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1. Some Examples

1.1

A Diophantine finiteness theorem:

Let a, b, c, n ∈ Z and n ≥ 4. Then the equation

axn + byn = c

has at most finitely many rational solutions in (x, y).

General proof due to Faltings.

Recent ‘homotopical’ proof (Coates and K., arXiv:0810.3354), using

general structure theory of moduli spaces of torsors and some

non-vanishing for L-values.
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1.2

E/Q elliptic curve with

rankE(Q) = 1,

integral j-invariant, and

|X(E)[p∞| <∞

for a prime p of good reduction.

X = E \ {0} given as a minimal Weierstrass model:

y2 = x3 + ax+ b.

So

X(Z) ⊂ E(Z) = E(Q).

3



Let α = dx/y, β = xdx/y. Get analytic functions on X(Qp),

logα(z) =

∫ z

b

α; logβ(z) =

∫ z

b

β;

ω(z) =

∫ z

b

αβ.

Here, b is a tangential base-point at 0, and the integral is (iterated)

Coleman integration.

Locally, the integrals are just anti-derivatives of the forms, while

for the iteration,

dω = (

∫ z

b

β)α.
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Suppose there is a point y ∈ X(Z) of infinite order in E(Q). Then

the subset

X(Z) ⊂ X(Qp)

lies in the zero set of the analytic function

ψ(z) := ω(z)− (1/2) logα(z) logβ(z)

−
(ω(y)− (1/2) logα(y) logβ(y))

(logα(y))2
(logα(z))2.

A fragment of non-abelian duality and explicit reciprocity.
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2. Some Anabelian Geometry

2.1 Grothendieck in the 80’s

(1) Pursuing stacks;

(2) Long march through Galois theory;

(3) Letter to Faltings.

-(3) contains the idea that certain ‘anabelian’ schemes should be

encoded in their fundamental groups.

-(2) the idea that arbitrary schemes can be constructed out of

anabelian ones, and hence, encoded in some structure involving

non-abelian fundamental groups.

-This procedure should perhaps involve (1).
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Picture should be something like this:

-X scheme.

X = ∪iUi

with Ui anabelian.

-

Uij→Ui ×X Uj

with Uij anabelian.

-possibly continue with further ‘intersections.’

Encode X into the system of fundamental groups of the UI ’s.
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Basic idea: X and Y anabelian schemes, then one should have

Isom(X,Y ) ≃ Isom(π1(X), π1(Y ))/π1(Y ).

Proved for hyperbolic curves over number fields by Nakamura,

Tamagawa, and Mochizuki.

General idea: Diophantine geometry, being the study of maps

between schemes of finite type, should also be clarified through this

study.
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2.2 Section conjecture

For ‘usual’ Diophantine geometry, need to consider the exact

sequence

0→π1(X̄)→π1(X)→Gal(F̄ /F )→0.

Here, X/F is a curve of genus ≥ 2 over a number field F , and X̄ is

its base-change to the algebraic closure F̄ . Given any point

x ∈ X(F ), viewed as

x : Spec(F )→X,

get a splitting

x∗ : π1(Spec(F )) = Gal(F̄ /F )→π1(X).
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Section conjecture:

X(F ) ≃ {Splittings of sequence}/conjugacy.

A non-abelian analogue of the conjecture of Birch and

Swinnerton-Dyer, which Grothendieck believed to be highly

relevant to the Diophantine geometry of X .

Actually connected to the termination of a non-abelian descent

algorithm.
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3. The fundamental groupoid

Let X/Q be a compact curve of genus ≥ 2.

Consider X(C), the manifold of complex points of X .

The fundamental groupoid is made up of the path spaces

π1(X(C); a, b)

as the two points a and b vary over X(C), together with the

composition

π1(X(C); b, c)× π1(X(C); a, b)→π1(X(C); a, c)

obtained by concatenating paths.
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The portion that originates at a fixed base-point b is comprised of

the fundamental group

π1(X(C), b)

and the homotopy classes of paths

π1(X(C); b, x)

for any other point x ∈ X(C).

We will focus mostly on the category of torsors for the group

π1(X(C), b), inside which the path spaces π1(X(C); b, x) move.
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This means that there is a group action

π1(X(C); b, x)× π1(X(C), b) - π1(X(C); b, x)

that is simply transitive.

Alternatively, any choice of a path p ∈ π1(X(C); b, x) determines a

bijection

π1(X(C), b) ≃ π1(X(C); b, x)

γ 7→ p ◦ γ.
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One version of the anabelian philosophy is to encode points into

the structures π1(X(C); b, x).

The idea of putting points into geometric families is a common one

in Diophantine geometry, as when solutions

an + bn = cn

to the Fermat equation are encoded into the elliptic curves

y2 = x(x− an)(x+ bn).

The geometry of the path torsor π1(X(C); b, x) is an extremely

canonical version of this idea.
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4. Non-archimedean completions

To distinguish rational solutions X(Q) from arbitrary complex

ones, one needs to pass to a non-archimedean linearization. Let S

be the primes of bad reduction, p /∈ S, and T = S ∪ {p}.

Standard linearization: the group ring

Qp[π1(X(C), b)].

Obtain thereby, a number of additional structures.
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The group ring is a Hopf algebra with comultiplication

∆ : Qp[π1(X(C), b)]→Qp[π1(X(C), b)]⊗Qp[π1(X(C), b)]

determined by the formula

∆(g) = g ⊗ g

for g ∈ π1(X(C), b).

Inside the group ring there is the augmentation ideal

J ⊂ Qp[π1(X(C), b)]

generated by elements of the form g − 1.
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Completion:

A = Qp[[π1(X(C), b)]] := lim
←−
n

Qp[π1(X(C), b)]/Jn,

whose elements can be thought of as non-commuative formal power

series in elements g − 1, g ∈ π1.

The previous co-product carries over to an algebra homomorphism

∆ : A - A⊗̂A := lim
←−

A/Jn ⊗A/Jm,

turning A into a complete Hopf algebra.

Study of such structures originates in rational homotopy theory,

with which we are actually concerned from a motivic point of view.
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One defines the group-like elements

U = {g | ∆(g) = g ⊗ g, V ∈ L}.

The elements of the discrete fundamental group give rise to

elements of U , but there are many more. For example, given

g ∈ π1, one can obtain elements of U using Qp-powers of g:

gλ := exp(λ log(g)).

The group U is in fact very large, with the structure of a

pro-algebraic group over Qp.

The natural map

π1(X(C), b)→U

turns it into the Qp-pro-unipotent completion of the fundamental

group.
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The path torsors can be completed as well, to give

P (x) := π1(X(C); b, c)×π1(X(C),b) U,

which are torsors for U .

The most important extra structure arises when b and x are both

rational points. Then U and P (x) admit continuous actions of

G = Gal(Q̄/Q).

The action arises from a reinterpretation of these constructions in

terms of the étale topology of the scheme X .
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Two important facts:

-If p is chosen large enough and the fundamental group is

non-trivial, then the structure P (x) completely determines the

point x. That is, if

P (x) ≃ P (x′)

as U -torsors with G-action, then x = x′.
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-Can classify such structures, using a pro-algebraic moduli space

H1
f (G,U),

describing non-abelian continuous group cohomology. The Selmer

variety of X .

Each P (x) determines an element of this space.

X(Q) - H1
f (G,U);

x 7→ [P (x)].
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In fact, a tower of moduli spaces and maps:

...
... H1

f (G,U4)

H1
f (G,U3)

?

H1
f (G,U2)

?

X(Q) -

-
-

-

H1
f (G,U1)

?

corresponding to the lower central series of U , refining the map at

the bottom (where U1 = Het
1 (X̄,Qp)).
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4.1 The nature of Diophantine finiteness

There is another natural geometric family containing the rational

points, namely, the p-adic points X(Qp), which has a

non-archimedean analytic structure.

Thereby, the Q-points X(Q) become embedded in two entirely

canonical families having, however, very different natures:

H1
f (G,U)

and

X(Qp).

There is severe tension between the two families when X itself is

sufficiently complex, more precisely, when π1(X(C), b) is

non-abelian.
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This tension is brought out by mapping both families into a large

p-adic symmetric space

H1
f (G,U) X(Qp)

D
�

-

constructed using p-adic Hodge theory.

It emerges that the key difference between the two maps is that

H1
f (G,U) maps to an algebraic subspace, while X(Qp) maps to a

space-filling curve.
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The ambient symmetric space D is in fact a homogeneous space

UDR/F 0

for the De Rham fundamental group of XQp
, and the map

X(Qp)→U
DR/F 0

is expressed using p-adic iterated integrals.
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4.2.2 Example

For the equation

axn + byn = c

the fundamental group is non-abelian exactly when n ≥ 4.

In this case, with a careful selection of p, one can show that

Im(H1
f (G,U)) ∩ Im(X(Qp))

is finite, and deduce from this the finiteness of points.

In fact, whenever

Im(H1
f (G,U)) ⊂ UDR/F 0

is non-dense, one gets finiteness of points.

26



In this proof, the dimensions of

H1
f (G,Un)

are controlled using Iwasawa theory. Specifically, one needs to show

sparseness of zeros for an algebraic p-adic L-function associated to

X .

That is, we have the implications

Sparseness of L-zeros ⇒ control of Selmer varieties ⇒

finiteness of points.

in a manner entirely analogous to the theory of elliptic curves.
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More generally, non-denseness of

Im(H1
f (G,U)) ⊂ UDR/F 0

follows from conjectural structure theory of mixed motives, e.g.,

Jannsen’s vanishing conjecture.
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Relation to non-abelian Iwasawa theory:

Let M be the p-ideal class group of the field F∞ generated by

JX [p∞] and Λ the Iwasawa algebra of Γ = Gal(F∞/F (JX [p])).

Then M/M [p∞] should admit a non-abelian algebraic L-function

LM ∈ K1(ΛS∗).

For ρ a positive weight representation occurring in the category

generated by H1(X̄,Qp), we then have

ρ(LM ) ∈ K1(End(Vρ)) = Q∗

p.
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A non-abelian zero is a ρ such that ρ(LM ) = 0.

Then sparseness of non-abelian zeros for LM is closely related to

the non-density of Im(H1
f (G,U).
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5. Explicit reciprocity

Let X = E \ {e}, where E is an elliptic curve of rank 1 with

|X(E)[p∞]| <∞and integral j-invariant.

Hence, we get

locp : E(Q)⊗Qp ≃ H
1
f (Gp, Vp(E))

and

H2(GT , Vp(E)) = 0,

where T = S ∪ {p} and S is the set of primes of bad reduction.
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We will construct a map ψ

X(Z) - X(Zp)

H1
f (G,U2)

?
locp

- H1
f (Gp, U2)

?

Qp.

ψ

?

that annihilates the global points by annihilating the image of the

Selmer variety.
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The Galois action on the Lie algebra of U2 can be expressed as

L2 = V ⊕Qp(1)

if we take a tangential base-point at e. The cocycle condition for

ξ : Gp - U2 = L2

can be expressed terms of components ξ = (ξ1, ξ2) as

dξ1 = 0, dξ2 = (−1/2)[ξ1, ξ1].
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Define

ψ(ξ) := [locp(x), ξ1] + logχp ∪ (−2ξ2) ∈ H
2(Gp,Qp(1)) ≃ Qp,

where

logχp : Gp→Qp

is the logarithm of the Qp-cyclotomic character and x is a global

solution, that is,

x : GT→Vp,

to the equation

dx = logχp ∪ ξ1.
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Theorem 0.1 ψ vanishes on the image of

locp : H1
f,Z(G,U2)→H

1
f (Gp, U2),

where

H1
f,Z(G,U2) ⊂ H

1
f (G,U2)

consists of the classes that vanish at all l 6= p.

Proof is a simple consequence of the reciprocity sequence:

0→H2(GT ,Qp(1))→⊕v∈T H
2(Gv,Qp(1))→Qp→0.

Hence, illustrates some elements of non-abelian duality.
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Easy to check that for the class

k(x) = H1
f (Gp,Qp(1)) ⊂ H

1
f (Gp, U2)

of a number x ∈ Z×

p , we have ψ(k(x)) = ± logχp(rec(x)), and

hence, that ψ is not identically zero.

An explicit evaluation of ψ using p-adic Hodge theory yields the

formula from the introduction.
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5. Duality and number fields

Idea: Duality method should generalize to number fields, when

appropriately formulated.
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F : Number field.

S: finite set of primes of F .

R := OF [1/S], the ring of S integers in F .

p: odd prime not divisible by primes in S and v a prime of F above

p with Fv = Qp.

T : S ∪ {w|p}.

G := Gal(F̄ /F ). GT := Gal(FT /T ).

X : smooth curve over Spec(R) with good compactification. (Itself

might be compact.)

X : generic fiber of X , assumed to be hyperbolic.

b ∈ X(OF [1/S]).
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Study the tangential localization map:

dlocv(c) : TcH
1
f (G,U)→Tlocv(c)H

1
f (Gv, U),

Formulae:

TcH
1
f (G,W ) ≃ H1

f (G,L(c));

Tlocv(c)H
1
f (Gv, U) ≃ H1

f (Gv, L(c));

where L is the Lie algebra of U with Galois action twisted by the

cocycle c.
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For finiteness of points, suffices to show that dlocv(c) is not

surjective at a generic c. Cotangent space:

T ∗

locv(c)
H1
f (Gv, U) ≃ H1(Gv, (L(c))∗(1))/H1

f (Gv, (L(c))∗(1)).
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Theorem 0.2 Assume that for generic c there is a class

z ∈ H1(GT , (Ln(c))
∗(1)) such that locw(z) = 0 for w 6= v and

locv(z) /∈ H
1
f (Gv, (Ln(c))

∗(1)). Then

locv : H1
f (G,Un)→H

1
f (Gv, Un)

is not dominant.
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Proof.

By Poitou-Tate duality, we know that the images of the localization

maps

locT : H1(GT , Ln(c))→⊕w∈T H
1(Gw, Ln(c))

and

locT : H1(GT , (Ln(c))
∗(1))→⊕w∈T H

1(Gw, (Ln(c))
∗(1))

are exact annihilators under the natural pairing

< ·, · >: ⊕w∈TH
1(Gw, Ln(c))×⊕w∈TH

1(Gw, (Ln(c))
∗(1))→Qp.

With respect to the pairing < ·, · >v at v, H1
f (Gv, Ln(c)) and

H1
f (Gv, (Ln(c))

∗(1)) are mutual annihilators.
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Given any element (aw) ∈ ⊕w∈TH
1(Gw, Ln(c)), we have

< locT (z), (aw) >=< locv(z), av >v .

Hence, for any a ∈ H1
f (G,Ln(c)), we get

< locv(a), locv(z) >v=< locT (a), locT (z) >= 0.

Since < ·, locv(z) > defines a non-trivial linear functional on

H1
f (Gv, Ln(c)), this implies the desired results. 2
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