Devoir Maison

Profiter de ce devoir pour vous entrainer à rédiger correctement vos réponses

Problème Fonction Lipschitzienne

Soit f une fonction définie sur I à valeurs dans \mathbb{R} , on a alors la définition suivante : f est **k-lipschitzienne** si et seulement si

$$\forall (x,y) \in I^2, \qquad |f(x) - f(y)| \le k |x - y|$$

où k est un réel strictement positif.

On dit que f est **lipschitzienne** si il existe k tel que f est k-lipshcitzienne.

- 1. (a) Soit A>0 montrer que la fonction définie sur $I=[A,+\infty[$ par $x\mapsto \sqrt{x}$ est $\frac{1}{2\sqrt{A}}$ -lipschitzienne.
 - (b) Soit a < b deux réels, montrer que la fonction $x \mapsto x^2$ est k-lipschitzienne sur tout I = [a, b], mais pas sur \mathbb{R} .
 - (c) Soit f_1 et f_2 deux fonctions lipschitziennes, montrer que $f_1 + f_2$ est lipschitziennes. Le produit f_1f_2 est il une fonction lipschitzienne?
 - (d) Soit f et g deux fonctions k(resp k')-lipschitziennes sur I_1 et I_2 telles que $f(I_1) \subset I_2$, montrer $g \circ f$ est lipschitzienne.
- 2. Soit f une fonction lipschitzienne sur I, montrer que f est uniformément continue.
- 3. Étudier la réciproque de la question précédente.
- 4. Soient a < b deux nombres réels et f une fonction de classe C_1 sur I = [a, b], montrer que f est lipschitzienne. (Indication : On pourra utiliser l'inégalité des accroissements finis).
- 5. Soit a < b deux réels, I = [a, b], et f une fonction k-lipschitzienne sur I tel que $f(I) \subset I$.
 - (a) Montrer que f admet un point fixe sur I.
 - (b) Si k < 1 on dit que f est **contractante**. Montrer que si f est contractante f admet un unique point fixe. À-t-on unicité du point fixe si f est 1-lipschitzienne?
 - (c) Soit f une fonction contratante sur I, on suppose de plus que $0 \in I$, f(0) = 0.
 - i. Montrer que la suite définie par $u_0 \in I$ et pour tout $n \geq 1$, $u_{n+1} = f(u_n)$ est bien définie.
 - ii. Montrer que (u_n) est convergente et donner sa limite.