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Let k be a field of characteristic 0, X a smooth, separated, geometrically connected scheme over k
with generic point η. An `-adic representation ρ : π1(X)→ GLm(Z`) is said to be geometrically strictly
rationnally perfect (GSRP for short) if Lie(ρ(π1(Xk)))

ab = 0. Typical examples of such representations
are those arising from the action of π1(X) on the generic `-adic Tate module T`(Aη) of an abelian
scheme A over X or, more generally, from the action of π1(X) on the `-adic etale cohomology groups
H i(Yη, Q`), i ≥ 0 of the geometric generic fiber of a smooth proper scheme Y over X. Let G denote
the image of ρ. Any closed point x on X induces a splitting x : Γκ(x) := π1(Spec(κ(x))) → π1(Xκ(x))
of the canonical restriction epimorphism π1(Xκ(x))→ Γκ(x) (here, κ(x) denotes the residue field at x)
so one can define the closed subgroup Gx := ρ ◦ x(Γκ(x)) ⊂ G (up to inner automorphisms).

The main result we are going to discuss in this series of lectures is the following uniform open
image theorem.

Theorem 1 Assume that k is a finitely generated field of characteristic 0 and that X is a curve.
Then,

1. for any representation ρ : π1(X)→ GLm(Z`) and any integer d ≥ 1, the set Xρ,d,≥3 of all closed
points x ∈ X such that Gx has codimension ≥ 3 in G and [κ(x) : k] ≤ d is finite.

2. Furthermore, if ρ : π1(X) → GLm(Z`) is GSRP, then the set Xρ,d,≥1 of all closed points x ∈ X
such that Gx has codimension ≥ 1 in G and [κ(x) : k] ≤ d is finite, and there exists an integer
Bρ,d ≥ 1 such that [G : Gx] ≤ Bρ,d for any closed point x ∈ X r Xρ,d,≥1 such that [κ(x) : k] ≤ d.

The lectures will be divided into four sections:

1. General strategy

(a) Short review of etale fundamental groups.

(b) Short review of compact `-adic Lie groups.

(c) Notation and statements.

(d) The GSRP property.

(e) Reduction to a diophantine problem: non-existence of rational points of certain “moduli
spaces”.

(f) Main ingredients (projective system argument, Faltings’ theorems).

2. Case d = 1

(a) Explicit Riemann-Hurwitz formula.

(b) Reduction of the problem to counting points on reduction modulo ` of `-adic analytic
subspaces of ZN

` (Serre-Oesterlé’s asymptotic bounds).
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(c) From geometry to arithmetic via Faltings’ theorem (Mordell conjecture).

3. Case d ≥ 1

(a) Growth of gonality along projective systems of Galois covers.

(b) Induced representation argument.

(c) From geometry to arithmetic via Faltings’ theorem (Lang conjecture for abelian varieties).

4. Further developments in the case of torsion on abelian schemes

Among `-adic representations of π1(X), those arising from the action of π1(X) on the generic
`-adic Tate module T`(Aη) of an abelian scheme A over X are of particular interest. A corollary
of theorem 1 is the following uniform boundedness statement for the `-primary torsion of abelian
varieties paramatrized by curves.

Corollary 2 Assume that k is a finitely generated field of characteristic 0. For any integer
d ≥ 1, there exists an integer N := N(d, A) such that Ax[`∞](κ(x)) ⊂ Ax[`N ] for any closed
point x ∈ X such that [κ(x) : k] ≤ d.

This corollary is a consequence of the following geometric statement.

Lemma 3 Assume that k is an algebraically closed field of characteristic 0 and that Aη contains
no nontrivial isotrivial abelian subvariety. For each integer N ≥ 1, write g(N) for the minimal
genus of the κ(v), v ∈ Aη[N ] of order exactly N . Then lim

n→∞
g(`n) = +∞.

In the concluding section, we would like to explain how this lemma can be partly extended:

(a) To the case when X is a surface, with Kodaira dimension replacing the genus.

(b) To the case of mod ` representations (` varying). More precisely, in that case, we will sketch
the proof of the fact that, if X has genus ≥ 1 or if X has genus 0 and Aη has semistable
reduction everywhere except possibly over one point, then lim

`→∞
g(`) = +∞.
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