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ABSTRACT

We consider the continued fraction expansion of certain algebraic formal
power series when the base field is finite. We are concerned by the property of
the sequence of partial quotients being bounded or unbounded. We formalize the
approach introduced by L. Baum and M. Sweet in [1], which applies to the elements
of a particular subset of algebraic power series. We illustrate this method with a
result when the base field is F2.

§1. Introduction.

Let K be a field. We consider the field K((T−1)) of formal Laurent series in
T−1. If α ∈ K((T−1)), and α 6= 0, we have α =

∑

k≤k0
akT

k, with k0 ∈ Z, ak ∈ K
and ak0

6= 0. We define the degree of α, by deg α = k0, and deg 0 = −∞. Then
we define the ultrametric absolute value by |α| = |T |degα and |0| = 0, where |T | is
a fixed real number greater than 1. This field K((T−1)) can be identified with the
completion of K(T ) for this absolute value. Like in the classical case of the real
numbers, we have a continued fraction theory, the partial quotients being elements
of K[T ]. Here we are concerned with the case when the base field K is finite.

In 1976 L. Baum and M. Sweet [1] showed that the unique solution in
K((T−1)) of the irreducible equation

Tx3 + x+ T = 0, (1)

when the base field is K = F2, has a continued fraction expansion with partial
quotients of bounded degree. They observed that no real algebraic number of
degree ≥ 3 has yet been shown to have bounded or unbounded partial quotients.

In 1986, W. Mills and D. Robbins [8] observed that equation (1) should be
looked at in a special way, that is as x = T/(Tx2 + 1). Indeed they suggested
considering the set, which we will call H, of the irrational elements in K((T−1)),
satisfying an algebraic equation of the following form

x = (Axq +B)/(Cxq +D), (2)

where A,B,C, and D are elements of K[T ], and q is a power of the characteristic
p of the field K. In their paper they described an algorithm to give the explicit
continued fraction expansion of an element satisfying (2). Hence they could give the
explicit continued fraction of the solution of (1). Also, using this algorithm, they
gave an example of a non-quadratic element in H with bounded partial quotients,
when K = Fp, and for all p greater than 2.

Later, the rational approximation properties of the elements in H, were
studied independently by J. Voloch [9], and B. de Mathan [7]. They showed that,
for α ∈ H, if lim inf|Q|→∞ |Q|2|α − P/Q| = 0, then there exist a real number
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µ > 2 and a real number δ > 0 such that lim inf|Q|→∞ |Q|µ|α − P/Q| = δ, where
P,Q ∈ K[T ] and Q 6= 0.

The set H contains elements which are very well approximated by rationals.
A famous example in Fp((T

−1)), which was given by K. Mahler in 1949 [5], satisfies
the algebraic equation x = 1/T + xp. For this element α, algebraic of degree p,
we have rationals P/Q, with |Q| arbitrarily large, and |α − P/Q| = |Q|−p. With
respect to this, B. de Mathan and the author [3], have recently shown that if an
algebraic element does not belong to H, then it cannot be too well aproximated by
rationals : if α /∈ H and is algebraic of degree n > 1 over K(T ), then, for all ǫ > 0,
we have |Qα− P | > |Q|−([n/2]+ǫ), for all P/Q ∈ K(T ) with |Q| large enough. This
last property highlights the peculiarity of this set H.

In this paper, as observed by L. Baum and M. Sweet and later by W. Mills
and D. Robbins, we want to stress the fact that this set H also contains non-
quadratic elements which are badly approximable by rationals. By this we mean
that, for such an element α, we have |α−P/Q| ≥ C|Q|−2 for all P/Q ∈ K(T ), where
C is a fixed positive real number. In other words, these elements have bounded
partial quotients in their continued fraction expansion.

§2. The main result.

Let p be a prime number, K = Fp, the field with p elements, and q = ps

where s is a positive integer. Let A,B,C and D ∈ K[T ], coprime, such that
∆ = AD−BC 6= 0. Let us suppose that there is an irrational α ∈ K((T−1)), such
that

α = (Aαq +B)/(Cαq +D). (1)

Let f be the linear fractional transformation defined on K((T−1))\{−D/C}, or
K((T−1)) if C = 0, by f(x) = (Ax+B)/(Cx+D). We observe that f is invertible
and for x 6= A/C we have f−1(x) = (Dx−B)/(−Cx+A).

We are interested in the continued fraction expansion for α. The formal-
isation of the continued fraction algorithm in K((T−1)) apparently goes back to
E. Artin’s work in his thesis; for general references on this subject see for instance
[1,6]. Since α is not rational, this expansion is infinite and will be denoted by
α = [a0, a1, a2, ...., an, ....]. The ai ∈ K[T ] are called the partial quotients, and we
have deg ai > 0 for i > 0. We consider the sequence (Un/Vn)n≥0 of the convergents
to α, which is defined for n ≥ 2, by

Un = anUn−1 + Un−2 and Vn = anVn−1 + Vn−2,

with the initial conditions U0 = a0, U1 = a0a1 + 1, V0 = 1 and V1 = a1. We
introduce the set E of all the convergents to α. When we write U/V ∈ E, we
suppose that U and V are coprime polynomials, so that U and V are defined up
to a multiplicative factor of K∗. Let P,Q ∈ K[T ], with Q 6= 0 and gcd(P,Q) = 1,
such that P/Q is a convergent to α. If P/Q = [a0, a1, ...., an], we will denote
a(P,Q) = an+1. We recall that, for n ≥ 0, we have |α− Un/Vn| = |VnVn+1|

−1 (see
for instance [6]). Thus for P/Q ∈ E, we obtain the following equation :

|Qα− P | = |Q|−1 |a(P,Q)|−1. (2)
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Now we put

{

P1 = DP −BQ

Q1 = −CP + AQ
and

{

P2 = AP q +BQq

Q2 = CP q +DQq (3)

so that we have

P1/Q1 = f−1(P/Q) and P2/Q2 = f((P/Q)q). (4)

We observe that, for x, y ∈ K((T−1)) \ {−D/C,A/C}, we have

f(x)− f(y) =
∆(x− y)

(Cx+D)(Cy +D)
and f−1(x)− f−1(y) =

∆(x− y)

(A− Cx)(A− Cy)
.

(5)
Since ∆ 6= 0, we have α 6= A/C. Therefore, by (4) and (5), we get, if Q1 6= 0,

αq − P1/Q1 = f−1(α)− f−1(P/Q) =
∆(Qα− P )

(A− Cα)Q1
, (6)

and also, if Q2 6= 0,

α − P2/Q2 = f(αq)− f((P/Q)q) =
∆(Qα− P )q

(Cαq +D)Q2
. (7)

Now, let us introduce two subsets, E1 and E2, of E. If C = 0, then we put
E1 = E2 = E. If C 6= 0, then

E1 = {P/Q ∈ E : |α− P/Q| < |α− A/C| },

and
E2 = {P/Q ∈ E : |α− P/Q| < |αq +D/C|1/q }.

It is clear that if P/Q ∈ E1, we have |C(P/Q)− A| = |Cα − A|, and this implies,
by (3), Q1 6= 0 and

|Q1| = |Q| |Cα− A|. (8)

In the same way, if P/Q ∈ E2, then we have |C(P/Q)q +D| = |Cαq +D|, and this
implies, by (3), Q2 6= 0 and

|Q2| = |Q|q |Cαq +D|. (9)

Then, if P/Q ∈ E1, the three equations (2), (6) and (8) lead to

|Q1α
q − P1| = |∆| |a(P,Q)|−1|Q1|

−1. (10)

In the same way, if P/Q ∈ E2 , the three equations (2), (7) and (9) lead to

|Q2α− P2| = |∆| |a(P,Q)|−q|Q2|
−1. (11)

Now we put, for i = 1 or 2, δi(P,Q) = gcd(Pi, Qi). The systems (3) can be solved
and we get, respectively,

{

CP1 +DQ1 = ∆Q

AP1 +BQ1 = ∆P
and

{

−CP2 +AQ2 = ∆Qq

DP2 −BQ2 = ∆P q
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This shows that, for i = 1 or 2, δi(P,Q) divides ∆. Let us put, for i = 1 or 2,
Pi = P ′

i δi(P,Q) and Qi = Q′
iδi(P,Q). Then the equations (10) and (11) can be

respectively written :

|Q′
1α

q − P ′
1| = |∆| |δ1(P,Q)|−2 |a(P,Q)|−1|Q′

1|
−1 (10′)

and

|Q′
2α− P ′

2| = |∆| |δ2(P,Q)|−2 |a(P,Q)|−q|Q′
2|

−1. (11′)

After these preliminaries, we can now establish the following three lemmas.
The first is a consequence of some basic properties of the continued fraction algo-
rithm for formal power series.

LEMMA 1. Let α be an irrational element in K((T−1)), satisfying (1). If P/Q ∈
E1 and if P ′

1 or Q′
1 is not a q-th power of an element of K[T ], then we have

|a(P,Q)| < |∆| |δ1(P,Q)|−2.

Proof: The proof is based upon two general properties of the continued fraction
expansion of an element in K((T−1)). Let P and Q ∈ K[T ] be such that Q 6= 0 and
gcd(P,Q) = 1. The first classical result is the following : if |Qα− P | < |Q|−1 then
P/Q is a convergent to α (see for instance [6]). The second one is : if |Qα− P | =
|Q|−1 then there are two consecutive convergents to α, U/V and U ′/V ′, and two
non-zero elements in K, λ and µ such that P = λU+µU ′ and Q = λV +µV ′. Both
results are established in [1], for K = F2, and can be transposed without difficulty
to the general case.
We are now going to show that if (∗) |a(P,Q)| ≥ |∆| |δ1(P,Q)|−2, then P ′

1 and Q′
1

are q-th powers in K[T ], which will prove this lemma. We observe that if we have
a strict inequality in (∗), then, by (10′) we obtain

|Q′
1α

q − P ′
1| < |Q′

1|
−1.

According to the previous remark, this shows that P ′
1/Q

′
1 is a convergent to αq.

Now, due to the Frobenius homomorphism, if α = [a0, a1, ...., an, ..] then αq =
[aq0, a

q
1, ...., a

q
n, ..], and therefore the convergents to αq are the q-th powers of the

convergents to α. Thus P ′
1 and Q′

1 are q-th powers in K[T ]. Now if we have
equality in (∗), then, by (10′), we get

|Q′
1α

q − P ′
1| = |Q′

1|
−1.

According to the second result, mentioned above, P ′
1, and Q′

1, will be a linear
combination, with coefficients in K, of two q-th powers in K[T ], and therefore also
a q-th power in K[T ]. So the lemma is proved.

The second lemma is a formalisation and a generalisation of an idea found
in [1].
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LEMMA 2. Let α be an irrational element in K((T−1)), satisfying (1). Let us
suppose that we have |a(P,Q)| ≤ |∆|1/(q−1), assuming that either P/Q ∈ E and
P/Q /∈ E1, or P/Q ∈ E1 and |δ1(P,Q)| < |∆|. Then, for all P/Q ∈ E, we have
|a(P,Q)| ≤ |∆|1/(q−1).

Proof: We recall that if P/Q ∈ E, then δ1(P,Q) divides ∆, therefore we have
|δ1(P,Q)| ≤ |∆|. Let us suppose that there exists P/Q ∈ E such that |a(P,Q)| >
|∆|1/(q−1), and moreover that P/Q is chosen so that |a(P,Q)| is minimal. Then we
must have P/Q ∈ E1 and |δ1(P,Q)| = |∆|. So (10′) becomes

|Q′
1α

q − P ′
1| = |∆|−1 |a(P,Q)|−1 |Q′

1|
−1

This shows that P ′
1/Q

′
1 is a convergent to αq, and therefore there exist U and

V ∈ K[T ], coprime, such that P ′
1 = U q and Q′

1 = V q. Then the above equation
implies

|V α− U | = |∆|−1/q |a(P,Q)|−1/q |V |−1.

This shows that U/V is a convergent to α and that we have

|a(U, V )| = |∆|1/q |a(P,Q)|1/q.

Since |a(P,Q)| > |∆|1/(q−1), we obtain

|∆|1/(q−1) < |a(U, V )| < |a(P,Q)|

which contradicts our assumption that |a(P,Q)| is minimal. So the proof is com-
plete.

The last lemma is due to Mills and Robbins and first appeared in [8]. The
ideas involved have been developed independently by Voloch [9], and de Mathan
[7]. We will see in this lemma that the bound |∆|1/(q−1), introduced in Lemma 2,
is a critical value.

LEMMA 3. Let α be an irrational element in K((T−1)), satisfying (1). Let us
suppose that there exists P/Q ∈ E2 such that

i)|α− P/Q| < |∆|−1/(q−1) |Cαq +D|2/(1−q) and ii)|a(P,Q)| > |∆|1/(q−1).

Then the sequence of the partial quotients of the continued fraction expansion for
α is unbounded.

Proof: We first show that if P/Q ∈ E2 is such that ii) is satisfied, then there is
U/V ∈ E, such that |a(U, V )| > |a(P,Q)|. We use equation (11′), which was stated
above. Consequently, we have

|α− P ′
2/Q

′
2| ≤ |∆| |a(P,Q)|−q |Q′

2|
−2.

Now the hypothesis ii) implies that |∆| |a(P,Q)|−q < 1, therefore P ′
2/Q

′
2 is a

convergent to α and we have

|a(P ′
2, Q

′
2)|

−1 ≤ |∆| |a(P,Q)|−q.
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Thus we obtain |a(P ′
2, Q

′
2)| ≥ |∆|−1 |a(P,Q)|q > |a(P,Q)|. Now let us prove that

P ′
2/Q

′
2 ∈ E2. By (7) and (9), we have

|α− P ′
2/Q

′
2| = |α− P/Q|q |∆| |Cαq +D|−2.

On the other hand, the hypothesis i) implies that

|α− P/Q|q−1 < |∆|−1 | |Cαq +D|2.

Combining those two relations, we get

|α− P ′
2/Q

′
2| < |α− P/Q|.

So we see that the hypotheses in the lemma hold for the convergent P ′
2/Q

′
2, and

step by step we obtain a strictly increasing sub-sequence for the absolute values of
the partial quotients. This completes the proof of the lemma.

REMARK. This last lemma shows that a great number of irrational elements in
K((T−1)), satisfying (1), will have an unbounded sequence of partial quotients.
This is certainly the case if the critical bound |∆|1/(q−1) is less than |T |, and it is
necessarily so if |∆| is fixed and if q is large enough (i.e. q > 1+deg∆). In order to
get examples with a bounded sequence of partial quotients, we will use Lemmas 1
and 2. The basic idea is that the linear fractional transformation which is involved
in equation (1), has to be be chosen such that the polynomials P ′

1 and Q′
1 cannot

be both a q-th power in K[T ].

To illustrate the possible use of what has just been discussed, we give an
example below. We are aware that this example remains very specific, and close to
the example introduced by L. Baum and M. Sweet in [1]. It would be particularly
interesting, if possible, to extend this type of result to characteristic other than 2.
We prove the following theorem :

THEOREM. Let l be a positive integer. Let D ∈ F2[T ] be such that D(0) = 1.
We consider the algebraic equation

(E) Tx3 +Dx+ T l = 0.

Let α be an irrational solution of (E) in F2((T
−1)). Then

i) if |α| ≥ |T |−(l+1), the sequence of the partial quotients of the continued
fraction expansion for α is bounded by |T |l+1.

ii) if |α| < |T |−(l+1), the sequence of the partial quotients of the continued
fraction expansion for α is unbounded.

REMARK. The existence of an irrational solution of (E) depends on the choice of
D and of l. We can indicate some cases where this solution exists and is unique in
F2((T

−1)). So for l = 1 and D = 1, the solution of (E) is the cubic example given
by L. Baum and M. Sweet, we have |α| = 1 and the partial quotients of its continued
fraction expansion are bounded by |T |2. Also if m = deg D, and if 1 ≤ l ≤ m,
with (l,m) 6= (1, 1), equation (E) has a unique solution α, with |α| = |T |l−m. In
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this last situation, if this solution is irrational, the theorem implies that the partial
quotients of its continued fraction expansion are bounded by |T |l+1, if and only if
⌊m/2⌋ ≤ l ≤ m.

Proof: Equation (E) can be written x = T l/(Tx2 +D). We are therefore in the
above situation, with A = 0, B = T l, C = T and p = q = 2. We have ∆ = T l+1.

To prove the first part i) of the theorem, we shall apply Lemma 2. Let us
first show that if P/Q /∈ E1, then we have |a(P,Q)| ≤ |∆| = |T |l+1. Here we have
P/Q ∈ E1 if and only if |α − P/Q| < |α|. So we see that, if |α| ≥ 1, then E1 = E.
If |T |−(l+1) ≤ |α| < 1, then the first convergent is 0 and E1 = E \{0}. In the first
case, as E1 = E, there is nothing to prove. In the second one, we have to estimate
|a(0, 1)|. But then we have

|a(0, 1)| = |α|−1 ≤ |T |l+1 = |∆|.

The hypothesis of Lemma 2 will be satisfied if, for P/Q ∈ E1, |δ1(P,Q)| < |T |l+1

implies that |a(P,Q)| ≤ |T |l+1.
Here we have, by (3),

P1 = DP + T lQ and Q1 = TP

We know that δ1(P,Q) divides T l+1. Let us consider the different possible values
of δ1(P,Q). At each step, we will use the fact that D(0) = 1, that is to say that T
does not divide D.
It is clear that δ1(P,Q) = 1 if and only if T does not divide P .
Furthermore, for 1 ≤ i ≤ l − 1, we see that δ1(P,Q) = T i if and only if T i divides
P and T i+1 does not divide P .
If T l divides P then δ1(P,Q) = T l or T l+1. But then P1 = T l(D(P/T l) +Q) and
T does not divide Q. Thus T divides D(P/T l)+Q if and only if T does not divide
P/T l. Consequently, we have δ1(P,Q) = T l if and only if T l+1 divides P .
Now we can show that, for 0 ≤ i ≤ l − 1, if δ1(P,Q) = T i, then Q′

1 is not a
square. Indeed we have Q′

1 = T (P/T i) and the factor P/T i is not divisible by T ,
thus Q′

1 cannot be a square. We can apply Lemma 1 to this situation, and we get
|a(P,Q)| < |∆|.
It remains to study the case when δ1(P,Q) = T l. Equation (10′) becomes

|Q′
1α

2 − P ′
1| = |T |−l+1 |a(P,Q)|−1|Q′

1|
−1.

Thus P ′
1/Q

′
1 is a convergent to α2 and there exists U/V ∈ E such that P ′

1 = U2

and Q′
1 = V 2. If we report this in the last equation, we obtain

|V α− U | = |T |(−l+1)/2 |a(P,Q)|−1/2|V |−1.

This shows that |a(U, V )| = |a(P,Q)|1/2 |T |(l−1)/2. On the other hand, T does not
divide P ′

1 = D(P/T l) +Q, since T divides P/T l, and T does not divide Q. Thus
T does not divide U , and this implies that δ1(U, V ) = 1, as we have seen above.
According to the previous result, we have |a(U, V )| < |∆|. Therefore we can write

|a(U, V )| = |a(P,Q)|1/2 |T |(l−1)/2 ≤ |T |l.
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Hence again, we have |a(P,Q)| ≤ |T |l+1 = |∆|.
Thus we can apply Lemma 2 and it follows that the sequence of partial quotients
is bounded by |T |l+1, which completes the proof of i).

Finally, we prove part ii) of the theorem. To do so we will apply Lemma 3.
Here |α| < |T |−(l+1), hence the first convergent is 0 and we have

|a(0, 1)| = |α|−1 > |T |l+1 = |∆|.

We have to see that the convergent 0 is in E2 and satisfies the condition i) of this
lemma. Hence it is necessary to have

|α| < |α2 +D/T |1/2 and |α| < |∆|−1 |Tα2 +D|2.

This is certainly true, since we have |α| < |T |−(l+1) and |Tα2 + D| = |D| ≥ 1.
Lemma 3 applies, this completes the proof of ii) and of the theorem.

§3. Conclusion.

The possibility of describing the two subsets of H, formed on the one hand
by the elements with bounded partial quotients, and on the other hand by the
elements with unbounded partial quotients, remains an open question. We have to
add that those subsets are both stable by a linear fractional transformation with
polynomial coefficients, as well as by the Frobenius homomorphism, and also by
changing T into a polynomial in T .

In the case when the base field is F2, L. Baum and M. Sweet [2] have obtained
algebraic elements with bounded partial quotients of a different type, which do not
belong toH. B. de Mathan and the author have shown that this phenomenon has an
explanation using methods of differential algebra. We also proved that this special
phenomenon cannot happen if the characteristic is 3 [4]. Those algebraic elements
are possibly exceptions and perhaps the unique algebraic ones, with bounded partial
quotients, outside the set H.
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