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A note on hyperquadratic continued fractions in
characteristic 2 with partial quotients of degree 1
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Alain Lasjaunias (Bordeaux)

1. Introduction. Let p be a prime number, q = ps with s ≥ 1, and
let Fq be the finite field with q elements. We let Fq[T ], Fq(T ) and F(q)
denote respectively the ring of polynomials, the field of rational functions
and the field of power series in 1/T with coefficients in Fq, where T is a
formal indeterminate. These fields are valuated by the ultrametric absolute
value (and its extension) introduced on Fq(T ) by |P/Q| = |T |deg(P )−deg(Q),
where |T | > 1 is a fixed real number. Hence a non-zero element of F(q) is
written as α =

∑
k≤k0 akT

k with k0 ∈ Z, ak ∈ Fq, and ak0 6= 0, and we have

|α| = |T |k0 . The field F(q) is the completion of Fq(T ) for this absolute value.

We recall that each irrational [rational] element α of F(q) can be ex-
panded into an infinite [finite] continued fraction. This will be denoted
α = [a1, a2, . . . ] where the partial quotients ai are in Fq[T ], with deg(ai) > 0
for i > 1.

In this note we are concerned with infinite continued fractions in F(q)
which are algebraic over Fq(T ). Indeed, we consider algebraic elements of
a particular type. Letting r = pt with t ≥ 0, we say that α belonging to
F(q) is hyperquadratic (of order t) if α is irrational and satisfies an algebraic
equation

Aαr+1 +Bαr + Cα+D = 0, where A,B,C,D ∈ Fq[T ].

For more details on these particular power series, see the introduction of [BL].
Note that quadratic elements are hyperquadratic. We recall that an element
in F(q) is quadratic if and only if its sequence of partial quotients is ultimately
periodic. Many explicit continued fractions are known for nonquadratic but
hyperquadratic elements; see the references below. These particular algebraic
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elements play an important role in diophantine approximation and that is
why they were first considered. For a general account of continued fractions
in power series fields and diophantine approximation, and for more references
on this matter, consult [S, L2].

The study of continued fractions for hyperquadratic power series was
started by Baum and Sweet [BS1, BS2] and developed in the 1980’s by
Mills and Robbins [MR]. Mills and Robbins pointed out the existence of
hyperquadratic continued fractions with all partial quotients of degree one,
in odd characteristic with a prime base field. Different approaches were
developed to explain this phenomenon (see [L1, LR1, LR2]), first with the
base field F3, then in all characteristics with an arbitrary base field. However,
these methods left many questions unanswered. In [L3] a new approach was
introduced which led to the presentation of different families of explicit
hyperquadratic continued fractions, also with unbounded partial quotients.
In a recent paper with Yao [LY1], with this new approach, in the case of
an arbitrary base field of odd characteristic, we gave the description of a
large family, including the historical examples due to Mills and Robbins,
of hyperquadratic continued fractions with all partial quotients of degree
one.

The case of even characteristic appears to be singular. The simplest case,
where the base field is F2, has been fully treated by Baum and Sweet [BS2].
They described the set of all continued fractions with partial quotients of
degree one (i.e., equal to T or T + 1). Among them, some are algebraic, and
for every even integer d ≥ 2 there is, in this set, an algebraic element of
degree d. However, it was proved later that none of these algebraic elements
(for d > 2) is hyperquadratic (see [L2, p. 225]). Later, in a joint paper with
Ruch, we exhibited hyperquadratic continued fractions in F(2s), with partial
quotients all of the form λT where λ ∈ F2s (see [LR1, p. 280] with r = 2 and
also [LR2, p. 556]). Other examples were introduced by Thakur [T, p. 290].
Finally, we mention the impressive arXiv note by Robbins [R], in which
several conjectures on continued fractions for particular cubic power series
in F(4) and F(8), with partial quotients of bounded degree, are presented.

Here we present a family of hyperquadratic (for each order t ≥ 1) con-
tinued fractions in F(2s) of the form α = [λ1T, λ2T, . . .]. In the next section,
we state a theorem showing how the sequence (λn)n≥1 in F∗2s is defined re-
cursively from an arbitrary number of initial values. Moreover, in a final
remark, we comment on the properties of this sequence. However, our main
goal is to show that this family has a common origin with another family of
continued fractions in the case of odd characteristic, introduced earlier and
fully studied in [LY1]. Indeed, even though the case of characteristic 2 is
simpler, it appears that the existence of both families is directly connected
to a particular universal quadratic power series ω = [T, T, . . .] belonging to



Hyperquadratic continued fractions 3

F(p) for all prime numbers p. Note that ω is actually the analogue, in the
formal case, of the celebrated quadratic real number [1, 1, . . . ] = (1+

√
5)/2.

2. Results. Our method to obtain the explicit continued fraction for
certain hyperquadratic power series was introduced in [L3]. We shall also
use the notation concerning continued fractions and continuants, presented
in [LY1, Section 2].

Let α be an irrational element in F(q) with continued fraction expansion
[a1, a2, . . .]. We let F(q)+ denote the subset of F(q) containing the elements
having an integral part of positive degree (i.e., with deg(a1) > 0). For all
integers n ≥ 1, we set αn = [an, an+1, . . .] (α1 = α), called the nth com-
plete quotient. We introduce the usual continuants xn, yn ∈ Fq[T ] such that
xn/yn = [a1, . . . , an] for n ≥ 1. As usual we extend the latter notation to
n = 0 with x0 = 1 and y0 = 0. So, in what follows, with our notation [LY1,
p. 266], given a vector A = (a1, . . . , an), the polynomials xn and yn are the
continuants 〈a1, . . . , an〉 and 〈a2, . . . , an〉.

As above we set r = pt, where t ≥ 0 is an integer. Let P,Q ∈ Fq[T ]
be such that deg(Q) < deg(P ) < r. Let ` ≥ 1 be an integer and A` =
(a1, . . . , a`) a vector in (Fq[T ])` such that deg(ai) > 0 for 1 ≤ i ≤ `. Then by
[L3, Theorem 1, p. 333], there exists an infinite continued fraction in F(q)
defined by α = [a1, . . . , α`+1] such that αr = Pα`+1 + Q. We consider the
four continuants x`, y`, x`−1 and y`−1, in Fq[T ], built from the vector A`.
The element α is hyperquadratic and it is the unique root in F(q)+ of the
algebraic equation

(1) y`X
r+1 − x`Xr + (y`−1P − y`Q)X + x`Q− x`−1P = 0.

A continued fraction defined as above will be called of type (r, `, P,Q). Note
that such a continued fraction depends on the choice of the vector A` =
(a1, . . . , a`) in (Fq[T ])`.

Now, let us introduce an important sequence (Fn)n≥0 of polynomials in
Fp[T ], for all prime numbers p (see [L3, p. 331]). This sequence is defined
by induction as follows:

F0 = 1, F1 = T, Fn+1 = TFn + Fn−1 for n ≥ 1.

Note the similarity with the celebrated sequence of Fibonacci numbers. With
our notation, for n ≥ 1, we clearly have

Fn/Fn−1 = [T, . . . , T ] and Fn = 〈T, . . . , T 〉,
where the finite sequence of T ’s has length n. Then we define in F(p) the
infinite continued fraction

ω = [T, T, . . . ] = lim
n→∞

Fn/Fn−1.

Note that ω is quadratic and satisfies ω = T + 1/ω.
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We have the following lemma.

Lemma 2.1. Let p be a prime. Let the sequence (Fn)n≥0 in Fp[T ] and
ω ∈ F(p) be defined as above. Let r = pt where t ≥ 1 is an integer. Then

Fn−1 = (ωn − (−ω−1)n)/(ω + ω−1) for n ≥ 1.

If p = 2 then Fr−1 = T r−1, and if p > 2 then Fr−1 = (T 2 + 4)(r−1)/2.

Proof. For n ≥ 0, we set Ωn = ωn − (−ω−1)n. Then

(2) TΩn +Ωn−1 = ωn−1(Tω + 1)− (−ω−1)n−1(−Tω−1 + 1).

Since ω = T + ω−1, we get ω2 = Tω + 1 and ω−2 = −Tω−1 + 1. Hence (2)
becomes

(3) TΩn +Ωn−1 = ωn+1 − (−ω−1)n+1 = Ωn+1.

By (3), the sequence (Ωn)n≥0 satisfies the same recurrence as (Fn)n≥0. We
observe that Ω1/(ω+ω−1) = 1 = F0 and Ω2/(ω+ω−1) = ω−ω−1 = T = F1.
Since the sequences (Fn)n≥0 and (Ωn+1/(ω+ω−1))n≥0 satisfy the same linear
recurrence relation and are equal on the first two values, they coincide and
we have Fn−1 = Ωn/(ω + ω−1) for n ≥ 1, as stated in the lemma.

If p = 2, using the Frobenius isomorphism, we have Ωr = (ω + ω−1)r

and also ω + ω−1 = T . Therefore, we can write

Fr−1 = (ω + ω−1)r/(ω + ω−1) = (ω + ω−1)r−1 = T r−1.

If p > 2, then again using the Frobenius isomorphism, we also have Ωr =
(ω + ω−1)r. But here ω − ω−1 = T and (ω − ω−1)2 + 4 = (ω + ω−1)2.
Consequently, we get

Fr−1 = (ω + ω−1)r−1 = ((ω − ω−1)2 + 4)(r−1)/2 = (T 2 + 4)(r−1)/2.

It is easy to check that, for n ≥ 2, we have ωn = Fn−1ω + Fn−2. Since
ω = ωl+1 for l ≥ 1, with our terminology ω is a continued fraction of
type (r, `, Fr−1, Fr−2), for all r = pt and ` ≥ 1. We are now interested
in the family of continued fractions of type (r, `, ε1Fr−1, ε2Fr−2) for a pair
(ε1, ε2) ∈ (F∗q)2. Besides ω, this family contains continued fractions with all
partial quotients of degree one, hence the ` first partial quotients must be
chosen as polynomials of degree 1 in Fq[T ]. Note that in the first papers on
hyperquadratic continued fractions with bounded partial quotients, the role
played by the pair (Fr−1, Fr−2) was not highlighted.

There are two distinct cases according to the characteristic p = 2 or
p > 2. The case of characteristic p > 2 was considered first. In [MR], Mills
and Robbins described, in the case q = r = p > 3, with ` = 2 and (a1, a2) =
(aT, bT ), a family of such examples (see also the introduction of [L3, p. 332]).
However in that case, in general, the solution of (1) will not have all partial
quotients of degree 1. This will happen if a mysterious condition, relating
the coefficients of the polynomials in A` and the pair (ε1, ε2), is satisfied.
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The process of obtaining this condition has been long and complicated (see
[LY1] and particularly the first section for the background information on
the matter).

Here, we shall only consider the case of characteristic 2. Due to the
simpler form of Fr−1, given in the previous lemma, we will avoid the sophis-
tication appearing in odd characteristic.

The following general lemma on the continued fraction algorithm is the
basic tool of our method. It can be found in several articles (see [L3, Lemma
3.1, p. 336] or [LY1, p. 267]).

Lemma 2.2. For n ≥ 2, given n+ 1 variables x1, . . . , xn and x, we have
formally

[[x1, x2, . . . , xn], x] = [x1, x2, . . . , xn, y],

where

y = (−1)n−1〈x2, . . . , xn〉−2x− 〈x2, . . . , xn−1〉〈x2, . . . , xn〉−1.

As a consequence of Lemmas 2.1 and 2.2, we obtain the following lemma.

Lemma 2.3. Let q = 2s and r = 2t where s, t ≥ 1 are integers. Let
α = [a1, a2, . . . ] be an infinite continued fraction in F(q). Assume that there
is a pair (ε1, ε2) ∈ (F∗q)2 and a pair (i, j) of integers, where 1 ≤ i < j, such
that αr

i = ε1Fr−1αj + ε2Fr−2. If ai = λiT with λi ∈ F∗q, then

aj = ε−11 λriT and aj+k = (ε2/ε1)
(−1)kT for 1 ≤ k ≤ r − 1,

and also

αr
i+1 = ε1ε

−2
2 Fr−1αj+r + ε−12 Fr−2.

Proof. From the equality αr
i = ε1Fr−1αj + ε2Fr−2, and since αr

i =
[ai, αi+1]

r = [ari , α
r
i+1], we obtain

(4)

[
ari + ε2Fr−2
ε1Fr−1

, ε1Fr−1α
r
i+1

]
= αj .

We denote by Wi the word T, . . . , T , where T is repeated i times. We have
(ε1/ε2)Fr−1/Fr−2 = (ε1/ε2)[Wr−1]. By Lemma 2.1, we have Fr−1 = T r−1,
therefore (4) becomes

(5)
[
[ε−11 λriT, (ε1/ε2)[Wr−1]], ε1Fr−1α

r
i+1

]
= [[ε−11 λriT, x2, . . . , xr], ε1Fr−1α

r
i+1] = αj ,

where xi = (ε1/ε2)
(−1)iT for 2 ≤ i ≤ r. We shall now apply Lemma 2.2.

Using classical properties of continuants (see [LY1, p. 266]), we can write

〈x2, . . . , xr〉 = 〈(ε1/ε2)T, (ε2/ε1)T, . . . , (ε1/ε2)T 〉
= (ε1/ε2)〈T, T, . . . , T 〉 = (ε1/ε2)Fr−1
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since r is even, and also

〈x2, . . . , xr−1〉 = 〈(ε1/ε2)T, (ε2/ε1)T, . . . , (ε2/ε1)T 〉 = 〈T, T, . . . , T 〉 = Fr−2.

We set x1 = ε−11 λriT and x = ε1Fr−1α
r
i+1. Thus, according to Lemma 2.2,

(6) [[x1, . . . , xr], x] = [x1, . . . , xr, ((ε1/ε2)Fr−1)
−2x+ ((ε1/ε2)Fr−1)

−1Fr−2].

Combining (5) and (6), since x = ε1Fr−1α
r
i+1, we obtain

(7) αj = [x1, . . . , xr, (ε
2
2/ε1)F

−1
r−1α

r
i+1 + (ε2/ε1)F

−1
r−1Fr−2] = [x1, . . . , xr, y].

Since |αi+1| > 1, we observe that |y| > 1. Comparing (7) with αj =
[aj , aj+1, . . . , aj+r−1, αj+r], we get aj = x1, aj+1 = x2, . . . aj+r−1 = xr and
αj+r = y. From the values given to xi for 1 ≤ i ≤ r − 1, we obtain the
values for the partial quotients from aj to aj+r−1. Finally, from the value of
y in (7), we obtain the last formula of the lemma.

We can now state and prove the following theorem.

Theorem 2.4. Let q = 2s and r = 2t where s, t ≥ 1 are integers. Let
` ≥ 1 be an integer and let (Fr−1, Fr−2) in (F2[T ])2 be as in Lemma 2.1. Let
Λ`+2 = (λ1, . . . , λ`, ε1, ε2) ∈ (F∗q)`+2. Let x`, y`, x`−1 and y`−1 be the four
continuants, in Fq[T ], built from the vector A` = (λ1T, . . . , λ`T ). Consider
the algebraic equation

(E) y`X
r+1+x`X

r+(ε1y`−1Fr−1+ε2y`Fr−2)X+ε2x`Fr−2+ε1x`−1Fr−1 = 0.

Then (E) has a unique root α in F(q)+ and

α = [λ1T, λ2T, . . . ] where λi ∈ F∗q .
The sequence (λn)n≥1 in F∗q is defined recursively, from the vector Λ`+2, as
follows:

λ`+rm+1 = (ε2/ε1)ε
(−1)m+1

2 λrm+1,

λ`+rm+i = (ε1/ε2)
(−1)i for m ≥ 0 and 2 ≤ i ≤ r.

Proof. We observe that (E) is simply equation (1) built from the vec-
tor A` = (λ1T, . . . , λ`T ) and the pair (P,Q) = (ε1Fr−1, ε2Fr−2). Accord-
ing to the theorem from [L3], mentioned before, (E) has a unique root α
in F(q)+. This element is the infinite continued fraction defined by α =
[λ1T, . . . , λ`T, α`+1] and αr = ε1Fr−1α`+1 + ε2Fr−2. Since a1 = λ1T , we can
apply Lemma 2.3 with i = 1 and j = `+ 1. Hence,

(8) a`+1 = ε−11 λr1T and a`+i = (ε1/ε2)
(−1)iT for 2 ≤ i ≤ r.

We also have

αr
2 = ε1ε

−2
2 Fr−1α`+r+1 + ε−12 Fr−2.

Define f : (F∗q)2 → (F∗q)2 by f(x, y) = (xy−2, y−1). We observe that f is an
involution. Hence, we can apply Lemma 2.3 again (note that a2 = λ2T even
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if ` = 1), replacing (i, j) by (2, l+ r+ 1), and (ε1, ε2) by f(ε1, ε2). We obtain

(9) a`+r+1 = ε22ε
−1
1 λr2T and a`+r+i = (ε1/ε2)

(−1)iT for 2 ≤ i ≤ r
and

αr
3 = ε1Fr−1α`+r+1 + ε2Fr−2.

Hence, by repeated application of the lemma, we see that ai = λiT for i ≥ 1.

Note that (ε2/ε1)ε
(−1)m+1

2 is either ε−11 or ε22ε
−1
1 , according to the parity of

m ≥ 0. From (8) and (9), we get the formulas for (λn)n≥1 in F∗q , stated in
the theorem.

Remark. In a recent joint paper with J.-Y. Yao [LY2], we have observed
that the sequence of the leading coefficients of the partial quotients for a
hyperquadratic continued fraction could be an automatic sequence. Natu-
rally, the same question arises for the sequence described in this theorem.
In case r = 2, with the terminology introduced above, the element α is of
type (2, `, ε1T, ε2). Indeed, we have proved in [LY2, Theorem 3] that the
corresponding sequence is 2-automatic.

Let us indicate another criterion for a sequence in Fq to be automatic (see
[AS, p. 356]): (λn)n≥1 in Fq is p-automatic if the power series

∑
i≥1 λiT

−i ∈
F(q) is algebraic over Fq(T ). Concerning the sequence (λn)n≥1 described in
our theorem, we conjecture the following: Set θ =

∑
i≥1 λiT

−i ∈ F(q). Then
there exist A,B ∈ Fq(T ), depending on r and on the vector Λ`+2, such that
θr + Aθ + B = 0. Accordingly, by the criterion cited, the conjecture would
imply the 2-automaticity of (λn)n≥1 for all r = 2t and t ≥ 1. This conjecture
is based on a partial study, made by the author and as yet unpublished, of
the sequence (λn)n≥1. Indeed, in the simplest case r = 2, the conjecture is
true and this study was complete enough to yield

θ =
∑̀
i=1

λiT
−i + (ε1/ε2)T

−`(T + 1)−2(ε
(−1)`
2 T + 1) + (ε1/ε2)ε

(−1)`
2 T `−1ρ

and

ρ2 + ρ+ T−2`
∑̀
i=1

(1 + λ2i (ε2/ε1)
2ε

(−1)i−(−1)`
2 )T−2i+2 = 0.
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Abstract (will appear on the journal’s web site only)

We describe a family of algebraic nonquadratic power series over an ar-
bitrary finite field of characteristic 2, having a continued fraction expansion
with all partial quotients of degree one. The main purpose is to point out a
common origin with another analogous family in odd characteristic, previ-
ously studied by the author.
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