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I11.0. Notations and Definitions.
Given G < GLd(Zg) and n > 0

Gn € Im(G — GLy4(Z/0"Z))
G(n) ¥ Ker(G — GLy4(Z/0"7))
Def. G is Strictly Rationally Perfect

£ VU <, G, U] < o
< Lie(G)* =0



k =k, char. =0
X¢°Pt: proper (smooth, connected) curve /k

X C X°Pt: open # ()
q def gx def genus of X P!

r ey € | X Pt X



71 (X)) = étale fundamental group of X

CAut(Fy : Y = (fet/X) — FSETS)

Gal(Mx /k(X))

m P (X))

— Wiap(zg,r)/\

— <Oél,. . -70497617-- '7697717' °'7f}/7“

| [, B1] - [agaﬁg]’yl R 1>/\
(= FQ/}C]JFT_l if r > 0)

U <op (X)) — Xyt x (connected)



P71 (X)CthLd(Zg)
def
G = p(mi(X)) (= “Gr*”)

U <op G — Xy d:epr—l(U)fe%tX

def
Ju — 9Xy

p: (G)SRP <% G: SRP



I1.1. Main Theorem.

Th.I1.1 (=Th.I.G-1). H <. G not open
Assume that p is SRP. Then:

lim grgm) =
n— oo



11.2. Proof of Main Theorem.

Step 1. degree — oo
Claim. lim [G: HG(n)] = o

n—oo

Proof. Otherwise,

stablizes and H = QOH G(n) is open.




Step 2. Riemann-Hurwitz
Write XP* X ={P,...,P.}
Ip, < G: inertia at P;

of 29U — 2
For U <,p G, set Ay e [‘g] 0T




By Riemann-Hurwitz formula
AHG(n) = 29 — 2+ Z(l —€i(n))
i=1

where ; a I
Gn/Hp,|

In particular, Th.IL.1 is clear for g > 2.




Step 3. Galois closure case

Def. G: group, H,U < G

Ku(U) ¥ N uHu™
(N

In other words, K (U) is:

— the maximal subgroup of H normalized
by U

— the maximal subgroup of G fixing
UH/H C G/H (elementwise)
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In particular, Ky (G) is:
— the maximal normal subgroup of G

contained in H
— the kernel of the action G ~ G/H

For I < G, write Iy < I/(IN Ku(Q)).

Then Iy is:
— the image of the action I ~ G/H
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Set G(n) € Ky (G). In particular,

~

G(n) < G(n) < HG(n).

Then X@(n) — X 18:

— Galois closure of Xgg) — X
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By Riemann-Hurwitz formula

A =292+ ;(1 —&(n))
where

N e 1
&i(n) <
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Claim. lim [G: G(n)] = x

n—oo

(Proof.) [G: G(n)] > [G : HG(n)] — oo
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Claim. nh_)rrgoga(n) = 00

(Proof.) Otherwise, sup{gx .} < 1. By
n>0 G

classification of finite automorphism groups
of curves of genus < 1:

Ing > 0, G(ng)/G(00) « Z2
where G(00) = Qoé(n)
This contradticts the SRP assumption.
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Claim. lim A~ . =)X>0

n— 00 G(n)
where

def 1

A=29-24+> (1-6),& =

(Proof.) The limit formula is clear. As

)\5(”) is monotonously non-decreasing in n

and positive for n > 0, one has A > 0.
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Step 4. Estimate of local terms

Thus, it suffices to prove lim €;(n) =€;
n—oo

for each . =1,...,r, where
_ Ip\Gu/Ha

) = G, )
1

~

€; —

(Ip,)H|
Indeed, then lim Aggp) = A > 0, hence

n— o0

lim gggm) = 00, as desired.
n—oo
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This is reduced to the following general:

Th.IL2. H,I <y G <o GL4(Zy)

Assume:

(#) Vn > 0, Ky (G(n)) = Ku(G)
Then: \I \G /H ‘ .

lim n n n _

noo  |Gn/Hn|  |In
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Step 5. Proof of Th.II1.2
Claim. (G/H)! Cc., G/H is thin (i.e. has
no interior point) unless I'y = 1.

(Proof.) Otherwise, 3n >0, dg € G
9G(n)H/H C (G/H)'
But this is equivalent to:

ICgKu(Gn)g 2 gKku(G)g!

ThUS, IH = 1.
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. : ‘(Gn/Hn)In‘
Claim. nh_)ngo G, /H,|
unless Iy = 1.

=0

(Proof.) Write X; for the inverse image of
(G/H)! in G. Then:

X1 Cg G Cel GLd(Zg) Cel Z?Q_H
are f-adic analytic subsets of fo“.
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Th.(Serre-Oesterlé)
2 Cg Zév ¢-adic analytic
— 0 < dCz < o0, s.t.

‘Zn‘ ~ Cy - gndim(Z)
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Thus:

. |(Gn/Hyp)™]
i G/ H, |
_ i (A

n— 00 ‘Gn‘

Cy. - A" dim(X7)
= lim ! .
7, — 00 CG AL dim(G)

22




For simplicity, treat the case |Iy| < oo.

Set

X, € Gn/H,,

def
X'= u X/
" Ig>J#A1 Y
Y, & X, ~ X"
Thus, Y,, is the maximal subset of X,, on

which Iy acts freely.
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[

[

‘In\Xn‘ — ‘In\Yn‘ T ‘IH\X'{%‘
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Step 6. Assumption (#)
Ku(G) = Ku(G(0)) <a Ku(G(1)) <
- Kp(G(n)) <aq Kp(G(n+1))---

Lem. (G: compact ¢-adic Lie group
Any sequence

HO <cl Hl <cl t <dl Hn <c <l G
stabilizes.

So, (#) is available after replacing X with
XHG(n) for n > 0.
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I11.0. Notations and Definitions.
Given G <. GL4(Zy) and n > 0
G, € Im(G — GL4(Z/0"7))

G(n) ¥ Ker(G — GL4(Z/"7))

Ddeg (- is SRP
= YU <op G, [U| < 00
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k =k, char. =0
X¢°Pt: proper (smooth, connected) curve /k

X C X°Pt: open # ()

def  def
g = gx = genus of X!

7y dt VX def gonality of X P!

(< min{deg(f) | f: Xt — PL})

x =1 < gx =0
vx = 2 <= either gx =1
or gx > 2, X is hyperelliptic

vx < (gx +3)/2
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P71 (X)Czl)tGLd(Zg)
det “rYgeo
G = p(m (X)) (= “G9)
U <op G = XUfe%tX
def def
gu = 49Xy YU = VXypy>

p: (G)SRP &£ G: SRP
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I11.1. Main Theorem.

Th.II1.1. H <., G not open
Put one of the following assumptions:

(a) p is SRP. (Th.1.G-2)
(b) codimg(H) > 3.
Then:

lim vyggm) = 00
n—oo
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Rem.1. Th.III.1(a) is stronger than Th.II.1.
2. Th.III.1(a) is proved via Th.II.1.
3. Th.IIL.1(b) implies:

codimg(H) >3 = lim gygm) = o

n—oo

But we do not know any direct proof (i.e.
not via Th.III.1(b)) of this statement.
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I111.2. Proof of Main Theorem.

Step 1. Reduction
For a cover f : Y — X, Riemann-Hurwitz

gives a complete descripton of gy in gx,
deg(f) and ramifications. Also, gx < gy.

In the case of gonality:
— No such complete description is available.

— Rough inequalities are available:

vx <y < deg(f)vx
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Here, the 1st inequality is too rough to get
a good estimate of vy. But the 2nd in-
equality allows us to make the following
important reduction: One may replace X
with any X' — X freely.

In particular, one may assume that G =
G(ng) for ng > 0 by replacing X with
X@G(no) — X, unlike the genus case. We
fix such an nyg.
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Step 2. Successive (Galois covers

Lem. H <, G < GLd(Zg)
Assume G = G(ng) for some ng > 0 and
let 0 < k < ng. Then:

(i) HG(n + k) < HG(n) for Vn > 0.
(ii) HG(n)/HG (n+k) ~ (Z./0F)? for Vn >

0, where A & codime (H).

(Proof.) (i) Direct computation.
(ii) Direct computation, together with Serre:
For n > 0,
G : G(n)] = Cq - (n4im(G)
(H : H(n)] = Cg - ¢rdim),
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Thus, our tower

with X, L x HG(n) Satisties:

— X,, — X,,_1 is Galois with group I',,
~ Ty, ~ (Z/6)” for n > 0

More generally, if we set X, e x HG(nk)

for some 0 < k < ng:
— X,, — X,,_1 is Galois with group I',,
~ Ty, ~ (ZJF)A for n > 0
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Step 3. Galois cover and gonality
Given a diagram of proper curves over k:

Y 5 Y
(+) 7
B

where
— f:Y — B is a non-constant morphism,

—7m:Y — Y'is a (possibly ramified) Galois
cover with group I'.
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Then:

. . def
(¥) is equivariant <= Vo € T, Jop €

Autk(B), S.t. fOO' — OB © f

L def L.
(%) is primitive <= for any factorization

vy &5 B = B of f with deg(f') > 1, the
diagram
Y 5 Y
() 4
Bl
1S not equivariant.
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Lem. (T, J.Alg.Geom.13(2004))
If (%) is primitive, then

gy +1
deg(f) = \/gB .

Rem. When deg(f) is a prime, (x) is ei-
ther equivariant or primitive. In general,
we can construct an “equivariant-primitive
decomposition” of (x).
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Step 4. Key technical result
Th.II1.2. Let

(%) =Y, = =Y =Y

be a tower of proper curves over k such that
Y, — Y,_1 is (possibly ramified) Galois
with group I',,. Then one of the following
holds:

(i) lim 7y, = o0

(ii) AN > 0, s.t. vy, = v for Vn > N and
(%) fits into:

ml l

o+ — B, =+ B,_1— - — Bn
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where
— B,, — B,,_1 is Galois with group I',,

— each square Y,, — Y,,_1 1is cartesian

L
B, — B,_1
(up to normalization) and I'j-equivariant
— either gg. = 0, deg(f,) =~ for Vn > N
or g, = 1, deg(f,) = /2 for Vn > N
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roof.) One may assume:

(Proof.) O y

— || > 1 for infinitely many n

— lim gy, = oo (Otherwise, sup{gy, } < 1.

Set B, 2 Y, for n>> 0.)

— in particular, gy, > 2 for ¥n > 0

— vy, = for Vn > 0

Moreover, for simplicity, put the following
extra assumptions:

— 7y 1S a prime

— (7, |T'n]) =1 for Vn > 0

— I',, contains an element of order > 3
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Now, consider any n > 0 and any f : Y,, —
B with deg(f) = v and g = 0, and the
resulting diagram

Y, = Y._1
(x) 7
B

As v is a prime, (*) is either equivariant or
primitive. In the latter case, one has

1

which 1s absurd.
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So, (*) must be equivariant, and fits into a
cartesian square:

Y, — Y._1

f\l/ f’¢
B — B

where B’ ¥ B /T"y,. The correspondence
f — f’ defines a projective system (F,,)n>o0,
where F,, is the set of f : Y,, — B with
deg(f) = v and gg = 0 modulo isomor-
phisms.
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Claim. |F,| < o0

(Proof.) Reduced to the case that I',, is
cyclic of order > 3, where one can prove
the desired finiteness via Kummer theory
for function fields.

Now, lim F,, # (), which completes the proof
of Th.ITL.2.

44



Step 5(a). End of proof of Th.ITI.1(a).

Apply Th.IIL.2 to our tower (X, = Xggm))

and obtain:
.%Xﬁpt%...%Xﬁ)t%...%XCpt

] l

-— B, —---— By

One can choose By C By and X7 C Xy
such that fy : X]C\f?t — By restricts to
X5 fet B37. Then, replacing

— X with BOp

7T1(B
1 (X

Th I1I.1(a) is reduced to Th.II.1.

o . « N) 7T1(X)
p with “Ind_ op)Res (Xop)p
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Step 5(b). End of proof of Th.IIL.1(b).
Apply Th.IIL.2 to our tower (X, = Xggm))
and obtain:

...%Xﬁpt%...%Xﬁ?t%...%XCpt

| l

Here, Aut(B,,/B,_1) = Iy, ~ (Z/£)* for
n > 0.

As A > 3, this is impossible by classi-

fication of finite automorphism groups of
curves of genus < 1.
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I11.3. Concluding Remarks.
We have applied Th.III.1 to obtain the fol-
lowing arithmetic results in I, where

— k: field finitely generated over Q

— X: curve over k
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Th.I11.3 (=Th.I.1). Given:
p:m1(X) — GL4(Zy), 6 > 1

(a) If p is GSRP

X, def{az € X=%| G, < G not open}

1S ﬁmte, and dN = N, s > 1 such that
Gy > G(N) for Vo € X=°\ X, 5.

(b) In general

Xp 5.>3 def {x € X=° | codimg(Gy,) > 3}

is finite.
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CorIIl.1 (=Cor.I.1). Given:
A — X: abelian scheme, ¢: prime, 0 > 1

Then 4N = N4 45 such that
A 6] (k(z)) C Ag[e7]

for Vo € X=9,
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Toward generalizations of arithmetic results
like Th.III.4 and Cor.III.1, we first try to
generalize geometric results like Th.1I1.1 and

Th.III.1 in the following situations:
—dim(X) > 1
— £ varies

For this, don’t miss Anna’s talk IV!
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