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Abstract

Establishing the size of an EV fleet is a vital decision for logistics operators. In urban settings, this

issue is often dealt with by partitioning the geographical area around a depot into service zones, each

served by a single vehicle. Such zones ultimately guide daily routing decisions. We study the problem

of determining the optimal partitioning of an urban logistics area served by EVs. We cast this problem

in a Continuous Approximation (CA) framework.

Considering a ring radial region with a depot at its center, we introduce the electric vehicle fleet

sizing problem (EVFSP). As the current range of EVs is fairly sufficient to perform service in urban

areas, we assume that the EV fleet is exclusively charged at the depot, i.e., en-route charging is not

allowed. In the EVFSP, we account for EV features such as limited range, and non-linear charging and

energy pricing functions stemming from Time-of-use (ToU) tariffs. Specifically, we combine non-linear

charging functions with pricing functions into charging cost functions, establishing the cost of charging

an EV for a target charge level. We propose a polynomial time algorithm for determining this function.

The resulting function is non-linear with respect to the route length. Therefore, we propose a Mixed

Integer Non-linear Program (MINLP) for the EVFSP, which optimizes both dimensions of each zone

in the partition. We strengthen our formulation with symmetry breaking constraints. Furthermore,

considering convex charging cost functions, we show that zones belonging to the same ring are equally

shaped. We propose a tailored MINLP formulation for this case. Finally, we derive upper and lower

bounds for the case of non-convex charging cost functions.

We perform a series of computational experiments. Our results demonstrate the effectiveness of

our algorithm in computing charging cost functions. We show that it is not uncommon that these

functions are non-convex. Furthermore, we observe that our tailored formulation for convex charging

cost functions improves the results compared to our general formulation. Finally, contrary to the

results obtained in the CA literature for combustion engine vehicles, we empirically observe that the

majority of EVFSP optimal solutions consist of a single inner ring.

Keywords— Continuous Approximation, Electric Vehicles, Fleet Sizing, Region Partitioning

1 Introduction

Over the recent years, sustainability has become a paramount global concern. In the transportation sector,

public institutions, as well as private individuals, are increasingly adopting electric vehicles (EVs) due to their
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ability to mitigate greenhouse gas emissions and their direct impact on reducing particulate matter pollution. For

example, in 2022, EV cars constituted 21.6% of total new car registrations in Europe (European Environment

Agency, 2023). Furthermore, EV’s are becoming a viable alternative for short- and mid-haul goods distribution

(Quak et al., 2016). Notably, Electric light commercial vehicle (LCV) sales worldwide increased by over 50% in

2023 (International Energy Agency, 2024).

The spread of low-emission zones in many cities around the world, coupled with customers’ desire for sustainable

services, has elevated the pressure on logistics operators to adopt EVs. Indeed, EV adoption for urban logistics

activities, particularly for last-mile deliveries, is increasing (World Economic Forum, 2020). In such settings, the

current range of EVs is fairly sufficient to perform service (Feng and Figliozzi, 2013). Furthermore, EVs have

a distinct advantage in urban areas, as their efficiency at low driving speeds is higher than that of conventional

vehicles (Wang et al., 2019). However, the high EV acquisition cost is one of the main barriers to their adoption

(Office of Inspector General, 2022). Therefore, establishing the size of an EV fleet is a vital decision for logistics

operators.

Fleet sizing decisions in urban logistics settings are challenging due to the dynamic nature entailed by the fleet’s

daily operation. In particular, one needs to establish the fleet size, which is to be operated on a daily basis. This

operation entails daily routing vehicles to serve customers. Capturing detailed daily routing decisions in such a

tactical problem is impractical for two main reasons. First, accurately predicting the daily customer locations and

their demands over a tactical planning horizon (e.g., years) is difficult. Second, even if this was possible, solving

the resulting models would be impractical. In such contexts, Francis and Smilowitz (2006) argue that continuous

approximation (CA) could be developed by using aggregated data instead of detailed inputs. Therefore, we opt

to develop a model based on CA to determine the required EV fleet size and approximate its daily operational

cost. At a tactical level, logistics operators tend to partition the geographical area around a depot into service

zones, each to be served by a single vehicle (Croci et al., 2023). These zones then guide the daily vehicle routing

decisions, as well as driver assignment choices. Considering conventional vehicles, tactical partitioning decisions

have been successfully addressed in the literature by continuous approximation (CA) techniques (Jabali et al., 2012;

Franceschetti et al., 2017a,b; Banerjee et al., 2022; Stroh et al., 2022; Carlsson et al., 2023). Such techniques are

particularly useful when detailed inputs (e.g., customer locations at each day) cannot be practically used when

optimizing tactical or strategic decisions. Indeed, CA captures daily dynamics via aggregate inputs (e.g., customer

density), yielding practical models. We study the problem of establishing the needed size of an EV fleet while

accounting for its daily operating costs. Specifically, we optimize the number of partitions, which corresponds to

the number of needed EVs, as well as the operational costs of severing each partition. The latter is approximated

via CA. We denote our problem as the electric vehicle fleet sizing problem (EVFSP). Specifically, this problem

accounts for key EV features in a ring radial region with a depot at its center.

The deployment of EVs in logistics operations has prompted a vast amount of research from the operations

research community (see Schiffer et al., 2019; Kucukoglu et al., 2021, for overviews). The EVs’ limited autonomy is

the predominant feature addressed in such literature. In particular, the operational problem of routing EVs from a

depot to service a given set of customers while allowing vehicles to perform en route recharging at charging stations

(CSs) outside the depot has attracted much attention. One of the main assumptions in such problems is that

the charging time at a CS follows a linear function (e.g, Desaulniers et al., 2016; Andelmin and Bartolini, 2017;

Parmentier et al., 2023). In practice, the EV charging process follows a non-linear charging function (Pelletier

et al., 2018), which is typically approximated by a piecewise linear function. An example of this is shown in

Figure 1a. The x-axis denotes the duration required to get from one battery State-of-Charge (SoC) to another

(where SoC is a percentage of the EV’s range). Indeed, non-linear functions have been identified by the industry

as essential modeling assumptions. For instance, OpenEV (2022) maintains the breaking points needed to model

the non-linear functions of 316 EVs. Notably, industrial applications requiring en route charging embed non-linear

charging functions (e.g., Cubillos et al., 2023). From an academic perspective, various vehicle routing algorithms
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considering en route charging with non-linear charging functions have been proposed (e.g., Montoya et al., 2017;

Froger et al., 2019; Lera-Romero et al., 2024; Lam et al., 2022). In practice, companies using EVs in urban areas

tend to charge them exclusively at their own facilities rather than en-route (Morganti and Browne, 2018). This is

mainly due to the uncertain availability of public chargers, cargo security issues, and concerns related to inefficient

use of drivers’ time. Moreover, the International Energy Agency predicts that overnight depot charging is likely to

meet most of the needs of EV fleets for urban and regional delivery services (International Energy Agency, 2024).

Therefore, we assume that EVs are exclusively charged at the depot.

The aforementioned literature assumes that EVs depart fully charged from a depot without explicitly accounting

for the cost of charging. Logistics operators typically commit to commercial energy rate plans. Such plans are

consistently subject to Time-of-use (ToU) tariffs, according to which energy prices are time-varying (see Figure 1b

for an example where the x-values 0, 4, 7, and 12 may correspond to 8pm, 12pm, 3am, and 8am ). Therefore,

optimizing the EVs’ charging schedule is particularly important when assuming they are fully or partially charged

at the depot. Few studies have explicitly addressed EV charge scheduling optimization in logistics operations

(e.g., Pelletier et al., 2018; Klein and Schiffer, 2023). However, these consider that EVs are to be assigned to

tasks with particular energy requirements and do not explicitly consider routing decisions. Indeed, capturing the

interplay between routing decisions and their resulting charging costs is a nontrivial task which underpins this

paper. Considering the example in Figure 1, a route demanding a SoC of 0.58 needs 3.3 hours of charging time

when starting from an empty battery (Figure 1a). Assuming preemption is allowed, the optimal charge scheduling

decisions are: charge 0.3 hours in the time interval [0–4], and three hours in the time interval [4–7] (Figure 1b),

yielding a cost of 5.833. However, a route demanding an SoC of 0.91 needs 8.3 hours of charging time (Figure 1a),

with the optimal charge scheduling decisions: charge 0.3 in the time interval [0–4], three hours in the time interval

[4–7], and five hours in the interval [1–12]), yielding a cost of 12.0205. Deriving a charging cost function that

establishes the aforementioned costs, in conjunction with ToU tariffs and non-linear charging functions, is one of

the main contributions of this paper. In particular, we propose a polynomial time algorithm for establishing this

function.

The charging cost function entails that the cost of charging an EV is not linear with respect to its route length,

even when assuming a constant discharge rate per kilometer. This gives rise to a central challenge in the EVFSP.

Namely, as the cost per kilometer is not constant and may follow a non-convex function, one cannot assume that

an EV route should fully consume its battery; rather, it is fundamental to optimize the SoC of an EV upon its

departure from the depot. This dictates the length of EV routes. Indeed, the majority of the CA contributions

rightfully assume that a resource (e.g., the vehicle capacity) is fully utilized (e.g., Jabali et al., 2012; Huang et al.,

2013; Nourinejad and Roorda, 2017; Banerjee et al., 2022). This assumption significantly reduces the complexity of

the resulting models. As such an assumption does not hold for the EVFSP, we optimize the vehicle resource (i.e.,

battery) utilization in a detailed manner. Specifically, we determine both dimensions of each zone, which leads us

to propose a MINLP formulation for the problem. Thus, while the distance to be traveled by each EV is indeed

computed heuristically by CA, the cost of this approximate distance is computed exactly as a result of combining a

non-linear charging function and an energy price function. We strengthen our formulation with symmetry breaking

constraints. We then show that under the case of a convex charging cost function, the zones are equally shaped at

a given distance from the depot. This allows us to derive a tailored MINLP formulation for this case. Lastly, we

propose bounding procedures for the case of non-convex cost functions.

We perform computational experiments on a set of randomly generated instances. We demonstrate the effec-

tiveness of our algorithm to compute the charging cost function. By considering various energy tariff structures, we

empirically show that the proportion of instances for which the charging cost function is non-convex is significant

and should be accounted for. For the case of a convex charging cost function, our tailored formulation, derived

from a dominance rule about the shape of the zones that belong to the same ring, improves the results compared

to our general formulation. Finally, contrary to the results obtained in the literature for conventional vehicles, we
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Figure 1: Example of charging and energy price functions.

empirically observe that the majority of optimal solutions consist of a single inner ring.

The remainder of the paper is organized as follows. In Section 2, we review the relevant literature. In Section 3,

we present an algorithm to efficiently compute the cost functions and then formulate the EVFSP. We analyze

this formulation in Section 4, where we present a simpler formulation for the case of a convex cost function and

propose approaches for computing lower and upper bounds for the non-convex case. In Section 5, we present our

computational experiments. Finally, we discuss our conclusions and future research directions in Section 6.

2 Literature review

This paper relates to two streams of literature. The first stream of research relates to the operational deployment

of EVs for goods distribution. The treated optimization problems in this stream deal with routing EVs to a given

known set of locations under side constraints. From this literature, we primarily survey the main EV modeling

features. The second stream deals with the use of continuous approximation techniques in partitioning logistics

service areas. In these optimization problems, routing costs are typically approximated by assuming that customers

are uniformly distributed in space, i.e., there is no set of given customer locations. Specifically, the service area is

partitioned into zones, and the routing costs are approximated based on heuristic rules that govern the movements

of vehicles between customers (based on the average distance) and between a zone and a depot.

2.1 EV Routing and Operations Optimization

A primary challenge for using EVs for logistics operations is their limited driving range and long recharging

times (Mohammed et al., 2020). Thus, the majority of scientific contributions have mainly focused on optimizing

the operations of EVs to maximize their efficiency (Shen et al., 2019). In this context, variants of the classic vehicle

routing problem (VRP) (Toth and Vigo, 2014) have been proposed to model the operational planning of pickup

and delivery networks based on EV fleets. Mainly, these models incorporate en-route recharging operations into

the classic VRP (Erdoğan and Miller-Hooks, 2012; Schneider et al., 2014). Given a set of CSs, the main recharging

decisions relate to where to charge and how much to recharge (Desaulniers et al., 2016). A complicating factor in

optimizing EV operations is that the charging process of an EV battery follows a non-linear function. Specifically,

considering linear charging functions, as opposed to non-linear ones, has been shown by Montoya et al. (2017)

to overestimate or underestimate charging times. Furthermore, Montoya et al. (2017) showed that considering

linear charging functions may yield infeasible routes. Thus, optimization models with non-linear charging functions

have been presented (Montoya et al., 2017; Froger et al., 2019). Several realistic operational features have also
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been considered in the literature, such as time windows for operation (Schneider et al., 2014), shared charging

stations (Koç et al., 2019), charger availability (Froger et al., 2022; Lam et al., 2022), time-dependent energy

consumption (Lera-Romero et al., 2024), traffic congestion (Florio et al., 2021) and simultaneous CS location and

EV routing (Schiffer and Walther, 2018).

The aforementioned literature generally assumes that EVs leave the depot fully charged, to which they return

with a discharged battery, and focuses on the routing costs, without taking into account the cost of the energy

required for charging the EVs. Besides EV routing, recent research has also focused on optimizing the scheduling of

the charging operations mainly due to the impact of variable energy prices throughout the day (Pelletier et al., 2018;

Klein and Schiffer, 2023). These two papers consider that each EV should perform a set of predefined routing tasks

with a given energy requirement and optimize the charging decisions, taking into account a non-linear charging

function and a limited charging infrastructure. In Lin et al. (2021), routing and charging decisions are jointly

optimized under ToU tariffs, en-route charging is allowed, the charging function is linear, and the EVs are assumed

to leave the depot with a fully charged battery. When the charging function is not linear, this latter assumption

may not yield the minimum charging cost, as this depends on the energy rate plans of the logistic operator.

While increasingly complex models continue to be developed for optimizing EV operations, research on the

tactical planning of EV-based logistics networks, in particular for urban areas, remains scarce. In this paper, we

study a fleet sizing problem that takes into account a non-linear charging function along with charging energy costs

in the context of ToU tariffs. Moreover, we consider the SoC of an EV upon departure from the depot to be a

decision of the problem.

2.2 Continuous Approximations for Vehicle Routing

Region partitioning is a broad class of tactical design problems that have received significant attention in the

literature, particularly in the context of logistics problems using conventional vehicles. In an urban logistics setting,

region partitioning deals with finding the optimal division of a geographic area, where demand originates, into zones.

Each zone is typically matched with a single vehicle. In such cases, region partitioning aims to identify the optimal

number of vehicles that are needed to serve an area of interest. In this context, continuous approximation

techniques are typically used to estimate route lengths. Such estimations are based on very few attributes (e.g.,

density, area, zone’s shape). Rooted in the landmark paper of Beardwood et al. (1959), the seminal works of Newell

and Daganzo (1986a,b) and Daganzo (2005) are among the earlier works that optimize region partitioning using

CA within a vehicle routing context. Specifically, these authors pioneered the use of CA techniques to study the

optimal partitioning of a service area at an aggregate level rather than attempting to model the complexities of the

daily operations. Such an aggregation is particularly adequate since, in reality, the precise locations of the demand

are unknown, and attempting to include this uncertainty in a complex operational model may be unnecessary for

the purpose of tactical planning.

CA techniques have been used extensively for several strategic and tactical planning problems in logistics.

Ouyang and Daganzo (2006) consider the continuous facility location problem and present a model based on CA

to optimize the number of terminals and their locations. Shen and Qi (2007) consider locating distribution centers

where inventory is held to face demand uncertainty. Carlsson and Jia (2015) study the continuous facility location

problem where the objective function minimizes the weighted sum of the cost of installing facilities, establishing the

links between the facilities, and the cost of transportation from the facilities to the service regions. Ghaffarinasab

et al. (2018) use CA to model the planar hub location-routing problem to jointly optimize the location of hubs

and the allocation of service regions to the hubs to minimize the total transportation cost. Janjevic et al. (2021)

model a three-echelon capacitated location-routing problem that simultaneously optimizes the number, type, and

location of distribution facilities, transportation modes, and route configurations. Fontaine et al. (2023) further

extend the CA models to account for multiple service providers, multiple parcel types, and multiple transportation
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strategies and present important implications related to transportation network design and operation.

In terms of vehicle routing and fleet sizing problems, Francis and Smilowitz (2006) introduce a CA model for the

periodic vehicle routing problem with service choice and assess the impact of service frequency decisions on vehicle

tours and customer service. Jabali et al. (2012) propose a CA model for determining the optimal composition of

a fleet of vehicles considering capacities, fixed costs, and variable costs, with a focus on minimizing total costs

subject to capacity and route length constraints. Carlsson and Delage (2013) study the problem of coordinating

a fleet of vehicles to evenly distribute workload among them. They assume that customer locations are drawn

identically and independently according to an unknown distribution. The resulting problem is cast in a robust

optimization framework. Huang et al. (2013) use CA to develop routing policies and cost approximations in the

context of routing teams to assess damage and relief needs after a disaster. Franceschetti et al. (2017a) study

the fleet composition problem in the presence of access restrictions for certain types of vehicles. Nourinejad and

Roorda (2017) present a CA model for optimizing the long-term vehicle fleet composition in distribution activities,

considering fleet size, types of vehicles, and associated costs. Carlsson and Song (2018) model a truck and drone

problem using CA where the drone provides service to customers and returns to the truck that is itself moving.

Tactical models for designing same-day delivery systems are also explored in Banerjee et al. (2022) and Stroh et al.

(2022), considering fleet sizing and vehicle-dispatching policies.

The CA models that have been developed in Newell and Daganzo (1986a,b) assume unlimited vehicle range

as well as a constant cost of travel per unit of distance for the vehicles. Such models are suitable for the case

of traditional combustion engine vehicles (e.g., Francis and Smilowitz, 2006; Jabali et al., 2012; Nourinejad and

Roorda, 2017; Franceschetti et al., 2017b). In contrast, EVs have limited ranges compared to traditional vehicles

and the cost of charging the battery, i.e., the cost of travel is a non-linear function due to the non-linearity of the

battery charging speed as well as the fact that energy prices are not constant. Thus, the resulting cost of travel

is a function of the amount of energy that needs to be charged, and the charging operations need to be scheduled

to benefit from periods of low energy prices to minimize the overall cost. The non-linear charging costs and the

limited vehicle ranges have not been integrated into CA vehicle routing and service area partitioning despite the

fact that CA models have been used before to estimate the cost of EV trucks (Davis and Figliozzi, 2013).

This paper thus presents the extension of the CA models first proposed in Newell and Daganzo (1986a,b) to

the case of EVs where we consider the realities of limited vehicle range and non-linear non-convex cost of travel

and demonstrate its application to region partitioning in the context of last-mile deliveries. While the resulting

optimization model is a challenging, non-linear, non-convex model, it presents a general framework for the future

development of CA-based models for EV logistics network design, which to date have been focused on traditional

combustion engine vehicles.

3 Problem Description

The EVFSP deals with the tactical decision pertaining to the size of an EV fleet required to meet customers’

demand over a given service region. Specifically, the EVFSP optimizes the EV acquisition cost along with their

daily charging costs. To do so, we encapsulate the intertwined relationship between three main EV characteristics:

limited range, non-linear charging functions, and energy pricing functions stemming from Time-of-use (ToU) tariffs.

To this end, we adopt a number of assumptions that will be formalized in the remainder of this section. First, as in

Jabali et al. (2012) and Franceschetti et al. (2017a), we consider a circular service region with a depot at its center.

Similar to Beardwood et al. (1959) and Newell and Daganzo (1986a,b), we assume that customers are uniformly

distributed across that region. Notably, in this literature, customer demands are assumed to be equal, and the

vehicle capacity is expressed as the number of customers that a vehicle may serve. However, as the commercial use

of EVs is projected to be in applications related to services (e.g., repair services) or small package deliveries, similar

to Montoya et al. (2017) and Froger et al. (2022), we ignore customer demand values. Instead, we consider the
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EV’s range as the determinant dimension of the EV’s capacity to serve customers. Following the observations in

Morganti and Browne (2018), we consider that EVs are exclusively charged at the depot. Furthermore, we assume

that EVs depart with a given starting SoC, which should be recuperated in the evening once vehicles return to the

depot, i.e., an EV must recharge the energy used on its route. We assume linear energy consumption with respect

to the traveled distance on the route and that the required charging time to reach a given SoC when starting from

a lower SoC follows a non-linear function. The price of energy at the depot follows a step-wise function prescribed

by given ToU tariffs, i.e., the price of energy changes throughout the day. We also consider that each EV has

one charger, as in Pelletier et al. (2018). The charge scheduling decisions are optimized and are assumed to be

preemptive, i.e., the EV may stop charging at any point in time and resume at a later one.

A fundamental functionality of our model lies in optimizing the partitioning of the circular service region into

zones. Each EV is assigned to a zone, the service of which is implicitly presumed to be repeated on a daily basis.

Similar to Newell and Daganzo (1986a), Jabali et al. (2012), and Franceschetti et al. (2017a), we assume that the

circular region is comprised of an inner ring and one or more outer rings. Both types of rings are partitioned

into zones. While in the literature, zones belonging to the same ring are presumed to be of equal dimensions,

we do not make such an assumption in our paper. In fact, we optimize the dimensions of each zone. Thus, the

EVFSP deals with partitioning into zones a circular service region of radius L, with a single depot located at its

center from which homogeneous EVs start and end their trip. As commonly assumed in the CA routing literature

(Franceschetti et al., 2017b), we consider that the vehicles are routed to service a set of customers whose precise

locations are unknown but are assumed to be uniformly distributed across the service region with equal density δ.

Thus, δ expresses the average number of customers per unit of area, and each zone is assigned a single EV that

serves its demand.

Each EV has a limited range R (expressed in kilometers), which corresponds to the EV’s autonomy with a fully

charged battery. Similar to the majority of the EVRP literature (e.g., Schneider et al., 2014; Schiffer and Walther,

2017), we assume that the energy consumption of the vehicle is linear with respect to the distance. Specifically,

we denote this consumption by τ (expressed in kWh per kilometer). We consider that the EV battery charging

occurs only at the depot, i.e., en-route charging is not allowed, and that charging takes place within a specific

time interval (e.g., the depot closing hours), hereinafter referred to as the EV charging time interval, during which

all EVs return to the depot (i.e., no customers can be served during this interval). We consider a cyclic charging

process where each EV must be charged during the EV charging time interval a sufficient amount of energy that

allows it to complete its route and return to the depot with a remaining battery percentage equal to rmin ∈ [0, 1).

We note that each vehicle is charged to travel exactly the assigned route and return to the depot with rmin without

anticipation of future travels, i.e., vehicles are charged to cover only the length of their assigned route. The charging

process follows a non-linear charging function (Montoya et al., 2017; Lam et al., 2022; Klein and Schiffer, 2023;

Lera-Romero et al., 2024). We assume ToU tariffs for the energy. More precisely, the EV charging time interval is

divided into a finite number of time periods of heterogeneous length, each with a given cost (per kWh) for energy.

We also make the assumption that each EV has a dedicated identical charger, and thus, all the vehicles can be

charged simultaneously (Pelletier et al., 2018). This assumption is based on the fact that each EV usually comes

with a portable Level 1 cordset to connect the EV to an ordinary socket (U.S. Department of Energy, 2024a).

Moreover, Level 2 charging equipment that usually allows to fully recharge an EV overnight currently costs less

than a thousand dollars (U.S. Department of Energy, 2024b) and is expected to become more affordable in the

future.

The objective is to identify the partitioning of the service region into zones that minimizes the total cost.

The total cost is comprised of two components: vehicle acquisition cost and service cost. Let W be the vehicle

acquisition cost divided over the vehicle lifetime (expressed in number of days). Thus, W is the acquisition cost

scaled to a daily value. Each vehicle is assigned to a zone of the service region. In our context, the service cost is the

cost of charging each EV to serve its assigned zone. Smart chargers, which are becoming common nowadays, allow
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for the scheduling of charging operations. Therefore, we optimize the charging operations considering the ToU

tariffs in combination with the non-linear charging function and the assumption that the EVs return to the depot

with an empty battery. This combination yields the charging cost function, which we denote by crmin . Specifically,

for any given SoC (i.e., a percentage of the EV’s range R) required to serve a zone, the function crmin provides

the minimum charging cost (see Section 3.2). Lastly, we assume that W ≫ crmin(1), and thus the problem is to

primarily minimize the number of used vehicles (i.e., the number of zones in the partition of the service region),

and secondly to design the zones such that the charging cost is minimized.

To model the EVFSP, first in Section 3.1, we extend the continuous approximation techniques of Newell and

Daganzo (1986a,b) to the case of EVs. Then, in Section 3.2, we provide an exact algorithm to obtain the charging

cost function crmin given a non-linear battery charging function and ToU tariffs. Finally, in Section 3.3, we combine

the findings of sections 3.1 and 3.2 and propose a non-linear non-convex mixed integer program for the EVFSP.

3.1 Continuous Approximation for EV Routing

In this section, we derive the average route length (in kilometers) of an EV starting and ending its route at

a depot, which is located at the center of a circular service region, following the continuous approximation model

of Newell and Daganzo (1986a,b). To facilitate the presentation, we distinguish between the inner ring, which

designates the first circular ring around the depot, and the outer rings, which constitute the remaining disk-shaped

rings outside of the inner ring (see Figure 2). We denote by I = {0, ..., n} the set of rings, with 0 denoting the inner

ring and n the total number of outer rings. The inner ring is divided into sector-shaped zones, while each outer ring
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is divided into circular trapezoid-shaped zones. We denote by Ji = {1, ...,mi} the set of sector-shaped/circular

trapezoid-shaped zones in ring i ∈ I, and refer to the sector-shaped/circular trapezoid-shaped zone j ∈ Ji as (i, j).

Similar to Newell and Daganzo (1986a), we approximate each circular trapezoid-shaped zone (i, j) by a rectangle

of dimensions liL × 2wij , where li is the fraction of the total radius L that is covered by ring i, and wij is half

of the width of the rectangle (See Figure 3a). Like Daganzo (1987) and Franceschetti et al. (2017a), we assume a

Manhattan distance metric for travel in such a zone and a half-width routing strategy. Specifically, the rectangle

is vertically split into two smaller rectangles of width wij (see Figure 3a). It is assumed that the vehicle enters the

zone via the bottom edge of the rectangle, visits customers in the first half of the rectangle in ascending order of

their radial distance from the depot, then visits customers in the second half of the rectangle in descending order

of their radial distance from the depot, and finally exits the zone via its entry point (see an illustration of this

heuristic in Figure 3a). The length of the vehicle route is approximated as 2L
∑i

i′=0 li′ +
2
3
w2

ij liLδ. The term

2L
∑i

i′=0 li′ accounts for the distance that the vehicle must travel from the depot to the extremity of ring i and

back. The number of customers visited in a trapezoidal-shaped zone is approximated by the term 2wij liLδ and

the average transverse distance per point in a rectangle of width wij is approximated by wij/3. The term 2
3
w2

ij liLδ

therefore is an approximation of the transverse distance that the vehicle must cover within rectangle (i, j).

Following Newell and Daganzo (1986a) and Jabali et al. (2012), we assume that customers in each sector-shaped

zone are visited in order of their radial distance from the depot. The length of the vehicle route in the inner ring

is approximated as 2l0L+ 1
6
θ2j l

3
0L

3δ, where θj is half of the angle of the sector-shaped zone (see Figure 3b). The

term 2l0L accounts for the longitudinal distance that the vehicle must travel from the depot to the extremity of

the inner ring and back. The number of customers visited in a sector-shaped zone is approximated by the term

θj l
2
0L

2δ, and the average transverse distance per point is approximated by 1
6
θj l0L. The term

1
6
θ2j l

3
0L

3δ is, therefore,

an approximation of the transverse distance that the vehicle must cover within the sector-shaped zone.

In this paper, we consider optimizing the number of EVs and their charging cost. This combination entails

that fully using the EV’s range R in each zone may yield sub-optimal solutions (see example in Section 3.3). This

is mainly due to the charging cost function being non-convex, which will be discussed in Section 3.2. Thus, in the

context of EVs, the length of the route performed by the vehicle assigned to a zone of the service region, which is

bounded by R, should be optimized.

3.2 Computing the charging cost function

In this section, we consider two important features of EVs: non-linear charging function and ToU energy pricing.

Given that the EV should be charged to a target SoC r̃ ∈ [rmin, 1] (r̃ denotes a percentage of the maximum range

R), and the value crmin(r̃) is the minimum charging cost incurred. Since r̃ is not known beforehand but is part of

the solution to the EVFSP, we need to compute crmin(r̃) for any given r̃. Thus, the challenge is to derive crmin

based on a non-linear charging function considering the various costs of time intervals dictated by the ToU. We

note that the algorithm of Section 3.2.2 can be readily modified to handle any value of the starting SoC between

0 and 1. We denote the charging function by SoCrmin , which for a given charging duration ∆ outputs the SoC of

the EV assuming that the SoC of the EV is initially rmin. The function Price gives the energy price at any given

time of the EV charging time interval.

3.2.1 Assumptions

Similar to Pelletier et al. (2018), we assume an increasing continuous piecewise linear concave charging function

SoCrmin (See Figure 4a). When rmin ̸= 0, the function SoCrmin is obtained using function SoC0 such that

SoCrmin(∆) = SoC0

(
∆ + SoC−1

0 (rmin)
)
for every ∆ ∈ [0, SoC−1

0 (1) − SoC−1
0 (rmin)]. Furthermore, we assume a

stepwise energy price function Price (See Figure 4b), which is common in many countries around the world (See

for instance Southern California Edison, 2023). For example, in Ontario, Canada, the price of energy is 8.7¢/kWh
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in off-peak hours, 12.2¢/kWh in mid-peak hours, and 18.2¢/kWh in on-peak hours (Ontario Energy Board, 2024).

In Spain, the price of energy is 0.08e/kWh, 0.12e/kWh, and 0.18e/kWh in off-peak, mid-peak, and on-peak

hours, respectively (Endesa, 2024). Note that in function Price, we assume that time zero corresponds to the time

at which all EVs must return to the depot and that the domain of function Price is an interval whose length is

equal to the length of the EV charging time interval. Furthermore, we assume that the charging operation can be

preempted, i.e., the charging can be stopped and restarted at a later time to optimize costs. Lastly, for simplicity,

we assume that the EV can be fully recharged during the EV charging time interval. Adapting the algorithm when

this condition does not hold is straightforward.

For a given target SoC r̃ ∈ [rmin, 1], the optimal scheduling of the charging and subsequently the resulting

minimum cost crmin(r̃) can be obtained by solving a mixed integer linear program (MILP) (See Appendix A for

the problem formulation). Thus, an approximation of function crmin can be obtained by repeatedly solving this

MILP for discretized values of r̃ ∈ [rmin, 1] and then fitting a piecewise linear function to the computed points.

Repeatedly solving the MILP is computationally very expensive, and the resulting function is an approximation of

the charging cost function crmin . Alternatively, we present next an exact polynomial time algorithm that computes

crmin .

3.2.2 An exact algorithm for computing crmin

Let B = {0, . . . , B} be the set of breakpoints for the charging function SoCrmin (see Figure 4a for an example).

Let ab be the charging time of the breakpoint b ∈ B (with a0 = 0). Let ρb and ηb be the slope and the y-intercept

of the function in the interval [ab−1, ab] for b ∈ B \ {0}. Since we are assuming concavity, we have that ρb < ρb−1

for each b ∈ B \ {0, 1}. Moreover, the function ends with the vehicle at full charge, so ηB = 1 − ρBaB . Thus, we

define the charging function as SoCrmin(∆) = ρb∆+ ηb if ∆ ∈ [ab−1, ab] for each b ∈ B \ {0}.
The EV charging time interval (e.g., from 8pm to 8am if only considering overnight charging) is partitioned

into a finite set P = {1, . . . , P} of time periods, each with energy price per kWh equal to Γp (see Figure 4b for an

example with P = 3, where time periods 1, 2, and 3 are the time intervals [0, 4], [4, 7], [7, 12] that, for example,

may correspond to [8pm, 12pm], [12pm, 3am], [3am, 8am]). The time period p ∈ P has a duration equal to ∆p.

The stepwise energy price function Price, that is a function of time, is directly defined from these time periods

and indicates time-of-use (ToU) tariffs (i.e., the price of energy at any time during the charging time interval).

To understand the calculation of the charging cost function, it is important to bear in mind that the charging

cost function establishes an optimal charging schedule for each target SoC. This schedule is to be followed in

chronological order, and the rate of charge (i.e., the amount of kWh that is charged per unit of time) follows

the charging function. Thus, the actual price to be paid for charging a given amount of energy in period p ∈ P
depends both on the charging time during period p, as well as on the accumulated SoC up to p. Notably, a greedy

algorithm that charges the EV by considering periods in non-decreasing order of their energy cost (that is usually

non-chronological) is sub-optimal (see Appendix B for an example).

Our algorithm establishes the optimal charging cost function by identifying the most cost-effective charging

schedule for an accumulated SoC, which should be achieved by the end of the charging time interval. Starting

with a target SoC equal to rmin, the algorithm iteratively identifies in an increasing fashion the most cost-effective

charging schedule for an accumulated SoC. Given the most cost-effective charging schedule for a given accumulated

SoC, the algorithm identifies how to expand it to achieve the most cost-effective charging schedule for a higher

accumulated SoC. Thus, suppose an EV is optimally charged for a certain amount of time ωp during every period

p to reach a given target SoC. Identifying the expansion of a schedule considers increasing the charged amount in

each period p in separation while maintaining the value of ωp′ for all p
′ ∈ P \ {p}. When evaluating the expansion

of this schedule to achieve a higher accumulated SoC, charging the EV for an extra time during a period p may

reduce the amount of energy charged during the subsequent time periods p′ ∈ [p + 1, P ], although the charging
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time ωp′ does not change, due to the concavity of the SoCrmin function. In the evaluation, we account for the cost

increase that could be achieved by each possible expansion direction. The extent of such expansions is limited due

to the combination of the SoCrmin function and the Price function.

We now present an exact algorithm to efficiently compute the charging cost function crmin followed by Ex-

ample 3.1, which demonstrates its execution. The output of this algorithm will be used as input for the EVFSP

continuous approximation model, which we present in Section 3.3. The pseudocode of the algorithm is outlined

in Algorithm 1. The variable T p denotes the accumulated charging duration of the EV from time 0 to the end of

time period p ∈ P, and the variable ωp denotes the charging time during time period p ∈ P. All these variables are

initially set to zero for every time period and are iteratively modified. The algorithm computes a function, which

we prove to be equal to crmin in Proposition 3.2, from a set of points F that is populated during the course of the

algorithm by varying the target SoC (that is SoCrmin(TP ) in the algorithm) from rmin to 1. The key idea is to only

consider values of the target SoC for which a potential change in the time period during which the EV is currently

charged (this time period is denoted p⋆ in the algorithm) may occur if we increase the target SoC. It is important

to understand that it can be cost-effective to stop charging in p⋆ even if there is still available time in this time

period (i.e., the current charging duration ωp⋆ is strictly less than ∆p⋆). At these potential points, the algorithm

calculates for each time period p ∈ P the cost ϕp(ε), which corresponds to charging during p an extra time equal

to ε (lines 5 – 12). The value ε is set (in line 6) in a way such that the left derivatives of the function SoCrmin

are constant in the interval [T p, T p + ε) for every p ∈ P. Computing the impact of this extra charging time ε at

period p (lines 7–12) requires taking into account that the SoC of the EV changes at the end of every time period

p′ ∈ [p, P − 1] from SoCrmin(T p′) to SoCrmin(T p′ + ε). As the charging duration ωp is maintained for all periods

(line 7 to 12), the extra charging time ε at period p may impact the quantity charged at every subsequent time

period p′ ∈ [p+ 1, P ] (i.e., SoCrmin(T p′ + ε)− SoCrmin(T p′−1 + ε)). Therefore, for a period p ∈ P, the cost ϕp(ε)

is as follows:

ϕp(ε) = τR

(
ΓP

(
SoCrmin(TP + ε)− SoCrmin(TP )

)
+

P−1∑
p′=p

(Γp′ − Γp′+1)
(
SoCrmin(T p′ + ε)− SoCrmin(T p′)

))
.

(1)

Subsequently, an extra charging time is scheduled in the time period p⋆ with the lowest cost (Line 13). The

value of this extra charging time is maximized and takes the duration of the time period into consideration in

the computation of ε̃ on Line 14. Then, we update the accumulated charging times until the end of each time

period according to the extra charging time ε̃ in period p⋆ (Line 15 to Line 21), and we store the new target SoC

and the corresponding minimum charging cost in F on Line 21. The algorithm returns a continuous piecewise

linear function (See Figure 4 for an example). We show in Proposition 3.1 that the algorithm has a polynomial

complexity.

Example 3.1. This example is illustrated in Figure 4. We assume rmin = 0. The charging function SoC0 is

such that B = 3, with a0 = 0, a1 = 3.3, a2 = 6.6, and a3 = 10 and such that SoC0(a0) = 0, SoC0(a1) = 0.58,

SoC0(a2) = 0.82, and SoC0(a3) = 1 (see Figure 4a). The energy price function Price is such that P = 3, with

∆1 = 4, ∆2 = 3, and ∆3 = 5 with Γ1 = 0.45, Γ2 = 0.25, and Γ3 = 0.5 (see Figure 4b). For the cost computation,

we consider a vehicle with a range R = 250 kilometers and an energy consumption equal to τ = 0.15 kWh per

kilometer.

The set of breakpoints computed by Algorithm 1 is F = {(0, 0), (0.5273, 4.9432), (0.5800, 5.8330), (0.7982, 9.924), (0.8200, 10.3330), (0.9100, 12.8205), (1, 14.7898)}
and the charging cost function c0 derived from is plotted in Figure 4c. Note that it is defined only from the break-

points of set {(0, 0), (0.5273, 4.9432), (0.5800, 5.8330), (0.9100, 12.8205), (1, 14.7898)} (the two other breakpoints are

removed in the operation performed in the last line of the algorithm).

We also consider the case where rmin = 0.1 (i.e., the EV should return to the depot with 10% of its battery
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Algorithm 1: Computing the charging cost function.

Step 1. Initialization
1 ω ← (0, P. . ., 0) ▷ ωp is the current charging duration in time period p ∈ P

2 for p ∈ P do T p ← 0 ; ▷ Tp is the accumulated charging duration of the EV from time 0 to the end of p

3 F ← {(0, 0)}, C ← 0
Step 2. Loop

4 while SoCrmin(TP ) < 1 do
5 ϕ(ε)← (∞, P. . .,∞)

6 ε← min

{
aB − TP , min

p∈P:ωp<∆p

{
min
b∈B

{
ab : ab > T p

}
− T p

}}
7 for p ∈ P such that ωp < ∆p do ▷ Loop to compute the costs ϕp(ε) for each p ∈ P

8 ϕp(ε)← τRΓp

(
SoCrmin(T p + ε)− SoCrmin(T p)

)
9 for p′ ∈ P such that p′ > p do

10 ϕp(ε)← ϕp(ε) + τRΓp′

((
SoCrmin(T p′ + ε)− SoCrmin(T p′)

)
−
(
SoCrmin(T p′−1 + ε)−

SoCrmin(T p′−1)
))

11 end

12 end
13 p⋆ ← argminp∈P{ϕp(ε)}
14 ε̃← min

{
∆p⋆ − ωp⋆ , ε

}
15 C ← C + τRΓp⋆

(
SoCrmin(T p⋆ + ε̃)− SoCrmin(T p⋆)

)
16 ωp⋆ ← ωp⋆ + ε̃, T p⋆ ← T p⋆ + ε̃ ▷ We increase the charging time during period p⋆ by ε̃

17 for p ∈ P such that p > p⋆ do ▷ We update the accumulated charging duration and the cost

18 T p ← T p + ε̃

19 C ← C+τRΓp

((
SoCrmin(T p+ε̃)−SoCrmin(T p)

)
−
(
SoCrmin(T p−1+ε̃)−SoCrmin(T p−1)

))
20 end

21 F ← F ∪
{(

SoCrmin(TP ), C
)}

22 end
23 Return the continuous piecewise linear function that passes through all the points of F

(eliminate unnecessary breakpoints)

range) and show SoC0.1, c0.1 as well as the charging times obtained for its breakpoints. We now show how c0(r̄) is

computed for target SoC r̄, where r̄ corresponds to the x-values in F . We recall that c0(r̄) is computed based on the

assumption that the EV has an empty battery when starting charging. We summarize the results in Table 11.

• In the first iteration of the while loop, we have ε = 3.3, ϕ1(ε) = 9.7875, ϕ2(ε) = 5.4375, ϕ3(ε) = 10.875,

p⋆ = 2, and ε̃ = 3. This results in the breakpoint (0.5273, 4.9432), which corresponds to the addition of a

charging time of 3 hours in the second time period, resulting in an increase of the SoC equal to 0.5273 for a

charging cost equal to 4.9432.

• In the second iteration of the while loop, we have ε = 0.3, ϕ1(ε) = 0.8898, ϕ2(ε) = ∞, ϕ3(ε) = 0.9886, p⋆ = 1,

and ε̃ = 0.3. This results in the breakpoint (0.5800, 5.8330), which corresponds to the addition of a charging

time of 0.3 hours in the first time period, resulting in an increase of the SoC equal to (0.5800−0.5273) = 0.0527

for a charging cost equal to (5.8330− 4.9432) = 0.8898.

• In the third iteration of the while loop, we have ε = 3.0, ϕ1(ε) = 6.0000, ϕ2(ε) = ∞, ϕ3(ε) = 4.0909, p⋆ = 3,

and ε̃ = 3. This results in the breakpoint (0.7982, 9.9240), which corresponds to the addition of a charging

time of 3 hours in the third time period, resulting in an increase of the SoC equal to (0.7982−0.5800) = 0.2182

for a charging cost equal to (9.9240− 5.8330) = 4.091.

• In the fourth iteration of the while loop, we have ε = 0.3, ϕ1(ε) = 0.6, ϕ2(ε) = ∞, ϕ3(ε) = 0.4091, p⋆ = 3, and
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Figure 4: The charging cost function in Example 3.1 is convex.

ε̃ = 0.3. This results in the breakpoint (0.8200, 10.3330), which corresponds to the addition of a charging time

of 0.3 hours in the third time period, resulting in an increase of the SoC equal to (0.8200− 0.7982) = 0.0218

for a charging cost equal to (10.3330− 9.9240) = 0.409.

• In the fifth iteration of the while loop, we have ε = 3, ϕ1(ε) = 4.8870, ϕ2(ε) = ∞, ϕ3(ε) = 2.9779, p⋆ = 3, and

ε̃ = 1.7. This results in the breakpoint (0.9100, 12.0205), which corresponds to the addition of a charging time

of 0.3 hours in the third time period, resulting in an increase of the SoC equal to (0.9100− 0.8200) = 0.0218

for a charging cost equal to (12.0205− 10.3330) = 1.6875.

• In the sixth iteration of the while loop, we have ε = 1.7, ϕ1(ε) = 2.7693, ϕ2(ε) = ∞, ϕ3(ε) = ∞, p⋆ = 3,

and ε̃ = 1.7. This results in the breakpoint (1, 14.7898), which corresponds to the addition of a charging time

of 1.7 hours in the first time period, resulting in an increase of the SoC equal to (1 − 0.9100) = 0.09 for a

charging cost equal to (14.7898− 12.0205) = 2.7693.

Breakpoint of c0 ω1 ω2 ω3

(0.0000, 0.0000) 0 0 0
(0.5273, 4.9432) 0 3 0
(0.5800, 5.8330) 0.3 3 0
(0.9100, 12.0205) 0.3 3 5
(1.0000, 14.7898) 2 3 5

Breakpoint of c0.1 ω1 ω2 ω3

(0.1000, 0.0000) 0 0 0
(0.5996, 4.6834) 0 3 0
(0.9242, 10.7711) 0 3 5
(1.0000, 13.1023) 1.431 3 5

Table 1: Charging times associated with each breakpoint of function c0 (derived from F) and c0.1 in Example 3.1.

This example highlights the importance of having an algorithm to compute the optimal charging strategy, as

even for a small example, it is not trivial. For the low value of the target SoC, we charge the EV exclusively during

the cheapest time period (i.e., period 2). Then, as the target SoC increases, we subsequently switch to charge also

during the second cheapest time period (i.e., period 1). However, we do not charge for the full duration of this

second cheapest period. There is a target SoC from which we switch to charging for the full duration of the most

expensive time period (i.e., period 3). Finally, we return to charging during the second cheapest time period when

the target SoC approaches one. We observe that c0.1 does not have the same number of breakpoints as c0.

Example 3.2. We also present an example in which the charging cost function is non-convex. The corresponding

functions and the resulting charging times are illustrated in Figure 5 and Table 2, respectively. Because the function

SoC0 is non-linear, although we keep charging during time period 2, we observe that the slopes of c0 and c0.1 decrease

as the target SoC increases from 0.9153 to 1.
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Figure 5: The charging cost function in Example 3.2 is non-convex.

Breakpoint of c0 ω1 ω2 ω3

(0.0000, 0.0000) 0 0 0
(0.4745, 1.7795) 2.7 0 0
(0.8835, 9.4480) 2.7 0 5.1
(0.9153, 10.8345) 2.7 0.6 5.1
(1.0000, 13.2955) 2.7 2.2 5.1

Breakpoint of c0.1 ω1 ω2 ω3

(0.1000, 0.0000) 0 0 0
(0.5745, 1.7795) 2.7 0 0
(0.9137, 8.1377) 2.7 0 5.1
(0.9153, 8.2094) 2.7 0.031 5.1
(1.0000, 10.6703) 2.7 1.631 5.1

Table 2: Charging times with each breakpoint of function c0 and c0.1 in Example 3.2.

Proposition 3.1. The computational complexity of Algorithm 1 is O(P 3B log2(B)).

Proof. The number of iterations of the while loop is bounded by P +PB. Indeed, there can be at most P iterations

where the increase in the charging duration computed in Line 14 is given by ∆p⋆−ωp⋆ , meaning that a charge occurs

during the whole time period p⋆. Because the total charging duration increases at each iteration of the algorithm,

for every breakpoint b ∈ B, there can be at most P iterations where the increase in the charging duration computed

in Line 14 is given by a difference with respect to ab. The number of iterations of the while loop is, therefore,

O(PB). The complexity of a single iteration of the while loop is given by the for loop starting at Line 7 and is

O(P 2 log2(B)).

We now prove that the function returned by Algorithm 1 is the charging cost function crmin . We first introduce

the following notation for every time period p ∈ P. Let us denote by λ(p) ∈ {ρb}b∈B\{0} the left derivative of the

function SoCrmin at T p. By definition of ε, we have:

SoCrmin(T p + ε)− SoCrmin(T p) = ελ(p). (2)

From equations (1) and (2), we obtain:

ϕp(ε) = ελ(P )τR

(
ΓP +

P−1∑
p′=p

(Γp′ − Γp′+1)
λ(p′)

λ(P )

)
. (3)

Lemma 3.1. At every iteration of the while loop (Step 2) in Algorithm 1, we have
ϕp(ε)

ε
=
ϕp(µ)

µ
for every p ∈ P

and every µ ∈ (0, ε].

Proof. Let µ ∈ (0, ε]. By the computation of ε, for every p ∈ P, we have SoCrmin(T p + µ)− SoCrmin(T p) = µλ(p)

and ϕp(µ) =
µ

ε
ϕp(ε).
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Proposition 3.2. The function returned by Algorithm 1 is the charging cost function crmin .

Proof. Algorithm 1 adds an extra charging time equal to ε̃ at time period p⋆, i.e., the time period with the lowest

“marginal” cost ϕp⋆(ε). There are two important observations to be made. First, we have ε ≤ ε for every time

period p ∈ P. Second, if we charge during a time period p ∈ P an extra time equal to µ ∈ (0, ε], the target SoC,

namely SoCrmin(TP ), increases by µλ(P ). Lemma 3.1 guarantees that the cost increase (i.e., the current slope of

the charging cost function) is equal to τR
(
ΓP +

∑P−1
p′=p(Γp′ − Γp′+1)

λ(p′)

λ(P )

)
and is constant for every µ ∈ (0, ε].

Therefore, we maximize the extra charging time added at period p⋆ by setting it equal to min{∆p⋆ − ωp⋆ , ε}. The
update performed at the end of the while loop (Line 15 to Line 21), the computation of ε̃ on Line 14 and the

operation performed on Line 23 after the while loop guarantees that the resulting function is crmin .

3.2.3 Properties of the charging cost function

We now highlight two properties of the function crmin . Namely, Proposition 3.3 shows that function crmin is a

continuous, piecewise linear, and monotonically increasing function. We use this result in formulating the EVFSP

in Section 3.3. Proposition 3.4 provides sufficient conditions for crmin to be convex. Under such conditions, we are

able to simplify the EVFSP formulation in Section 4.2. In what follows we denote by F = (r̄k, c̄k)k∈K the set of

breakpoints of the charging cost function crmin (crmin(r̄k) = c̄k).

Proposition 3.3. The charging cost function crmin is a continuous, piecewise linear, and monotonically increasing

function.

Proof. Since crmin is a function that connects the points of F , then crmin is by construction continuous and piecewise

linear. Regarding monotonicity, observe that at each iteration, the x-value of the point we add to F is SoC(TP )

(which will correspond to rk). Because the additional charging duration ε̃ at each iteration is positive and SoC is

an increasing function, we have r̄k ≥ r̄k−1 for each k ∈ K\{0}. Furthermore, at each iteration, we have ϕp⋆(ε) > 0

by construction. Hence, crmin is monotonically increasing.

Proposition 3.4. If Price is a monotonically increasing function, then crmin is a convex function.

Proof. Γp+1 > Γp for every p ∈ P \ {P}, as Price is monotonically increasing. From equation (3), we deduce

that ϕp+1(ε) ≥ ϕp(ε) for each p ∈ P \ {P}. We consistently charge during the time period p⋆ ∈ P for which

ϕp⋆(ε) is the lowest. Consequently, we charge the EV from the first time period of the EV charging time interval

to the last one. The slope of function crmin resulting from the addition of a new breakpoint to F is given by

τR
(
ΓP +

∑P−1
p′=p⋆(Γp′ − Γp′+1)

λ(p′)

λ(P )

)
. Observing that λ(p′) = λ(P ) for every p⋆ ≤ p′ ≤ P , the slope is simply

τRΓp⋆ . We, therefore, get increasing slopes with the addition of each breakpoint in F , and thus, the resulting

function crmin is convex.

When the conditions of Proposition 3.4 hold, Algorithm 1 becomes a greedy algorithm that charges the EV

by considering the time periods in a non-decreasing order of their energy cost (recall that this procedure is not

optimal in the general case - see Appendix B).

3.3 A continuous approximation model for the EVFSP

This section introduces a MINLP for the EVFSP based on continuous approximation. To do so, we use the

charging cost function crmin as characterized in Section 3.2.2.

Before introducing the MINLP model, we provide an example to underscore the fact that fully using the EV’s

range R may yield sub-optimal solutions. Therefore, the MINLP must optimize the number of routes and their

length, which in turn necessitates determining the radius of the rings, as well as the angle (resp. the width) of

every sector-shaped (resp. trapezoid-shaped) zone.
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Example 3.3. Consider a circular service region with a radius L = 5, a customer density δ = 2, an EV’s range

R = 20.865 kilometers and rmin = 0. We present two feasible solutions, each using nine EVs to serve the entire

service region.

Solution 1. It has two rings characterized by l0 = 0.795 and l1 = 0.205. It uses four vehicles in the inner ring

and five in the outer ring. This solution is presented in Figure 6a. The length of each route in the inner ring

is as follows:

2Ll0 +
(π
4
)2l30L

3δ

6
= 2 · 5 · 0.795 + π2 · 0.7953 · 53 · 2

6 · 42 = 20.865.

The length of each route in the outer ring is as follows:

2L+
2 · (π

5
)2(l0 +

l1
2
)2l1L

3δ

3
= 2 · 5 + 2 · π2 · 0.89752 · 0.205 · 53 · 2

3 · 52 = 20.865.

All the vehicles need to be fully charged at the departure of the depot, and the total traveled distance is

9 · 20.865 = 187.785.

Solution 2. It has a single ring. It uses nine vehicles in the inner ring and the sector-shaped zones are equal This

solution is presented in Figure 6b The length of each route is as follows:

2L+
(π
9
)2L3δ

6
= 2 · 5 + π2 · 53 · 2

6 · 92 = 15.077.

Therefore, no vehicle leaves the depot fully charged, and the total traveled distance is 9 · 15.077 = 135.693.

As the number of vehicles is the same in both solutions, Solution 2 dominates Solution 1, whatever the charging cost

function crmin . This is due to the fact that each vehicle in Solution 2 is charged less than each vehicle in Solution

1, coupled with the fact that crmin is monotonically increasing (see Proposition 3.3).

(a) Solution 1. (b) Solution 2.

Figure 6: Two solutions of the EVFSP for the Example 3.3.

The previous example highlights the importance of optimizing how an EV should be charged, as fully charging

it may yield poor solutions. We now propose a MINLP for the EVFSP , that explicitly optimizes the number of

used EVs along with charging decisions for each zone. To handle the latter, we define the following continuous

decision variables that model the dimensions of each zone and the target SoC of each EV upon its departure from

the depot to serve its assigned zone:

θj : Half of the angle of sector-shaped zone j in the inner ring, for each j ∈ J0

li : Radius of ring i normalized by the total radius L, for each i ∈ I

wij : Half of the width of trapezoid-shaped zone (i, j) in outer ring i, for each i ∈ I \ {0}, j ∈ Ji

rij : Percentage of the range R needed to service zone (i, j), for each i ∈ I, j ∈ Ji.
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We also define the following binary decision variables to model the partitioning of the service region:

yij =

1 if a zone (i, j) is created,

0 otherwise,
for each i ∈ I, j ∈ Ji

zi =

1 if ring i is created (i.e., has radius li > 0) ,

0 otherwise (i.e., li = 0).
for each i ∈ I \ {0}

Given a SoCrmin function and a Price function, the cost of servicing zone (i, j) is crmin(rmin + rij). As discussed

in Section 3.2, function crmin is a continuous piecewise increasing function with breakpoints (r̄k, crmin(r̄k)), k ∈ K.

We model this function using SOS2 sets and the following continuous variables:

λijk : The weight of breakpoint k in the charging cost function crmin to compute the cost of servicing zone (i, j)

for each i ∈ I, j ∈ Ji, k ∈ K

xij : The charging cost of the EV that is servicing zone (i, j), for each i ∈ I, j ∈ Ji.

For every zone (i, j), we impose that
∑

k∈K λijk = 1, rmin + rij =
∑

k∈K λijkr̄k, and xij =
∑

k∈K λijkcrmin(r̄k). We

now present a MINLP model for the EVFSP , which we denote by CA-EVS. This model is analyzed and enhanced

in Section 4. Furthermore, for ease of presentation, we first present CA-EVS, and then determine a bound on the

number of outer rings n = |I \ {0}| and the maximum number of zones in each ring mi = |Ji|.

CA-EVS: minimize
∑
i∈I

∑
j∈Ji

xij +W
∑
i∈I

∑
j∈Ji

yij , (4)

s.t. rmin + rij =
∑
k∈K

λijkr̄k, i ∈ I, j ∈ Ji, (5)

xij =
∑
k∈K

λijkcrmin(r̄k), i ∈ I, j ∈ Ji, (6)

∑
k∈K

λijk = 1, i ∈ I, j ∈ Ji, (7)

{λijk : k ∈ K} ∈ SOS2, i ∈ I, j ∈ Ji, (8)

Rr0j ≥ 2Ly0j l0 +
θ2j l

3
0L

3δ

6
, j ∈ J0, (9)

Rrij ≥ 2Lyij
( i∑

i′=0

li′
)
+

2w2
ij liLδ

3
, i ∈ I \ {0}, j ∈ Ji, (10)

∑
j∈J0

θj = π, (11)

∑
j∈Ji

wij = πL
( i−1∑

i′=0

li′ +
li
2

)
zi, i ∈ I \ {0}, (12)

∑
i∈I

li = 1, (13)

rij ≤ yij , i ∈ I, j ∈ Ji, (14)

li ≤ zi, i ∈ I \ {0}, (15)

1 ≤
∑
j∈J0

y0j , (16)

zi ≤
∑
j∈Ji

yij , i ∈ I \ {0}, (17)
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yij ≤ zi, i ∈ I \ {0}, j ∈ Ji, (18)

zi ≤ zi−1, i ∈ I \ {0, 1}, (19)

θj ≥ 0, j ∈ Ji, (20)

wij ≥ 0, i ∈ I \ {0}, j ∈ Ji, (21)

0 ≤ λijk ≤ 1 i ∈ I, j ∈ Ji, k ∈ K, (22)

li ≥ 0, i ∈ I, (23)

zi ∈ {0, 1}, i ∈ I \ {0}, (24)

0 ≤ rij ≤ 1− rmin, xij ≥ 0, yij ∈ {0, 1}, i ∈ I, j ∈ Ji. (25)

The objective function (4) minimizes the total cost which includes the fixed acquisition cost of the EVs and

their charging cost. Constraints (5)–(8) model the piecewise linear charging cost function which is obtained from

Algorithm 1. Constraints (9) and (10) ensure that the vehicles are charged enough to service the zones in the

inner and outer rings, respectively. Constraints (11) and (12) ensure that the full areas of the inner and outer

rings, respectively, are split into zones while constraint (13) guarantees that the rings cover the full service area.

Constraints (14) indicate that if the vehicle servicing zone (i, j) is charged, then zone (i, j) should be created.

Constraints (15) enforce the relationship between variables li and zi. Constraints (16) and (17) indicate that if a

ring is created, then at least one zone should be created in it as well. Constraints (18) indicate that if a zone (i, j)

is created, then a ring i should have a non-zero radius. Constraints (19) indicate that outer ring i ∈ I \ {0, 1} can

only be created if ring i− 1 is created. Finally, the domain of the variables is established in constraints (20)–(25).

The CA-EVS, requires as input a maximum number of outer rings n = |I \ {0}|, and a maximum number of

zones in each ring mi = |Ji|. Recalling the assumption W ≫ c(1), Proposition 3.5 provides an upper bound for n

and mi, i ∈ I.

Proposition 3.5. Let σ =
⌈
πL
√

Lδ
6(R(1−rmin)−2L)

⌉
. There does not exist any optimal solution of CA-EVS that

uses more than σ zones.

Proof. We demonstrate that there exists a feasible solution for CA-EVS that uses σ vehicles, and then show that

σ is an upper bound for the number of zones in an optimal solution.

Consider a CA-EVS solution that only uses the inner ring, i.e., l0 = 1 and li = 0, ∀i ∈ I \ {0}. Suppose that

this inner ring is split into σ sector-shaped zones with θj = π
σ
, ∀j ∈ J0, j ≤ σ and θj = 0, ∀j ∈ J0, j > σ. In this

solution, each used vehicle has a route length equal to 2L+ π2L3δ
6σ2 . Since

2L+
π2L3δ

6σ2
≤ 2L+

π2L3δ

6
(
πL
√

Lδ
6(R(1−rmin)−2L)

)2 = 2L+R(1− rmin)− 2L = R(1− rmin),

the route length of each vehicle does not exceed its maximum range. Therefore, the proposed solution is feasible.

Given that W ≫ crmin(1), and that there exists a feasible solution using σ vehicles, then any feasible solution

with more that σ vehicles (i.e., more than σ zones), will not be optimal.

4 Analysis of CA-EVS

The formulation of CA-EVS presented in the previous section is a non-linear one, which cannot be reasonably

linearized using standard techniques. Therefore, in this section, we first present symmetry breaking constraints

that may accelerate the solution of CA-EVS. We then derive properties of CA-EVS, while distinguishing between

the cases where the charging cost function is convex (Section 4.2) and non-convex (Section 4.3). These properties

facilitate establishing a lower bound and an upper bound on CA-EVS.
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4.1 Symmetry breaking constraints

The CA-EVS is prone to having several symmetric solutions. In particular, these may occur when the

width/angle of the circular trapezoids-shaped/sectors-shaped zones, represented by variables wij and θj , are

swapped without impacting the objective function value. Notably, swapping two zones of different sizes within

the same ring (i.e., exchanging the value of their index j ) would not impact the objective function value. In

Proposition 4.1, we present two sets of symmetry breaking constraints.

Proposition 4.1. Constraints wij ≤ wij−1 i ∈ I \ {0}, j ∈ Ji \ {1} and θj ≤ θj−1, j ∈ J0 \ {1} are valid

inequalities for the CA-EVS.

Proof. Let’s consider an outer ring i′ ∈ I \ {0} and a feasible solution s1 = (r1, x1, l1, z1, w1, θ1, λ1, y1) in which

there exists j′ ∈ Ji such that w1
i′j′ > w1

i′j′−1. We identify a new feasible solution s2 = (r2, x2, l2, z2, w2, θ2, λ2, y2)

in which

• For any i ∈ I \ {0}, j ∈ Ji, and k ∈ K, such that (i, j) ̸= (i′, j′) and (i, j) ̸= (i′, j′ − 1), we set w2
ij = w1

ij ,

y2ij = y1ij , x
2
ij = x1ij , r

2
ij = r1ij , and λ

2
ijk = λ1

ijk. Furthermore, we set θ2 = θ1, l2 = l1, and z2 = z1.

• We set w2
i′j′ = w1

i′j′−1, w
2
i′j′−1 = w1

i′j′ , y
2
i′j′ = y1i′j′−1, y

2
i′j′−1 = y1i′j′ , x

2
i′j′ = x1i′j′−1, x

2
i′j′−1 = x1i′j′ ,

r2i′j′ = r1i′j′−1, r
2
i′j′−1 = r1i′j′ , λ

2
i′j′k = λ1

i′j′−1k and λ2
i′j′−1k = λ1

i′j′k for each k ∈ K.

Solution s2 satisfies all the constraints of CA-EVS and, therefore, is a feasible solution. Moreover, the objec-

tive function of CA-EVS has the same value for both s1 and s2 since
∑

i∈I
∑

j∈Ji
x2ij + W

∑
i∈I
∑

j∈Ji
y2ij =∑

i∈I
∑

j∈Ji
x1ij +W

∑
i∈I
∑

j∈Ji
y1ij . The proof for the constraints of the form θj ≤ θj−1 is analogous.

We refer to model CA-EVS with the additional symmetry breaking constraints (i.e., wij ≤ wij−1, i ∈ I \ {0},
j ∈ Ji and θj ≤ θj−1, j ∈ J0 ) as CA-EVSS. In Section 5.3, we show that CA-EVSS is computationally easier to

solve than CA-EVS.

4.2 Reducing CA-EVS when crmin is convex

In this section, we analyze CA-EVS for the case when crmin is convex. In Proposition 4.2, we show that an

optimal solution to EVFSP with convex crmin , is one where the sector-shaped zones in the inner ring are equally

sized. Furthermore, at each outer ring, the circular trapezoid-shaped zones are equally sized. These results enable

us to introduce a new model, hereafter referred to as CA-EVSC, which is tailored for EVFSP with convex crmin .

Notably, CA-EVSC requires far fewer variables than CA-EVS.

Proposition 4.2. Given that W ≫ crmin(1), if the charging cost function crmin is convex, then there exists an

optimal solution for CA-EVS where wij1 = wij2 for all i ∈ I \ {0}, j1, j2 ∈ Ji such that wij1 ̸= 0 and wij2 ̸= 0 and

θj1 = θj2 for all j1, j2 ∈ J0 such that θj1 ̸= 0 and θj2 ̸= 0.

Proof. Consider an optimal solution of CA-EVS s1 = (r1, x1, l1, z1, w1, θ1, λ1, y1). For every ring i ∈ I \ {0}, we
define J i the set of trapezoid-shaped zones j ∈ Ji, such that wij ̸= 0, and J 0 the set of sector-shaped zones

j ∈ J0, such that θj ̸= 0. Let w2 and θ2 be as follows:

• w2
ij = 1

|J i|

∑
j∈J i

w1
ij , ∀i ∈ I \ {0}, ∀j ∈ J i,

• w2
ij = 0, ∀i ∈ I \ {0}, ∀j /∈ J i,

• θ2j = 1

|J 0|

∑
j∈J 0

θ1j , ∀j ∈ J 0,

• θ2j = 0, ∀j /∈ J 0.

Based on w2 and θ2 we derive r2, x2, and λ2 to build a complete solution s2 = (r2, x2, l1, z1, w2, θ2, λ2, y1). The

number of created rings in s1 is the same as that in s2. Also, the number of zones in each ring of s1 is the same as
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that in s2. Furthermore, since the length of each route associated to ring i ∈ I of s2 is lower than or equal to the

length of the longest route in ring i ∈ I of s1, solution s2 is feasible for CA-EVS.

Solution s2 has the same number of vehicles as s1, and thus their total fixed acquisition costs are equal.

Additionally, for each outer ring i ∈ I \ {0}, we have that each w2
ij is a convex combination of {w1

ij}j∈J i
and for

the inner ring, we have that each θ2j is a convex combination of {θ1j}j∈J 0
. As crmin is convex, the total charging

costs in s2 are less or equal to those in s1. Therefore, the objective value of s2 is lower than or equal to that of

s1.

Proposition 4.2 shows that in the case where crmin is convex, CA-EVS can be reduced to deciding li for each ring

i ∈ I, and the number of zones in each ring. Thus, we propose a number of reductions in CA-EVS that yield CA-

EVSC. These reductions are as follows: variables xij , rij , i ∈ I, j ∈ Ji are replaced by variables xi, ri, i ∈ I, variables
wij , i ∈ I \{0}, j ∈ Ji are replaced by wi, i ∈ I \{0}, and variables θj , j ∈ J0 are replaced by θ. Moreover, since we

have a convex charging cost function crmin , we can express it as crmin(r) = maxk∈K\{0}{
c̄k−c̄k−1

r̄k−r̄k−1
(rmin+r− r̄k)+ c̄k}

for any r ∈ [0, 1] 1. Therefore, we do not need variables λijk, i ∈ I, j ∈ Ji, k ∈ K to model crmin anymore. Finally,

since now xi, i ∈ I is the cost of charging each vehicle in ring i, we need to multiply this value in the objective

function by the number of vehicles we are using in ring i, which is
∑

j∈Ji
yij . Thus, CA-EVSC is as follows.

CA-EVSC: minimize
∑
i∈I

xi
∑
j∈Ji

yij +W
∑
i∈I

∑
j∈Ji

yij , (26)

subject to xi ≥
c̄k − c̄k−1

r̄k − r̄k−1
(rmin + ri − r̄k) + c̄k, i ∈ I, k ∈ K \ {0}, (27)

Rri ≥ 2Lzi
( i∑

i′=0

li′
)
+

2w2
i liLδ

3
zi, i ∈ I \ {0}, (28)

Rr0 ≥ 2Ll0 +
θ2l30L

3δ

6
, (29)

wi

∑
j∈Ji

yij = πL
( i−1∑

i′=0

li′ +
li
2

)
zi, i ∈ I \ {0}, (30)

θ
∑
j∈J0

y0j = π, (31)

∑
i∈I

li = 1, (32)

ri ≤ zi, i ∈ I \ {0}, (33)

li ≤ zi, i ∈ I \ {0}, (34)

1 ≤
∑
j∈J0

yij , (35)

zi ≤
∑
j∈Ji

yij , i ∈ I \ {0}, (36)

yij ≤ zi, i ∈ I \ {0}, j ∈ Ji, (37)

zi ≤ zi−1 i ∈ I \ {0, 1}, (38)

li ≥ 0, i ∈ I, (39)

wi ≥ 0, i ∈ I \ {0}, (40)

θ ≥ 0, (41)

0 ≤ ri ≤ 1− rmin, i ∈ I, (42)

1This is based on the fact that for any convex and continuous piecewise linear function f(x) = fi(x), if x ∈ [ai−1, ai],
then f(x) can be expressed as the maximum of its pieces, i.e., f(x) = maxi{fi(x)}
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yij ∈ {0, 1}, i ∈ I, j ∈ Ji, (43)

zi ∈ {0, 1}, i ∈ I \ {0}. (44)

CA-EVSC has significantly fewer variables and constraints than CA-EVS. Foremost, all the variables λ and the

associated SOS2 constraints are no longer needed in CA-EVSC. Furthermore, in CA-EVSC, the variables w and r

are indexed only in I, rather than both I and Ji. Also, θ is a single variable rather than a vector of variables. In

Section 5.4, we show that CA-EVSC can be solved significantly faster than CA-EVS when crmin is convex.

4.3 Upper and lower bounds when c is non-convex

In this section, we provide easily computable upper and lower bounds for CA-EVS, in the case where crmin is

non-convex.

4.3.1 Upper bound on CA-EVS

Since CA-EVS is a model for a minimization problem, upper bounds can be obtained by computing feasible

solutions. Based on Proposition 3.5, we know that the maximum number of rings and the maximum number of

zones in a ring are σ =
⌈
πL
√

Lδ
6(R(1−rmin)−2L)

⌉
. Thus, we consider a feasible solution obtained by dividing the

service region into a single ring with σ zones in it. The feasible solution will thus have l0 = 1 and li = 0 for any

outer ring i ∈ I \ {0}. The angle θj of each sector-shaped zone j ∈ J0 is then θj = π
σ
.

Another feasible solution can be obtained by dividing the service region into σ rings with one zone in each ring.

The radii of the rings are then computed recursively where l0 is first computed as the solution of 2Ll0+
π2l30L

3δ

6
= R.

Then l1 is computed as the solution of 2L(l0 + l1) +
2π2(l0+

l1
2

)2l1L
3δ

3
= R. In general li, i ∈ I \ {0} is computed as

the solution of 2L
(∑i

i′=0 li′
)
+

2π2
(∑i−1

i′=0
li′+

li
2

)2
liL

3δ

3
= R. We note that other upper bounds can also be obtained

using different combinations of rings and partition of each ring into zones such that the total number of zones is σ.

4.3.2 Lower bound on CA-EVS

•

•
•

•

•

r

crmin(r)

ĉrmin

Figure 7: Convex approximation ĉrmin of crmin .

When crmin is non-convex, a lower bound on the optimal solution of CA-EVS can be obtained by replacing

crmin by a lower convex approximation ĉrmin of crmin , i.e., such that ĉrmin(r) ≤ crmin(r) for any r ∈ [0, 1], and

solving the resulting problem. To construct ĉrmin , we consider the set of breakpoints of the charging cost function

crmin given by F = (r̄k, c̄k)k∈K. Then for each breakpoint (r̄k, c̄k), k ∈ K\{0,K}, we check if the slope of the next

segment is lower than the slope of the previous segment, i.e., if
c̄k+1−c̄k
r̄k+1−r̄k

<
c̄k−c̄k−1

r̄k−r̄k−1
. If this condition holds, we

remove the corresponding breakpoint from F . Consequently, the piecewise linear function ĉrmin defined over the

remaining breakpoints in F is a convex function where ĉrmin(r) ≤ crmin(r) for all r ∈ [0, 1] (See Figure 7). Finally,
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since ĉrmin is a convex function, then the model CA-EVSC can be solved to obtain a valid lower bound on CA-EVS

with crmin .

Finally, we note that the quality of the upper and lower bounds cannot be guaranteed in general. In particular,

since CA-EVS is a mixed integer non-linear problem, it is challenging to identify the factors that can impact the

quality of the resulting bounds.

5 Computational experiments

In this section, we report comprehensive computational results evaluating the algorithm, models, and bounds

that are presented in this paper. First, we present results assessing the use of Algorithm 1 to compute the charging

cost function. We then present results comparing models CA-EVS, CA-EVSS, and CA-EVSC for different instances

of various characteristics. All the computational experiments are conducted on the supercomputer Finisterrae III

provided by the Galicia Supercomputing Centre (CESGA). Specifically, we use nodes with 32 cores Intel Xeon Ice

Lake 8352Y CPUs, equipped with 256GB of RAM connected through an Infiniband HDR network, and 1TB of

SSD. The optimization models are all solved with BARON 23.3.11 (Sahinidis, 2023). The code is implemented

in Python 3.7.8 and the mathematical programming models are implemented using Pyomo 6.6.2 (Bynum et al.,

2021).

5.1 Instance generation

Due to the absence of benchmark instances, we randomly generate the test instances considering rmin =

0. For the SoC0 function, the charging duration required to fully charge a vehicle is set to 10 hours. The

charging time of the breakpoints ab, b ∈ B \ {0, B} are uniformly distributed in the range (0, 10). We generate

instances with B = 3, 5, and 7. For each breakpoint b ∈ B \ {0, B}, the corresponding SoC0(ab) value is generated

such that the resulting SoC0 function is concave and non-decreasing. To do this, we first generate SoC0(a1)

from the uniform distribution U [0, 1], and then generate each SoC0(ab), b ∈ B \ {0, 1, B}, such that the slope is

decreasing, i.e.,
SoC0(ab)−SoC0(ab−1)

ab−ab−1
≤ SoC0(ab−1)−SoC0(ab−2)

ab−1−ab−2
, so SoC0(ab) is generated from a uniform distribution

U [SoC0(ab−1),
SoC0(ab−1)−SoC0(ab−2)

ab−1−ab−2
(ab − ab−1) + SoC0(ab−1)] . For the Price function, we generate instances

with P = 3, 5, and 7, and the length of the EV charging time interval is set to 12 hours, i.e.,
∑

p∈P ∆p = 12. Then

for each price time period p ∈ P, the corresponding price Γp and period length ∆p are generated from the uniform

distributions U(0, 0.1] and U(0, 1), respectively. The period lengths are then scaled such that
∑

p∈P ∆p = 12.

The radius of the full service region L is generated from the uniform distribution U(0, 10] and the range of

each vehicle R is generated from the uniform distribution U(2L, 4L]. Finally, the customer density δ is generated

from the uniform distribution U(0, 10] and the vehicle fixed cost W is set to 10c0(1) to ensure that the cost of

dispatching a vehicle is much higher than the cost of fully charging it, i.e., W ≫ c0(1).

5.2 Computing the charging cost function

In this section, we present computational results assessing the performance of Algorithm 1 in computing the

charging cost function c0. We compare the application of Algorithm 1 to repeatedly solving the optimization

problem CM(r̄) presented in Appendix A for different values r, which yields an approximation of the charging cost

function c0 as discussed in Section 3.2. In particular, we consider 100 values of r starting from r = 0.01 in steps of

0.01. For each r, we solve CM(r̄) to optimality using BARON to yield c0(r).

Table 3 presents the computational time for both approaches for different numbers of breakpoints in the SoC

and Price functions (B and P , respectively). For each test, we generate 10 random instances and the average

computational time for each of the approaches is presented in Table 3. As expected, solving CM(r̄) is significantly

more computationally expensive than Algorithm 1. Furthermore, solving CM(r̄) becomes more computationally
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demanding as the number of breakpoints increases while the computational time of Algorithm 1 remains minimal,

thus showcasing the importance of Algorithm 1.

B P Algorithm 1 CM(r̄), r̄ ∈ [0, 1]
3 3 0.0000 10.3
5 3 0.0003 11.0
3 5 0.0005 11.3
5 5 0.0006 12.0
7 5 0.0007 12.0
5 7 0.0010 13.5
7 7 0.0010 17.3

Table 3: Computational time (in seconds) to compute c0 for different values of B and P .

As discussed in Section 4.2, the convexity of c(r) has important implications since having a convex function

allows the use of model CA-EVSC. Thus, in the following experiments, we show the likelihood of obtaining a

convex crmin given different characteristics of the Price function. Specifically, we consider the case with B = 3 and

P = 3 where Γ1,Γ2, and Γ3 of the Price function are generated according to the following combinations (p1, p2, p3),

(p1, p3, p2), (p2, p1, p3), (p2, p3, p1), (p3, p1, p2), and (p3, p2, p1), where Γp1 < Γp2 < Γp3 . For each combination of

Γp1 ,Γp2 , and Γp3 , we generate 100 random instances. Table 4 indicates the number of instances (out of 100 for

each Price combination) where the resulting cost function c0 is convex. First, the results show that when the

Price function is consistently increasing, i.e., combination (p1, p2, p3), then the c0 function is always convex which

is consistent with Proposition 3.4. Furthermore, we notice that the c0 function is also convex in the majority of

cases for combinations (p1, p3, p2), (p2, p1, p3), and (p2, p3, p1). However, a convex c0 is less likely for the cases where

the price in the first period is higher than the rest of the periods, i.e., combinations (p3, p1, p2) and (p3, p2, p1).

Most importantly, the results in Table 4 show that the case of a convex c0 does occur frequently, and thus, it is

often possible to use CA-EVSC for solving EVFSP.

Price order (p1, p2, p3) (p1, p3, p2) (p2, p1, p3) (p2, p3, p1) (p3, p1, p2) (p3, p2, p1)
Convex c0 100 58 59 68 11 20

Table 4: Number of instances where the resulting cost function c0 is convex depending on the structure of Price.

5.3 Evaluating the symmetry breaking constraints

This section presents results comparing model CA-EVS to model CA-EVSS to evaluate the impact of the

symmetry breaking constraints discussed in Section 4.1. For this, we generated 40 random instances (20 with

convex c0 and 20 with non-convex c0)
2, with B = 5 and P = 5. We set the computational time limit to one hour.

The resulting average computational times and optimality gaps for all the instances are reported in Table 5. The

last column of Table 5 shows the number of instances solved to optimality within the computational time limit.

Model Avg. Computational time (Sec.) Avg. Optimality gap Solved instances

c0 convex
CA-EVS 2174 24.3% 10/20
CA-EVSS 1549 7.8% 13/20

c0 non-convex
CA-EVS 3092 51.9% 3/20
CA-EVSS 2633 31.8% 6/20

Table 5: Average performance comparison between models CA-EVS and CA-EVSS.

2The instances are available for download from https://www.math.u-bordeaux.fr/~afroger001/documents/EFVSP-insta

nces.zip
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The results show that CA-EVSS outperforms CA-EVS, in the cases of both convex and non-convex c0, with

lower computational time, better optimality gap, and a larger number of instances solved to optimality. The results

also show that instances with non-convex c0 are generally more challenging.
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(a) Boxplot of computational time.
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(b) Boxplot of optimality gap.
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(c) Performance profile of computational time.
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(d) Performance profile of optimality gap.

Figure 8: Performance profiles and boxplots comparing CA-EVS and CA-EVSS.

To provide more details on the difference in performance between solving both models, in Figure 8, we present

boxplots and performance profiles (Dolan and Moré, 2002) showing for the 40 test instances, the distribution of

computational time, the distribution of optimality gaps, and the number of instances that are solved to optimality.

Figure 8a shows that for the majority of cases, solving CA-EVS is more computationally expensive than solving

CA-EVSS, with both models reaching the time limit of 1 hour for certain instances. However, on average, solving

CA-EVSS is significantly less time consuming than solving CA-EVS. Similarly, Figure 8b shows that in the majority

of cases, solving CA-EVSS leads to a smaller optimality gap than CA-EVS. In fact, for 22 instances, the optimality

gap obtained with CA-EVS exceeds 40%, while with CA-EVSS, only 10 instances exceed 40%.

Figures 8c and 8d show the performance profiles for the computational time and optimality gap, respectively.

These performance profiles are very common to benchmark different optimization solvers and models (see Dolan

and Moré, 2002; Gould and Scott, 2016; Zhou et al., 2017; González-Rodŕıguez et al., 2022). They show, for a

given value x on the x-axis, the percentage of instances on the y-axis for which the corresponding model returned

a time/gap no more than x times the best one. In this case, we can see that for both, the computational time and

gap, the line corresponding to CA-EVSS reaches 1.0 at the beginning, which means that CA-EVSS outperforms

CA-EVS in every instance. Moreover, the line corresponding to CA-EVS in Figure 8c shows that for two instances,

CA-EVS is more than 20 times slower than CA-EVSS (the blue line passes through the point (20, 0.95) meaning

that for 5% of the instances CA-EVS is 20 times slower than CA-EVSS), while in Figure 8d, we see that, for six
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instances, the optimality gap returned by CA-EVS is more than 100 times worse than that of CA-EVSS (the blue

line passes through the point (100, 0.85), i.e., in 15% of the instances the optimality gap returned by CA-EVS is

more than 100 times worse than that of CA-EVSS).

5.4 Performance when c is convex

In this section, we compare model CA-EVSC with models CA-EVS and CA-EVSS when function c0 is convex.

Table 6 presents a similar analysis to the previous Table 5 with an additional row to show the performance of

CA-EVSC. We note that the total number of instances is 20 in this case since we keep only those instances in which

c0 is convex (20 out of the 40 instances). We observe that, in general, CA-EVSC outperforms the other models,

solving more instances and achieving a lower average computational time than CA-EVS and CA-EVSS. The only

exception is the average gap, where CA-EVSS has a 7.8% average gap and CA-EVSC has 14.2%. However, upon a

closer inspection of the boxplot in Figure 9b, the average gap seems to be influenced by five outlier instances that

have a high gap when solved with CA-EVSC. Thus, while CA-EVSC is generally better for the case where c0 is

convex, for certain instances, CA-EVSS may still achieve better results. We note that if CA-EVSS and CA-EVSC

are solved simultaneously, and the best solution among the two is returned, then the average optimality gap reduces

to 6.6%.

Figure 9a shows that the computational times of CA-EVSC are slightly lower in general than those returned

by CA-EVSS (and much better than the ones returned by CA-EVS). Looking in detail into the results, we see that

the number of instances in which CA-EVS needs at least 3000 seconds is 10, while for CA-EVSS and CA-EVSS

it is seven and six, respectively. Figure 9b shows a similar analysis for the optimality gap. We see that there are

some outliers for CA-EVSC; however, the number of instances in which CA-EVSC returned a gap lower than 5%

is 15, while with models CA-EVSS and CA-EVS, it is 13 and 10, respectively.

Subsequently, the performance profile in Figure 9c confirms the superior performance of CA-EVSC over CA-

EVSS in terms of computational time. Similar results are shown in Figure 9d for the optimality gap. In fact,

there is an instance in which CA-EVSS returned a gap that is more than 100 times worse than CA-EVSC. For this

particular instance, CA-EVSC solved the instance to optimality in 3561 seconds while CA-EVSS achieved a gap of

18% at the set computational time limit of 3600 seconds, while CA-EVS achieved a gap of 42%.

Avg. Computational time (Sec.) Avg. Optimality gap Solved instances
CA-EVS 2174 24.3% 10/20
CA-EVSS 1549 7.8% 13/20
CA-EVSC 1362 14.2% 15/20

Table 6: Performance comparison between models CA-EVS, CA-EVSS, and CA-EVSC when c0 is convex.
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(c) Performance profile of computational time.
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(d) Performance profile of optimality gap.

Figure 9: Performance profiles and boxplots comparing CA-EVS, CA-EVSS, and CA-EVSC when c0 is convex.
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5.5 Performance when c is non-convex

The aim of this section is to assess the quality of the upper and lower bounds proposed in Section 4.3 compared

to solving CA-EVSS in the case where c0 is non-convex. We only use model CA-EVSS to solve these instances, as

it is empirically more effective than CA-EVS (see Section 5.3).

In Section 4.3.1, we presented two approaches to compute upper bounds on the optimal solution of CA-EVSS.

In our numerical experiments, the upper bound that is computed based on using a single ring, i.e., the inner ring,

always resulted in the better bound. Thus, the upper bounds that are reported in this section are all based on the

approach of dividing the inner ring into σ zones (See Section 4.3.1 for the details). To compute a lower bound, we

first obtain the convex approximation of the charging cost function as detailed in Section 4.3.2. The corresponding

CA-EVSC model is then solved to obtain a lower bound on the optimal solution of CA-EVSS. We note that, if the

optimal solution of CA-EVSC is not reached before the one hour computational time limit, then the best lower

bound returned by the solver at the computational time limit is a valid lower bound on the optimal solution of

CA-EVSS.

Table 7 provides a summary of the results. The upper bound can be computed directly without solving an

optimization problem, and thus, the average computational time that is reported in Table 7 for the upper/lower

bound approach is fully related to solving the lower bound problem, i.e., solving CA-EVSC. For nine out of the

20 attempted instances, the computed upper and lower bounds are equal, and thus, these bounds are provably

optimal. In comparison, solving CA-EVSS directly with a one hour computational time limit resulted in the optimal

solution in six instances only. Solving CA-EVSS resulted in an average optimality gap of 31.8% and an average

computational time of 2633 seconds, while computing the lower and upper bounds resulted in an average optimality

gap of 35.2% and an average computational time of 2202 seconds.

In Table 8, we present the detailed results for the nine instances that are solved to optimality after computing the

upper and lower bounds. As can be observed, even for the instances where solving CA-EVSS leads to the optimal

solution, computing the upper and lower bounds results in the optimal solution in significantly less computational

time. This indicates that the computed upper and lower bounds are typically high-quality bounds and are an

effective approach to potentially finding the optimal solution of CA-EVSS. In fact, in nine out of the 10 cases

where CA-EVSC was solved to optimality, the resulting lower bound is optimal for CA-EVSS. For the remaining

10 instances, CA-EVSC was not solved to optimality within the computational time limit. Thus, despite the quality

of the proposed convex approximation, CA-EVSC remains a challenging problem to solve. Finally, we note that,

while the results show high variability in the optimality gap of CA-EVSS, given that the underlying model is a

mixed integer non-linear program, it is hard to identify unique features that influence this gap.

Avg. Computational Avg. Optimality Solved
Time (Sec.) Gap Instances

Computing Upper/Lower Bounds 2202 35.2% 9/20
Solving CA-EVSS 2633 31.8% 6/20

Table 7: Results evaluating the lower and upper bounds compared to solving CA-EVSS.
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Instance Computing Upper/Lower Bounds Solving CA-EVSS
Computational LB UB Computational LB UB Optimality
Time (Sec.) Time (Sec.) Gap

nc1 3370 434.2 434.2 3600 334.9 674.4 50.3%
nc3 87 340.4 340.4 146 340.4 340.4 0.0%
nc4 1710 429.1 429.1 3600 332.9 429.1 22.4%
nc7 5 213.0 213.0 34 213.0 213.0 0.0%
nc8 3 221.4 221.4 53 221.4 221.4 0.0%
nc9 240 290.1 290.1 1830 290.1 290.1 0.0%
nc14 1743 595.5 595.5 3600 455.5 595.5 23.5%
nc17 5 102.2 102.2 14 102.2 102.2 0.0%
nc20 82 143.8 143.8 169 143.8 143.8 0.0%

Table 8: Computational time, lower bound (LB), and upper bound (UB) for the nine solved instances.

5.6 CA-EVSS without outer rings

For the nine instances that were solved to optimality in Section 5.5, the optimal solutions were formed of a

single ring, i.e., the inner ring. In our computational experiments, we observed that an optimal solution with

a single ring is common; however, in Example 5.1, we provide a counterexample demonstrating that there exist

instances where the optimal solution includes outer rings.

Example 5.1. We consider a service area with L = 0.5 and δ = 1. Additionally, we assume a range R = 1.18 for

each vehicle and rmin = 0, and for simplicity, we consider a linear cost function c0, making the minimization of

charging cost equivalent to minimizing distance.

Initially, it is evident that serving all customers with a single vehicle is not feasible, as the vehicle would need

to cover a route that has a total distance equal to 2L+ π2L3δ
6

= 1.21, thus exceeding the vehicle’s range R = 1.18.

Consequently, the use of at least two vehicles is necessary.

Given that the cost function c0 is linear and therefore convex, Proposition 4.2 indicates that in the corresponding

optimal solution, all the sectors in each ring are symmetric. Let us consider the two potential solutions that use

two vehicles: (Solution 1) utilizing the inner ring with two sectors, and (Solution 2) utilizing the inner ring and

one outer ring with one sector in each.

Solution 1. In this case, the length of the route that each vehicle has to cover is 2L +
(π
2
)2L3δ

6
= 1.05 which is

feasible given the range R = 1.18. Furthermore, the total distance traveled by the two vehicles is 2 ·1.05 = 2.1.

Figure 10a shows the geometry of this solution.

Solution 2. In this case, we consider two rings with one sector in each one. Thus, we have 0 < l0 < 1 and

0 < l1 < 1 with l0 + l1 = 1. Next, we compute the maximum and minimum values of l0 (and hence of l1) to

have a feasible solution.

The length of the route traveled by the vehicle in the inner ring is 2l0L+
π2l30L

3δ

6
. Therefore, to be feasible, we

need 2l0L+
π2l30L

3δ

6
≤ R which leads to l0 ≤ 0.98. The length of the route traveled by the vehicle in the outer

ring is given by 2L +
2π2L3(

1+l0
2

)2(1−l0)δ

3
. Therefore, to be feasible, we need 2L +

2π2L3(
1+l0

2
)2(1−l0)δ

3
≤ R

which leads to l0 ≥ 0.70.

Thus, to be feasible, we need 0.70 ≤ l0 ≤ 0.98. Next, we compute the optimal value of l0 to minimize the

total length of the routes, which is given by

ψ(l0) = 2l0L+
π2l30L

3δ

6
+ 2L+

2π2L3( 1+l0
2

)2(1− l0)δ

3
.
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Taking the derivative with respect to l0 we get

ψ′(l0) = 2L+
π2l20L

3δ

2
+
π2L3δ

6
(−3l20 − 2l0 + 1) = 2L+

π2L3δ

6
(−2l0 + 1).

We have ψ′(l0) = 0 if and only if l0 = 2.93, and since ψ′′(l0) = −π2L3δ
3

< 0, then the minimum of ψ(l0),

with 0.70 ≤ l0 ≤ 0.98, is reached at l0 = 0.70. The corresponding total length of the routes is ψ(0.70) = 1.95.

Figure 10b shows the geometry of this solution.

(a) Solution 1 for Example 5.1. (b) Solution 2 for Example 5.1.

Figure 10: Two possible solutions for Example 5.1.

The total length of the routes in Solution 2 is lower than that of Solution 1 and given that c0 is linear, then

Solution 2 is an optimal solution of CA-EVSS. This example highlights that, although optimal solutions involving

only the inner ring are common, for certain values of L, δ, and R, utilizing only the inner ring is not optimal.

Since optimal solutions that use the inner ring only are common, we can force model CA-EVSS to use only

the inner ring (i.e., fix li = 0 for each i ∈ I \ {0}), to potentially improve the computational tractability and solve

instances of larger sizes.

For this experiment, we generated 50 new test instances in the following way. First, we generated 10 random non-

convex cost functions as discussed in Sections 5.1 and 5.2. Then, for each non-convex cost function, we generated

five random instances, ensuring that σ (the upper bound on the number of vehicles) is between 20 and 30. Solving

CA-EVSS with the inner ring condition results in the optimal solution within the one hour computational time limit

for all 50 instances. In fact, for 39 instances, the problem is solved in less than one minute of computational time

and only one instance took more than 10 minutes to solve. Table 9 provides a summary of the results. Examining

the optimal solutions, we find that for 25 instances, the sectors are equally shaped. For the remaining 25 instances,

22 have two different sector sizes, two have three different sector sizes, and one has four different sector sizes.

The table also provides the average computational time for solving CA-EVSS with the inner ring condition. The

instances where the optimal solution has equally shaped sectors seem to be the easiest to solve with an average

computational time of 19 seconds. This is compared to the cases of two different sector sizes where the average

computational time is 234 seconds. For the cases with three and four different sector sizes, the corresponding

average computational time is 39 seconds and 114 seconds, respectively, however, these results include only two

and one instances, respectively.

The last two rows in Table 9 show the average increase in the total charging cost and total cost, if equally

shaped sectors are used for all the instances. The latter entails that, for each instance, the number of sectors is

kept the same while their sizes are set to be equal. The results show that the total charging cost increases by less

than 1% with equally shaped sectors, even for the cases where four different sector sizes are present in the optimal

solution. When two and three different sector sizes are present in the optimal solution, the total charging cost

increases by 0.57% and 0.54% on average, respectively. The corresponding values for the total cost increase are

significantly lower. This is to be expected, as the number of EVs (and their acquisition costs) remains the same

for each pair of compared instances.
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Number of different sector sizes 1 2 3 4
Number of instances 25 22 2 1
Avg. Computational Time (Sec.) 19 234 39 114
Avg. increase in total charging cost with equally shaped sectors 0.0% 0.57% 0.54% 0.95%
Avg. increase in total cost with equally shaped sectors 0.000% 0.0474% 0.0479% 0.0830%

Table 9: Solving CA-EVSS without using outer rings.

5.7 Impact of rmin and other routing approximations on the results of CA-EVS

In this section, we analyze the impact of different values of rmin on the solution process. For this analysis, we

use the nine instances in Table 8 that are solved to optimality in less than one hour. For each instance, we compute

the crmin function for rmin = 0.05 and rmin = 0.1, using Algorithm 1. Subsequently, we solve the corresponding

model CA-EVSS with a time limit of one hour. Additionally, we compute an upper bound and a lower bound on

the optimal value of the problem as described in Section 5.5. It is important to note that for a given instance, crmin

may be convex for rmin = 0.05 or rmin = 0.1, even if c0 is non-convex (see Figure 5 for an example). However, in our

set of instances, all instances where c0 is non-convex, c0.05 and c0.1 remain non-convex. Additionally, increasing

crmin impacts the feasible region of CA-EVSS, as it reduces the battery percentage that vehicles can utilize to

(1− rmin) instead of 1.

In Table 10, we summarize the results obtained for each value of rmin ∈ {0, 0.05, 0.1}. We provide information

on the cost associated with charging the vehicles and the total cost (sum of the charging costs and fixed costs)

in the optimal solution or in the best available solution at the time limit. The relative optimality gap is thus

calculated based on the best from among the lower and upper bounds achieved by the solver at the time limit

and the valid bounds discussed in Section 4.3. We note that three instances were not solved to optimality within

the time limit for rmin = 0.1, and two for rmin = 0.05. In terms of results, we notice that increasing the value of

rmin reduces the distance that each vehicle can cover, potentially necessitating more vehicles to cover the region.

Consequently, with the increase in the number of vehicles with larger rmin, the higher fixed cost per vehicle W

leads to a higher total cost, despite possibly lower charging costs. We note that if the number of vehicles remains

the same despite increasing rmin, the charging cost cannot be lower due to the concavity of the function SoC.

Specifically, recharging a given amount of energy in an EV is faster when it has a lower SoC, allowing more energy

to be recharged when the cost of energy is lowest. Finally, we observe that as rmin increases, the instances generally

become more challenging to solve. The average computational time for rmin = 0 is 805 seconds, for rmin = 0.05 is

1287 seconds, and for rmin = 0.1 is 1790 seconds.

In Appendix C, we evaluate the impact of the routing approximation on the computational results. In particular,

assuming the ring-radial topology, we consider the estimator based on Beardwood et al. (1959)’s theorem and discuss

Instance Charging cost Total cost Optimality Gap
rmin: 0 0.05 0.1 0 0.05 0.1 0 0.05 0.1
nc1 36.9 43.8 63.0 434.2 520.5 778.0 0% 52.5% 67.8%
nc3 22.6 25.6 22.5 340.4 343.4 419.7 0% 0% 0%
nc4 31.8 35.7 29.6 429.1 433.0 506.3 0% 0% 36.2%
nc7 10.7 11.6 12.7 213.0 213.9 215.0 0% 0% 0%
nc8 19.2 17.6 19.1 221.4 287.3 288.8 0% 0% 0%
nc9 20.5 22.1 23.4 290.1 291.8 293.1 0% 0% 0%
nc14 52.7 53.9 54.1 595.5 705.2 705.4 0% 62.0% 51.6%
nc17 3.5 4.6 5.7 102.2 103.2 104.3 0% 0% 0%
nc20 12.3 10.4 12.2 143.8 174.8 176.6 0% 0% 0%

Table 10: Comparing the solutions for different values of rmin.
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the impact on the formulation of CA-EVS and compare the results to those obtained using Newell and Daganzo

(1986a,b)’s approximation.

6 Conclusions and future work

In this paper, we present the electric vehicle fleet sizing problem in the context of urban logistics, which

optimizes the partitioning and dimensioning of a ring radial region with a depot at its center. To capture the

dynamic nature of the fleet operations, we formulate the problem based on continuous approximations and model

the specificities of EV fleets.

One of the main contributions of this paper is capturing the realities of the non-linear EV charging function,

the ToU tariffs, and the interplay between routing decisions and their resulting charging costs. In particular, we

present a polynomial time algorithm to derive the charging cost function, which captures specific features of EV

charging. We discuss the properties of the resulting cost function and distinguish between two cases. The first is

when the cost function is convex; a sufficient condition for such a case is when the energy price function increases

monotonically, and the other is when the cost function is non-convex.

The general case of the EV fleet sizing problem with a non-convex cost function is formulated as a mixed

integer non-linear problem that is challenging to solve. We present symmetry breaking constraints that improve

the computational tractability of the problem. Upper bounds that are easy to compute are also discussed, and

a convex approximation approach to the non-convex cost function is presented to compute a lower bound. We

present extensive computational experiments showing the quality of the upper and lower bounds, and as we show

in the results, in several cases, the upper and lower bounds are tight, and the optimal solutions are obtained. While

the general case with a non-convex cost function is challenging to solve, we also discuss the special case where the

cost function is convex and present a reduced non-linear mixed integer problem that is easier to solve than the

general one. Finally, the empirical results showed that solutions with a single ring are often optimal. Modifying

the problem formulation to assume solutions with a single ring enables the solution of problems with larger sizes

in significantly less computational time. The resulting problem formulation thus optimizes the sizes of the sectors

inside the inner ring to minimize the total length of the routes.

The results of this paper highlight the difficulty of the electric vehicle fleet sizing problem. In particular,

the resulting models are non-convex mixed-integer non-linear programs that are challenging to solve, even when

the cost function is convex. Therefore, developing metaheuristics while possibly relaxing some of our modeling

assumptions may yield good upper bounds, as well as solutions that might work well in practice. Furthermore,

experimenting with various combinations of cost parameter values can provide further insights.

The outcomes of this paper pave the way for several extensions, such as considering heterogeneous vehicle

fleets and other complicating factors such as battery degradation or non-dedicated charger for each vehicle. In

this scope, investments in fast chargers allowing charging during the day may be explored. Furthermore, classic

extensions to routing problems, such as customer time windows, can also be included. Additionally, developing

more accurate routing approximations that are suitable for the framework presented in this paper may also be an

important research direction. Lastly, given the computational difficulty of the problem, solution approaches and

bounding procedures may also be further investigated in the future.
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A Mixed integer linear programming model to compute the min-

imum charging cost up to a target SoC

In this appendix, we present a mixed integer linear programming model that computes the minimum charging

cost for a given target SoC r̄ ∈ [rmin, 1]. To do this, we use the same notation for the SoCrmin and Price functions

that in Section 3.2. Thus, we denote by B = {0, . . . , B} the set of breakpoints of the charging function SoCrmin ,

ab is the charging time of the breakpoint b ∈ B. The Price function is defined by a set of time periods denoted by

P = {1, . . . , P}, the duration ∆p and the energy cost Γp per kWh for each p ∈ P. For convenience, we denote by

0 a dummy time period that precedes the first time period in P.

We introduce the following variables. Variable xp is the SoC of the vehicle at the end of each time period

p ∈ P ∪ {0}. Variable Ψp indicates how long we charge in time period p ∈ P. We model the function SoCrmin

using SOS2 sets with the following continuous variables. Variable αpb is the weight of breakpoint b ∈ B in function

crmin for the SoC at the end of period p ∈ P.

With this notation, we present model CM(r̄) below:

CM(r̄) : minimize τR
∑
p∈P

Γp(xp − xp−1), (45)

subject to x0 = rmin, (46)

xP = r̄, (47)

xp =
∑
b∈B

αpbSoCrmin(ab), p ∈ P ∪ {0}, (48)

∑
b∈B

αpb = 1, p ∈ P ∪ {0}, (49)

{αpb : b ∈ B} ∈ SOS2, p ∈ P ∪ {0}, (50)

Ψp =
∑
b∈B

αp,bab −
∑
b∈B

αp−1,bab p ∈ P, (51)

0 ≤ Ψp ≤ ∆p, p ∈ P, (52)

rmin ≤ xp ≤ 1, p ∈ P ∪ {0}, (53)

0 ≤ αpb ≤ 1, p ∈ P ∪ {0}, b ∈ B. (54)

CM(r̄) minimizes the total charging cost required to charge an empty battery to a target SoC r̄. Constraints (46)

and (47) ensure that we charge to a target SoC r̄ from a SoC equal to rmin at the beginning of the EV charging

time interval. Constraints (48)–(50) model the piecewise linear charging cost function. Constraints (51) model the

charging duration at time period p ∈ P. Finally, constraints (52)-(54) define the domain of the decision variables.

B A comparison between Algorithm 1 and a greedy charging

algorithm

We refer to the greedy procedure that charges the EV by considering the time periods in non-decreasing order

of their energy cost (generally, this order is not chronological) as the greedy charging algorithm. We first show

that for a given target SoC, the greedy algorithm builds a charging schedule with a higher cost than Algorithm 1.

Considering Example 3.1, let us assume that the EV should be charged from rmin = 0 to a target SoC equal to

0.82. From Figure 4a, we know that this requires a total charging duration equal to 6.6. The question is how to

schedule this duration over the three time periods of the price function.

If we apply the greedy charging algorithm, we build the charging schedule incrementally, starting by considering
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the cheapest time period, that is, period 2. The EV is charged for the whole period 2 (i.e., for a duration equal

to 3), and its accumulated SoC at the end of it is 0.5273. Because the target SoC is not reached, the charging

schedule is expanded by charging during time period 1, which is the second cheapest time period. To get a SoC of

0.82 at the end of period 2, charging the EV for a duration equal to 3.6 in period 1 is required. Note that as soon

as the EV is charged for longer than 0.3 during period 1, the initial quantity charged during period 2 decreases

(but not the charging time during period 2 that stays equal to 3) because part of the charging is now carried out

with a lower charging rate (that is the rate associated with the second segment of the function SoC0 in Figure 4a).

The resulting schedule increases the SoC of the EV by 0.6018 and 0.2182 in time periods 1 and 2, respectively.

According to τR(0.6018Γ1 + 0.2182Γ2), the resulting cost of this schedule is 12.2011.

Algorithm 1 builds the charging schedule incrementally in a different way. Similarly to the greedy algorithm,

it first starts charging the EV for the whole period 2. The charging schedule is then expanded by charging the

EV during time period 1 so that the accumulated SoC reached by the end of period 2 is 0.58. This amounts to a

charging duration equal to 0.3 during period 1. Then, the EV is charged for a duration of 3.3 during period 3 to

reach the target SoC of 0.82. The resulting schedule is due to increasing the SoC of the EV by 0.0527, 0.5273, and

0.24 in time periods 1, 2, and 3. According to τR(0.0527Γ1+0.5273Γ2+0.24Γ3), the resulting cost of this schedule

is equal to 10.3330.

We now show that the greedy algorithm overestimates the charging cost function for any target SoC in (0.58, 1].

In Table 11, we show the breakpoints that would be obtained by using the greedy charging algorithm for Exam-

ple 3.1. Using the notation of the paper, the value ωp is the time during which the EV charges in time period p.

The value SoC0(T p) is the SoC of the EV at the end of time period p. The value
ϕp(ε)

ελ(P )
is the cost increase if we

charge during time period p to increase the target SoC. The value p⋆ is the time period selected by the algorithm

to expand the current schedules. Additional charge time is added during the p⋆ period to increase the accumulated

SoC reached by the end of the charging time interval.

Compared to the result obtained using Algorithm 1, in Figure B, we observe that the greedy charging algorithm

is sub-optimal, i.e., for a given target SoC that is larger than 0.58, the charging cost is overestimated. Moreover,

the function cgreedy0 obtained by the greedy charging algorithm is non-convex, whereas the optimal charging cost

function c0 is convex. What happens is that when the target SoC becomes larger than 0.58, then charging an extra

amount of energy in time period 1 is more costly than charging it in time period 3, although the energy price is

lower in time period 1. This is due to the fact that charging in time period 1 reduces the quantity of energy charged

in time period 2 due to the concavity of function SoC0, and this is not accounted for by the greedy algorithm.

Specifically, if the target SoC is 1, we observe that the EV should be charged during the whole of period 2 and that

this corresponds to charging (0.7036-0.3515)=0.3521kWh using Algorithm 1 (c0) and (0.8412-0.6310)=0.2102kWh

using the greedy algorithm (cgreedy0 ).
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Breakpoint of c0 ω1 ω2 ω3 SoC0(T 1) SoC0(T 2) SoC0(T 3)
ϕ1(ε)

ελ(P )

ϕ2(ε)

ελ(P )

ϕ3(ε)

ελ(P )
p⋆

(0.0000, 0.0000) 0 0 0 0 0 0 16.875 9.375 18.750 2

(0.5273, 4.9432) 0 3 0 0 0.5273 0.5273 16.875 - 18.750 1

(0.5800, 5.8330) 0.3 3 0 0.0527 0.5800 0.5800 27.500 - 18.750 3

(0.8200, 10.3330) 0.3 3 3.3 0.0527 0.5800 0.8200 30.770 - 18.750 3

(0.9100, 12.0205) 0.3 3 5 0.0527 0.5800 0.9100 30.770 - - 1

(1.0000, 14.7898) 2 3 5 0.3515 0.7036 1.0000 - - - -

Breakpoint of cgreedy0 ω1 ω2 ω3 SoC0(T 1) SoC0(T 2) SoC0(T 3)
ϕ1(ε)

ελ(P )

ϕ2(ε)

ελ(P )

ϕ3(ε)

ελ(P )
p⋆

(0.0000, 0.0000) 0 0 0 0 0 0 16.875 9.375 18.750 2

(0.5273, 4.9432) 0 3 0 0 0.5273 0.5273 16.875 - 18.750 1

(0.5800, 5.8330) 0.3 3 0 0.0527 0.5800 0.5800 27.500 - 18.750 1

(0.7982, 11.8330) 3.3 3 0 0.5800 0.7982 0.7982 16.875 - 18.750 1

(0.8200, 12.2011) 3.6 3 0 0.6018 0.8200 0.8200 19.678 - 18.750 1

(0.8412, 12.6178) 4 3 0 0.6310 0.8412 0.8412 - - 18.750 3

(1.0000, 15.5858) 4 3 3 0.6310 0.8412 1.0000 - - -

Table 11: Charging times associated with each breakpoint of function c0 and function cgreedy0 in Example 3.1.

r

c0(r)

SoC

14.7898

12.0205

5.8000
4.9432

10 0.910.580.5273
•

••

•

•

cgreedy0 (r)

•

••

•••

•

Figure 11: Charging cost functions c0 (black line) and cgreedy0 (gray line) in Example 3.1.

C Computing the tour length in each zone using an estimator

based on Beardwood et al. (1959)’s theorem

As discussed in Section 2.2, estimating the minimum traveling salesman (TSP) tour length L∗ to visit a set

of N points has been investigated extensively in past research. In this respect, a famous result is the theorem

introduced by Beardwood et al. (1959) regarding the asymptotic behavior of L∗ for the Euclidean distance metric.

Points are assumed to be uniformly distributed over a service region of area A : limN→∞ L∗/
√
N = β

√
A. This

led to the introduction of L∗ estimators of type a + b
√
NA with a, b ∈ R, which have been shown empirically

to give accurate estimates for both Euclidean and non-Euclidean instances (Chien, 1992; Kou et al., 2022). As

in Newell and Daganzo’s approximation, Beardwood et al.’s approximation assumes customers to be uniformly

distributed with density δ across the service region. In our problem, we consider multiple capacitated vehicles

(where capacity refers to the battery charge) that are routed from a central depot assuming a ring-radial topology,

which is similar to several works in the literature (Franceschetti et al., 2017b). However, the Beardwood et al.

formula, which approximates a single tour length, is commonly used in districting applications to approximate the

routing distance within a district. In such cases, the route is composed of the distance between the depot and the
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Sector-shaped zone Trapezoidal zone
Daganzo Beardwood Daganzo Beardwood

Distance metric Manhattan Euclidean Manhattan Euclidean
Density (uniform) δ δ
Area θj(l0L)

2 2wij liL
Number of customers θj(l0L)

2δ 2wij liLδ

Linehaul distance 0 2L
∑i−1

i′=0 li′

Length of the tour 2l0L+ 1
6θ

2
j l

3
0L

3δ a+ bθj(l0L)
2
√
δ 2liL+ 2

3w
2
ij liLδ a+ 2bwij liL

√
δ

Total length 2l0L+ 1
6θ

2
j l

3
0L

3δ a+ bθj(l0L)
2
√
δ 2

3w
2
ij liLδ + 2L

∑i
i′=0 li′ a+ 2bwij liL

√
δ + 2L

∑i−1
i′=0 li′

Table 12: Comparison between the approximations obtained using Daganzo (1987) and Beardwood et al. (1959)
models.

Instance Computing Upper/Lower Bounds Solving CA-EVSS
Computational LB UB Computational LB UB Optimality
Time (Sec.) Time (Sec.) Gap

nc1 2 338.5 338.5 65 338.5 338.5 0.0%
nc3 3 347.8 347.8 194 347.7 347.7 0.0%
nc4 63 427.7 427.7 3600 330.3 427.7 22.8%
nc7 2 366.9 366.9 3600 210.9 366.9 42.5%
nc8 5 440.9 440.9 3600 207.6 440.9 52.9%
nc9 1 222.1 222.1 8 222.1 222.1 0.0%
nc14 177 588.3 588.3 3600 443.6 588.3 24.6%
nc17 5 324.3 324.3 3600 102.0 324.3 68.5%
nc20 9 178.0 178.0 3600 134.8 178.0 24.3%

Table 13: Computational time, lower bound (LB), and upper bound (UB) for the nine solved instances from
Table 8, using a tour length estimation based on Beardwood et al. (1959)’s theorem.

district (i.e., zone), and the routing distances within the district are approximated via Beardwood et al.’s formula

(see Banerjee et al., 2022, for an example). We apply a similar logic in what follows.

In the context of the problem discussed in this paper, the region should be partitioned into sector-shaped zones

in the inner ring and trapezoid-shaped zones in the outer rings. In order to derive the length of the vehicle route in

a zone taking into account the fixed location of the depot, i.e., the route starts and ends at the depot, we decompose

the total route distance traveled into two components that include the linehaul distance and the route length within

the zone. For a sector-shaped zone j ∈ J0, its area is θj(l0L)
2, and the number of customers to visit is approximated

by θj(l0L)
2δ given that the customers are uniformly distributed with a density δ over the service region. Thus, the

length of a vehicle route in the inner ring is approximated as a + b
√
θj(l0L)2δθj(l0L)2 = a + bθj(l0L)

2
√
δ (note

that the linehaul distance is equal to 0). Similarly, for a trapezoid-shaped zone (i, j), its area is 2wij liL and the

number of customers to visit is approximated by 2wij liLδ. Thus, the length of a vehicle route in the outer ring is

approximated by a+ b
√(

2wij liδ
)
2wij li + 2L

∑i−1
i′=0 li′ = a+ 2bwij liL

√
δ + 2L

∑i−1
i′=0 li′ , where 2L

∑i−1
i′=0 li′ is the

linehaul distance. We summarize in Table 12 the similarities and differences between estimating the tour length

using Daganzo (1987) and Beardwood et al. (1959) approximations. We also refer the reader to Hall et al. (1994)

and Kou et al. (2022), which provide empirical evaluations of the accuracy of both approximations, as well as to

Merchán and Winkenbach (2019) that provide validation of continuous approximation models against real-world

data.

While CA-EVS has been developed based on the tour length approximation model of Daganzo (1987), the

framework presented in this paper is relatively general and can accommodate other approximation models. In

particular, we show next that CA-EVS can be easily modified to use Beardwood et al. (1959)’s approximation.

The only change that is required are Constraints (9) and (10) in CA-EVS (and by extension in CA-EVSS) which
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Instance Charging cost Total cost
Daganzo Beardwood Daganzo Beardwood

nc1 36.9 20.7 434.2 338.5
nc3 22.6 30.0 340.4 347.8
nc4 31.8 30.5 429.1 427.7
nc7 10.7 29.8 213.0 366.9
nc8 19.2 36.3 221.4 440.9
nc9 20.5 19.8 290.1 222.1
nc14 52.7 45.5 595.5 588.3
nc17 3.5 28.4 102.2 324.3
nc20 12.3 13.6 143.8 178.0

Table 14: Comparison in the solution between using Daganzo (1987)’s tour length estimation and using the esti-
mation based on Beardwood et al. (1959)’s theorem.

are replaced by

Rr0j ≥ ay0j + bθj(l0L)
2
√
δ, j ∈ J0, (55)

Rrij ≥ ayij + 2bwij liL
√
δ + 2Lyij

( i−1∑
i′=0

li′
)
, i ∈ I \ {0}, j ∈ Ji. (56)

Constraints (28) and (29) in CA-EVSC are also replaced by

Rri ≥ azi + 2bwiliL
√
δ + 2Lzi

( i−1∑
i′=0

li′
)
, i ∈ I \ {0}, (57)

Rr0 ≥ a+ bθj(l0L)
2
√
δ. (58)

Furthermore, when using Beardwood et al. (1959)’s approximation, we can derive a similar result as Proposition 3.5

with σ =
⌈

bπL2
√
δ

R(1−rmin)−a

⌉
. The proof follows the same line as the original proof. The upper bound on CA-EVS can

also be computed as described in Section 4.3.1.

Next, we assess the computational performance of the models when Beardwood et al. (1959)’s approximation

is used. In particular, we evaluate CA-EVSS with Beardwood et al. (1959)’s approximation using the same set of

instances that are solved to optimality in Table 8 of Section 5.5 (with rmin = 0). Specifically, based on Beardwood

et al. (1959)’s theorem, the tour length to visit N customers uniformly distributed in a zone of area A can be

estimated by a linear regression model a+ b
√
NA with a, b ∈ R. Kou et al. (2022) generated 90 instances with 10,

20, and 50 customers uniformly distributed over squares of sizes 1x1, 2x2, and 5x5. In their experiments, setting

a = 1.564 and b = 0.904 leads to a linear regression model with a R-squared value equal to 96% and a mean

absolute percentage error (MAPE) of 15.43% (see Figure 3 in Kou et al., 2022). We assume these same values in

our experiments.

In Table 13, we present a similar analysis as in Table 8. First, we notice that all nine instances are solved to

optimality according to LB and UB. The running times when computing the lower bound by solving CA-EVSC with

a convex approximation of crmin are much lower in Table 13 than those in Table 8. However, when directly solving

CA-EVSS, three instances are solved to optimality, compared to six instances solved to optimality in Table 8.

Thus, computing the lower bound by solving CA-EVSC with a convex approximation has a significant impact on

improving the computational performance when Beardwood et al. (1959)’s approximation is used.

Finally, in Table 14, we present a comparison of the charging cost and the total cost of the solutions. We

see that neither of the models presents strictly better results than the other in terms of the charging cost or the

total cost. This is not surprising, given that the approximations are based on different metrics, as well as all the

differences summarized in Table 12.
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In summary, this section shows that the framework that we present in this paper is fairly generic and can

accommodate different approximation models for the optimal tour length. The computational results in terms of

computational performance, number of partitions, and the associated charging costs are however dependent on the

approximation. As such, future research may potentially investigate approximations that are best suited for the

framework that is presented in this paper.
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