A uniform open image theorem for ℓ -adic representations of étale fundamental groups

Anna Cadoret and Akio Tamagawa

Sakura Workshop "Torsion of abelian schemes and rational points on moduli spaces" - I.M.B., January 25th - 29th, 2010

Let k be a field of characteristic 0, X a smooth, separated, geometrically connected scheme over k with generic point η . An ℓ -adic representation $\rho : \pi_1(X) \to \operatorname{GL}_m(\mathbb{Z}_\ell)$ is said to be geometrically strictly rationnally perfect (GSRP for short) if $\operatorname{Lie}(\rho(\pi_1(X_{\overline{k}})))^{ab} = 0$. Typical examples of such representations are those arising from the action of $\pi_1(X)$ on the generic ℓ -adic Tate module $T_\ell(A_\eta)$ of an abelian scheme A over X or, more generally, from the action of $\pi_1(X)$ on the ℓ -adic etale cohomology groups $H^i(Y_{\overline{\eta}}, \mathbb{Q}_\ell), i \geq 0$ of the geometric generic fiber of a smooth proper scheme Y over X. Let G denote the image of ρ . Any closed point x on X induces a splitting $x : \Gamma_{\kappa(x)} := \pi_1(\operatorname{Spec}(\kappa(x))) \to \pi_1(X_{\kappa(x)})$ of the canonical restriction epimorphism $\pi_1(X_{\kappa(x)}) \to \Gamma_{\kappa(x)}$ (here, $\kappa(x)$ denotes the residue field at x) so one can define the closed subgroup $G_x := \rho \circ x(\Gamma_{\kappa(x)}) \subset G$ (up to inner automorphisms).

The main result we are going to discuss in this series of lectures is the following uniform open image theorem.

Theorem 1 Assume that k is a finitely generated field of characteristic 0 and that X is a curve. Then,

- 1. for any representation $\rho : \pi_1(X) \to \operatorname{GL}_m(\mathbb{Z}_\ell)$ and any integer $d \ge 1$, the set $X_{\rho,d,\ge 3}$ of all closed points $x \in X$ such that G_x has codimension ≥ 3 in G and $[\kappa(x) : k] \le d$ is finite.
- 2. Furthermore, if $\rho : \pi_1(X) \to \operatorname{GL}_m(\mathbb{Z}_\ell)$ is GSRP, then the set $X_{\rho,d,\geq 1}$ of all closed points $x \in X$ such that G_x has codimension ≥ 1 in G and $[\kappa(x):k] \leq d$ is finite, and there exists an integer $B_{\rho,d} \geq 1$ such that $[G:G_x] \leq B_{\rho,d}$ for any closed point $x \in X \setminus X_{\rho,d,\geq 1}$ such that $[\kappa(x):k] \leq d$.

The lectures will be divided into four sections:

- 1. General strategy
 - (a) Short review of etale fundamental groups.
 - (b) Short review of compact ℓ -adic Lie groups.
 - (c) Notation and statements.
 - (d) The GSRP property.
 - (e) Reduction to a diophantine problem: non-existence of rational points of certain "moduli spaces".
 - (f) Main ingredients (projective system argument, Faltings' theorems).
- 2. Case d = 1
 - (a) Explicit Riemann-Hurwitz formula.
 - (b) Reduction of the problem to counting points on reduction modulo ℓ of ℓ -adic analytic subspaces of \mathbb{Z}_{ℓ}^{N} (Serre-Oesterlé's asymptotic bounds).

- (c) From geometry to arithmetic *via* Faltings' theorem (Mordell conjecture).
- 3. Case $d \ge 1$
 - (a) Growth of gonality along projective systems of Galois covers.
 - (b) Induced representation argument.
 - (c) From geometry to arithmetic *via* Faltings' theorem (Lang conjecture for abelian varieties).
- 4. Further developments in the case of torsion on abelian schemes

Among ℓ -adic representations of $\pi_1(X)$, those arising from the action of $\pi_1(X)$ on the generic ℓ -adic Tate module $T_{\ell}(A_{\eta})$ of an abelian scheme A over X are of particular interest. A corollary of theorem 1 is the following uniform boundedness statement for the ℓ -primary torsion of abelian varieties parametrized by curves.

Corollary 2 Assume that k is a finitely generated field of characteristic 0. For any integer $d \ge 1$, there exists an integer N := N(d, A) such that $A_x[\ell^{\infty}](\kappa(x)) \subset A_x[\ell^N]$ for any closed point $x \in X$ such that $[\kappa(x) : k] \le d$.

This corollary is a consequence of the following geometric statement.

Lemma 3 Assume that k is an algebraically closed field of characteristic 0 and that A_{η} contains no nontrivial isotrivial abelian subvariety. For each integer $N \ge 1$, write g(N) for the minimal genus of the $\kappa(v), v \in A_{\eta}[N]$ of order exactly N. Then $\lim_{n \to \infty} g(\ell^n) = +\infty$.

In the concluding section, we would like to explain how this lemma can be partly extended:

- (a) To the case when X is a surface, with Kodaira dimension replacing the genus.
- (b) To the case of mod ℓ representations (ℓ varying). More precisely, in that case, we will sketch the proof of the fact that, if X has genus ≥ 1 or if X has genus 0 and A_{η} has semistable reduction everywhere except possibly over one point, then $\lim_{\ell \to \infty} g(\ell) = +\infty$.