ANNÉE UNIVERSITAIRE 2016-2017

Licence de mathématiques, Ingénierie mathématique, UE

TGM601U

Examen d'Analyse Fonctionnelle : Epreuve de A. Bachelot. **Date :** Lundi 24 avril 2017 **Heure :** 9h-12h. **Durée :** 3h.

Collège Sciences et technologie

Lieu : bâtiment A33, Grand Amphithéâtre de Mathématiques.

- Un aide-mémoire d'une page est autorisé -

1

On considère un espace métrique (E, d).

(1) Etant donné $a \in E$, montrer que l'application

$$x \in E \mapsto d(x, a) \in \mathbb{R}$$

est continue de (E,d) dans \mathbb{R} muni de la distance associée à la valeur absolue.

(2) Soit a_0 un point de E. Montrer que pour tout $a \in E$, l'application

$$f_a(x) = d(x, a) - d(x, a_0)$$

est continue et bornée de E dans \mathbb{R} .

(3) On note $C_b^0(E,\mathbb{R})$ l'espace vectoriel des fonctions continues et bornées de E dans \mathbb{R} . Pour $\varphi \in C_b^0(E,\mathbb{R})$ on pose

$$\parallel \varphi \parallel = \sup_{x \in E} \mid \varphi(x) \mid .$$

Montrer que $\|\cdot\|$ est une norme sur $C_b^0(E,\mathbb{R})$ et que $(C_b^0(E,\mathbb{R}),\|\cdot\|)$ est un espace de Banach.

(4) Etant donnés $a, b \in E$, évaluer

$$\parallel f_a - f_b \parallel$$
.

(5) En utilisant ce qui précède, construire un espace métrique complet (\hat{E}, \hat{d}) , et une application f de E dans \hat{E} tels que f(E) soit dense dans \hat{E} , et que pour tout $a, b \in E$ on ait

$$\hat{d}(f(a), f(b)) = d(a, b).$$

2

Soit $E=\mathbb{R}[t]$ l'espace vectoriel réel des fonctions polynômes d'une variable, à coefficients réels. Pour $f\in E$ on pose

$$N_1(f) = \int_0^1 |f(t)| dt, \quad N_2(f) = |f(0)| + \int_0^1 t |f'(t)| dt, \quad N_3(f) = N_1(f) + N_2(f).$$

- (1) Montrer que N_1 , N_2 et N_3 sont des normes sur E.
- (2) Pour tout $n \in \mathbb{N}$ on définit

(1)

$$f_n(t) = 1 - (1 - t)^n.$$

Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ converge dans (E,N_1) et dans (E,N_2) vers des limites que l'on déterminera. Converge-t-elle dans (E,N_3) ?

(3) On note E_3 l'espace vectoriel des fonctions à valeurs réelles, définies et bornées sur [0,1], dérivables sur [0,1], dont la dérivée est continue et bornée sur [0,1]. Sur E_3 on définit encore des applications N_1 , N_2 et N_3 par les relations (1). Montrer que N_3 est une norme sur E_3 . N_1 et N_2 sont-elles des normes sur E_3 ?

- (4) Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ est convergente dans (E_3, N_3) .
- (5) Hélène déclare : "Considère, cher Agamemnon, un espace vectoriel réel E muni de deux normes N_1 et N_2 , et une suite $(x_n)_{n\in\mathbb{N}}$ dans E, convergente dans (E,N_1) vers une limite l_1 et convergente dans (E,N_2) vers une limite l_2 . Alors si N_1 et N_2 sont équivalentes, $l_1 = l_2$."

Agamemnon rétorque : "Fascinant ma chère Hélène, toutefois il est inutile de supposer que N_1 et N_2 sont équivalentes. Considère en effet $N_3 = N_1 + N_2$, et écoute mon raisonnement :

- (1) N_3 est une norme sur E.
- (2) La suite $(x_n)_{n\in\mathbb{N}}$ converge dans le complété \hat{E}_3 de (E,N_3) vers une limite l_3 .
- (3) N_1 et N_2 se prolongent de façon unique en des applications définies continues sur \hat{E}_3 , que je note encore N_1 et N_2 .
- (4) On a : $N_1(l_1 l_3) = N_2(l_2 l_3) = 0$.
- (5) J'en déduis que $l_1 = l_3$ et $l_2 = l_3$, ce qui montre, ma chère Hélène, que $l_1 = l_2$!

Justifiez l'assertion d'Hélène, et justifiez ou critiquez les cinq points de l'argumentation d'Agamemnon.

3

Soit X la boule unité fermée d'un espace de Hilbert $(H, \|.\|)$.

(1) On considère une application f de X dans X. On suppose qu'il existe $C \in [0,1[$ tel que pour tout $x,y \in X$, on ait :

$$|| f(x) - f(y) || \le C || x - y ||$$
.

On définit la suite $x_0 = 0$, $x_{n+1} = f(x_n)$. Montrer que pour tout $n \in \mathbb{N}$, on a

$$\parallel x_{n+1} - x_n \parallel \leq C^n \parallel x_1 - x_0 \parallel.$$

En déduire que la suite $(x_n)_{n\in\mathbb{N}}$ est de Cauchy.

(2) Montrer qu'il existe un unique point $x \in X$ tel que f(x) = x.

On considère maintenant une application g de X dans X telle que pour tout $x, y \in X$, on ait :

$$|| q(x) - q(y) || \le || x - y ||$$
.

- (3) Pour tout entier n on définit $g_n(x) = \frac{n}{n+1}g(x)$. Montrer qu'il existe une suite $(x_n)_{n\in\mathbb{N}}\subset X$ tel que $g_n(x_n)=x_n$.
- (4) Montrer qu'il existe une suite extraite $(x_{n_k})_{k\in\mathbb{N}}$ et un point $x\in X$, tel que pour tout $y\in H$, on ait :

$$\langle x_{n_k}, y \rangle \longrightarrow \langle x, y \rangle, k \to \infty.$$

(5) Montrer que

$$\parallel g(x_n) - g(x_{n_k}) \parallel^2 \leq \parallel x_n \parallel^2 + \parallel x_{n_k} \parallel^2 - 2\Re < x_n, x_{n_k} >,$$

où $\Re z$ désigne la partie réelle du nombre complexe z.

(6) En développant le membre de gauche de l'inégalité précédente, en déduire que

$$||x_n||^2 \le \frac{2n}{2n+1} \Re < x_n, x > .$$

et

$$||x_n - x||^2 \le ||x||^2 - \left(2 - \frac{2n}{2n+1}\right) \Re < x_n, x > .$$

(7) Montrer que g(x) = x.

