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1. Some Examples

1.1

A Diophantine finiteness theorem:

Let a,b,c,n € Z and n > 4. Then the equation
ax™ + by" = c
has at most finitely many rational solutions in (z,y).

General proof due to Faltings.

Recent ‘homotopical’ proof (Coates and K., arXiv:0810.3354), using
general structure theory of moduli spaces of torsors and some

non-vanishing for L-values.




1.2
E/Q elliptic curve with

rankF(Q) =1,
integral j-invariant, and

[II(E)[p™] < oo

for a prime p of good reduction.

X = E \ {0} given as a minimal Weierstrass model:

y? = 2% + ax +0b.

X(zZ) c E(Z) = E(Q).



Let a = dz/y, B = xzdx/y. Get analytic functions on X (Q,),
log,(2) = [ a5 logy(x) = [
b b

w(z) = /bz af.

Here, b is a tangential base-point at 0, and the integral is (iterated)

Coleman integration.

Locally, the integrals are just anti-derivatives of the forms, while

do=([

for the iteration,




Suppose there is a point y € X (Z) of infinite order in E(Q). Then
the subset

X(Z) € X(Qp)

lies in the zero set of the analytic function

P(2) = w(z) = (1/2) log, (2) logg(2)

_(wly) — (1/2)log,(y)logs(y)) | 1o
(log,.(1))? (log,(2))*

A fragment of non-abelian duality and explicit reciprocity.




2. Some Anabelian Geometry

2.1 Grothendieck in the 80’s

(1) Pursuing stacks;
(2) Long march through Galois theory;
(3) Letter to Faltings.

-(3) contains the idea that certain ‘anabelian’ schemes should be

encoded in their fundamental groups.

-(2) the idea that arbitrary schemes can be constructed out of
anabelian ones, and hence, encoded in some structure involving

non-abelian fundamental groups.

-This procedure should perhaps involve (1).




Picture should be something like this:

-X scheme.
X = Uz’Uz'

with U; anabelian.

UZJ—>Uz XX Uj

with U;; anabelian.

-possibly continue with further ‘intersections.’

Encode X into the system of fundamental groups of the U;j’s.




Basic idea: X and Y anabelian schemes, then one should have

Tsom(X,Y) =~ Isom(m; (X), 71 (Y)) /71 (Y).

Proved for hyperbolic curves over number fields by Nakamura,

Tamagawa, and Mochizuki.

General idea: Diophantine geometry, being the study of maps
between schemes of finite type, should also be clarified through this
study.




2.2 Section conjecture

For ‘usual’ Diophantine geometry, need to consider the exact

sequence
0—my (X)—m (X)—Gal(F/F)—0.

Here, X/F is a curve of genus > 2 over a number field F', and X is

its base-change to the algebraic closure F. Given any point
x € X(F), viewed as
x : Spec(F)—X,

get a splitting

z, : m1(Spec(F)) = Gal(F/F)—m1(X).




Section conjecture:

X (F) ~ {Splittings of sequence}/conjugacy.

A non-abelian analogue of the conjecture of Birch and
Swinnerton-Dyer, which Grothendieck believed to be highly
relevant to the Diophantine geometry of X.

Actually connected to the termination of a non-abelian descent

algorithm.




3. The fundamental groupoid

Let X/Q be a compact curve of genus > 2.
Consider X (C), the manifold of complex points of X.

The fundamental groupoid is made up of the path spaces
m1(X(C);a,b)

as the two points a and b vary over X (C), together with the

composition

71 (X (C);b,¢c) x m (X (C);a,b)—m1 (X (C);a,c)

obtained by concatenating paths.




The portion that originates at a fixed base-point b is comprised of

the fundamental group

m1(X(C),0)
and the homotopy classes of paths

T (X (C); b, x)

for any other point z € X (C).

We will focus mostly on the category of torsors for the group
71 (X (C),b), inside which the path spaces 71 (X (C); b, x) move.




This means that there is a group action
T (X(C);b,x) x m(X(C),b) — m(X(C);0b,x)

that is simply transitive.

Alternatively, any choice of a path p € m (X (C); b, z) determines a

bijection

T (X(C),b) ~ (X (C); b, x)




One version of the anabelian philosophy is to encode points into
the structures w1 (X (C); b, ).

The idea of putting points into geometric families is a common one

in Diophantine geometry, as when solutions

to the Fermat equation are encoded into the elliptic curves

Y = r(x —a")(x+0b").

The geometry of the path torsor 71 (X (C); b, x) is an extremely

canonical version of this idea.




4. Non-archimedean completions

To distinguish rational solutions X (Q) from arbitrary complex

ones, one needs to pass to a non-archimedean linearization. Let S
be the primes of bad reduction, p ¢ S, and T = S U {p}.

Standard linearization: the group ring

Qp[m1 (X (C), 0)].

Obtain thereby, a number of additional structures.




The group ring is a Hopt algebra with comultiplication

A= Qp[mi(X(C), 0)|=Qp[mi (X(C), )] © Qp[mi (X(C), b)]

determined by the formula

Alg)=9®y
for g € m (X (C),b).
Inside the group ring there is the augmentation ideal

J C Qp|m (X(C),0)]

generated by elements of the form g — 1.




Completion:

A = Qp[[m (X(C),b)]] := lim Qp|m (X (C), )]/ J",

n

whose elements can be thought of as non-commuative formal power

series in elements g — 1, g € 7.

The previous co-product carries over to an algebra homomorphism

A:A— ADA =lmA/J"@ A/J™,

turning A into a complete Hopf algebra.

Study of such structures originates in rational homotopy theory,

with which we are actually concerned from a motivic point of view.




One defines the group-like elements
U={g9]A(g)=9g®g, V €L}

The elements of the discrete fundamental group give rise to
elements of U, but there are many more. For example, given
g € 7, one can obtain elements of U using Q,-powers of g:

g* = exp(Alog(g)).

The group U is in fact very large, with the structure of a

pro-algebraic group over Q,.
The natural map
m (X (C),0)-U
turns it into the Q,-pro-unipotent completion of the fundamental

group.




The path torsors can be completed as well, to give

P(z) = m (X(C);b,¢) Xz, (x(0).0) U,

which are torsors for U.

The most important extra structure arises when b and x are both

rational points. Then U and P(x) admit continuous actions of

G = Gal(Q/Q).

The action arises from a reinterpretation of these constructions in

terms of the étale topology of the scheme X.




Two important facts:

-If p is chosen large enough and the fundamental group is
non-trivial, then the structure P(x) completely determines the

point x. That is, if

P(x) ~ P(z)

as U-torsors with G-action, then x = /.




-Can classify such structures, using a pro-algebraic moduli space
1
H(G,U),

describing non-abelian continuous group cohomology. The Selmer
variety of X.

Each P(x) determines an element of this space.

x — [P(x)].




In fact, a tower of moduli spaces and maps:

HY(G, Uy)
f
HY(G, Us)
f

HY(G,U,)

2~

X(@) > H}(Ga Ul)

corresponding to the lower central series of U, refining the map at
the bottom (where Uy = H(X,Q,)).




4.1 The nature of Diophantine finiteness

There is another natural geometric family containing the rational
points, namely, the p-adic points X (Q,), which has a

non-archimedean analytic structure.

Thereby, the Q-points X (Q) become embedded in two entirely

canonical families having, however, very different natures:

Hy(G,U)

X(Qp)-

There is severe tension between the two families when X itself is
sufficiently complex, more precisely, when 71 (X (C), b) is

non-abelian.




This tension is brought out by mapping both families into a large

p-adic symmetric space

H(G,U) X(Qyp)

D
constructed using p-adic Hodge theory.
It emerges that the key difference between the two maps is that

H}(G, U) maps to an algebraic subspace, while X (Q,) maps to a

space-filling curve.




The ambient symmetric space D is in fact a homogeneous space
UDR/FO

for the De Rham fundamental group of Xq, , and the map

X(QP)HUDR/FO

is expressed using p-adic iterated integrals.




4.2.2 Example
For the equation
ax™ + by" = c
the fundamental group is non-abelian exactly when n > 4.

In this case, with a careful selection of p, one can show that
Im(Hy(G,U)) N Im(X(Qy))

is finite, and deduce from this the finiteness of points.

In fact, whenever

Im(H;(G,U)) c U /F°

is non-dense, one gets finiteness of points.




In this proof, the dimensions of

H (G, Un)

are controlled using Iwasawa theory. Specifically, one needs to show

sparseness of zeros for an algebraic p-adic L-function associated to
X.

That is, we have the implications

Sparseness of L-zeros = control of Selmer varieties =

finiteness of points.

in a manner entirely analogous to the theory of elliptic curves.




More generally, non-denseness of

Im(H;(G,U)) c UPH/F°

follows from conjectural structure theory of mixed motives, e.g.,

Jannsen’s vanishing conjecture.




Relation to non-abelian Iwasawa theory:

Let M be the p-ideal class group of the field F, generated by
Jx[p>°] and A the Iwasawa algebra of I' = Gal(F./F(Jx|[p])).

Then M /M [p*°] should admit a non-abelian algebraic L-function

For p a positive weight representation occurring in the category
generated by H'(X,Q,), we then have

p(Lar) € Ki(End(V,)) = Q5.

p




A non-abelian zero is a p such that p(Ls) = 0.

Then sparseness of non-abelian zeros for L), is closely related to

the non-density of Im(H (G, U).




5. Explicit reciprocity

Let X = F \ {e}, where FE is an elliptic curve of rank 1 with
[III(F)[p=°]| < ocoand integral j-invariant.

Hence, we get

loc, : E(Q) ® Q, ~ H}(Gpa Vu(E))

and
H? (G Vy(E)) =0,

where T'= S U {p} and S is the set of primes of bad reduction.




We will construct a map

that annihilates the global points by annihilating the image of the

Selmer variety.




The Galois action on the Lie algebra of Us; can be expressed as

Lo =V @& Qp(1)

if we take a tangential base-point at e. The cocycle condition for
f . Gp — U2 — L2
can be expressed terms of components £ = (£1,&2) as

dgl — 07 d€2 — (_1/2)[51761]




Define

¥(€) := locy (), &1] 4 log xp U (—262) € H*(Gp, Qp(1)) = Qy,

where
log xp : Gp—Qy
is the logarithm of the Q,-cyclotomic character and z is a global
solution, that is,
r: Gp—Vp,
to the equation

dz = log xp, U&;:.




Theorem 0.1 ) vanishes on the image of

locy, : H}’Z(G, UQ)HH}(Gpa Us),

where
H},Z(Ga U2) C H}(Ga UQ)

consists of the classes that vanish at all | # p.

Proof is a simple consequence of the reciprocity sequence:

O_>H2(GT> Qp(1))— Buver HQ(va Qp(1))—Qp—0.

Hence, illustrates some elements of non-abelian duality.




Easy to check that for the class

k(z) = H}(GPva(l)) - H}(Gpv Us)

of a number x € Z;, we have ¥ (k(x)) = &log x,(rec(r)), and
hence, that v is not identically zero.

An explicit evaluation of 1 using p-adic Hodge theory yields the

formula from the introduction.




5. Duality and number fields

Idea: Duality method should generalize to number fields, when

appropriately formulated.




F: Number field.
S': finite set of primes of F'.
R := Op|1/5], the ring of S integers in F.

p: odd prime not divisible by primes in .S and v a prime of F' above
p with F, = Q,.

T: SU{w|p}.

G := Gal(F/F). Gr := Gal(Fr/T).

X': smooth curve over Spec(R) with good compactification. (Itself
might be compact.)

X: generic fiber of X', assumed to be hyperbolic.
be X(Op[1/5]).




Study the tangential localization map:

dloc,(c) : T-H (G, U)—Tgc, (o H} (Go, U),

Formulae:
T.H;(G,W) ~ H;(G, L(c));

Toc, (o) H}(Gy,U) = Hs (G, L(c));
where L is the Lie algebra of U with Galois action twisted by the

cocycle c.




For finiteness of points, suffices to show that dloc,(c) is not

surjective at a generic c¢. Cotangent space:

H}(G,, U) =~ H' (G, (L(e)" (1)) /H}H(Go. (L(c))" (1)

Tlt)cv (c)




Theorem 0.2 Assume that for generic ¢ there is a class
z € HYGr, (L,(c))*(1)) such that loc,(z) =0 for w # v and
loc,(z) ¢ H}(Gv, (L, (c))*(1)). Then

locy - Hy (G, Up)—H; (G, Uy)

18 not domainant.




Proof.

By Poitou-Tate duality, we know that the images of the localization
maps
locr : HY (G, L, (¢))— ®wer H' (G, Ly (c))

and
locr : H(Gr, (Ln(c))" (1)) = @wer H' (Gu, (Ln(c))*(1))
are exact annihilators under the natural pairing

< -y > @wETHl(GwaLn(C)) X @wETHl(Gwa (Ln(c))*(1>)

With respect to the pairing < -,- >, at v, H{(G, Ly(c))
H}(GU, (L,(c))*(1)) are mutual annihilators.




Given any element (ay) € SperH'(Guw, Ly(c)), we have

< locr(2), (ay) >=<locy(2),a, >y -

Hence, for any a € H;(G, Ly(c)), we get

< locy(a),locy(2) >,=<locr(a),locr(z) >= 0.

Since < -,loc,(z) > defines a non-trivial linear functional on
H}(GU, L,(c)), this implies the desired results. O




