00; — 0; 00p).
In particular, 9; 0 9; — 00 0; = 0 for 0 < 4,5 < d since ONPD is t-torsion free. |

For the rest of the section, let us now assume n = m.
Lemma 4.39. Let 1 < i < d and x € N(T), then we have that 0F(z) — 0 in ONLP as
k — 4o0.

Proof. First, let us note that since 0;(V;) = 1, 9;(V;) = 0 for j # i and 9;(m) = 0, so we have
that 07 (OSYP) c pOSEP. Moreover, an easy computation shows that for z € N(T') we have

Di(ipla)) = Tl — £GRE) — pyPlo(9,(x)) € OSEP @, a1 #(N(T)),

where note that we have p(9;(z)) € @(Ogg?rl Dat N(T)) c OSFP Do(at) ©(IN(T)) since 0;(z)
converges over O§f,’}11 ®at N(T') by Lemma 4.36.

Next, from Definiton 4.9 recall that we have ¢*N(T) C ¢*(N(T)). Let us write ¢°z =
Z;‘Zl a;jple;) for aj € A} and {e1,...,e,} an Af-basis of N(T'). Then it follows that d7 (¢°z) €
pq®(OSED Dp(at) @(N(T))A), therefore 9" (z) € p(OSFP ®pat) ©(N(T))). By induction on k
we see that afk(@ € p*(OSEP Do(at) ©(N(T))) € p*ONEP. Hence, the claim follows. [ |

Remark 4.40. Note that one can recover the action of v; using the differential operator 9;. For
i€ {l1,...,d} we have v; = exp(tV;0;), whereas for i = 0 we have yp = exp(—tdp).

From the remark above it is clear that for 0 < i < d and z € ONEP we have ~;(z) = x if
and only if 9;(z) = 0.
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Lemma 4.41. For any x € N(T) there exists a unique x" € ONEP such that

"=z mod JUONFP,
Yi(2") =a" for0<i<d.

In particular, z" € M" = (ONEP)"#.
Proof. For z € N(T), we set

o= oo odfi(a)1 - )M (1 - vylkd € ONEP
keNd

The summation converges since for 1 < i < d we have that 6(’)“0 o 8{“ 0---0 Osd () = 0
as k| = 2% k; — 4oo from Lemma 4.39. Note that we have an isomorphism of rings
g,P,)LD = (Og,E;D)FR’ compatible with I'p/I'gr = T'p-action. Therefore, by the description of
SPD in (4.2) and since 2’ € (ONFP)'r we see that the following sum converges

2 = Z agO(I/) tlkol c ONE;D'

pmko
koeN

Since the differential operators on ONPP commute by Lemma 4.38, we get that

2 = Z ago o aiﬁ 0---0 asd(l‘) tlko] (1- Vl)[kl] e (1— Vd)[kd] c ON’VE)ZD (4.4)

pmko
keNd+1

By the definition of z” it is clear that z” = x mod JHONFP. Next, using the fact that
0;00;j = 0500 for 0 <1i,j < d (see Lemma 4.38) as well as 9y(t) = —p™ and 0;(V;) = 1 for
1 <4< d, it is easy to deduce that 9;(z”) = 0 for 0 < i < d. So by Remark 4.40, we get that
vi(x") = 2" for 0 <i < d.

Uniqueness of z” follows from Lemma 4.43. Finally, let g € I'r be a lift of a generator of
the cyclic group I'r/T'x. Then we have that g(z”) € ONFP satisfies the conditions of the claim
(since (g — 1)z € #N(T) c JIONEFP). But by uniqueness, we obtain that g(z”) = 2", i.e.
a" € (ONEDY'R = pp7, ]

Remark 4.42. Note that the lemma above can also be obtained by a “successive approximation”
argument (see [Abh21, Lemmas 3.33 & 3.37)).

Following claim was used above:

Lemma 4.43. For any x € N(T) suppose there exists x" € ONEP such that

' =2 mod JMONFP,
vi(2") = 2" for0<i<d.
Then x" is unique.

Proof. Let {fi,..., fn} denote an A;g—basis of N(T). Then {fi,..., fn} is also an OgnPID—baSis
of ONPP. Now using the formula in (4.4), for all 1 <i < h let

f=3 o edfo-odfi(fi) (1 — V)R (1 = Vi)l € ONJP.
keNd+1

We want to show that {f{,..., f;} also form an OSPDP_basis of ONEAD Let us write f// =
fi+ Z?:l aij f; with a;; € JMOSEP and let A = idy, + (a;;) € Mat(h, OSEP) denote the h x h
matrix thus obtained. We have that det A = 1+ with z € JU](’)@%D and 1 —z+a?—23+. .- =
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Snen(=1)"nlz" converges in OSPD as an inverse of 1 + , i.e. det A is invertible in OSPP.
Therefore, {f{,..., f'} form a basis of ONED.

Now for any = € N(T'), writing z = S-%_ | x; f/ and plugging into the formula (4.4) we obtain
2" € ONLP such that " = x mod JHUONEP and ~;(2") = 2” for all 0 < j < d. By linear

independence of {f/,..., fI'} over OSEP we obtain that z” is unique. [ |

Remark 4.44. The uniquess claim can also be established by a “successive approximation”
argument (see [Abh21, p.63-p.65]).

Lemma 4.45. We have OSEP @ p M" =5 OSFP @A+ N(T).
R

Proof. Let {fi,..., fn} denote an A}-basis of N(T'). Then {fi,..., fn} is also an OSPD_basis
of ON,];;D. From the proof of Lemmas 4.41 & 4.43 we have f/’ € M" for all 1 < i < h, such that
{fi',..., f7} also form an OSFP-basis of ONEP. Therefore, OSEP ®p M” = ONED. [

4.4.3. Finishing the proof of Proposition 4.28. Recall that at the beginning of the
proof we assumed N(7T') to be free of rank h (after extension of scalars to AE, which we again
wrote as AE by abusing notations), therefore ONPP is free of rank h. Further, we have

M = (OA%]?W Dat N(T ))FR and since M [Z%] is equipped with an integrable connection, it is
projective of rank < h (see the beginning of the proof). So applying Lemma 4.41 to a basis of
N(T'), we obtain that the rank of M[%] as an R[%]—module is exactly h.

Next, we want to show that the natural inclusion OALD @ M[%} — OAD ®at N(V)
is bijective. To show this claim, we require the following lemmas:

Lemma 4.46. We have o*(OARY @ A% N(V)) = (OAR @ A% N(V)).

Proof. Recall that we are working under the assumption that N(V') is free and by definition of
a positive finite g-height representation we have that the cokernel of the inclusion ¢*(N(V)) —
N(V) is killed by ¢° where s € N is the height of the representation V. Extending scalars to
OAEBU, we obtain that the cokernel of the inclusion ¢* (OA%?E Dat N(V)) — ((’)AE%, DAt

N(V)) is killed by ¢°*. Now note that we have ¢ = @ = pp(%)L where L is a unit in
AZBU (see Lemma 3.14), i.e. p and ¢ are associates in A%Pw. Therefore, the cokernel of the

inclusion in the claim is killed by p*. But, p is invertible in OAE%[%]. Hence, we obtain that
P (OARD, @41 N(V)) = (OAF, @54 N(V)). |

Since we assumed N(T') to be a free module, let {fi,..., fn} be its Aj-basis. Let P €
Mat(h, A};) denote the matrix for the action of Frobenius on N(7') in the chosen basis. In
Lemma 4.46 we obtained that det P is invertible in OARD, [zl?]

Now, recall that ONLP = OSPP @,y N(T) and M" = ((’)N}ZD)FR. So we consider the
R

following commutative diagram

OSPP @p M/ — > ONED

(p’"L ®w7nl{ lf‘pm

OARD, @r M —— OARD @4 N(T),

where the top horizontal arrow is bijective (see Lemma 4.45) and all other arrows are injective.
We also have that {fi,..., fn} isan OAE%—basis of OA%]?W DAt N(T) as well as an OSFP-basis

of ONFP. From Lemmas 4.41 & 4.45 and the discussion above, for 1 <4 < h we have 17 GAM”
such that f = fi + 3" ai;f; for a;; € JHOSEP and let A := idy, + (a;;) € Mat(h, OSEP)
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denote the h x h matrix obtained in this manner. From the proof of Lemma 4.43 we have that
det A is invertible in OSEP.

Now let v; = (™ @ ™) fI' = ™ (fi) + Z?:1 ©"™(ai;)e™(f;) € M and let My be the
free R—submodule of M generated by {vi,...,v,}. From the expression of {vi,...,v,} in the
basis of OAED ® AL N(T), we get that the determinant of the inclusion OAEY @p My —

(’)A,%% ®at N(T) is given by ¢™(det A)p™!(det P)p™ 2(det P) - - - o(det P)(det P). Since
det A is invertible in OSFP we have that ¢ (det A) is invertible in (’)AIP}% and from above we
already have that det P is invertible in OA}%% [%] Therefore, the natural inclusions

OARY. ©r Mo[}] — OARY @ M[}] — OARL @, N(V), (4.5)

are bijective. The maps above are compatible with Frobenius, connection and the action of I'g
on each side and compability of the second map with filtrations follows from Corollary 4.54.
This shows the second claim of Proposition 4.28.

Finally, note that above we assumed N(7') to be free of rank h, therefore we obtain a free
R-submodule My C M such that

Mo[}] = (OAR, @r Mo[3])' " = (OAR, @r M[F]) " = M),

which are free of rank h over R[E]' This shows the last claim of Propostion 4.28. In general,

when N(T') is projective of rank h, we obtain that M [%] is projective of rank h. This sums up
our proof. [

4.5. Proof of Theorem 4.25. Let M = (OALD, Dat N(T))FR. From Proposition 4.28

we already have the isomorphism of OAE% [%]—modules
OARL @r M[}] = OARL @5+ N(V),

compatible with Frobenius, filtration (see Corollary 4.54), connection and the action of I'r on
each side. This proves the second claim and we are left to show that V is crystalline and
M [%] % ODy;is(V) compatible with supplementary structures. Also note from Proposition

4.28 that we already have the inclusion of projective R[%]—modules of rank h = dimg, V,

M [%] C ODgis(V). So we are left to show that this inclusion is bijective and compatible with
supplementary structures.

First, we will show that V is crystalline and the inclusion described above is in fact bijective
Extending scalars along OA%?E[%} — OBgis(R) for the isomorphism OA S ®Qr M [ | =

(’)AIP}% ® AL N(V), we obtain an isomorphism of OB,s(R)-modules
OB CI‘lS(E) ®R[l] M[%] = OBCI"IS( ) ®B+ N(V)
P

compatible with Frobenius, connection and G gr-action. Now, recall that from the definitions
we have a natural inclusion of free AT-modules AT ® ,+ N(V) — AT ® ,+ V compatible with
R R

supplementary structures and the cokernel of this inclusion is killed by 7° (see Proposition
4.11). Since 7 is invertible in OBepis(R), extending scalars along A1 — OBgis(R), we obtain
an isomorphism of OB;s(R)-modules

O crls(R) ®B§ N( ) _> OBCPIS( ) ®Qp ‘/’

compatible with Frobenius, connection and Gpg-action. Finally, since R[%] — OBeis(R) is
faithfully flat (see [Bri08, Théoréme 6.3.8]), we obtain an inclusion of OByis(R)-modules

OBCI‘IS( )®R[ ] [ ] C OBCI‘IS( )®R[ ]ODCI‘IS( )
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compatible with Frobenius, connection and the action of Gr. In particular, we have a commu-
tative diagram

OBeris(R) @z M [] ———— OBeris(R) @5 N(V)

I z

OBcris(E) ®R[l] ODCI‘iS(V) — OBcris(E) ®Qp ‘/7

compatible with Frobenius, connection and Gr-action. As the top horizontal arrow and right
vertical arrow are bijections, it is immediately clear from the diagram that the left vertical
arrow and bottom horizontal arrow must be bijective as well. The bijection of bottom horizontal
arrow implies that V' is a crystalline representation of Gr. Moreover, since R[%] — OBris (E)
is faithfully flat (see [Bri08, Théoréme 6.3.8]), we obtain an isomorphism of R[%]—modules
M[5] = ODeyis(V).

Finally, we note that the isomorphism M [%] % ODgis(V) is compatible with supplemen-
tary structures. From Proposition 4.28 it is clear that this isomorphism is compatible with
Frobenius and connection. Combining Proposition 4.49 with observations made before, we ob-
tain that the isomorphism of R[%}—modules M [}D] % OD¢is(V) is compatible with Frobenius,
filtration and connection on each side.

Finally, we can compose these natural maps as

OARD. ©r ODes(V) <= OAR @r (OARD, @, N(V))'™ =5 OARD, @, N(V),

where the second map is compatible with the Frobenius, filtration (see Corollary 4.54), connec-
tion and the action of I'p on each side (see Proposition 4.28). This proves the theorem.

Remark 4.47. In the case when N(T') is a free A;—module of rank h, from Proposition 4.28

we obtain that M [%] =5 OD¢is(V) is a free R[%]-module of rank h. In particular, for finite
g-height representations there exists a finite étale extension R’ over R such that R’ [%] QR[]

p
OD,is(V) is free of rank h.

Remark 4.48. For 0 < i < d, one can define [¢]-derivatives by the formula %=1 : N(T') — N(T).

™
Considering the reduction modulo 7 of Frobenius, filtration and [¢]-connection on N(T) defined

above, we conjecture that we have (N(T)/?TN(T))[%] 5 ODgis(V) as filtered (p, d)-modules

over R[%]. Details on this line of thought and its connection with [BS22] and [GLQ20] will
appear elsewhere.

4.5.1. Compatibility between filtrations. Note that using Definition 4.16 and Remark

4.21, the filtration on M[%] is given as

. . r
FilEM[1] = (Y Fil'OARD, @4+ FiIlIN(V)) "
1€EN
Proposition 4.49. We have Fil* M [1] = Fil*ODqyis(V) for k € Z.

Proof. We only need to show the claim for k¥ > 1. Note that from (4.1), Remark 4.23 and
Lemma 4.53 we have

FilFM[L] = (FilF(OARD, @, N(V)'™ C (Fil¥(OBeis(R) @, V) = Fil*ODeyis(V).

Conversely, let {ei,...,es} denote a Qp-basis of V and let z € Fil*ODgys(V) \
FilkHODcriS(V). Since * # 0, we can write ©z = Z?:l b;e; where either b; = 0 or
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b; € FilkOBms( )\FllkHOBms( ) for each 1 < i < h and at least one b; # 0. More-
over, we have M[p] 5 ODyis(V) as R[zﬂ -modules, so we take r < k to be the largest integer

such that = € FilTM[H, in particular x ¢ FilTHM[%}. Let us write © = Y ;en¢ @ frj
with ¢; € Fllj(QARw and f—; € Fil"/N(V) for all j € N. By assumption on z there
exists ) # I C N such that for each j € I we have ¢; € FileA%?ﬂ \ Filj“(QAg]?w,
fr—j € FiI'IN(V) \ Fil" 7 TIN(V) with

> ¢ ® fr—j € FiI'(OARY w @pr N(V) )\ Fil' T (OAR % @5 N(V)) and
jel

Z ¢ ® fr—j € FllTH(OA = ®at N(V)).
JEN\I

Equip B* with the induced filtration Fil"B* := BT NFil"Beys(R) = BTNFil" (A (R) [%])
for n € N. Using the definition of filtration on N(V') (see Definition 4.16) and Lemma 4.53, we
have that Fil"/N(V) = (Fi" /Bt ®g, V) N N(V) for all j € N. Therefore, in the expression
Y jer ¢ ® fr—j we must have f._; € (FiI' /B* ®q, V) \ (Fir—j+1B+ ®q, V) for all j € I. This
implies that in the basis of V we can write f,_; = > f ;€i with f( D e Fil"/B*T\Fil" 7B+
forall 7 € I and all 1 <4 < h. In conclusion, we obtaln

hoo h
r= Y @ =2 @ (X fe) =3 (X i@ £2))e (4.6)
JEN\I jel i=1 i=1 jeI

with ¢; € FiIVOARD \ FIV T OALP and A ; € FIr /BT \ Fil' 7F'BT for all 1 <i < h and
jelr |

Let us set g; = > 16 ® frZ j for 1 <@ < h. Then by the discussion above we have
that g; € Fil”((’)A% Dat BY) for 1 < i < h, where (’)ARw Dat Bt is equipped with
the tensor product ﬁltratlon Note that z € Fil"M [p] \ Fi l’"‘HM[p] and Y jens ¢ @ fr—j €
Filr+1((’)A%]2U ®at N(V)). Moreover, from Lemma 4.50 and Remark 4.51, we deduce that for
n € N and inside OBCHS( ) ®q, V, we have

Fil"(OAR, % ®a+ N(V)) = (Fil"(OAR, ®a1, BT) ®g, V)N (OAR, = ®a+ N(V)).

Therefore, we conclude that we must have at least one @ = iy such that g¢;, € FIIT(OA ® A%

BH)\FiI"t'(OAFR ®,+ B*). Now, using Lemma 4.52 and Remark 4.51, we further note that
’ R
forn e N

Fil"(OARD, @, BY) = (OARY, @+ BY) NFil"OBuis(R) C OBuis(R).

Therefore, we get that g; € Fil"OBuis(R) for all 1 < i < h and g, € Fil"OBguis(R) \
Fll”“‘l(’)Bms( ). For convenience, let us write 3 ;cny¢ ® froj = Sh die; with d; €
FlerOBmS( ) for all 1 < ¢ < h. In particular, comparing (4.6) with the expression
T = Zz:l bie; at the start of the proof, we get b;, = gi, + dj,-

Finally, since r < k, consider the following commutative diagram with exact rows

0 —— FilF" OBis(R) —— FilFOBgi(R) —— gr*OBuis(R) —— 0

! ! !

0 —— Fil' "' OBuis(R) —— Fil"OBis(R) —— g1" OBgis(R) —— 0,
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where the left and middle vertical arrows are injective and the right vertical arrow is non-trivial
if and only if » = k. From the fact that g;, € Fil"OBgis(R) \ Fil' "' OBis(R), we see that
the image of b;, is non-zero in gr" OBeis(R). But we already have that image of b;, is non-zero
in grfOBeis(R). Therefore, the right vertical arrow must be non-trivial, i.e. r = k. Hence,
z € FilFM [%] This proves the claim. [ |

Lemma 4.50. For k € N we have

Fil" (OARY w @4 N(T)) = (Fil* (OARY o @ar AT) @2, T) N (OARY w @ N(T)).

Proof. From §3.1 we have rings AT C AL C Aj(R) equipped with an induced filtration from

Ais(R) and from Remark 3.18 we have an isomorphism A}, _ ®,+ AT = AT compatible
’ R . .

with Frobenius, filtration and Gr-action. Since AE — AJ}E{,w is flat and Fil’AEw = §’AE@,

using Lemma 4.53 we note that

Fil'(Af , @5+ N(T)) = ) Fil'AL @4+ (FIVAT @z, T) N N(T))
i+j=k
= (Y FilA}_ @, FiIVAT @, T) 0 (Af ©, N(T))  (47)
i+j=k
= (Fil*AL @z, T) N (A%, @, N(T)).

From Definition 4.19 recall that we have the ring (’)AE@, and we claim that it is flat over A'E,w.
Indeed, let T1,...,T; denote a set of indeterminates and define a map AE ST, Tl —
OAE@ via T; — X; — [Xl-’], then the target may be identified with (p,&, 77, ..., Ty)-adic com-
pletion of the source which is noetherian, in particular, (’)AE,W is flat over Agw. Let us set
OAL = OAE’W I At = OAE,w ®A§,w Al equipped with tensor product filtration, Frobe-
nius and Gg-action. Let J = (X1 — [X?],..., X4 — [XZ])OAE’W then the filtration on OAL can
also be given as Fil*OAL = D itk JiOAJ]%w ®at &AL, Let us set NEW = AE@ ®at N(T)
equipped with tensor product filtration. Then since J is flat as an AE ~-module an argument
similar to (4.7) gives us that

Fil'(OAf, , ®,+ N(T)) = Fil'(OAf @5+ N7 )
= > JOAL_ ® AL (FIVAL @z, T) N Ny )
i+j=k

= (X JOAL @y FAL®L, T)N(OAf, ®©pr NiL)
i+j=k '
= (Fil'OAL @z, T) N (OA% , ® 5 N(T)).

(4.8)

Let us set OAFP .= OARw ®A+ AT = OARw ®A+ A" where the isomorphism is

compatible with Frobenius, filtration, connectlon and Gp- actlon We will show our claim that

Fil"(OARD, ®,+ N(T) = (FI*OAZP @z, T) N (OARY, @4+ N(T)).

Let f € {& X1 —[X}],..., Xa—[X7]} be one of the generators of the ideal (¢, X1 —[X3],..., Xq—
[X))OALP and » € OALP ®z, T. Then to obtain our claim, it is enough to show that if
Wz € (fNOALP @z, T) \ (fIFIOALP @z, T) such that fa € (OAR, ®,+ N(T)) then
[y e Filk(OAg]?w Dat N(T)). Note that the claim is true for k = 0. So let k > 1 and f as
above. Let fMz e (fMOALP @z, T)\ (FFTIOAEP ®y, T) such that fiFlz e (OARD, Dat
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N(T)). Since z # 0, by induction on k we may assume that x = Y7 | z;e; € OAL ®z, T with

either z; = 0 or x; € fFOAL \ f*H1OAL for each 1 < i < h and at least one ; # 0. Recall

that we have T°A* ®z, T C AT ® .+ N(T), therefore 7%z € OAL ® ,+ N(T'). But then inside
R R

OB.is(R) ®A+ N(T') we must have
fra = kifMe € (OARY, © 41 N(T)) N K (OAL @, N(T)) = OAL , ©,4 N(T).

Therefore, fz € (FIFOAL @z, T) N (OAf, _ ® Az N(T) = Fil*(OA}, , ® At N(T)) where
the last equality follows from (4.8). Hence, inside OBgis(R) ® AF N(T) we have flFlz ¢
aFil*(OAf _® At N(I) N (OARD, @451 N(T)) € Fil* (OALD a3 N(T)) as desired. W

Remark 4.51. From Lemma 4.52 below, it easily follows that inside OB.;s(R) we have
Fil* (OAR, ® Az B = (OARL ® Az BN Fil*OBeyis(R).

So from Lemma 4.50 we get that the corresponding rational version of the statement is also
true, i.e. inside OBs(R) ®q, V we have

Fil" (OARZ, ®,+ N(V)) = (FI*(OARZ, @4+ BY) ®g, V) N (OARZ, @5+ N(V)).
Lemma 4.52. For k € N we have
Fil* (OARD, ® At AT = (OAR, @ A% AT) NFiI"OALis(R) € OAqis(R).

Proof. Recall that filtrations on (’)ARW and OA;s(R) are compatible (see Remark 4.23).
Moreover, from §3.1 the inclusion of rings AT C AL C A;(R) is compatible with induced
filtration from ACHS(E). From the proof of Lemma 4.50 we have an isomorphism of rings
OAPP = OATD w Oat AT = OARW ®A+ AT compatible with tensor product filtrations.

w

Now by the descrlptlon of filtration on the rlghtmost term we get that OAFP is equipped with

filtration by divided powers of the ideal (¢, X1 —[X}], ..., Xq—[X]])OALP. Finally, the natural

multiplication map OAEP A+ AL = OAqis(R) is injective. Hence, it follows that for k € N
’ R,

Fil* (OAR, ® At AT = (OARY, ® A% AT) NFil*OALis(R) € OAuis(R). |

Lemma 4.53. For k € N we have (Fil*A* @z, T) NN(T) = Fil*N(T) and (Fi*B* ®¢g, V) N
N(V) = Fil*N(V).

Proof. Tt is enough to show that (Fil*B+ ®q, V)NN(V) = Fil*N(V). Indeed, from Definition
4.16 we have Fil*N(T) = Fil*N(V)NN(T) = (Fil*B* ®q, V)NN(V)NN(T) = (Fil*A*®g, T)N
N(T) since Fil*BTNA* = Fil*A*. Next, the inclusion Fil*N(V) C (Fil*B* ®g, V) is obvious.
For the converse, we claim that it is enough to show that (¢*B* ®g, V) N N(V) = ¢"N(V).
Indeed, if we have z € (Fil"BT ®q, V) N N(V) then ¢(z) € (¢!B* ®¢g, V) NN(V) = ¢*N(V),
ie. z € FiFN(V).

The inclusion ¢*N(V) C (¢"B* ®g, V) N N(V) is obvious. To show the converse, first
let us assume that N(V) is free with {f1, f2,..., fn} as a Bf-basis, and let {e1,...,e,} be a
Qp-basis of V. Now let ¢*z € (¢"BT ®q, V) N N(V) for z = Sh o ze; € BY ®q, V. We
can also write ¢*z = Y0 yifi € N(V) with y; € B}. Next, from Proposition 4.11 we have
BT ®q, V C BT O N(V), so we can write

h h h

q T =TT sqkzxzﬂ' € =T sqkzmzzzwfj =T quz ijzjz fz;

=1 j=1
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with z;; € BT. But then we must have TI'_qu Z?:l xjzj; = y; for all 1 < ¢ < h. Since Hp acts
trivially on 7, ¢ and y;, we get that w; := Z?:l xjzji € BE. But y; € Bj% and 7 and ¢ are
coprime in BE (since ¢ = p mod WBE), therefore we obtain that w; € WSBE. In particular,
yi € ¢"B};, therefore ¢*z = X0 | yifi € ¢*N(V). Hence, (¢"B* ®g, V) NN(V) = ¢*N(V).
Next, if N(V) is projective (and not free) over B, let R’ be the p-adic completion of a
finite étale algebra over R such that the scalar extension B}, ®gz+ N(V) is a free module over
R
B}, and R/ [%] / R[%] is Galois (see Definition 4.9). Then we can argue as above and conclude
by taking Gal(R’[%]/R[%])—invariants of ¢*B}, Opt N(V). [

Corollary 4.54. For k € N we have Fil* (OA ®RM[ )= Flik(OA N N(V)) under

the isomorphism (4.5).

Proof. From the definition of filtration on the left term we know that the map in claim is
injective. To check the surjectivity, using Proposition 4.49, it is enough to show that under
the isomorphisms OA > @R ODgis(V) «— OARD @p M[ ] = OAED & @At N(V) we have

Fil*N(V) Fllk(OA 2 ®rODgis(V)) for all k € N Using Lemma 4. )3 inside OBis(R) ®q,
V, we have Fil*N(V) c Fﬂk(OBcrls( )®qg, V)N OAE% @k OD¢yis(V'). We claim that the last
term equals Fllk(OA > ®rODgis(V)), i.e. the induced filtration on OA ®R(9Dms( ) is the
tensor product filtration (or equivalently, on OARD [ p} @R OD.yis(V) since Fil*(OAL ) [zl)] =
Filk(OA%Pw[%])). Indeed, from §2.3 recall that ODs(V), Fil*ODis(V) and grfOD (V)
are projective R[%]—modules for all k € N. Then it easily follows that for 7,7 € N such that
i+ j =k, inside Fﬂk((’)Ag]?w[%] ®R[%] ODyis(V')), we have

(FI'OAR, 2] ®p) Fil/ ODeis(V)) N FilF (OART, [ 2] @ py1] ODeris(V))
= Fil'OARL 1] @ ALY Fil/ T OD s (V) + FI'T T OARD [1] @ RIL) Fil OD¢i5(V).

Therefore, we get that

rk(OAng[%] ®R[%] ODeis(V)) = z+§B— gr’OARw[ ] ®R[%] g1! ODgyis (V).

Similarly, one can also show that

gr* (OBeyis(R) ®R[%] ODgis(V)) = HEB kngOBcrls( ) ®R[ g1/ OD i (V).
Since the filtration on OA%PW[%] is induced from the filtration on OB;s(R) (see Remark
4.23), the natural map grkOA%%[%] — grfFOBuis(R) is injective. Therefore, the natural
map grk(OA%%[%] ®Rr ODgis(V)) — gr (OBCMS( ) QpR[L (3] ODaqis(V)) = gr (OBcrls( ) ©QQ,
V) is injective as well. Hence, we have Filk(OBms(R) ®q, V) N OA%% ®pr ODgis(V) =
Fil*(OARD, @ ODeis(V)) for all k € N. |

4.6. One-dimensional representations. In this section we will show that all one-
dimensional crystalline representations are of finite ¢g-height by writing down the corresponding
Wach modules precisely.

Proposition 4.55. All one-dimensional crystalline representations of Gr are of finite q-height.
Furthermore, for a one-dimensional crystalline representation V. we have an isomorphism of
R [%] -modules

~

(OARD, @41 NV 25 0D (V).
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Therefore, there exists natural isomorphisms
OAL @R ODgis(V) <= OARY, @R (OARY Dpt N(V)'" =5 OARD, D+ N(V),

compatible with Frobenius, filtration and the action of I'g.

Proof. The structure of one-dimensional crystalline representations of G is well-known (see

[Bri08, §8.6]). From Proposition 2.3 we have that for n : Gr — Z,, a continuous character,

V = Qp(n) is crystalline if and only if we can write n = nmux™ with n € Z, and where 7
is a finite unramified character, n,, is an unramified character taking values in 1 + pZ, and

trivialized by an element av € 1 + p]?‘;r , and x is the p-adic cyclotomic character. Recall that
a p-adic representation of G is unramified if the action of Gy factorizes through the quotient
G (see §2.3). Moreover, if 7 is trivial then OD¢s(V) is a free R[%}—module of rank 1.

In Lemma 4.56 below, we show that crystalline representations Vi := Q,(n¢nu:) and V3 :=
Qp(x™) are of finite g-height. For a one-dimensional crystalline representation V' := Q,(n) =
Qp(neMur) ®q, Qp(x™) = Vi ®q, V2 as above, by compatibility of tensor products in Propositions
4.14 we get that V is a finite ¢g-height representation as well with N (V) = N(17) Opt N(V3).

From the isomorphisms of (’)A%?ﬂ-modules in Lemma 4.56 and compatibility of Wach mod-
ules with tensor product in Proposition 4.14 and compatibility of the functor OD¢.s with
tensor products in §2.3 (see also [Bri08, Théoreme 8.4.2]), we get a string of isomorphisms of
(’)B%BU = OA%BU [%]—modules compatible with Frobenius, filtration and the action of I'g,

OA}%% ®R ODCI‘iS(V) ; (OA}%% ®R ODcris(‘/i)) ®(')3ng (OA]%E)U ®R ODcriS(VQ))
i (OAE% ®A; N(Vl)) ®(9B§f>w (OA%I,)w ®A§ N(VQ))
= OARY, @1 N(Vi) @1 N(V2)
= OARY, @1 N(V1 @, V2) = OAL, @5 N(V).
Taking I g-invariants of the first and the last term gives us that OD;s(V) — (OAE]?W ® AL
N(V))FR, compatible with Frobenius and filtration. [

Following claim was used above:

Lemma 4.56. (i) Let n: Gr — Z, be a continuous unramified character. Then the p-adic
representation Q,(n) is a finite q-height representation.

(ii) Let x be the p-adic cyclotomic character then for n € Z, the p-adic representation Q,(n)
is a finite q-height representation.
Further, for V.= Qu(n), Qp(n) we have an isomorphism of R[%]—modules

(OAZBW ®AJ§ N(V))FR —= ODcriS(V)~
Therefore, there exists natural isomorphisms
OAR>. @R ODuis(V) <= OARY. ©r (OARL @, N(V))'* = OAFD @, N(V),

compatible with Frobenius, filtration and the action of I'g.

Proof. Let 7 = nenur, where 7 is an unramified character of finite order and 7, is an unramified
character taking values in 1 + pZ, and trivialised by an element o € 1 + pR"™ (see Proposition
2.3).
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First, let us consider the finite unramified character ny. Set T' = Z,(ns) = Zpe, such that
g(e) = ni(g)e. We have

Dt (Zy(nr)) = (A+®Zpr(nf))HR = {a®e, with a € AT such that g(a) = n; '(g)a, for g € Hg}.

Since 7 is a finite unramified character, it trivializes over a finite Galois extension S over R (see
[Bri08, Proposition 8.6.1]), and we have that Gal(S[%]/R[%]) = Gr/Gs = Hp/Hs = Tr/T's.
As S is finite étale over R the construction of previous chapters apply and we obtain that the
Af-module D (Z,(nr)) = (AT ®z, Zp(nf))HS = Al (n) = Ale is free of rank 1. Further, we

know that D (Z,(n)) = D& (Zp(nf))HR/ s \which implies that the natural inclusion
A ©at D" (Zy(ne)) — D§ (Zp(nr)),

is bijective. Since A}, — A} is faithfully flat, we obtain that DT (Z,(n)) is projective of
rank 1. Moreover, D" (Z,(n)) admits a Frobenius-semilinear endomorphism ¢ such that
D (Zy(ne)) — ¢* (D" (Zy(nr))) (one can obtain this after faithfully flat scalar extension
AE — AJSr and applying descent as above, since ¢ commutes with Gg-action). The action
of T'g is trivial on DT (Z,(n)). Now, we can take N(Z,(nr)) = D' (Z,(nr)). From the dis-
cussion above, N(Z,(n)) clearly satisfies the conditions of Definition 4.9. Also, we have that
N(Qp(nr)) = DT (Qp(n¢)). On the other hand, we have

OD1is (Qp(15)) = (OBeis(R )@, Qp(1r) ) = {b®e, with b € OB,s(R) such that g(b) = ne(g)b}.

Since 7 trivializes over the finite Galois extension S over R, we have
r = G
(OAGL @5+ N(Qp())) * = So[]e = (OBeris(S) ®g, Qplm)) ™,

where the rings OAE?D and OB.;s(S) are defined for S over which all the construction of
previous sections apply (since S is finite étale over R). Now taking invariants under the finite
Galois group Gal(S[%]/R[%]) = Gg/Gs, gives us

(OAR% ® 5+ N(Qp(m)))" " = ODaris(Qy(r)-

Clearly, the natural maps
~ PD PD r ~ PD
OA ®R0Dcrls((@p(77f)) — OAR,w®R(OAR,w@)A;N(Qp(nf))) — OAR’W(XJA;N(QP(W)),

are isomorphisms compatible with Frobenius, filtration and the action of I'g.

Next, let us consider the unramified character 7,, which takes values in 14+pZ, and trivialised
by an element o € 1 + pR™ (see Proposition 2.3). Set T' = Zp(nuw) = Zpe, such that g(e) =
Nur(g)e. We have

H
D (Zyp(u)) = (AT @z, Zp(nw)) " = Afcre.
So we take N(Zy(nur)) = DV (Zy(nur)) = Afae. This clearly satisfies the conditions of Defini-
tion 4.9. Also, we have that N(Qp(1ur)) = DT (Qp(1ur)). On the other hand, we have
G
ODyis (Qp(nur)) (OBCFIS( ) ®Qp Qp(nur)) f

= {b ®e, with b € OBcrls( R) such that g(b) = nur(g)b} = R[I%]oze

Therefore, we obtain

I'r GR

(OA ®A+ N(Qp(nur))) R[;]ae = (OBcrls( ) XQ, Qp(nur))
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Clearly, the natural maps
~ r ~
OAE{;@RODcriS(Qp(Wur)) — OA%%@’R(OAIP%%@A;N(QP(UM))) = OA%]Ez)v@A;N(Qp(Wur))v

are isomorphisms compatible with Frobenius, filtration and the action of I'g.

Finally, let T' = Z,(n) = Zpe, such that g(e,) = x(g)"en, then V = Q,®z, T is a crystalline
representation and we can take N(Zy(n)) = AEW*”en. Note that for n < 0, we have that
N(Zy(n))/¢*(N(Zp(n))) is killed by ¢~", where g = @. It can easily be verified that I' acts
trivially modulo 7 on N(7T'). So, we set N(Q,(n)) = BLm "e,. Similarly,

OD.is (Qy(n)) = (OBesis(R) @, Qp(n) ™" = R[L]t e,

r _ . . .
and ((’)A%{?ﬂ ®A§ N(Qp(n))) ™ = R[%}t "ep = ODgis(Qp(n)) compatible with Frobenius,
filtration and connection on each side. Finally, the map

OAE’,],DW ®@r ODeris (Qp(”)) — OA%% ®A; N(Qp(n))

t "e, — :—:W_"en.
is trivially an isomorphism compatible with Frobenius, filtration and the action of I'g, since

e OA%% are units for n € Z (see Lemma 3.14). This proves the lemma. |

Remark 4.57. Note that for T = Z,(nnu) or Zy(n), we even have an isomorphism on the
integral level
OAR2. @k (OARL @, N(1))'* =5 OARY ®,: N(T).
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5. Relative Fontaine-Laffaille modules

In this section we will consider relative Fontaine-Laffaille data and construct Wach modules
given such data. Carrying out such a process would involve starting with a module over R and
constructing modules over the ring AF}% and AE - and finally descending over to the ring AJISL.

Explicitly, we will work with objects in the category MF[g,_9) free(RR, ®,0), defined by
[Tsu20, §4] as a full subcategory of the abelian category SJJTS[VOJ)_Q], free () introduced by Faltings
in [Fal89, §I1]. In particular,

Definition 5.1. Define the category of free relative Fontaine-Laffaille modules of level [0, p—2],
denoted by MF(q ,_9) frec( R, ®,0), as follows:
An object with weights in the interval [0, p — 2] is a quadruple (M, Fil®*M, 9, ®) such that,

(i) M is a free R-module of finite rank.

(i) M is equipped with a decreasing filtration {Fil*M},cz by finite R-submodules with
FilM = M and Fil*™ M = 0 such that grf, M is a finite free R-module for every k € Z.

(iii) The connection 8 : M — M ®p Q, is p-adically quasi-nilpotent and integrable, and
satisfies Griffiths transversality with respect to the filtration, i.e. d(Fil*M) c FilF 1M ®p
Qy, for k € Z.

(iv) Let (¢*(M),¢*(0)) denote the pullback of (M,0) by ¢ : R — R, and equip it with a de-
creasing filtration defined as Fﬂ];(cp*(M)) = Y ien Plle* (FilF =4 M) for k € Z. We suppose
that there is an R-linear morphism ® : ¢*(M) — M such that ® is compatible with connec-
tions, ® (Filf(¢*(M))) C p*M for 0 < k < s, and we have Y5_op~*® (Fill(¢*(M))) = M.

We denote the composition M — ¢*(M) 2 M by .

A morphism between two objects of the category MF(y ,_9] free(R, ®,0) is a continuous R-linear
map compatible with the homomorphism ®, the connection 9 and filtration on each side.

Notation 5.2. Abusing notations, we will denote (M,Fil*M,d,®) MF(g p—9], free (1R, ®,0) by
M and say that it is of level [0,p — 2].

To an object M € MF|y ,,_9] free( R, ®,0), we associate a Zj-module as

Tc*ris(M) = HomR,Fﬂ,Ap,B(Ma OAcris(E))a (5.1)

i.e. R-linear maps from M to OA.;s(R) compatible with Frobenius, filtration and connection,
where we have ¢ : M — ¢*(M) 25 M.

Proposition 5.3. (i) For a free Fontaine-Laffaille module M of level [0, p—2], the Z,-module
Tk (M) is a free module of rank = rkpM equipped with a continuous action of Gr. Fur-
ther, the p-adic representation Vi (M) = Qp ®z, Ty (M) is a crystalline representation

of Gr with Hodge-Tate weights in the interval [0,p — 2].
(ii) The contravariant Zy-linear functor

Tc*ris : MF[O,p—Q],free(Rv o, 6) — Repr,free(GR)7

is fully faithful. Here Reprvfree(GR) denotes the category of finite free Zp-modules
equipped with a continuous action of GR.

Proof. The claim in (i) follows from [Fal89, Theorem 2.4] and [Tsu20, Proposition 66]. Further,
the claim in (ii) follows from [Fal89, Theorem 2.4] and [Tsu20, Theorem 77]. |
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Definition 5.4. Let M be a free relative Fontaine-Laffaille module of level [0, p — 2], and set

Tcris(M) = HomZp (T* (M)v Zp)a

cris
which is a free Z,-module of rank = rkrp M, admitting a continuous action of Gr.
The main result of this section is as follows:

Theorem 5.5. For a free relative Fontaine-Laffaille module M over R of level [0,p — 2], the
associated representation Veis(M) := Qp ®z, Teris(M) is a positive finite q-height representation
(in the sense of Definition 4.9).

The proof crucially exploits the computation of Fontaine [Fon94], Wach [Wac97] and Tsuji
[Tsu20]. It follows in three steps: First, starting with a Fontaine-Laffaille module, we obtain
an AZ%—module using formal consequences of crystalline site for maps 6 : AEBU — R[w], and
Or : (’)Ag’?ﬂ — R]w] (see Proposition 5.25, we also give an alternate proof of the proposition).
Next, we exploit equivalence of categories obtained in Theorem 5.21 by extending scalars along
APD — ARD JI0-DAPD = AEW/I(”_UAE’W « A% . This gives us an A} _-module
with precise description of the Frobenius and the action of I'g (see Proposition 5.30). Finally,
we descend over to the ring AE by exploiting the Frobenius and I'g-action, thus obtaining a
Wach module over A}, and proving the theorem (see §5.3.2).

For clarity of exposition and notational convenience in explaining the result of the first step,
we start with preliminaries on some ideals of AE’W and AE% (appearing in the second step
in the paragraph above) which will help us in proving categorical equivalence between certain
modules over the concerned rings.

5.1. Some ideals of AE@ and AE%. In this section, we will collect some technical
results about the rings Ajgw and A%Bz and some of their ideals. The results are motivated

by the corresponding results over Aj,s(R) and AcriS(R) and their respective ideals, studied in
[Fon94, §5].

Lemma 5.6. Let a € ARW such that Aﬁw/pAE’w is a-torsion free and a-adically complete.
Then,

(i) AEW is (p, a)-adically complete.

(ii) For n € N, the rings Agw/a”AE@ are p-torsion free and p-adically complete.
(iii) For n € N, AE,W and AE,w/p"AEw are a-torsion free and a-adically complete.
(iv) The (p,a)-adic topology coincides with (p, 7y,)-adic topology.

Proof. As A}, _ is a flat Z,-algebra, claims (i), (ii) and (iii) follow from [Tsu20, Lemma 2]. The
last claim follows from [Tsu20, Lemma 1] and the fact that AE’W C Aint(R), where the former
ring is equipped with the induced topology. |

For n € N, let us write n = (p — 1) f(n) + r(n), with r(n), f(n) € Nand 0 < r(n) < p— 1.
Lemma 5.7. We have tP~! € pA%?x,, therefore ti} e A%]?w.

Proof. Note that we have g = @ = pgo(%)% Since % is a unit in Ag% (see Lemma 3.14),

we get that ¢ and p are associates in A%{?ﬂ. But also, ¢ = e(r) — pp—1 +p(rP2 4+ 4+ 1), ie.

p =

Pl ¢ pAE?ﬂ. Again, using Lemma 3.14, we get that tP~! € pA%IBU. |
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Note that we also have m = exp(t) — 1 =3, 54 %n, = 1 cnt™ where ¢, = % such
that ¢, — 0 as n — 400 (see [Fon94, §5.2.4]). Let

A= Z antt™ with a,, € Op such that a, — 0 asn — +00}
neN

be a ring and let 2 = 3 cp [€] 2] and 7y = z —p. then we have 7y = (p—1) 2on>1, (p—1)in £ e A.
Further, we have that mg € pA and there exists v € A* such that % = v?, see [Fon94, §5.2.5].
Next, recall that the filtration on Acis(R) is given as Fil*Auis(R) = (€M, n > k) C

A.is(R), for k € N (see §2.2). The filtration on Ajn¢(R) is defined as the induced filtration,
Le. Fil"Ains(R) = Fil"Acis(R) N Aing(R) = €¥Ajye(R). Similarly, the filtration on AEP s
again given by divided powers of &, i.e. FilkAg?ﬂ = (M n > k) C Ag{)w, for k € N (see
Definition 3.11). The filtration on AE@ is defined as the induced filtration, i.e. FilkAJ}%w =
FiFARD N AL = " Ais(R). B

Now, for k € N let us define an ideal of Ay ¢(R) as

I® A (R) = {2z € Ains(R) such that ¢"(z) € Fil* Ay (R) for n € N}.

Similarly, we can define respective ideals I (k)Acris(E) C Auis(R), I (k)AEw C AE’W and
I(k)A%]?w C A%]?w. We have AJ}E,w = Api(R) N AR C W(C(R)"), so we obtain that

Lemma 5.8. (i) The ideal I(k’)AE@ is generated by m".
(ii) The element g is a generator of I(p_l)A;%w.

) = umzP~ L.

(iii) Let So = W/{[mo]] then there exists a unit u € Sy such that ¢(mo
— Jk

Proof. From the definitions it is clear that 1) A (R) N AE@
intersection inside Aj¢(R). Now, from [Fon94, §5.1.3, Proposition] we have that 1) Ay (R) =
7F Aine(R). Take z € I(k)AE’w C I(k)Ainf(E) and write z = 7y for some y € Ay(R). But
then we have x = 7y € Ap o, ie y € Api(R)NAR o = Aﬁw. So we obtain that I("”)AEW =
kaEW. This shows (i). For (ii), note that mo € AE@, and AE’w = Aip(R)NAR . So arguing
as above we get moAjur(R) N Aﬁw = WOAEW. Now, from [Fon94, §5.2.6, Proposition (i)] we
have that 1~ Ajp¢(R) = moAm¢(R). So we obtain that IP"VAL = IP-VA(R)NAS, =
mToAint(R) N AE@, = WoAE’w. Claim in (iii) follows from [Fon94, §5.2.6, Proposition (ii)]. W

)Agw, where we take the

Proposition 5.9. The continuous morphism of AE?w-algebms

. + 5 PD
o AR,w ®SOA — AR,w

S an® ()" 3 an ()",

neN neN
is an isomorphism.

Proof. The proof follows in a manner similar to the proof of [Fon94, §5.2.7, Théoréme]. The
homomorphism « in the claim is well defined and continuous since ¢ € FillAg%. So we are
left to show that « is an isomorphism. Since the source and targets are p—adicyally complete
p-torsion-free rings, it is enough to show that « is an isomorphism modulo p.

Let 21 = o !(2) € AE@,. Note that AE% modulo p is the divided power envelope of

EE - With respect to the ideal generated by z1 = ¢ mod p. Therefore, it is a free module over

[pr] 27y [n]
1

EE@, /Z1P with basis the images of z; ', or equivalently (?) . From Lemma 5.8 (iii), we have
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that () = umozP~!, with u € S§. Therefore, my = o ()L (m) 2 = oM w) (21 —p) P,
which implies that EE’W JzZiP = EE’W /7o and AZ% modulo p is a free module over EE’W /7o
with basis the images of (%)M. Since it is immediate that the same is true for AE,w ®g5, A
modulo p, we get the claim. |

Lemma 5.10. For k € N the ideal I(k)AE% is a divided power ideal which is the associated
Ajgw-submodule ofA R.w generated by " forn > k.

Proof. The proof follows in a manner similar to the proof of [Fon94, §5.3.5, Proposition]. Let
J*) be the A+ -submodule of A - generated by "} for n > k. It is straightforward to check

that J®) < 1 ( ), and J®) is a d1V1ded power ideal. Thus it remains to show that I*%) ¢ J®),
We will show this by induction on k. The case k = 0 is trivial.

Now suppose k > 1 and z € I®¥). The induction hypothesis allows us to write =
S sk 1 antt™ where a, € AE,W goes to 0 as n — +00. If b = a,_1, we have a = bt{"~1} 4 ¢
where o/ € J®) < W thus bt~ ¢ 1) But @3(ptlF—1}) = plk-Ds S(b) =1k =
ckﬁcps(b)t{k_l}, where ¢;, s is a nonzero rational number. Since th=1 ¢ Filk_lA R \FllkARw,
one has b e I (I)AJP}% N AE@, which is the principal ideal generated by m. Thus btt*~} belongs
to an ideal of A%]?w generated by mt{#~1}. But % € AE{?H is a unit (see Lemma 3.14). Hence,
btk=1} belongs to an ideal generated by ¢ - t1¥=1}, which is contained in J*). |

Following is an immediate consequence of Lemma 5.10:

Corollary 5.11. For k € N, consider the homomorphism A+w Ik )AP% sending x
z -t} Then, the induced map AE,W/I(UA+ — Ik )APD > TR+ AP% is bijective.

Now, from [Fon94, §5.3.5, Proposition], we have a natural isomorphism

~

Aine(R)/I (k)Ainf(E) — Acris(ﬁ)/f(k)Acris(R), for 0 < k < p—1. A similar statement
is true in our setting:

Proposition 5.12. For k € N, the rings AJ}%@/I(I“)AE@ and A%%/I(k)Ag% are p-torsion
free. Moreover, if 0 < k < p — 1, then the natural map AE’W/I(]“)AEW — A%%/I(k)A%]?w is

an isomorphism.

Proof. The proof follows from arguments similar to the proof of [Fon94, §5.3.5, Proposition].
First, note that for every k € N, AED o/ FllkAE% is torsion free. Further, the kernel of the map

AT, — (AR /FIARR)"
z+— (¢"(z) mod Fil" AR e,
is I(k)APD Therefore, AE /I k)A+w — APD -y k)APD (A%%/FilkA%Pw)N, which im-

plies that the former two rings are torsion free
Now from Proposition 5.9 and Lemma 5.10, it follows that as AE’w—module, A%]?w /1) AEBZ

is generated by the images of ( )[ " for 0 <(p—1)n < k. For 0 <k <p—1, we have that

(7;0)[74 € AR . hence we get the claim. -

Next, we mention a lemma useful for the proof of Proposition 5.20.

Lemma 5.13. (i) For 0 <k < j, we have that I(k)A%%/I(j)AED is p-torsion free.

N7

(ii) For k € N, we have that I(k)Ag]?w is p-adically complete.
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Proof. (i) The proof is similar to the proof of [Tsu99, Lemma A3.19 (1)]. Let z € I (k)A%%
and assume that px 67[ Y )A%Bﬂ. E‘hen poi(x) € Fil A%Bﬂ for all ¢ € N. Since
ARD JFIV ALY C Aqis(R)/Fil Acis(R) is p-torsion free (see [Tsu99, Lemma A2.11 (2)]),
we get that ¢'(z) € Fileg?ﬂ foralli e N, ie z € I(j)A%?ﬂ.

(ii) The proof is similar to the proof of [Tsu99, Lemma A3.27]. We will prove the statement
by induction on k. For k = 0, the statement is trivial by the definition of A%BU. Next,
from part (i) and Corollary 5.11, we have that I(k)A%%/I(kH)Ag% is p-torsion free and
p-adically complete. Therefore, we obtain exact sequences

0 — lim (I**VARD ©7/p"Z) — lim (1M AR, 0Z/p"Z) — 1 AR /I*TVARD, — 0.

The statement now follows by induction on k.
|

5.2. Equivalence of categories. In [Tsu20], Tsuji has established a relationship between

free relative Fontaine-Laffaille modules (see Definition 5.1) and Aj,¢(R)-representations as well
as Aqis(R)-representations of G (in a precise functorial manner). Tsuji’s computations are
motivated by computations of Wach in [Wac97] for the arithmetic case.

Recall from §5.1 that for £ € N we have the ideal
I(k)Amf(E) = {z € Ajy¢(R) such that " (z) € FﬂkAinf(E) for n € N}.

Similarly, we define respective ideals T (k)AcriS(R) CALis(R), I (k‘)AEw C AEW and (%) AE% C
AEBZ. Given a free Fontaine-Laffaille module, in [Tsu20, §5] Tsuji functorially obtains an

A .is(R)-module (in a manner similar to Proposition 5.25). Further, he exploits the isomorphism
Aic(R)/I (pil)Ajnf(R) = Auis(R)/I (pfl)Ams(R), to construct an Aj,¢(R)-representation of
GRr. The last step is carried out by establishing certain equivalence of categories. Tsuji’s
computations are general and follows from certain assumptions on the structure of the rings
and modules, one is studying. In this section, we will recall and verify those assumptions in our
case, which would help us in establishing equivalence between several categories (see Theorem
5.21).
Let A=A}, A} /1P DAL AR or ARD /IP=DAPD

Lemma 5.14. Let ¢ = @ € A, then q is a non-zero-divisor in A.

Proof. For A = AE,W and AZBU, the claim follows from the definitions. Next, note that

we have ¢ = @

=Pl 4 pu € Aﬁw for some unit u € A;%w, in particular, ¢ = pu
mod 7P~1. Now since I(p_l)AEw = WP_IAEW by Lemma 5.8 (ii), we obtain that ¢ and p
are associates in AE@/I(”_I)A;W = AI;EU/I(”_I)AE%. As the rings AL _/TP~DA}  and

A%I’?ﬂ /1 (pfl)Ag% are p-torsion free by Proposition 5.12, we get the claim. |

Next, note that we have Fil°A = A and Fil'A - FilV A C Fil'*7 A for 4, j € Z, and p(Fil*A) C
¢®A for k € N. In particular, we see that our choice of A and ¢ satisfies [Tsu20, Condition 39].

Definition 5.15. Define the category MF([JQp—Q], e (A5 0, T'R) as follows: An object is a triplet
(N,Fil*N, ¢) such that,

(i) N is a free A-module of rank h.

(ii) The filtration Fil*N is decreasing and there exists an A-basis of N as {ei,...,e;} and
integers k1,. .., k, € N<,_o such that we have Fil*N = Z?zl Fil* =% Ae; for 0 < k < p—2.
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(iii) A Frobenius-semilinear endomorphism ¢ : N — N such that we have p(Fil*N) c ¢*N
for 0 <k <p—2,and 0 o A-q Fp(Fil*N) = N.

(iv) N is equipped with a continuous action of I'g such that Fil* N is stable under this action,
and the endomorphism ¢ commutes with the action of I'g.

A morphism between two objects of the category MF'[IO 2] freo(A; 0, T'R) is a continuous A-linear

morphism commuting with the endomorphism ¢ and the action of I'p on each side.

Notation 5.16. Abusing notations, we will denote (N, Fil*N, 9, D) € MF([]07p—2},free(A’ »,'r) by
N and say that it has filtration of level [0,p — 2].

Remark 5.17. In A%BU, note that we can write ¢ = p£p(%), and since £

is a unit in AE?D
(see Lemma 3.14), we obtain that ¢ and p are associates in AEBZ. Therefore, for A = A%Bﬂ
in Definition 5.15, we can replace ¢ by p. Further, since ¢ = 7P~ + pu for v € (AJIELW)X
and 7P~! generates I(p_l)Ajg’w (see Lemma 5.8 (ii)), we obtain that ¢ = pu mod I(p_l)AE?w7
i.e. ¢ and p are associates in AE@/I(I’_I)AEW = A%%/I(p_l)Ag%. Therefore, for A =

AE’W/I(I”DAEW in Definition 5.15, we can replace ¢ by p, and similarly for A}P%%/I(pfl)Ag%.

Lemma 5.18 ([T5u20, Lemma 41]). Let (N,Fil*N) be as in Definition 5.15 (i), (ii). Then a
Frobenius-semilinear endomorphism ¢ : N — N satisfies the conditions in Definition 5.15 (iii)
if and only if p(e;) € ¢" N for 1 <i < h and {g" " p(e1),...,q " ¢(en)} is an A-basis of N.

Proof. Let us assume that (N, Fil* N) satisfies the condition in Definition 5.15 (iii). Then, since
e; € Fil¥i N we have ¢(e;) € ¢ N for 1 < i < h. Now for 0 < k < p — 2, we have

(Fil" ™ Ae;) = o(Fil* % A)p(e;) C " A - g %ip(e;) € ¢"N.

Therefore, from the identity Zi;%A . q_kgo(FilkN ) = N, we obtain that
{g7 % p(e1),...,q " p(ey)} generate N as an A-module. Since N is free of rank h over
A, we get that {g~ 1 ¢(e1),...,q % p(ep)} is indeed a basis.

Conversely, assume that ¢(e;) € qkiN for 1 < ¢ < h such that elements
{g % p(e1),...,q " ¢(ep)} form an A-basis of N. Then, from Definition 5.15 (ii), we have

h h

h
Q(FilFN) = (D FilF M Ae;) € > " " Ap(e) =" > A q " ¢p(e;) = ¢"N.
=1 =1 =1

Further, since {g7" p(e1),...,q Frp(ep)} € Zz;g A - q Fo(Fil*N), we obtain the last equality
in Definition 5.15 (iii). |

Now we introduce some necessary conditions in order to adapt Tsuji’s results from [Tsu20,

§4 - §8.

Condition 5.19. Let A = AEW, AEBU and ¢ = @ € A. Consider the projection map
A — A/J for some ideal J C A and assume that

(i) The ideal J is contained in the Jacobson radical of A, and J C FilP"?A. Moreover,
@o(J) C J and ¢(J) C ¢~ A. Further, the ideal J is preserved under the action of I'g.

(ii) The ideal J is closed as a submodule of A.

(iii) There exists a decreasing sequence of ideals --- C Hy41 C H, C --- C Hy C A for n € N,
such that H,, form a fundamental system of neighborhoods of 0 in A, the homomorphism
A — lim,, A/H,, is an isomorphism, and q_(p_l)go(Hn NnJ)c H,NJ for every n € N.
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(v)
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The image of ¢ in A/J is a non-zero-divisor. Moreover, the sequence [[{_,¢"(q) € A
converges to 0 as n — +00.

The homomorphism ¢ : A — A is continuous and multiplication by ¢ induces a homeo-
morphism A — qA, where the latter is equipped with the induced topology.

Proposition 5.20. (i) Let A = A+w with J = I(p_l)AE,w, and H, = p"Ava +

(i)

ﬂ"*pflAE’w. Then AJFEW satisfies Condition 5.19.

Let A = AZBU with J = I(pfl)Ag]?w, and H, = p"AE%. Then A}P%BU satisfies Condition
5.19.

Proof. The proof follows in a manner similar to the proof of [Tsu20, Proposition 59].

(i)

(i)

The ring ARw is m-adically complete, and since I(p_l)AEw = 7P~ 1AEW C WARw,
we see that 1P~ I)AEW is contained in the Jacobson radical of AEw. Moreover, note
that we have inclusions @(Wp*1A+ ) C qpflﬂpflA'Fw C 7r7’*1A+ , therefore we get
1= 1)AJF C FilP~ 2A;Sbw It is clear that [P~ 1)AEW is stable under the action of I'p.
Therefore Condmon 19 (i) is satisfied.
Now we have H, = p A+ + W”*pflAJ]Sb’w for n € N, which is a fundamental system
of neighborhoods of 0 € ARw and AJJ%w = lim, AE,w/Hn (see Lemma 5.6). Further,
since AEW/I p= I)AEW is p-torsion free, we obtain that H,, N I(p_l)AEw = (p”AEw +
7r”+p*1AE’w)ﬁI(p’1)AE’w = p"I(pfl)AE@,+7r”I(p*1)AE7w. The Condition 5.19 (iii) now
follows from this. Moreover, I (p_l)AEw is a free AE -module of rank 1, so it follows
that J is a closed submodule of AE@ by Lemma 5.6 (i) & (iv), verifying Condition 5.19
(ii).
Next, from Lemma 5.14, it follows that ¢ is a non-zero-divisor in AE -/ (p_l)AE - Fur-
ther, for k € N, we have ¥ (q) = g0k+1(§) € cpkH(FillAEW) Co"(pAL _+mAL ) C
pAL _+ 7rA+ . Therefore, [[7_ ©*(q) converges to 0 as n — oo, and Condition 5.19
(iv) has been Verlﬁed

By the definition of ¢ in §3.3, we see that it is continuous. Further, from Lemma 5.6 (iii),
it follows that AE w/qAE - is p-torsion free. Therefore, we have (p”AEw + q”+1AE’w) N
qAJr = (qARw) +q (qAJr ). By Lemma 5.6 (i), it follows that AEW =4 qAE@, is
a homeomorphlsm which verifies Condition 5.19 (v).

Note that we have ¢ = p(p(%)%, which implies that ¢ and p are associates in AZ% (see
Lemma 3.14). Therefore, it is enough to verfiy Condition 5.19, with ¢ replaced by p
everywhere.

We have I®P~DAED  c Fil'ARD 4+ pAED  ARD is p-adically complete and
FlllAP D/ pFlllAlj.D%]?D is a nil ideal of A -y pA%E)zr Therefore, 1P~ 1)APD is contained in
the Jacobson radical of AP D Further, by definitions we have (P~ 1)APD C FilP™ 2APD
and @(IP"DAPD ) c 10- 1>APD Also, p(IP~VAED ) c g~ 1AFD. = - TAPD Tt is
clear that I (pfl)APBD is stable under the action of I'r. Therefore, Condition 5.19 (i) is
satisfied.

Next, we know that AE% is p-adically complete and the ring A%% /I (pfl)Ag%_j is p-torsion
free by Proposition 5.12, therefore p"A%?ﬂ N I(pfl)Agl?w = p”I(pfl)A%?ﬂ. This gives us
Condition 5.19 (iii). Further, I (p_l)Ag% is p-adically complete by Lemma 5.13 (ii), so
we get Condition 5.19 (ii).

Condition 5.19 (iv) & (v) follow trivially from the fact that APD = lim,, ALD w/ p”A%]?ﬂ.
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Finally, we come to the main result of this section. Note that the categories MF? below are
defined by combining Definition 5.15 and Remark 5.17.

Theorem 5.21. The natural maps A, , — AEW/I(?’_l)AE’ = ARD /T DAFD « ARD
induce equivalence of categories:

(1)
1\'/[]?}[70,;)—2]7 free(AR wr ¥ FR) ? MFI[J 0,p—2], free( /I P I)AR = P FR)

(2)
MF?Op 2], free

J’_
MF[O p—2], free(AR,w’ ®, FR)

( E’w/l(p—l)AE’w’ 2 FR)

/-\
\_/

Proof. The natural projection map AEW —» A;,w /1 (p_l)AJ]%w is compatible with Frobenius
and the action of I'g and we have ¢ = pu mod I(p*l)AJr for u € (A+ )* (see also Remark
5.17), i.e. ¢ and p are associates in AE@ /1 (p_l)AJPE Further AE - satisfies Condition 5.19.
Therefore, from [Tsu20, Proposition 56|, we obtain that the functor in (3) is an equivalence of
categories.

Next, from Proposition 5.12, we have an isomorphism of rings A}‘;’w/[(p’I)AE’w ~
AE%/I (p_l)Ag%, compatible with Frobenius and the action of I'gr. Therefore, we obtain
that the functor in (2) is an equivalence of catgeories.

Finally, the natural projection map ALP Rw — A%{?ﬂ /1 (p_l)A%% is compatible with Frobenius

and the action of I'p and ¢ = pu mod - DAL for some u € (AJr )* (see also Remark

5.17), i.e. ¢ and p are associates in A}, /TP~ 1)AJr APD > /1(P=1) APD . Further, A%%
satisfies Condition 5.19. Therefore, from [TsuZJ Prop051tlon 56] we obtaln that the functor in
(1) is an equivalence of categories. |

5.3. Wach modules from Fontaine-Laffaille data. In this section, we will work with
objects of MF[q ,_g], free (1R, @, 0) (see Definition 5.1) and using these objects we will obtain Wach
modules over A}, (see Definition 4.8). In §5.3.1, starting with a Fontaine-Laffaille module, we
will first obtain a free module over AJ}%@ with desired properties and in §5.3.2 we will descend
over to Aj. Note that in §5.3.1, we will first establish a mod p™ statement (see (5.2)) and as a
consequence deduce a p-adic statement (see Proposition 5.25). However, it is possible to prove
the p-adic statement directly (see another proof of Proposition 5.25). Readers interested only
in the p-adic statement can directly skip to Proposition 5.25.

5.3.1. From Fontaine-Laffaille modules to A% _-modules. Following [Tsu20, §4], for
n € N5g we set X,, = Spec(R/p") and ¥,, = Spec((jp/p") and consider big crystalline sites
CRIS(X,,%,) and CRIS(X},X,), and respective topos (X,/X,)cris and (X1/3,)cris, with
the PD-ideal (p(Or/p™),[]). Let Fy, : ¥,, — %,, denote a lifting of the absolute Frobenius of ¥,
such that it is a PD-morphism with repsect to the PD-structure. The absolute Frobenius Fx, of
X1 and Fy,, define a morphism of PD-ringed topos Fx, /s, cris : (X1/%n)cris = (X1/25)cris-

Let (M, Fil*M, 0, ®) € MF(g ,_9) frec (], ®, 0) be a free relative Fontaine-Laffaille module (see
Definition 5.1), and let (M, Fil*M,,, 0, ®) denote its modulo p™ reduction. Then, by [Tsu20,
Definition 26, Theorems 17 & 29] this data corresponds to a quasi-coherent filtered crystal
(Fn, Fil*F,,) on CRIS(X,,/%,). Similarly, by [Tsu20, Definition 26, Theorems 22 & 29] this
data also corresponds to a quasi-coherent crystal G, on CRIS(X;/%,). The reduction modulo
p" of ® : o*M — M equip G, with a morphism &g, : F;(l/EH,CRIS(gn) — G,. Further, for
the morphism of ringed topos i, cris : (X1/Zn)cris — (Xn/2n)cris induced by the closed
immersion i, : X1 — X, over idy,, we have iy cpig(Fn) = Gn (see [Tsu20, Propositions 25
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& 32]). Moreover, we have similar statements for the morphism of ringed topos induced by
X'n — Xn+1 and Zn — Zn+1.

Now, for n € N5 let X := Spec(R[w]/p"), Dy, := Spec(A}%]?D/p”) and Fp, : Dy, — Dy, be
the lifting of the absolute Frobenius on D; defined by ¢ of A%% /p". We have the surjective map
6 : A;,w — R[w]. So taking mod p" reduction, we obtain an embedding X/ ~— Spec (A}E’w/p”)
and taking divided power envelope, we obtain a closed immersion X/, — D,, (resp. Xi — D,)
which can naturally be regarded as an object of the site CRIS(X,,/3,,) (resp. CRIS(X1/%,)),
endowed with a right action of I'g.

Definition 5.22. Define an AE%/p"—module by setting NPP := T'(X! »— Dy, F,,) == (X} —
Dna gn)

The right action of I'g on D,, induces a left action on NFP. The filtration on F,, induces a
filtration by Ag%, /p"-submodules on NP'P | which is stable under the I'g-action. Then NPP is a
finite free filtered Ali%l?w /p"-module of level [0, p—2] (see [Tsu20, Lemma 20]). The Frobenius ®¢,
of G,, and the lifting of Frobenius Fp, on D,, define a semilinear I" g-equivariant endomorphism of

T(X] = Dy, Gn) and hence that of NPP as I(X{ — Dy, Gy) = T(X] — Dy, F5, onusGn) —2
['(X{ > Dn,Gy), where the first homomorphism is induced by Fx; and Fp,,.

Let [] denote the PD-structure on the ideal p(A%?ﬂ/p”) + FillAﬁ%/p" of A%{?D/p”. Then
we have the big crystalline sites CRIS(X],/D,,) and CRIS(X{/D,,), and the respective topos
(X},/Dy)cris and (X{/Dy)cris with the PD-ideal (p(ARD, /p™) +Fil' ARD /p™, []) of ARD, /p™.
By taking the pullback of (F,,Fil®*F,) (resp. G,) under the morphism of ringed topos
(X /Dp)cris — (Xn/Xn)cris (vesp.  (X{/Dn)cris — (X1/2n)cris), we obtain a quasi-
coherent filtered crystal (F),Fil®F,) (resp. a quasi-coherent crystal G, with a morphism
bg; 2 Fyy, b, cris(9n) = Gy), endowed with compatible I'g-action. Since Xj, — D, (resp.
X{ — D,) is a final object of CRIS(X]/D,) (resp. CRIS(X{/D,)), we have canonical
A%%/p”—linear ismorphisms NY'P = T'((X/,/Dy)cris, Fi) — T((X1/Dyn)cris, G,) compat-
ible with supplementary structures (see [Tsu20, p. 188-189)]).

Next, for n € Nsg, similar to above let E,, := Spec((’)A%%/p”) and Fg, : E, — E, be
the lifting of the absolute Frobenius on E; defined by ¢ of (’)AIP}]?W /p". We have the surjective
map fr : R ®z AE,W — R[w]. So taking mod p™ reduction, we have an embedding X, —
Spec (R®ZAJI%W /p™) and taking divided power envelope, we obtain a closed immersion X — E,
(resp. X1 — E,) which can naturally be regarded as an object of the site CRIS(X],/D,,) (resp.
CRIS(X7/D,)), endowed with a right action of I'p.

~

Definition 5.23. Define an OA%%/p”—module by setting ONIP = (X!, — E,,F!) =
I'X{ — E,,G)).

The right action of I'g on F,, induces a left action on ONFP. The filtration on F/ induces
a filtration by OAE% /p"-submodules on ONFP | which is stable under the T'g-action. Then
ONPP is a finite free filtered (’)Ag% /p"-module of level [0,p — 2] (see [Tsu20, Lemma 20]).
Further, by [Tsu20, Theorem 29, Proposition 32] ONPP is equipped with a I'g-equivariant
integrable connection compatible with the connection on OA}%% /p" and satisfying Griffiths
transversality with the respect to the filtration. Moreover, this the I'g-action and connection
are compatible with the respective structures on I'(X{ — E,, G,,) (see [Tsu20, Propositions 25
& 32]). The Frobenius ®g; of G, and the lifting of Frobenius Fg, on E,, define a semilinear
I'g-equivariant endomorphism ¢ of I'(X}| ~— E,,G!) and hence that of ONFP. Further, the
Frobenius-semilinear endomorphism ¢ commutes with the connection on ONP.

From [Ber74, Proposition 4.1.4] and [BO78, Theorem 7.1], we have a description of the
global sections of a crystal in terms of horizontal sections of the corresponding module with
an integrable connection on the PD-envelope of an embedding into a smooth scheme. In other
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words, we have an ARD_/p"-linear isomorphism
PD ~ PD)9=0
N,” = (ON, )",

compatible with filtration, Frobenius and the action of I'r on each side (see [Tsu20, p. 190]).
Since X/ — D,, (resp. X{ — D,,) is a final object of CRIS(X],/D,,) (resp. CRIS(X{/D,)), we
obtain a canonical (’)AE?D /p"-linear isomorphism

OA%%/;D” ®Ang/pn NED = ON};D,

compatible with Frobenius, filtration, connection and the action of I'r on each side. Here the
connection on the tensor product on the left is given as 0y APD ® 1. Moreover, from [Tsu20,

Propositions 24, 25 & 32|, we obtain an OA%% /p"-linear ismorphism
OAR L /p" @pypn M/p" =5 ONJP,

compatible with Frobenius, filtration, connection and the action of I'g on each side (see [Tsu20,
p. 191]). Here the connection on the tensor product on the left is given as aOAED ®1+1®0y.

Combining the two isomorphisms above, we obtain an (’)A%% /p"-linear isomorphism

compatible with Frobenius, filtration, connection and the action of I'g on each side. Therefore,
we also have an Ag% /p"-linear ismorphism

~ 9=0
NP =5 (OARL /0" @Ry M/p")

compatible with Frobenius, filtration and the action of I'p on each side.

Definition 5.24. Define an A%{?ﬂ—module as NPP(M) :=lim,, NFP, equipped with a semilinear

and continuous action of T'g, a filtration given as Fil* NPP (M) := lim,, Fil* NP, which is stable
under the action of I'p, and a Frobenius-semilinear I'g-equivariant endomorphism .

Passing to the limit in (5.2) we obtain an OA%Pw—linear isomorphism
OARD @arp NPP(M) =5 OAR, ©p M,

compatible with Frobenius, filtration, connection and the action of I'g on each side. Therefore,
we have the following conclusion:

Proposition 5.25. Let M be a free relative Fontaine-Laffaille module. Then
0=0
NPP(M) := (OAR, ©r M),

is a finite free A}Pz%—module equipped with a decreasing filtration of level [0,p — 2|, a Frobenius-
semilinear endomorphism ¢ : NPP (M) — NFYP(M) and a continuous action of I'r on each side.

In particular, NPD(M) € MFfO p—2] free(A%Pw’ ©,T'r). Further, we have a natural isomorphism
OAR" ® LD NPP (M) =5 OARR. @p M, (5.3)

compatible with the Frobenius, filtration, connection and the action of I'r on each side.

Another proof of Proposition 5.25. Let us consider a Frobenius-equivaraint injective map
OF{Xlil, .. ,Xffl} — A%{?ﬂ by sending X; — [Xl’] and we extend it uniquely, by étaleness
of OF{Xftl, e ,Xjﬂ} — R to obtain a Frobenius-equivariant injective map R — AE]?W.
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Lemma 5.26. We have an A o _-linear isomorphism A ) @p M = (OA ®Rr M)

Proof. Let J = ([X}] - X1,...,[X}] - Xd)(’)A and let J[”] denote its n-th divided power for
n > 1. We have the projection map,

OA ®RM—>A — ®r M,

via the map X; — [X?] and the kernel is given as JI! @z M. Moreover, we have an A%Pw—linear
section of the projection above given as

A ®RM—>OA - Qr M

1®d»—>ZH8k ﬁ X7)— X)L,

keNd i=1 i=1

(5.4)

Note that the image of the section lies in ((’)AE% ®r M)?=0. Now let Q = J @ M and

Q' = (OARP @ M)/(OAEP @i M)?=0 and we consider the following diagram with exact
rows (the top row is split exact)

0 — A ®RM _ OA ®RM Q 0
0 —— (OARD @ M)?=0 —— OARD @r M Q' 0.

Note that the left vertical arrow is an injection and the right vertical arrow is a surjection. To
get that the left vertical arrow is a bijection we need to show that the right vertical arrow is an
injection. We have

(‘][1] OR M)a:(] C (JOBcris(R) ®R[l] (ODcris(Vv))8 (JOBcrls( ) ®Qp V)azoz
r
where V' = Veis(M) is crystalline (see Proposition 5.3 (i)) and the ideal JOB.is(R) C CrlS( )
is generated by ([X3]— X1, ..., [X)]—X4). Then it easﬂy follows that (JOBeis(R)®q, V) =0
and we conclude that A%% ®Qr M = (OA%% QR M) . [ |

From the identification NPP(M) = (OARD @r M)azo L) APD ®p M (where the

rightmost term is equipped with a I'p-action as in Remark 5.27), 1t easily follows that
NPP(M) € MF[Op a9, free(A%]?ﬂ7 ©,I'r). Next, we can OA%%-linearly extend the map in (5.4)
to obtain

OARD. @arp (AR, ©p M) — OARY, ©p M

lod— Y. Hf)fi(d) ﬁ([xb

keNd =1 i=1

(5.5)

We equip the left term with a I'g-action as in Remark 5.27. Choosing a basis of M it is easy
to see that the determinant of the map in (5.5) is invertible in OAva i.e. the map (5.5) is
bijective. Moreover, it is compatible with Frobenius, filtration, connection and the action of
I'r. Now we have a natural injective map

OARD, @arp NPP(M) — OARD, ® M,

compatible with the Frobenius, filtration, connection and the action of I'g on each side. The
map above is bijective because of the following commutative diagram
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OAE% ®Ang NPD(M) — OAE?Z Qr M

| |
OA%% ®APRJ?W (AZ% ®@r M) —— OA%% ®r M,
where the the bottom horizontal arrow is the isomorphism in (5.5). This concludes the proof. W

Remark 5.27. Using (5.5) and the ARD -linear isomorphism in Lemma 5.26, ARD @p M —
(OAE% ®QrM )8:0, we can describe the action of I'g on the left term explitcitly. The action is
given by the formula g(a ® d) = g(a) ® Syena [Ti=1 07 (d) T, (9([X7]) — (XD, for g € Tg.

Lemma 5.28. Let NPP(M) as in Proposition 5.25. Then, the action of T'pe is trivial on
NYD(M) /7 NYP (M), whereas /T g acts trivially over NPP (M) /mp, NPP(M).

Proof. This follows from the I'g-equivariant isomorphism in (5.3) (or from Lemma 5.26 and
Remark 5.27) and the action of I'r on OA%PW (see Lemma 4.24 (i)). [ |

Proposition 5.29. The functor
NPD : B/IF[O,Z)—Q]7 free(Ra (I)’ a) — MF[p()’pr], free(A}PZ],:zv7 2 FR)
M — NPP(M) = (OARY, ©r M)™,
is fully faithful.

Proof. By taking I'g-invariants in (5.3), we obtain an R-linear isomorphism (OA%% ®APD

NPP(M ))FR —s M compatible with Frobenius, filtration, connection on each side, and functo-
rial in M. |

Having obtained a finite free module with desired structures over the ring AE]?W, we
will now pass to the ring AE@. Let M € MF[,_9) free(R, ®,0) and NPP(M) €

MF][?OJ)—Q}, free(A%%, ©,'r) the A%%—module obtained under the functor of Proposition 5.29.

Next, from  Theorem  5.21, we have an  equivalence of  catgeories
MFZ[QO,p—Q}, tree(ARasy 0, TR)  — MF[qo,p—Q], free(AE,w’ ©,I'r) sending NFP(M) +— NT(M)
for M as above. Combining this with Propositions 5.25 & 5.29, we obtain:

Proposition 5.30. The functor
N+ : MF[O,p—2],free(R7 (I), 8) — MF([]prQ],free(AJ}%w, 2 FR)
M — NT (M),
is fully faithful. Further, for M and N*(M) as above, we have a natural isomorphism

OARY, @ar_ NT(M) = OARL ®r M, (5.6)

compatible with the Frobenius, filtration, connection and the action of I'r on each side.

Lemma 5.31. Let N*(M) as in Proposition 5.30. Then, the action of I'p is trivial on
NT(M)/mN*(M), whereas Tr/T g acts trivially over N*(M) /7, NT(M).

Proof. This follows from the I'g-equivariant isomorphism in (5.6) and the action of I'p on
OAI})%BU (see Lemma 4.24 (i)). |
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5.3.2. Obtaining Wach modules. For the rest of this section we will fix m =1 (fix m = 2
if p = 2), i.e. we take K = F(() (take K = F((y) if p = 2). Consider the localization
S = Af . [=]. Let M and M’ be free relative Fontaine-Laffaille modules and N*(M) and

NT(M’) the respective A}, _-modules obtained by the functor in Proposition 5.30.

Lemma 5.32. We have a natural bijection

1
m m

Homy:  p, (NF (M), NH(M') =5 Homs o, (NYOO[E] N (MO[L]). (5.7)

Proof. As we are working with free modules and the morphism of rings Ang — Aj%w [7—11] =S5

is flat, we obtain that (5.7) is injective. To check surjectivity, let f : N (M) [Tr%] — NT(M") [7%1]
be an S-linear and I'p-equivariant morphism. We need to show that f(N*(M)) ¢ N*t(M').
Assume f(N*t(M)) C a;*Nt(M’) for k € N, and consider the reduction of f modulo ,
which is again I'g-equivariant. Now from Lemma 5.31, we have that I'r acts trivially over
N+ (M)/m Nt (M), whereas the action of I' is non-trivial over m; N+ (M’)/z "IN+ (M)
for k # 0 (the action of 9 € I'k is non-trivial for k£ # 0). Hence, we must have k = 0, i.e.
F(NT(M)) C NT(M'), which shows the claim. [

Note that we have a morphism ¢ : S = AE’W[%] — AE’W[%]. The respective
Frobenius-semilinear endomorphisms ¢ on NT(M) and N*(M’) induce semilinear mor-
phisms ¢ : N"WM)[%] — NT(M)[Z] and ¢ : N+(M’)[7%l] — NT(M')[L]. Let f €
Homg,r, (N*(M)[], NT(M')[]) be a morphism, such that the following diagram commutes

!
NH(M)[z] —— N*(M')[]

T

|7 |
N*+HM)[E] —Lo N[,
where the bottom horizontal arrow is well-defined due to Lemma 5.32. We will call such a
morphism f to be (¢, I'r)-equivariant.

Lemma 5.33. We have a natural bijection

(NF(M), NF(M')) = Homs, o 1y (N (M) [ ], N (M) [77])

Hom L
© A;,w )y P FR T T

Proof of Theorem 5.5. Let M € MF|g, 9 free(R, ®,0) and let N*t(M) denote the
AE’w—module obtained from M from the functor of Proposition 5.30. We will show that a

basis of N (M) descends over to Af.

In the notation of Definition 5.15, let {ey,...,e,} denote an Ajng—basis of N*(M). Then
from Lemma 5.18, we get that {g %1 p(e1),...,¢ " ¢p(es)} is also an AEw—basis of N*(M).
Without loss of generality, we may further assume that kp < kp_1 < --- < k1. Let us set
s := k1, so we get that NT(M)/p*(Nt(M)) is killed by ¢° and s € N is the smallest such
number.

Let D(M) := N*(M)[L]", where * denotes the p-adic completion. Then D(M) is an étale

T
(¢, TR w)-module over Ag o = Af [%]A, free of rank h. Since N (M) is free, it follows that
NH(M)[£]/p" = D(M)/p". Similar to the proof of Lemma 5.32 and using dévissage we
obtain that the functor N* (M) + D(M) is fully faithful. Therefore, using Proposition 5.30 we
conclude that the functor

MF[O,p72], free(R7 (137 8) — (@7 PR)'MOd(X&W
M — Nt (M)[L]",

T
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is fully faithful.

Now, from Proposition 5.3 and Definition 5.4 we have that T := Tgis(M) is a free
Zy,-representation of Gr. Considering 1" as a representation of Gr o, we have the associated
(¢, 'R w)-module D (T') over Ag . By the full faithfullness of the functor above and equiva-
lence of categories in (3.2), we conclude that D(M) — Dg (T as étale (¢, ' )-module over
AR . Also, we have p(Dpg (7)) C D(T), where the latter module is an étale (¢, I'g)-module
over AR, free of rank h.

Next, let N := NT(M) N D(T) where we take the intersection inside Dg (7). Note that
N is equipped with a Frobenius-semilinear endomorphism ¢ and it is stable under the action
of I'r. We claim that

Lemma 5.34. The elements {g " o(e1),...,q *p(ep)} form a basis of N.

Proof. Let us set N’ := 3" | Ajq Fip(e;) Since we have ¢ Fip(e;) € N*(M) N D(T) = N,

therefore N’ C N. This also implies that ¢(e;) € ¢* N. Extending scalars along the faithfully
: : + + + _ AT / +

flat morphism of rings Aj — AR’T we get that N*(M) = A ®ar N C Ag., DAt N C

NT(M). Therefore, A;%w Bt N' — AEW ®A§N. But since the map A} — AEW is faithfully

flat, we obtain that N/ =+ N. [ |

We will now verify the conditions of Definition 4.9 for V' = Q, ®z, T'. Since V arises from
a Fontaine-Laffaille module of level [0,p — 2], we have that V is crystalline with non-positive
Hodge-Tate weights. We have that N is a free AJ]SL—module of rank h stable under ¢ and
I'g, and such that N € DT(T) as well as Ag DAt N = D(T). Next, we want to show that

¢°N C p*(N) as AE—moduleS, where s = ky. Since AE — A; - is faithfully flat, it is equivalent
to showing that ¢° AE’W ® AL N C AE@, ® At ©*(N). But the latter inclusion can be re-expressed

as ¢*Nt(M) C o*(N*(M)) as A}, _-modules, which was established above by showing that
Nt (M)/p*(NT(M)) is killed by ¢°. Therefore, we conclude that N/¢*(N) is killed by ¢* and
s € N is the smallest such number.

Next, we look at the action of I'p over N. Recall from §3.1 that we have {yo,71,...,74} as
topological generators of I'r -, where g is a lift of a topological generator of I'ir. The action
of v; on the basis elements of N* (M) can be given as

vi(e)) =ei+ma;j for 1<i<h,0<j<d and 2;; € A;%w

Since ¢ is I'g-equivariant, we get that ~;(¢(e;)) = @(ei) + gmo(z;;), where o(z;;) €
O(NT(M)) ¢ NT(M)ND(T) = N. Now ¢(e;) € ¢¥N, so we must have that gmo(z; ;) €
"N NgrN = ¢*7N C N, for 1 <i < h and 0 < j < d. Therefore, we get that

vi(g"p(e;) = ¢ Mple;) mod 7N for 1< j<d.

For j = 0, recall that ~o(m ) = ( o)mu for some unit u € 1+ wA%. Therefore, we have
Y0(q) = gp(u)u~ and vo(¢g7') = ¢ Lo (u™)u. So we obtain

Yo(g Fe(e)) = v0(q ¥ )0(e(e:)) = a Fio(u™)ub (o(e:) + ame(wi ;) = ¢ "g(e;) mod 7N.

Finally, let g € I'r be a lift of a generator § € I'r/I'r , a finite group of order p — 1. Then
we have g(e;) = e¢; + my; for 1 < i < h and y; € Nt(M). Since ¢ is I'g-equivariant, we
get that g(p(e;)) = p(ei) + mo(y;), where o(y;) € o(NT(M)) € Nt (M)ND(T) = N. Now
©(e;) € ¢" N, so we must have that 7o(y;) € ¢ N NwN = ¢¥7tN C N, for 1 <i < h. Further,
we know that g(m) = x(g)mv for some unit v € 1 + 7A}, which gives us that g(q) = gp(v)v™'.
Therefore, g(¢ % ¢(e;)) = ¢ Fp(u™ ) ub (p(e;) + To(y:)) = ¢ ¥ p(e;) mod 7N, for 1 <i < h.
Hence, ' acts trivially over N/7N.

Setting N(T') := N, we see that conditions of Definition 4.9 have been satisfied. In particular,
V' is a positive finite g-height representation. |
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