A uniform open image theorem for ℓ -adic representations of étale fundamental groups (Talk 1: preliminaries)

Anna Cadoret - I.M.B. (Univ. Bordeaux 1) Akio Tamagawa - R.I.M.S. (Kyoto Univ.)

Sakura Workshop "Torsion of abelian schemes and rational points on moduli spaces" - I.M.B., January 25th - 29th, 2010

- 1. (Slides) Recall classical facts about:
 - (a) Etale fundamental group;
 - (b) ℓ -adic Lie groups
- 2. State our main result and some of its corollaries
- 3. Sketch the proof

Etale fundamental groups of schemes: Definition

X: connected scheme

 $\mathcal{C}_X^{(1)}$: category of finite étale covers of X

$$\overline{x}:\Omega\to X$$
: geometric point $\curvearrowright F_{\overline{x}}: \ \mathcal{C}_X^{(1)} \longrightarrow FSETS$
 $Y\stackrel{p}{\to} X \mapsto Y_{\overline{x}}$

Thm.: $\mathcal{C}_X^{(1)}$ is a Galois category with fiber functor $F_{\overline{x}}:\mathcal{C}_X^{(1)}\to FSETS$.

 $\pi_1(X,\overline{x}) := \operatorname{Aut}(F_{\overline{x}})$ is endowed with a profinite group structure:

$$\pi_1(X, \overline{x}) = \lim_{\longleftarrow} \Pi_{\overline{x},p},$$

where $\Pi_{\overline{x},p} = \operatorname{Im}(\pi_1(X,\overline{x}) \to \mathcal{S}(Y_{\overline{x}}))$ and the projective limit is over all connected (Galois) $Y \stackrel{p}{\to} X$.

The profinite group $\pi_1(X, \overline{x})$ is the étale fundamental group of X with base point \overline{x} .

$$C_X^{(1)} \xrightarrow{F_{\overline{x}}} FSETS$$

$$\stackrel{eq.}{\downarrow} \qquad For$$

$$C(\pi_1(X, \overline{x}))$$

Facts:

- 1. Two fiber functors are always isomorphic hence $\pi_1(X, \overline{x})$ does not depend on \overline{x} up to a unique inner isomorphism.
- 2. Functoriality: the functor from Galois categories pointed with fiber functors and fundamental functors to profinite groups is an equivalence of categories.

$$f: X' \to X$$

$$\curvearrowright f^*: \mathcal{C}_X^{(1)} \to \mathcal{C}_{X'}^{(1)}$$

$$\curvearrowright \pi_1(f): \pi_1(X', \overline{x}') \to \pi_1(X, f(\overline{x}'))$$

Etale fundamental groups of schemes: Additional assumptions

1. X: locally noetherian, normal, connected scheme with generic point η

 $\mathcal{C}_X^{(2)}$: category of finite separable $k(\eta)$ -algebras étale over X $k(\eta) \hookrightarrow \overline{k(\eta)}$: fixed algebraic closure (geometric generic point)

$$\mathcal{C}_{X}^{(1)}$$
 $\xrightarrow{Rational\ function\ ring}$
 $C_{X}^{(2)}$
 $\xrightarrow{Vusual'}$
 $C(\operatorname{Gal}(M_{X}|k(\eta)))$,

where $k(\eta) \hookrightarrow M_X$ is the maximal algebraic subextension of $k(\eta) \hookrightarrow \overline{k(\eta)}$ unramified over X.

$$\pi_1(X, \overline{\eta}) = \operatorname{Gal}(M_X | k(\eta)).$$

2. *k*: field

 $X \to k$ of finite type and geometrically connected

$$(*)$$
 $1 \longrightarrow \pi_1(X_{\overline{k}}) \longrightarrow \pi_1(X) \longrightarrow \Gamma_k \longrightarrow 1$

Etale fundamental groups of schemes: Facts (elementary)

1.
$$U <_{op} \pi_1(X) \longleftrightarrow X_U \to X_{k_U}$$
 connected; $U <_{op} \pi_1(X) \longleftrightarrow X_U \to X_{k_U}$ Galois,

where $k \hookrightarrow k_U = M_X^U \cap \overline{k}$ finite field extension.

2.
$$U <_{op} \pi_1(X)$$

(a)
$$\curvearrowright U^{geo} := U \cap \pi_1(X_{\overline{k}}) <_{op} \pi_1(X_{\overline{k}}) \longleftrightarrow X_U \times_{k_U} \overline{k} \to X_{\overline{k}}.$$

(b) For any $x \in X(k)$,

$$(*) \quad 1 \longrightarrow \pi_1(X_{\overline{k}}) \longrightarrow \pi_1(X) \underbrace{\longrightarrow}_{S_x} \Gamma_k \longrightarrow 1$$

and $s_x(\Gamma_k) < U$ if and only if

Notation: If dim(X) = 1,

 g_U : genus of (a smooth compactification of) X_U .

 $\gamma_U: \overline{k}$ -gonality

 ℓ -adic Lie groups: Definition and facts (non elementary)

X: topological space.

Chart(X): set of triples (U, ϕ, n) , where $U \subset_{op} X$; $\phi : U \xrightarrow{\sim} U_0 \subset_{op} \mathbb{Z}_{\ell}^n$ homeomorphism.

Notation: $C = (U_C, \phi_C, \dim(C)).$

 $C \sim C' \Leftrightarrow \phi_{C'} \circ \phi_C^{-1} : \phi_C(U_C \cap U_{C'}) \tilde{\to} \phi_{C'}(U_C \cap U_{C'})$ are ℓ -adic analytic maps. $\phi_C \circ \phi_{C'}^{-1} : \phi_{C'}(U_C \cap U_{C'}) \tilde{\to} \phi_C(U_C \cap U_{C'})$

Atlas(X): set of subsets $A \subset \operatorname{Chart}(X)$ such that $C, C' \in A \Rightarrow C \sim C'$; $X = \bigcup_{C \in A} U_C$.

 $A \sim A' \Leftrightarrow C \in A, C' \in A' \Rightarrow C \sim C'.$

 \mathcal{M}_{ℓ} : category of ℓ -adic manifolds:

Objects: (X, \mathcal{A}) with X a topological space and $A \in Atlas(X)/\sim$; Morphisms: Continuous maps which are ℓ -adic analytic maps in the charts.

 $\curvearrowright \mathcal{G}_{\ell} < \mathcal{M}_{\ell}$: subcategory of ℓ -adic Lie groups.

Facts:

- 1. The forgetful functor $\mathcal{G}_{\ell} \to TOPGRP$ is fully faithful;
- 2. Let $G \in \mathcal{G}_{\ell}$ then:
 - (a) For any $H <_{cl} G$, $H \in \mathcal{G}_{\ell}$ and $H \hookrightarrow G \in \text{Hom}_{\mathcal{G}_{\ell}}$;
 - (b) For any $H \triangleleft_{cl} G$, $G/N \in \mathcal{G}_{\ell}$ and $G \twoheadrightarrow G/N \in \text{Hom}_{\mathcal{G}_{\ell}}$.

 $\ell > 2$ (for simplicity);

G: pro- ℓ group;

$$P_1(G) := G, P_{n+1}(G) := \overline{P_n(G)^{\ell}[P_n(G), G]}, n \ge 1.$$

G is a uniform pro- ℓ group if:

- 1. G is topologically finitely generated;
- 2. $G/\overline{G^{\ell}}$ is commutative;

3.
$$[P_n(G): P_{n+1}(G)] = [G: P_2(G)], n \ge 1.$$

Assume that G is a uniform pro- ℓ group and let d := d(G) be the minimal number of generators of G:

$$G = \overline{\langle g_1, \dots, g_d \rangle}$$

Facts: $G \stackrel{\sim}{\to} P_{n+1}(G)$ is an homeomorphism. $g \mapsto g^{\ell^n}$

1.

$$\alpha$$
: $(\mathbb{Z}_{\ell}^d, +)$ $\tilde{\rightarrow}$ $(G, +_G)$ $(\lambda_1, \dots, \lambda_d) \mapsto \lambda_1 g_1 +_G \dots +_G \lambda_d g_d$

is a continuous group isomorphism (in particular, this endows G with the structure of a ℓ -adic Lie group).

2. $(G, +_G, (,)_G)$ is a \mathbb{Z}_{ℓ} -Lie algebra.

Thm: Let G be a topological group. Then $G \in \mathcal{G}_{\ell}$ if and only if G contains an open subgroup which is a a uniform pro- ℓ group $U <_{op} G$.

In that case, the chart $\alpha^{-1}: U \to \mathbb{Z}_{\ell}^d$ is compatible with the structure of ℓ -adic manifold on U induced from the one on G and d(U) does not depend on U: we call it the dimension of G.

ℓ-adic Lie groups: Lie correspondance

$$G, G' \in \mathcal{G}_{\ell};$$

 $\mathcal{H}(G,G')$:set of pairs (U,f), where $U<_{op}G$ and $f:U\to G'\in \mathrm{Hom}_{\mathcal{G}_{\ell}}$.

 $(U, f) \sim (V, g) \Leftrightarrow \text{there exists } W <_{op} U \cap V \text{ such that } f|_{W} = g|_{W}.$

 $\curvearrowright \mathcal{G}_{\ell} \to \tilde{\mathcal{G}}_{\ell}$, where $\tilde{\mathcal{G}}_{\ell}$ is the category with:

Objects: $Ob(\mathcal{G}_{\ell})$;

 $\overline{\text{Morphisms:}} \text{ Hom}_{\tilde{\mathcal{G}}_{\ell}}(G, G') = \mathcal{H}(G, G') / \sim.$

 $\curvearrowright \mathcal{L}_{\ell}$: category of finite dimensional \mathbb{Q}_{ℓ} Lie algebras.

Define a functor:

$$Lie: \mathcal{G}_{\ell} \to \mathcal{L}_{\ell}$$

as follows:

- $G \in \mathcal{G}_{\ell}$, $U <_{op} G$ uniform pro- $\ell \curvearrowright Lie^{0}(U) := (U, +_{U}, (,)_{U});$ $\curvearrowright Lie(G) := Lie^{0}(U) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell};$
- $f: G \to G' \in \operatorname{Hom}_{\mathcal{G}_{\ell}}, \ U' <_{op} G' \text{ uniform pro-}\ell, \ U <_{op} f^{-1}(U') \text{ uniform pro-}\ell$ $\curvearrowright Lie^{0}(f) := f|_{U}: (U, +_{U}, (,)_{U}) \to (U', +_{U'}, (,)_{U'});$ $\curvearrowright Lie(f) := Lie^{0}(f) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell} : Lie(G) \to Lie(G').$

Thm:

Facts:

- 1. $1 \to K \to G \to Q \to 1$ short exact sequence in \mathcal{G}_{ℓ} $\Rightarrow 1 \to Lie(K) \to Lie(G) \to Lie(Q) \to 1$ short exact sequence in \mathcal{L}_{ℓ} ;
- 2. There exists $U <_{op} G$ such that $Lie(U^{ab}) = Lie(U)^{ab} (= Lie(G)^{ab})$.

ℓ -adic Lie groups: Example

 $U:=Id+\ell M_d(\mathbb{Z}_\ell)<_{op}G:=GL_d(\mathbb{Z}_\ell)$ is a uniform pro- ℓ subgroup and the logarithm:

$$\ell^{-1}$$
ln: $(U, +_U, (,)_U) \xrightarrow{\tilde{}} (M_d(\mathbb{Z}_\ell), +, [,])$

$$Id + \ell u \mapsto \sum_{n \ge 1} \frac{(-1)^{n+1} \ell^{n-1}}{n} u^n$$

induces an isomorphism of \mathbb{Z}_{ℓ} -Lie algebras.

$$\Rightarrow \operatorname{Lie}(G) = (M_d(\mathbb{Q}_\ell), +, [,]).$$

Facts:

1. For any $g_0 \in G$, with:

$$\phi_{g_0} \colon G \xrightarrow{\tilde{}} G
g \mapsto g_0 g g_0^{-1}$$

one has:

$$Ad(g_0) := Lie(\phi_{g_0}) : Lie(G) \xrightarrow{\tilde{}} Lie(G)$$

 $u \mapsto [g_0, u] = g_0u - ug_0.$

2. Any compact subgroup of $GL_d(\mathbb{Q}_\ell)$ is conjugate to a subgroup of $GL_d(\mathbb{Z}_\ell)$.