Feuille 4 : carrés et factorisation

Exercice 1. L'idée de Fermat

Soit $n \in \mathbb{N}$ et $x, y \in \mathbb{Z}$ tels que $x^2 \equiv y^2 \pmod{n}$ et $x \neq \pm y \pmod{n}$. Montrer que $d = \operatorname{pgcd}(x - y, n)$ est un diviseur non trivial de n.

Exercice 2. Les carrés de $\mathbb{Z}/p\mathbb{Z}$

Soit p un nombre premier impair et

$$\phi: (\mathbb{Z}/p\mathbb{Z})^{\times} \longrightarrow (\mathbb{Z}/p\mathbb{Z})^{\times}$$
$$x \longmapsto x^{2}$$

- 1. Montrer qu'il y a (p-1)/2 carrés dans $(\mathbb{Z}/p\mathbb{Z})^{\times}$.
- 2. Soit $y \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, montrer que y a soit 2 racines carrés soit aucune.
- 3. Montrer que dans $(\mathbb{Z}/p\mathbb{Z})^{\times}$ on a l'équivalence :

$$y$$
 est un carré $\iff y^{(p-1)/2} = 1$

4. On suppose que $p \equiv 3 \pmod 4$. Soit y un carré de $(\mathbb{Z}/p\mathbb{Z})^{\times}$, monter que les racines carrés de y sont $y^{\frac{p+1}{4}}$ et $-y^{\frac{p+1}{4}}$.

Exercice 3. Les carrés de $\mathbb{Z}/n\mathbb{Z}$

Soit n = pq où p et q sont des nombres premiers impairs distincts congrus à 3 modulo 4.

- 1. Caractériser les carrés de $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
- 2. Ecrire un algorithme qui prend pour entrées n, p, q et $y \in \{0, 1, ..., n-1\}$ tel que n = pq et qui détermine si $y \in \{0, 1, ..., n-1\}$ représente un carré modulo n. Quelle est sa complexité?
- 3. Si $y \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, montrer que l'équation $x^2 = y$ admet soit quatre solutions soit aucune.
- 4. Ecrire un algorithme qui prend pour entrées n, p, q et $y \in \{0, 1, ..., n-1\}$ tel que n = pq et y est un carré modulo n et qui renvoie ces 4 racines carrés. Quelle est sa complexité?
- 5. Supposons que l'on dispose d'un algorithme qui calcule toutes les racines carrés d'un carré de $\mathbb{Z}/n\mathbb{Z}$ sans connaitre p et q. En déduire un algorithme qui factorise n.

Exercice 4. Le système de Goldwaser-Micali

Soit n = pq où p et q sont des nombres premiers impairs distincts congrus à 3 modulo 4. On fixe $\alpha \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ qui n'est pas un carré modulo n, ni modulo p, ni modulo q. Le système de Goldwasser-Micali chiffre un élément $m \in \{0,1\}$ avec la clé publique (n,α) par $\alpha^m x^2$ où x est un élément de $(\mathbb{Z}/n\mathbb{Z})^{\times}$ choisit au hasard.

- 1. Quelle est la clé privée?
- 2. Montrer que le chiffré de m est un carré modulo p si et seulement si m=0.
- 3. En déduire la fonction de déchiffrement.
- 4. Si on veut envoyer un message de l bits, quelle est la taille du message chiffré.
- 5. Expliquer comment construire un élément α convenable.
- 6. Ecrire un algorithme aléatoire qui renvoie un α convenable. Quelle est sa probabilité de réussite?

Exercice 5. Algorithme de Dixon

Trouvez un diviseur non trivial de N = 1829 avec l'algorithme de Dixon et la base de facteurs $\mathcal{B} = \{2, 5, 7\}$. On pourra utiliser les entiers $43, 49, 52, 53, \ldots$

Exercice 6. L'algorithme ρ de Pollard pour la factorisation

Soit n un nombre entier dont on veut calculer un facteur non trivial. Soit p le plus petit facteur premier (inconnu) de n. L'idée est de construire une suite « aléatoire » $x_1, x_2, \ldots, x_i, \ldots$ d'éléments de $\mathbb{Z}/n\mathbb{Z}$, de sorte qu'une collision $x_i = x_j \mod p$ pour i < j permette de trouver un facteur de n donné par $\operatorname{pgcd}(x_i - x_j, n)$.

On admettra le résultat suivant, connu sous le nom de paradoxe des anniversaires : en tirant au hasard des éléments d'un ensemble de cardinal N, on obtient une collision avec probabilité supérieure à 1/2 au bout d'environ \sqrt{N} tirages.

- 1. Estimez le nombre de termes de la suite et le nombre de pgcd à calculer avant de trouver un facteur de n.
- 2. On choisit de définir la suite x_i par la donnée de x_1 et la formule de récurrence $x_{i+1} = P(x_i)$, où $P \in \mathbb{Z}[X]$.
 - (a) Montrez que $x_i = x_j \mod p \Longrightarrow x_{i+1} = x_{j+1} \mod p$.
 - (b) En déduire que, si $x_i = x_j \mod p$ avec i < j alors $x_u = x_{2u} \mod p$ pour un indice u tel que u < j.
 - (c) Comment calculer $(x_{i+1}, x_{2(i+1)})$ à partir de (x_i, x_{2i}) ?
 - (d) On suppose que la suite (x_i) obtenue a le même comportement qu'une suite de tirages indépendants dans $\mathbb{Z}/n\mathbb{Z}$, et donc qu'on peut appliquer le paradoxe des anniversaires. En déduire un algorithme qui nécessite environ \sqrt{p} calculs de pgcd de nombres entiers naturels $\leq n$ pour factoriser n.
- 3. Factorisez n = 7171 avec $x_1 = 39$ et $P(x) = x^2 + 1$.