LISTE D'EXERCICES Nº 2 (courbure et torsion des courbes)

N.B. : Dans toute la feuille, \mathbf{E}^n désigne l'espace euclidien de dimension $n \geq 2$, muni de sa base naturelle et orienté par cette base.

Exercice 1 (expressions de la courbure)

Soit $f: I \to \mathbf{E}^n$ un arc régulier de classe \mathcal{C}^2 . On note $\kappa(t)$ la courbure de cet arc au point f(t).

- 1. Rappeler l'expression de $\kappa(t)$ en fonction de f'(t) et f''(t).
- 2. On suppose que n=2. Vérifier que la courbure est aussi donnée par

$$\kappa(t) = ||f'(t)||^{-3} |\det(f'(t), f''(t))|.$$

- 3. Applications numériques (courbure dans \mathbf{E}^2).
- **3-a.** Calculer la courbure pour $f(t) = R(t + i ie^{-it})$, $I =]0, 2\pi[$ (quelle est cette courbe?).
- **3-b.** Déterminer la courbure d'une ellipse et donner ses extréma.
- **3-c.** Exprimer la courbure d'un arc régulier donné sous forme polaire par $\rho = \varphi(\theta)$.
- **3-d.** Déterminer la courbure de la cardioïde $\rho = a(1 + \cos(\theta))$.
- **3-e.** Exprimer la courbure du graphe d'une application $\varphi: I \to \mathbf{R}$ de classe \mathcal{C}^2 .
- **3-f.** Déterminer la courbure de la parabole d'équation $y = ax^2 \ (a \neq 0)$.
- 4. On suppose que n=3. Vérifier que la courbure est aussi donnée par

$$\kappa(t) = ||f'(t)||^{-3}||f'(t) \wedge f''(t)||.$$

- 5. Applications numériques (courbure dans \mathbf{E}^3).
- **5-a.** Déterminer la courbure d'une hélice de \mathbf{E}^3 .
- **5-b.** Déterminer la courbure de l'arc $f(t) = (t, t^2, t^3)$ $(t \in \mathbf{R})$.

Exercice 2

- 1. Montrer qu'un arc régulier de \mathbf{E}^n à courbure nulle est porté par une droite.
- 2. Prouver qu'un arc régulier de \mathbf{E}^2 est à courbure constante si et seulement si c'est un arc de cercle ou de droite.
 - **3.** Reconsidérer la question précédente dans \mathbf{E}^3 .

Exercice 3

Soit \mathcal{P} une parabole du plan euclidien et soit \mathcal{D} sa directrice.

- **1.** Pour tout $M \in \mathcal{P}$, on note P le point d'intersection de \mathcal{D} avec la normale à \mathcal{P} en M. Exprimer le rayon de courbure de \mathcal{P} en M en fonction de MP.
 - 2. Décrire le lieu des centres de courbure de \mathcal{P} . Faire un dessin.

Exercice 4 (une interprétation de la courbure dans le plan)

Soit $\gamma: I \to \mathbf{E}^2$ un arc régulier \mathcal{C}^2 paramétré par longueur d'arc. On rappelle qu'il existe une fonction $\alpha: I \to \mathbf{R}$ de classe \mathcal{C}^1 telle que $\gamma'(s) = \exp(i\alpha(s))$ pour tout $s \in I$ (détermination de l'argument de γ'). Prouver que la courbure (algébrique) de l'arc γ au point $\gamma(s)$ vaut $\alpha'(s)$.

Exercice 5

Soit $\gamma: I \to \mathbf{R}^3$ un arc paramétré birégulier. On note (τ, ν, β) le repère de Frenet le long de γ , K la courbure et T la torsion de γ .

- 1. Exprimer les dérivées τ', ν' et β' dans la base (τ, ν, β) en fonction de $||\gamma'||$, de K et de T.
- 2. Vérifier que $\det(\tau, \tau', \tau'') = -||\gamma'||^3 K^2 T$. En déduire que la torsion est donnée par

$$T = -\frac{\det(\gamma', \gamma'', \gamma''')}{||\gamma' \wedge \gamma''||^2}.$$

Exercice 6

Déterminer le repère de Frenet, la courbure et la torsion des arcs paramétrés suivants :

- 1. $x(t) = a\cos t, y(t) = a\sin(t), z(t) = bt, t \in [0, 2\pi].$
- **2.** x(t) = t, $y(t) = \frac{t^2}{2}$, $z(t) = \frac{t^3}{6}$, $t \in \mathbf{R}$.
- **3.** $x(t) = e^t$, $y(t) = e^{-t}$, $z(t) = \sqrt{2}t$, $t \in \mathbf{R}$.

Exercice 7

Soit C le support d'une courbe paramétrée birégulière lisse paramétrée par sa longueur d'arc $s \in I \mapsto M(s)$. On note $(\tau(s), \nu(s), \beta(s))$ le repère de Frenet au point de paramètre s. On suppose que les plans osculateurs de C passent tous par un même point Ω .

- 1. Justifier que $\langle \overline{\Omega M(s)}, \beta(s) \rangle = 0$ pour tout $s \in I$.
- **2.** On se propose de montrer que β est constant sur I. Pour cela on raisonne par l'absurde en supposant qu'il existe s_0 dans I tel que $\frac{d\beta}{ds}(s_0) \neq 0$.
 - **2-a.** Justifier qu'il existe un intervalle J sur lequel $\frac{d\beta}{ds}$ est non nul.
 - **2-b.** Montrer $\forall s \in J, \langle \overrightarrow{\Omega M(s)}, \nu(s) \rangle = 0.$
 - **2-c.** Montrer $\forall s \in J, \langle \overrightarrow{\Omega M(s)}, \tau(s) \rangle = 0.$
 - 2-d. Conclure.

Exercice 8

Soit (I, γ) un arc lisse, régulier de \mathbf{R}^n $(n \geq 2)$. On note N(t) l'hyperplan affine passant par $\gamma(t)$ et perpendiculaire à $\gamma'(t)$. Montrer que $\gamma(I)$ est contenu dans une sphère de centre 0 si et seulement si pour tout $t \in I$ le point 0 appartient à l'hyperplan N(t).

Exercice 9

Soit Γ une courbe lisse de \mathbf{E}^3 . On suppose que Γ est trirégulière paramétrée et par sa longueur d'arc. On note C(s) le centre de courbure à Γ au point de paramètre s et par Γ_1 la courbe paramétrée par $s \mapsto C(s)$. On suppose que Γ est de courbure constante.

- 1. Montrer que Γ_1 est également de courbure constante. Si $(\tau(s), \nu(s), \beta(s))$ et $(\tau_1(s), \nu_1(s), \beta_1(s))$ désignent les repères de Frenet aux points de paramètre s de Γ et Γ_1 , vérifier qu'on a $\tau_1 = \epsilon \beta$, $\nu_1 = -\nu$ et $\beta_1 = \epsilon \tau$, avec $\epsilon \in \{-1, 1\}$.
 - **2.** Que peut-on dire de la torsion de Γ_1 si Γ est de plus de torsion constante?