A uniform open image theorem for ℓ -adic representations of étale fundamental groups, II

January 26, 2010

Anna Cadoret
(IMB, Univ. Bordeaux 1)
Akio Tamagawa
(RIMS, Kyoto Univ.)

II.0. Notations and Definitions.

Given
$$G <_{cl} GL_d(\mathbb{Z}_\ell)$$
 and $n \ge 0$

$$G_n \stackrel{\text{def}}{=} \operatorname{Im}(G \to GL_d(\mathbb{Z}/\ell^n\mathbb{Z}))$$

$$G(n) \stackrel{\text{def}}{=} \operatorname{Ker}(G \to GL_d(\mathbb{Z}/\ell^n\mathbb{Z}))$$

Def. G is Strictly Rationally Perfect

$$\stackrel{\text{def}}{\iff} \forall U <_{op} G, |U^{ab}| < \infty$$

$$\iff Lie(G)^{ab} = 0$$

k = k, char. = 0 X^{cpt} : proper (smooth, connected) curve /k $X \subset X^{cpt}$: open $\neq \emptyset$ $g \stackrel{\text{def}}{=} g_X \stackrel{\text{def}}{=} \text{genus of } X^{cpt}$ $r \stackrel{\text{def}}{=} r_X \stackrel{\text{def}}{=} |X^{cpt} \setminus X|$

$$\pi_{1}(X) = \text{\'etale fundamental group of } X$$

$$\stackrel{\text{def}}{=} \operatorname{Aut}(F_{\overline{x}}: \mathcal{C}_{X}^{(1)} = (\operatorname{fet}/X) \to FSETS)$$

$$= \operatorname{Gal}(M_{X}/k(X))$$

$$= \pi_{1}^{top}(X_{\mathbb{C}})^{\wedge}$$

$$= \pi_{1}^{top}(\Sigma_{g,r})^{\wedge}$$

$$= \langle \alpha_{1}, \dots, \alpha_{g}, \beta_{1}, \dots, \beta_{g}, \gamma_{1}, \dots, \gamma_{r} \\ | [\alpha_{1}, \beta_{1}] \dots [\alpha_{g}, \beta_{g}] \gamma_{1} \dots \gamma_{r} = 1 \rangle^{\wedge}$$

$$(= F_{2g+r-1}^{\wedge} \text{ if } r > 0)$$

$$U <_{op} \pi_1(X) \iff X_U \xrightarrow{\text{fet}} X \text{ (connected)}$$

$$\rho: \pi_1(X) \overset{\text{cont}}{\to} GL_d(\mathbb{Z}_{\ell})$$

$$G \overset{\text{def}}{=} \rho(\pi_1(X)) \ (= "G^{geo}")$$

$$U <_{op} G \implies X_U \overset{\text{def}}{=} X_{\rho^{-1}(U)} \overset{\text{fet}}{\to} X$$

$$g_U \overset{\text{def}}{=} g_{X_U}$$

$$\rho$$
: (G)SRP $\stackrel{\text{def}}{\Longleftrightarrow}$ G: SRP

II.1. Main Theorem.

Th.II.1 (=Th.I.G-1). $H <_{cl} G$ not open Assume that ρ is SRP. Then:

$$\lim_{n \to \infty} g_{HG(n)} = \infty$$

II.2. Proof of Main Theorem.

Step 1. degree $\rightarrow \infty$

Claim.
$$\lim_{n\to\infty}[G:HG(n)]=\infty$$

Proof. Otherwise,

$$G = HG(0) \supset \cdots \supset HG(n) \supset \cdots$$
stablizes and $H = \bigcap_{n \geq 0} HG(n)$ is open. \square

Step 2. Riemann-Hurwitz

Write
$$X^{cpt} \setminus X = \{P_1, \dots, P_r\}$$

 $I_{P_i} < G$: inertia at P_i

For
$$U <_{op} G$$
, set $\lambda_U \stackrel{\text{def}}{=} \frac{2g_U - 2}{[G:U]}$.

By Riemann-Hurwitz formula

$$\lambda_{HG(n)} = 2g - 2 + \sum_{i=1}^{r} (1 - \epsilon_i(n))$$

where

$$\epsilon_i(n) \stackrel{\text{def}}{=} \frac{|I_{P_i,n} \backslash G_n/H_n|}{|G_n/H_n|}$$

In particular, Th.II.1 is clear for $g \geq 2$.

Step 3. Galois closure case

Def.
$$G$$
: group, $H, U < G$

$$K_H(U) \stackrel{\text{def}}{=} \bigcap_{u \in U} uHu^{-1}$$

In other words, $K_H(U)$ is:

- the maximal subgroup of H normalized by U
- the maximal subgroup of G fixing $UH/H \subset G/H$ (elementwise)

In particular, $K_H(G)$ is:

- the maximal normal subgroup of G contained in H
- the kernel of the action $G \curvearrowright G/H$

For I < G, write $I_H \stackrel{\text{def}}{=} I/(I \cap K_H(G))$. Then I_H is:

– the image of the action $I \curvearrowright G/H$

Set
$$\widetilde{G}(n) \stackrel{\text{def}}{=} K_{HG(n)}(G)$$
. In particular, $G(n) < \widetilde{G}(n) < HG(n)$.

Then $X_{\widetilde{G}(n)} \to X$ is:

- Galois closure of $X_{HG(n)} \to X$

By Riemann-Hurwitz formula

$$\lambda_{\widetilde{G}(n)} = 2g - 2 + \sum_{i=1}^{r} (1 - \widetilde{\epsilon}_i(n))$$

where

$$\widetilde{\epsilon}_i(n) \stackrel{\text{def}}{=} \frac{1}{|(I_{P_i,n})_{H_n}|}$$

Claim. $\lim_{n\to\infty} [G:\widetilde{G}(n)] = \infty$

(Proof.) $[G:\widetilde{G}(n)] \geq [G:HG(n)] \rightarrow \infty$

Claim.
$$\lim_{n\to\infty}g_{\widetilde{G}(n)}=\infty$$

(*Proof.*) Otherwise, $\sup_{n\geq 0} \{g_{\widetilde{G}(n)}\} \leq 1$. By

classification of finite automorphism groups of curves of genus ≤ 1 :

$$\exists n_0 \geq 0, \ \widetilde{G}(n_0)/\widetilde{G}(\infty) \leftarrow \mathbb{Z}_{\ell}^2$$

where
$$\widetilde{G}(\infty) = \bigcap_{n>0} \widetilde{G}(n)$$
.

This contradticts the SRP assumption. \square

Claim.
$$\lim_{n\to\infty}\lambda_{\widetilde{G}(n)}=\lambda>0$$

where

$$\lambda = 2g - 2 + \sum_{i=1}^{r} (1 - \widetilde{\epsilon}_i), \, \widetilde{\epsilon}_i \stackrel{\text{def}}{=} \frac{1}{|(I_{P_i})_H|}$$

(*Proof.*) The limit formula is clear. As $\lambda_{\widetilde{G}(n)}$ is monotonously non-decreasing in n and positive for $n \gg 0$, one has $\lambda > 0$. \square

Step 4. Estimate of local terms

Thus, it suffices to prove $\lim_{n\to\infty} \epsilon_i(n) = \tilde{\epsilon}_i$

for each
$$i = 1, \ldots, r$$
, where

$$\epsilon_{i}(n) = \frac{|I_{P_{i},n} \setminus G_{n}/H_{n}|}{|G_{n}/H_{n}|}$$

$$\widetilde{\epsilon}_{i} = \frac{1}{|(I_{P_{i}})_{H}|}$$

$$\widetilde{\epsilon}_i = \frac{1}{|(I_{P_i})_H|}$$

Indeed, then $\lim_{n\to\infty} \lambda_{HG(n)} = \lambda > 0$, hence

 $\lim_{n\to\infty} g_{HG(n)} = \infty, \text{ as desired.}$

This is reduced to the following general:

Th.II.2.
$$H, I <_{cl} G <_{cl} GL_d(\mathbb{Z}_\ell)$$

Assume:

$$(\sharp) \ \forall n \geq 0, \ K_H(G(n)) = K_H(G)$$

Then:

$$\lim_{n \to \infty} \frac{|I_n \backslash G_n / H_n|}{|G_n / H_n|} = \frac{1}{|I_H|}$$

Step 5. Proof of Th.II.2

Claim. $(G/H)^I \subset_{cl} G/H$ is thin (i.e. has no interior point) unless $I_H = 1$.

(Proof.) Otherwise,
$$\exists n \geq 0, \exists g \in G$$

 $gG(n)H/H \subset (G/H)^I$

But this is equivalent to:

$$I \subset gK_H(G(n))g^{-1} \stackrel{(\sharp)}{=} gK_H(G)g^{-1}$$

Thus, $I_H = 1$. \square

Claim.
$$\lim_{n\to\infty} \frac{|(G_n/H_n)^{I_n}|}{|G_n/H_n|} = 0$$
unless $I_H = 1$.

(*Proof.*) Write \mathcal{X}_I for the inverse image of $(G/H)^I$ in G. Then:

$$\mathcal{X}_I \subset_{cl} G \subset_{cl} GL_d(\mathbb{Z}_\ell) \subset_{cl} \mathbb{Z}_\ell^{d^2+1}$$
 are ℓ -adic analytic subsets of $\mathbb{Z}_\ell^{d^2+1}$.

Th.(Serre-Oesterlé)

 $Z \subset_{cl} \mathbb{Z}_{\ell}^{N}$ ℓ -adic analytic $\Longrightarrow 0 < \exists C_{Z} < \infty$, s.t.

$$|Z_n| \sim C_Z \cdot \ell^{n \dim(Z)}$$

Thus:

$$\lim_{n \to \infty} \frac{|(G_n/H_n)^{I_n}|}{|G_n/H_n|}$$

$$= \lim_{n \to \infty} \frac{|(\mathcal{X}_I)_n|}{|G_n|}$$

$$= \lim_{n \to \infty} \frac{C_{\mathcal{X}_I} \cdot \ell^{n \dim(\mathcal{X}_I)}}{C_G \cdot \ell^{n \dim(G)}} = 0. \square$$

For simplicity, treat the case $|I_H| < \infty$. Set

$$X_n \stackrel{\text{def}}{=} G_n/H_n,$$

$$X'_n \stackrel{\text{def}}{=} \bigcup_{I_H > J \neq 1} X_n^J,$$

$$Y_n \stackrel{\text{def}}{=} X_n \setminus X'_n.$$

Thus, Y_n is the maximal subset of X_n on which I_H acts freely.

$$\frac{|X_n|}{|I_H|} \le \underline{\frac{|I_n \setminus X_n|}{|I_H|}} = |I_n \setminus Y_n| + |I_n \setminus X_n'|$$

$$\le \frac{|Y_n|}{|I_H|} + |X_n'|$$

$$= \frac{|X_n|}{|I_H|} + \left(1 - \frac{1}{|I_H|}\right)|X_n'|$$

Now, Th.II.2 follows since

$$\frac{|X'_n|}{|X_n|} \le \sum_{I_H > J \ne 1} \frac{|X_n^J|}{|X_n|} \to 0 \ (n \to \infty).$$

Step 6. Assumption (#)

$$K_H(G) = K_H(G(0)) <_{cl} K_H(G(1)) <_{cl} \cdots K_H(G(n)) <_{cl} K_H(G(n+1)) \cdots$$

Lem. G: compact ℓ -adic Lie group

Any sequence

$$H_0 <_{cl} H_1 <_{cl} \cdots <_{cl} H_n <_{cl} \cdots <_{cl} G$$
 stabilizes. \square

So, (\sharp) is available after replacing X with $X_{HG(n)}$ for $n \gg 0$. \square

A uniform open image theorem for ℓ -adic representations of étale fundamental groups, III

January 27, 2010

Anna Cadoret
(IMB, Univ. Bordeaux 1)
Akio Tamagawa
(RIMS, Kyoto Univ.)

III.0. Notations and Definitions.

Given
$$G <_{cl} GL_d(\mathbb{Z}_\ell)$$
 and $n \ge 0$

$$G_n \stackrel{\text{def}}{=} \operatorname{Im}(G \to GL_d(\mathbb{Z}/\ell^n\mathbb{Z}))$$

$$G(n) \stackrel{\text{def}}{=} \operatorname{Ker}(G \to GL_d(\mathbb{Z}/\ell^n\mathbb{Z}))$$

Def.
$$G$$
 is SRP $\stackrel{\text{def}}{\iff} \forall U <_{op} G, |U^{ab}| < \infty$

$$k = \overline{k}$$
, char. = 0
 X^{cpt} : proper (smooth, connected) curve $/k$
 $X \subset X^{cpt}$: open $\neq \emptyset$
 $g \stackrel{\text{def}}{=} g_X \stackrel{\text{def}}{=} \text{genus of } X^{cpt}$
 $\gamma \stackrel{\text{def}}{=} \gamma_X \stackrel{\text{def}}{=} \text{gonality of } X^{cpt}$
 $(\stackrel{\text{def}}{=} \min\{\deg(f) \mid f : X^{cpt} \to \mathbb{P}^1_k\})$
 $\gamma_X = 1 \iff g_X = 0$
 $\gamma_X = 2 \iff \text{either } g_X = 1$
or $g_X \geq 2$, X is hyperelliptic

$$\rho : \pi_1(X) \xrightarrow{\text{cont}} GL_d(\mathbb{Z}_{\ell})$$

$$G \stackrel{\text{def}}{=} \rho(\pi_1(X)) \ (= \text{``}G^{geo}\text{''})$$

$$U <_{op} G \implies X_U \xrightarrow{\text{fet}} X$$

$$g_U \stackrel{\text{def}}{=} g_{X_U}, \gamma_U \stackrel{\text{def}}{=} \gamma_{X_U},$$

 ρ : (G)SRP $\stackrel{\text{def}}{\iff}$ G: SRP

III.1. Main Theorem.

Th.III.1. $H <_{cl} G$ not open

Put one of the following assumptions:

- (a) ρ is SRP. (Th.I.G-2)
- (b) $\operatorname{codim}_G(H) \geq 3$.

Then:

$$\lim_{n \to \infty} \gamma_{HG(n)} = \infty$$

Rem.1. Th.III.1(a) is stronger than Th.II.1.

- 2. Th.III.1(a) is proved via Th.II.1.
- 3. Th.III.1(b) implies:

$$\operatorname{codim}_{G}(H) \ge 3 \implies \lim_{n \to \infty} g_{HG(n)} = \infty$$

But we do not know any direct proof (i.e. not via Th.III.1(b)) of this statement.

III.2. Proof of Main Theorem.

Step 1. Reduction

For a cover $f: Y \to X$, Riemann-Hurwitz gives a complete descripton of g_Y in g_X , $\deg(f)$ and ramifications. Also, $g_X \leq g_Y$.

In the case of gonality:

- No such complete description is available.
- Rough inequalities are available:

$$\gamma_X \le \gamma_Y \le \deg(f)\gamma_X$$

Here, the 1st inequality is too rough to get a good estimate of γ_Y . But the 2nd inequality allows us to make the following important reduction: One may replace Xwith any $X' \to X$ freely.

In particular, one may assume that $G = G(n_0)$ for $n_0 \gg 0$ by replacing X with $X_{G(n_0)} \to X$, unlike the genus case. We fix such an n_0 .

Step 2. Successive Galois covers

Lem. $H <_{cl} G <_{cl} GL_d(\mathbb{Z}_\ell)$

Assume $G = G(n_0)$ for some $n_0 > 0$ and let $0 \le k \le n_0$. Then:

- (i) $HG(n+k) \triangleleft HG(n)$ for $\forall n \geq 0$.
- (ii) $HG(n)/HG(n+k) \simeq (\mathbb{Z}/\ell^k)^{\Delta}$ for $\forall n \gg$
- 0, where $\Delta \stackrel{\text{def}}{=} \operatorname{codim}_G(H)$.
- (Proof.) (i) Direct computation.
- (ii) Direct computation, together with Serre: For $n \gg 0$,

 $[G:G(n)] = C_G \cdot \ell^{n\dim(G)}.$

 $[H:H(n)] = C_H \cdot \ell^{n\dim(H)}$. \square

Thus, our tower

$$\cdots \to X_n \to \cdots \to X_1 \to X_0 = X$$

with $X_n \stackrel{\text{def}}{=} X_{HG(n)}$ satisfies:

- $-X_n \to X_{n-1}$ is Galois with group Γ_n
- $-\Gamma_n \simeq (\mathbb{Z}/\ell)^{\Delta} \text{ for } n \gg 0$

More generally, if we set $X_n \stackrel{\text{def}}{=} X_{HG(nk)}$ for some $0 \le k \le n_0$:

- $-X_n \to X_{n-1}$ is Galois with group Γ_n
- $-\Gamma_n \simeq (\mathbb{Z}/\ell^k)^{\Delta} \text{ for } n \gg 0$

Step 3. Galois cover and gonality Given a diagram of proper curves over k:

$$(*) \qquad \begin{matrix} Y \xrightarrow{\pi} Y' \\ f \downarrow \\ B \end{matrix}$$

where

 $-f: Y \to B$ is a non-constant morphism,

 $-\pi: Y \to Y'$ is a (possibly ramified) Galois cover with group Γ .

Then:

- (*) is equivariant $\iff \forall \sigma \in \Gamma, \exists \sigma_B \in \operatorname{Aut}_k(B), \text{ s.t. } f \circ \sigma = \sigma_B \circ f$
- (*) is primitive $\stackrel{\text{def}}{\Longrightarrow}$ for any factorization $Y \stackrel{f'}{\to} B' \to B$ of f with $\deg(f') > 1$, the diagram

$$(*) \qquad \begin{matrix} Y \xrightarrow{\pi} Y' \\ f' \downarrow \\ B' \end{matrix}$$

is not equivariant.

Lem. (T, J.Alg.Geom.13(2004)) If (*) is primitive, then

$$\deg(f) \ge \sqrt{\frac{g_Y + 1}{g_B + 1}}$$

Rem. When $\deg(f)$ is a prime, (*) is either equivariant or primitive. In general, we can construct an "equivariant-primitive decomposition" of (*).

Step 4. Key technical result

Th.III.2. Let

$$(\star) \cdots \to Y_n \to \cdots \to Y_1 \to Y_0$$

be a tower of proper curves over k such that $Y_n \to Y_{n-1}$ is (possibly ramified) Galois with group Γ_n . Then one of the following holds:

(i)
$$\lim_{n\to\infty} \gamma_{Y_n} = \infty$$

(ii) $\exists N \geq 0$, s.t. $\gamma_{Y_n} = \gamma$ for $\forall n \geq N$ and

$$(\star)$$
 fits into:

$$\cdots \to Y_n \to Y_{n-1} \to \cdots \to Y_N \to \cdots$$

$$\downarrow^{f_n} \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\cdots \to B_n \to B_{n-1} \to \cdots \to B_N$$

where

- $-B_n \to B_{n-1}$ is Galois with group Γ_n
- each square $Y_n \to Y_{n-1}$ is cartesian \downarrow

$$B_n \to B_{n-1}$$

(up to normalization) and Γ_n -equivariant

- either
$$g_{B_n} = 0$$
, $\deg(f_n) = \gamma$ for $\forall n \geq N$ or $g_{B_n} = 1$, $\deg(f_n) = \gamma/2$ for $\forall n \geq N$

(*Proof.*) One may assume:

- $-|\Gamma_n| > 1$ for infinitely many n
- $-\lim_{n\to\infty} g_{Y_n} = \infty \text{ (Otherwise, } \sup_{n>0} \{g_{Y_n}\} \le 1.$

Set $B_n \stackrel{\text{def}}{=} Y_n$ for $n \gg 0$.)

- in particular, $g_{Y_n} \geq \gamma^2$ for $\forall n \geq 0$
- $-\gamma_{Y_n} = \gamma \text{ for } \forall n \geq 0$

Moreover, for simplicity, put the following extra assumptions:

- $-\gamma$ is a prime
- $-(\gamma, |\Gamma_n|) = 1 \text{ for } \forall n > 0$
- $-\Gamma_n$ contains an element of order ≥ 3

Now, consider any n > 0 and any $f: Y_n \to B$ with $\deg(f) = \gamma$ and $g_B = 0$, and the resulting diagram

$$(*) \qquad \begin{matrix} Y_n \to Y_{n-1} \\ \downarrow \\ B \end{matrix}$$

As γ is a prime, (*) is either equivariant or primitive. In the latter case, one has

$$\gamma = \deg(f) \ge \sqrt{\frac{g_{Y_n} + 1}{g_B + 1}} \ge \sqrt{\gamma^2 + 1}$$

which is absurd.

So, (*) must be equivariant, and fits into a cartesian square:

$$Y_n \to Y_{n-1}$$

$$\downarrow^f \downarrow \qquad \downarrow^f \downarrow$$

$$B \to B'$$

where $B' \stackrel{\text{def}}{=} B/\Gamma_n$. The correspondence $f \mapsto f'$ defines a projective system $(\mathcal{F}_n)_{n>0}$, where \mathcal{F}_n is the set of $f: Y_n \to B$ with $\deg(f) = \gamma$ and $g_B = 0$ modulo isomorphisms.

Claim. $|\mathcal{F}_n| < \infty$

(*Proof.*) Reduced to the case that Γ_n is cyclic of order ≥ 3 , where one can prove the desired finiteness via Kummer theory for function fields. \square

Now, $\varprojlim_n \mathcal{F}_n \neq \emptyset$, which completes the proof of Th.III.2. \square

Step 5(a). End of proof of Th.III.1(a). Apply Th.III.2 to our tower $(X_n = X_{HG(n)})$ and obtain:

One can choose $B_N^{op} \subset B_N$ and $X_N^{op} \subset X_N$ such that $f_N : X_N^{cpt} \to B_N$ restricts to $X_N^{op} \xrightarrow{\text{fet}} B_N^{op}$. Then, replacing

- -X with B_N^{op}
- $-\rho \text{ with "Ind}_{\pi_1(X_N^{op})}^{\pi_1(B_N^{op})} \operatorname{Res}_{\pi_1(X_N^{op})}^{\pi_1(X)} \rho$ "

Th III.1(a) is reduced to Th.II.1.

Step 5(b). End of proof of Th.III.1(b). Apply Th.III.2 to our tower $(X_n = X_{HG(n)})$ and obtain:

Here, $\operatorname{Aut}(B_n/B_{n-1}) = \Gamma_n \simeq (\mathbb{Z}/\ell)^{\Delta}$ for $n \gg 0$.

As $\Delta \geq 3$, this is impossible by classification of finite automorphism groups of curves of genus ≤ 1 . \square

III.3. Concluding Remarks.

We have applied Th.III.1 to obtain the following arithmetic results in I, where

- -k: field finitely generated over \mathbb{Q}
- -X: curve over k

Th.III.3 (=Th.I.1). Given:

$$\rho: \pi_1(X) \to GL_d(\mathbb{Z}_\ell), \ \delta \geq 1$$

(a) If ρ is GSRP

$$X_{\rho,\delta} \stackrel{\text{def}}{=} \{x \in X^{\leq \delta} \mid G_x < G \text{ not open} \}$$
 is finite, and $\exists N = N_{\rho,\delta} \geq 1 \text{ such that}$ $G_x > G(N) \text{ for } \forall x \in X^{\leq \delta} \setminus X_{\rho,\delta}.$

(b) In general

$$X_{\rho,\delta,\geq 3} \stackrel{\text{def}}{=} \{x \in X^{\leq \delta} \mid \operatorname{codim}_G(G_x) \geq 3\}$$
 is finite.

CorIII.1 (=Cor.I.1). Given:

 $A \to X$: abelian scheme, ℓ : prime, $\delta \ge 1$ Then $\exists N = N_{A,\ell,\delta}$ such that

$$A_x[\ell^\infty](k(x)) \subset A_x[\ell^N]$$

for $\forall x \in X^{\leq \delta}$.

Toward generalizations of arithmetic results like Th.III.4 and Cor.III.1, we first try to generalize geometric results like Th.II.1 and Th.III.1 in the following situations:

- $-\dim(X) > 1$
- $-\ell$ varies

For this, don't miss Anna's talk IV!