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Abstract

We prove that the Osgood-Thue Theorem, about Diophantine Approximation in function fields,
holds under a more general condition when the ground field is finite.
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1. Introduction

LetK be a field of positive characteristic p , and letK((T−1)) be the field of formal Laurent series.

We consider the field of rational functions K(T ) as embedded into K((T−1)). If α =
n0∑

n=−∞

anT
n is

an element of K((T−1)), with an0
6= 0, the integer n0 is the degree of α, n0 = deg α. We may

put deg 0 = −∞, and we define an absolute value |.| on K((T−1)) by |α| = qdeg α where q > 1.
When K is a finite field, we will take q = |K|. However, it is not necessarily so.
It is well known that Roth’s Theorem fails in positive characteristic. Liouville’s Theorem holds,

and a celebrated example of Mahler shows that this result is the best possible. However, it is
possible to obtain more precise results while excluding some exceptional cases. For instance, it has
been proved by Osgood ([3]) that |α − P/Q| >> |Q|−[(n+3)/2] when α is an algebraic element
in K((T−1)), of degree n > 1, which satisfies no rational Riccati differential equation (and P
and Q are polynomials in K[T ], Q 6= 0). Actually, the method of Osgood leads to |α − P/Q|
>> |Q|−([n/2]+1) (under the assumption that α satisfies no rational Riccati differential equation).
It was recently proved by the authors ([2]) that when α satisfies no equation of the form α =
(Aαps + B)/(Cαps + D) , where A, B, C and D are coefficients in K(T ), not all zero, then |α
− P/Q| >> |Q|−([n/2]+1+ǫ) for every ǫ > 0. Our method was close to the original Thue’s method .
Recently a very interesting paper of Voloch ([6]) gave a result which allows us to adapt the method
of Thue-Osgood: using this result, we can give another proof of our result when the ground field
K is finite. In this case, we can prove that the same result as the one given by Osgood, |α − P/Q|
>> |Q|−([n/2]+1), holds under the assumption that α satisfies no equation α = (Aαps + B)/(Cαps

+ D).

2. Osgood’s Theorem

In this section, we recall briefly the proof of Osgood’s Theorem, to make obvious the fact that
Osgood’s method actually leads to the slightly improved result:

Theorem 2.1. (Osgood). Let α be an algebraic element in K((T−1)), of degree n > 1 over K(T ).
If α satisfies no rational Riccati differential equation, then |α − P/Q| >> |Q|−([n/2]+1) for every
pair (P,Q) of elements of K[T ], Q 6= 0.
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Proof. First notice that every algebraic element α ∈ K((T−1)) is separable over K(T ), since it
is clear that if α1, ..., αn are elements of K((T−1)) which are linearly independent over K(T ), so
are αp

1, ..., α
p
n. Hence αp as the same degree n as α over K(T ). As α is separable over K(T ), its

derivative α′ lies in K(T )(α): indeed if αn + an−1α
n−1 + ... + a0 = 0, with coefficients a0, ..., an−1,

in K(T ), putting F1(X) = nXn−1 + ...+ a1, and F2(X) = a′n−1X
n−1 + ...+ a′0, we have F1(X) 6= 0,

hence F1(α) 6= 0, and since α′F1(α) + F2(α) = 0, we get α′ = −F2(α)/F1(α) ∈ K(T )(α). Then
the crucial point in the proof of Osgood’s Theorem is the use of Thue’s method in the following
way: if d is any integer with 0 ≤ d < n, the n + 1 elements α′, α′α, ..., α′αd, 1, α, ..., αn−d−1

of K(T )(α) are linearly dependent over K(T ), hence there exist polynomials A(X) and B(X) in
K[T ][X], not both zero, such that degX A ≤ n − d − 1, degX B ≤ d, and α′B(α) = A(α).
If B(α) = 0, we have A(α) = 0 and thus A(X) = B(X) = 0 since max(degX A, degX B) < n. As
this is impossible, we thus have B(α) 6= 0. Moreover, we can suppose that A and B are relatively
prime. Consider the following ”differential polynomial” on K((T−1)): for each β ∈ K((T−1)), put
H(β) = β′B(β) − A(β). Notice that |β′ − α′| ≤ |β − α|/|T |. Moreover, when |β − α| ≤ 1, we
have |A(β) − A(α)| ≤ C1|α − β| and |B(β) − B(α)| ≤ C1|α − β|, where C1 is a positive real
constant (C1 = max(|A|, |B|)max(1, |α|n−2), where |A| (respectively |B|) denotes the maximum of
the absolute values of the coefficients of A (resp. B), regarded as a polynomial with coefficients
in K[T ]). As H(α) = 0, and |B(β)| ≤ max(1, |α|)C1, we thus have |H(β)| ≤ C2|α − β|, with
C2 = max(1, |α|)C1. Then let P and Q be elements of K[T ], Q 6= 0. As Q2(P/Q)′, as well as
Qn−d−1A(P/Q) and QdB(P/Q), are elements of K[T ], then Qmax(d+2,n−d−1)H(P/Q) lies in K[T ].
Choosing d = [(n − 2)/2], we have d + 2 ≥ n − d − 1 since [(n − 2)/2] ≥ (n − 3)/2. Hence
max(d + 2, n − d − 1) = d + 2 = [n/2] + 1. So ifH(P/Q) 6= 0, we have |H(P/Q)| ≥ |Q|−([n/2]+1).
Now it is proved in [3] or [4], that if the differential equation H(β) = 0 is not a Riccati equation,
that is to say, if we have not both the conditions degX B = 0 and degX A ≤ 2, then H(P/Q) 6= 0
for each pair (P,Q) of coprime elements of K[T ], with |Q| sufficiently large. So, for such (P,Q), we
get |H(P/Q)| ≥ |Q|−([n/2]+1), and thus |α − P/Q| ≥ C−1

2 |Q|−([n/2]+1) (the condition |α − P/Q| ≤ 1
being removed since C2 ≥ 1).

3. A generalized Osgood-Thue Theorem

In this section, we prove:

Theorem 3.1. Suppose that K is a finite field of characteristic p. Let α be an algebraic element
of K((T−1)) of degree n > 1. Suppose that α satisfies no equation of the form α = (Aαps +
B)/(Cαps +D), where s is a positive integer, and A, B, C and D are elements of K[T ], not all zero.
Then there exists a positive real constant C3 such that |α − P/Q| ≥ C3|Q|−([n/2]+1) for every pair
(P,Q) of elements of K[T ] with Q 6= O.

Notice that we have proved in [2] by using the original method of Thue, that under the same
hypotheses, but K being any field of positive characteristic p, we have |α − P/Q| >> |Q|−([n/2]+ǫ+1)

for every ǫ > 0. Although the case where K is finite is simpler, we cannot obtain a general effective
result. The result of [2] is not effective either.
Proof. We use the following lemma, which is due to Voloch ([6]). This lemma holds for any field

of positive characteristic p.

Lemma 3.2. (Voloch). Let α be an algebraic element of K((T−1)), of degree n ≥ 4 over K(T ).
Suppose that α does not satisfy the conclusion of Theorem 3.1. Let (αi)1≤i≤4 be four distinct
conjugates of α in an algebraic closure Ω of K(T ). The cross ratio (α1, α2, α3, α4) is algebraic over
K.
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Proof. As we make a slight change because of a minor error in Voloch’s paper, let us recall the
proof of this Lemma. We note (α1, α2, α3, α4) = (α3 − α1)(α4 − α2)/((α3 − α2)(α4 − α1)). We may
suppose K perfect, since the statement is unchanged while replacing K by any algebraic extension
K ′ of K. Indeed an algebraic element α ∈ K((T−1)) of degree n over K(T ) has the same degree
n over K ′(T ), when it is regarded as an element of K ′((T−1)). Moreover if P and Q are coprime
polynomials in K ′[T ], Q monic, with |α − P/Q| < |Q|−2, then P and Q lie in K[T ] since P/Q is
a convergent in the continued fraction expansion of α .

First, if the inequality |α − P/Q| >> |Q|−([n/2]+1) does not hold, there follows from Osgood’s
Theorem that α satisfies a rational Riccati differential equation (E). Moreover, there are rational
solutions P/Q of this differential equation, where P and Q are coprime in K[T ], Q 6= 0, with
deg Q unbounded ([4]). Indeed, the same method as in the proof of Osgood’s Theorem shows that,
if α satisfies a rational Riccati differential equation, then |α − P/Q| >> |Q|−2 for all the pairs
(P,Q) ∈ K[T ] × (K[T ]\{0}) such that P/Q is not a solution of this Riccati equation. Then the
equation (E) has at least three rational solutions R1, R2, R3. The other solutions of (E) inK((T−1))
are the elements z ∈ K((T−1)) for which the cross ratio (R1, R2, R3, z) lies in K((T−p)). Indeed, as
in the classical theory, the differential equation which must be satisfied by y = (R1, R2, R3, z) so
that z satisfies (E), is y′ = 0. Then there exists β ∈ K((T−1)) such that (R1, R2, R3, α) = βp, that
is to say that α = (U1β

p + V1)/(W1β
p + X1) , where U1, V1, W1, and X1 are elements of K[T ],

with U1X1 − V1W1 6= 0. Clearly β is an element of K(T )(α) of degree n, since, β being separable
over K(T ), one has K(T )(β) = K(T )(βp). Moreover, as α does not satisfy the condition |α −
P/Q| >> |Q|−([n/2]+1), neither does β. Indeed the condition is invariant by rational homography,
and if we had |β − P/Q| >> |Q|−([n/2]+1), we would also have |βp − P/Q| >> |Q|−([n/2]+1) since a
rational function P/Q with |βp − P/Q| < |Q|−2 is a convergent in the continued fraction expansion
of βp, that is to say P/Q = (R/S)p where R and S are polynomials in K[T ], S 6= 0. So we construct
inductively a sequence (βs)s∈IN of elements ofK(T )(α) and sequences of polynomials Us, Vs, Ws, and
Xs in K[T ] with UsXs − VsWs 6= 0 such that α = (Usβ

ps + Vs)/(Wsβ
ps + Xs). Therefore, if σi

(1 ≤ i ≤ 4) are four distinctK(T )-isomorphisms fromK(T )(α) into an algebraic closure Ω ofK(T ),
the cross ratio (σ1(α), σ2(α), σ3(α), σ4(α)), being equal to (σ1(β), σ2(β), σ3(β), σ4(β))

ps , belongs to
(K(T )(α1, α2, α3, α4))

ps for each s. Now any element γ of
⋂

s

(K(T )(α1, α2, α3, α4))
ps is algebraic

over K since K(T )(α1, ..., αn) being separable over K(T ), the monic irreducible polynomial in
K(T )[X] which vanishes at γ has coefficients lying in K(T ps) for each positive integer s. These
coefficients thus lie in K.
We can now prove Theorem 3.1. We establish that if K is a finite field Fq, and if α does not satisfy

|α − P/Q| >> |Q|−([n/2]+1), then there exists a positive integer s and coefficients A, B, C and D
in K[T ], with AD −BC 6= 0 such that α = (Aαps + B)/(Cαps + D). We can suppose that n ≥ 4
since any α of degree less than 4 satisfies an equation α = (Aαp+B)/(Cαp+D), where A, B, C and
D are coefficients in K[T ], AD−BC 6= 0. Let σi (1 ≤ i ≤ n) be the n distinct Fq(T )-isomorphisms
from Fq(T )(α) into Ω (an algebraic closure of Fq(T )). As the cross ratio (σ1(α), σ2(α), σ3(α), σ4(α))
is algebraic over Fq, its degree over Fq is the same as over Fq(T ), and this degree thus divides n!.
So the cross ratio (σ1(α), σ2(α), σ3(α), σ4(α)) belongs to the field Fqn! . If we put qn! = ps, we thus
have (σ1(α

ps), σ2(α
ps), σ3(α

ps), σ4(α
ps)) = (σ1(α), σ2(α), σ3(α), σ4(α)). Then we will complete the

proof by applying the following lemma to α and αps :

Lemma 3.3. Let α be an algebraic element in K((T−1)) of degree at least 4 over K(T ). Let
β ∈ K(T )(α). Suppose that for each system (σ1, ..., σ4) of four distinct K(T )-isomorphisms from
K(T )(α) into an algebraic closure, the cross ratios (σ1(α), σ2(α), σ3(α), σ4(α)) and (σ1(β), σ2(β),



4 A. LASJAUNIAS AND B. DE MATHAN

σ3(β), σ4(β)) are equal. Then there exist coefficients A, B, C and D in K[T ], with AD −BC 6= 0,
such that α = (Aβ + B)/(Cβ +D).

Proof. If we consider the equality (σ1(α), σ2(α), σ3(α), σ(α)) = (σ1(β), σ2(β), σ3(β), σ(β) while
fixing three distinct K(T )-isomorphisms σ1, σ2, and σ3, from K(T )(α), and letting σ4 = σ run
through theK(T )-isomorphisms fromK(T )(α), we obtain a relation σ(α) = (Aσ(β)+B)/(Cσ(β)+
D), where A, B, C and D are coefficients in K(T )((σi(α))1≤i≤n), with AD − BC 6= 0, and
independent from σ. One of these coefficients is not zero, for instance A 6= 0, then taking A = 1,
the coefficients A, B, C and D in K(T )((σi(α))1≤i≤n), such that σ(α) = (Aσ(β)+B)/(Cσ(β)+D)
for each K(T )-isomorphism σ from K(T )(α), become unique. Now for each K(T )-automorphism
τ of K(T )((σi(α))1≤i≤n), the coefficients τ(A), τ(B), τ(C) and τ(D) satisfy the same condition,
hence τ(A) = A, τ(B) = B, τ(C) = C and τ(D) = D. As K(T )((σi(α))1≤i≤n) is a Galois extension
of K(T ), then A, B, C and D lie in K(T ), and in particular we have α = (Aβ + B)/(Cβ + D).
We make A, B, C and D polynomials, by multiplying by a non-zero polynomial. So the proof is
complete.

4. Rational solutions of a Riccati equation

In the previous paragraph, we have seen that if a rational Riccati equation has no rational
solution, then a solution α ∈ K((T−1)) of this equation satisfies |α − P/Q| >> |Q|−2. Therefore,
one can ask whether there actually exist algebraic elements α satisfying such an equation. There
are examples in characteristic 2. For instance L. E. Baum and M. M. Sweet have proved that an
element α ∈ F2((T

−1)) satisfies |α − P/Q| ≥ |Q|−2/2 for every pair (P,Q) of polynomials in F2[T ],
Q 6= 0, if and only if α2 + Tα + 1 = (1 + T )γ2, with γ ∈ F2((T

−1)), |γ| ≤ 1 ([1]). We notice that:

Theorem 4.1. Every element α ∈ F2((T
−1)) such that α2 + Tα + 1 = (1 + T )γ2 where γ ∈

F2((T
−1)), |γ| ≤ 1, is a solution of a Riccati rational equation which has no rational solution.

Proof. For such an α, we have Tα′ + α = γ2 = (α2 + Tα + 1)/(1 + T ), hence we get α′ =
α2/(T 2 + T ) + α/(T 2 + T ) + 1/(T 2 + T ). Putting α/(T 2 + T ) = β, we obtain the equation
β′ = β2 + 1/(T 2 + T )2. Now the equation G′ = G2 + 1/(T 2 + T )2 has no solution G ∈ F2(T ) since

it has no solution G ∈ F2((T )). Indeed, if G =
+∞∑

n=d

gnT
n, with d ∈ Z, were a solution of this

equation, putting gn = 0 when n < d and writing G′ = G2+
+∞∑

n=−1

T 2n, we would have g2n+1 = gn+1

for each n ≥ −1, which is impossible for n = −1.
Notice that for each γ ∈ F2((T

−1)), |γ| ≤ 1, there is an element α ∈ F2((T
−1)) such that

α2 + Tα + 1 = (1 + T )γ2 (indeed T−1α satisfies an equation x2 + x = y with |y| < 1; such
an equation has roots in α ∈ F2((T

−1)) by Hensel’s Lemma). All these elements α satisfy the
same Riccati equation without rational solution. If γ is algebraic, so is α, and the degree of α is
[K(T )(γ) : K(T )] or 2[K(T )(γ) : K(T )]. This degree thus is arbitrarily great.

Also notice that we obtain another proof of the result of Baum and Sweet ([1]): if α is an
element of F2((T

−1)) with α2 +Tα+1 = (1+T )γ2 and γ ∈ F2((T
−1)), |γ| ≤ 1, then |α − P/Q| ≥

|Q|−2/2 for every pair (P,Q) of polynomials in F2[T ], Q 6= 0. Indeed, putting for z ∈ K((T−1)),
H(z) = z′ + z2/(T 2 + T ) + z/(T 2 + T ) + 1/(T 2 + T ), as |α’ − (P/Q)′| ≤ |α − P/Q|/2, we have
|H(P/Q)| ≤ |α − P/Q|/2. As |H(P/Q)| ≥ |Q|−2/4, we thus get |α − P/Q| ≥ |Q|−2/2.
However we are able to prove that the situation is different in characteristic 3:
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Theorem 4.2. Let K be a field of characteristic 3. If a rational Riccati equation has a solution in
K((T−1)), which is neither quadratic nor rational, then it has infinitely many rational solutions.

Proof. Consider first a linear equation α′ = V α, where V ∈ K(T ). We can suppose that V 6= 0
since the result is trivial if V = 0. A non-zero solution in K((T−1)) satisfies α(k) = Vkα for each
positive integer k, where Vk is given inductively by V1 = V and for k > 1, Vk = V ′

k−1 + Vk−1V . As

α(3) = 0, there exists an integer k with 1 < k ≤ 3 such that Vk = 0 and Vk−1 6= 0. We see that for
every β ∈ K((T−1)) with β′ = 0, β/Vk−1 is a solution of the above equation. Taking β ∈ K(T 3),
we so get infinitely many rational solutions.

Then consider a Riccati equation α′ = Uα2 + V α + W , where U , V and W are rational
coefficients, with U 6= 0 or W 6= 0. Eventually replacing α by 1/α, we can suppose U 6= 0.
Now by replacing α by Uα, we can suppose U = 1, and then, replacing α by α + V/2 in the
equation α′ = α2 + V α + W , we may work with an equation of the form α′ = α2 + W . A
solution α of this equation in K((T−1)) shall satisfy α′′ = 2αα′ + W ′ = 2α3 + 2αW + W ′ and
α(3) = 2α′W + 2αW ′ +W ′′ = 2Wα2 + 2αW ′ + 2W 2 +W ′′ = 0. As there is a solution which is
neither rational, nor quadratic, the coefficients of the last polynomial equation in α are zero. Thus
W = 0. Now the equation α′ = α2 has infinitely many rational solutions, since, for α 6= 0, this
equation is (1/α)′ = −1, and has the rational solutions α = −1/(T + β), where β ∈ K(T 3).
One may think that Theorem 4.2 holds for any odd characteristic p, but we are unable to prove

that when p > 3.
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