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1. Introduction

Let Fq be the finite field containing q elements, with q = ps where p is a prime number 
and s � 1 is an integer. We consider the field of power series in 1/T , with coefficients in 
Fq, where T is a formal indeterminate. We will denote this field by F(q). Hence a non-zero 
element of F(q) is written as α =

∑
k�k0

ckT
k with k0 ∈ Z, ck ∈ Fq, and ck0 �= 0. Noting 

the analogy of this expansion with a decimal expansion for a real number, it is natural 
to regard the elements of F(q) as (formal) numbers and indeed they are analogue to real 
numbers in many ways.

It is well known that the sequence of coefficients (or digits) (ck)k�k0 for α is ultimately 
periodic if and only if α is rational, that is α belongs to Fq(T ). However, and this is a 
singularity of the formal case, this sequence of digits can also be characterized for all 
elements in F(q) which are algebraic over Fq(T ). The origin of the following theorem 
can be found in the work of Christol [8] (see also the article of Christol, Kamae, Mendès 
France, and Rauzy [9]).

Theorem 1 (Christol). Let α in F(q) with q = ps. Let (ck)k�k0 be the sequence of digits 
of α and u(n) = c−n for all integers n � 0. Then α is algebraic over Fq(T ) if and only 
if the following set of subsequences of (u(n))n�0

K(u) =
{

(u(pin + j))n�0 | i � 0, 0 � j < p
i
}

is finite.

The sequences having the finiteness property stated in this theorem were first in-
troduced in the 1960s by computer scientists. Considered in a larger setting (see the 
beginning of Section 3), they are now called automatic sequences, and form a class of 
deterministic sequences which can be defined in several different ways. A full account on 
this topic and a very complete list of references are to be found in the book of Allouche 
and Shallit [2]. In this note we want to show a different type of connection between 
automatic sequences and some particular algebraic power series in F(q).

Firstly, let us describe these particular algebraic elements. Let α be irrational in F(q). 
We say that α is hyperquadratic, if there exists r = pt with t � 0 an integer such that 
the elements αr+1, αr, α, and 1 are linked over Fq(T ). Thus an hyperquadratic element 
is algebraic over Fq(T ) of degree � r+1, and the reader may consult [6] where a precise 
definition was introduced. The subset of hyperquadratic elements in F(q) is denoted by 
H(q). Note that this subset contains the quadratic power series (take r = 1) and also 
the cubic power series (take r = p). Originally, these algebraic elements were introduced 
in the 1970s by Baum and Sweet (see [4]), in the particular case q = 2, and later 
considered in the 1980s by Mills and Robbins [21] and Voloch [25], in all characteristic. 
It appears that H(q) contains elements having an arbitrary large algebraic degree. But 
hyperquadratic power series are rare: an algebraic power series of high algebraic degree 
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has a small probability to be hyperquadratic. For different reasons, this subset H(q)
could be regarded as the analogue of the subset of quadratic real numbers.

Besides, it is well known that any irrational element α in F(q) can be expanded as 
an infinite continued fraction where the partial quotients an are polynomials in Fq[T ], 
all of positive degree, except perhaps for the first one, and we will write it as α =
[a1, a2, . . . , an, . . .]. The explicit description of continued fractions for algebraic power 
series over a finite field goes back to the works [4,5] of Baum and Sweet, again when the 
base field is F2. It was carried on ten years later by Mills and Robbins in [21]. In the real 
case, no explicit continued fraction expansion, algebraic of degree n > 2, is known. On 
the other hand this expansion for quadratic real numbers is well known to be ultimately 
periodic. In the formal case, the situation is more complex. Quadratic power series have 
also an ultimately periodic continued fraction expansion, but many other hyperquadratic 
continued fractions can also be explicitly described. Most of the elements in H(q) have a 
sequence of partial quotients with unbounded degrees. Indeed Theorem 4 in [21, p. 402]
implies the following: If α is hyperquadratic satisfying uαr+1 + vαr + wα + z = 0 and 
we have r > 1 + deg(uz − vw), then the sequence of the degrees of the partial quotients 
is unbounded. But there are also expansions with all partial quotients of degree 1. This 
last phenomenon was discovered firstly by Mills and Robbins in [21], and later studied 
more deeply by Lasjaunias and Yao in [19]. Even though the pattern of hyperquadratic 
expansions can sometimes be very sophisticated (see for instance the work [14] of Firicel, 
where a generalization of the cubic introduced by Baum and Sweet is presented), it is yet 
doubtful whether this description, even partial, is possible for all power series in H(q).

Power series in H(q) have particular properties concerning Diophantine approxima-
tion and this is also why they were first considered. The work [20] of Mahler in this 
area, is fundamental. There, a first historical example of hyperquadratic power series, 
on which we come back below in this note, was introduced. Note that the irrationality 
measure (also called approximation exponent, see for instance [17, p. 214]) of a power 
series can be computed if the explicit continued fraction for this element is known. In 
this way, for many elements in H(q), the irrationality measure, often greater than 2 for 
non-quadratic elements, has been given. Hence, contrary to the real case, many alge-
braic power series of degree > 2, most of them hyperquadratic, are known to have an 
irrationality measure greater than 2. Actually, for algebraic power series which are not 
hyperquadratic, concerning their continued fraction expansions and their irrationality 
measure, not so much is known. The reader may consult Schmidt [22], Thakur [24], and 
Lasjaunias [17], for instance, for more information and references on this matter.

With each infinite continued fraction in F(q), we can associate a sequence in F∗
q in the 

following way: if α = [a1, a2, . . . , an, . . .], then for n ≥ 1, we define u(n) as the leading 
coefficient of the polynomial an. For several examples in H(q), we have observed that 
the sequence (u(n))n≥1 is automatic. Indeed, a first observation in this area is due to 
Allouche [1]. In the article [21] of Mills and Robbins, for all p � 5, a particular family 
of continued fractions in H(p), having an = λnT for all integers n � 1 with λn in F∗

p, 
was introduced. Shortly after the publication of [21], Allouche could prove in [1] that the 
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sequence (λn)n�1 in F∗
p is automatic (see also the last section of [19], where this question 

is discussed in a larger context). In the present note (Section 2), we shall describe several 
families of hyperquadratic continued fractions and we show in Section 3 that the sequence 
associated with them, as indicated above, is also automatic.

Yet it is an open question to know whether this is true for all elements in H(q). If 
the answer were negative, it would be interesting to be able to characterize the elements 
in H(q) which have this property. As mentioned above, very little is known, concerning 
continued fractions, for algebraic power series which are not hyperquadratic. However 
an element in F(3), algebraic of degree 4, was introduced by Robbins and Mills in [21]. 
This element is not hyperquadratic. In this note (Section 4), we show that the sequence 
in F∗

3, associated as above with its continued fraction expansion, is not automatic.

2. Three families of hyperquadratic continued fractions

In this section we shall use the notation and results found in [18].
Let α be an irrational element in F(q) with α = [a1, . . . , an, . . .] as its continued 

fraction expansion. We denote by F(q)+ the subset of F(q) containing the elements 
having an integral part of positive degree (i.e. with deg(a1) > 0). For all integers n � 1, 
we put αn = [an, an+1, . . .] (α1 = α), and we introduce the continuants xn, yn ∈ Fq[T ]
such that xn/yn = [a1, a2, . . . , an]. As usual we extend the latter notation to n = 0 with 
x0 = 1 and y0 = 0. Observe that the notation used here for the continuants xn and yn
is different from the one used in [18], and hopefully simplified.

As above we set r = pt, where t � 0 is an integer. Let P, Q ∈ Fq[T ] such that 
deg(Q) < deg(P ) < r. Let � � 1 be an integer and A� = (a1, a2, . . . , a�) a vector in 
(Fq[T ])� such that deg(ai) > 0 for 1 � i � �. Then by Theorem 1 in [18], there exists 
an infinite continued fraction in F(q) defined by α = [a1, a2, . . . , a�, α�+1] such that 
αr = Pα�+1 +Q. This element α is hyperquadratic and it is the unique root in F(q)+ of 
the following algebraic equation:

y�X
r+1 − x�X

r + (y�−1P − y�Q)X + x�Q− x�−1P = 0. (1)

Note that if r = 1, then α is quadratic. In this case P is a nonzero constant polynomial, 
i.e. P = ε ∈ F

∗
q and Q = 0. Given � and A�, we have α = εα�+1, and this implies 

a�+m = ε(−1)mam, for all integers m � 1. Hence the continued fraction expansion is 
purely periodic, and a simple computation shows that 2� (resp. (q − 1)�) is a period 
(maybe not the minimum one) if � is odd (resp. even).

We shall describe three families of continued fractions generated as above.

First family: F1. The simplest and first case that we consider is (P, Q) = (ε, 0) where 
ε ∈ F

∗
q and consequently αr = εαl+1. Due to the Frobenius isomorphism, we obtain, in 

the same way as above for r = 1, the relation a�+m = ε(−1)marm for all integers m � 1. 
Hence the continued fraction, depending on the arbitrary given � first partial quotients, 
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is fully explicit. These hyperquadratic continued fractions were studied independently 
by Schmidt [22] and Thakur [23] (particularly for ε = 1). Let us recall that the elements 
in H(q), called here hyperquadratic, were first named in [16] as algebraic of class I, 
and then the elements studied by Schmidt and Thakur were called algebraic of class 
IA. The possibility of choosing arbitrarily the vector A� has an important consequence. 
Even though this is not truly the matter of this note, we have already mentioned the 
irrationality measure ν(α) of α in F(q). In his fundamental work [20], Mahler established 
(following an old result of Liouville in the real case) that if α ∈ F(q) is algebraic of degree 
d � 2 over Fq(T ), then we have ν(α) ∈ [2, d]. Besides ν(α) is directly depending on the 
sequence of the degrees of the partial quotients for α (see for instance [17, p. 214]). For 
an element of F1, this sequence of degrees (dn)n�1, satisfies d�+m = rdm for all integers 
m � 1, and consequently dn depends directly on the first � degrees. Hence, Schmidt and 
Thakur, independently, could obtain (by a sophisticated computation) the irrationality 
measure for such an element, depending on r and the first � degrees. In this way they 
could establish the following result: for each rational number μ in the range [2, +∞[, 
there exists α in F1 such that ν(α) = μ.

Let us make a last observation on the simplest element in F1. We take � = 1
and a1 = T , with (P, Q) = (1, 0), then the corresponding continued fraction is 
Θ1 = [T, T r, T r2

, . . . , T rn , . . .], and Θ1 satisfies X = T + 1/Xr. Here the irrational-
ity measure is easy to compute, and indeed we have ν(Θ1) = r + 1. Since the degree d
of Θ1 satisfies d � r + 1, using Mahler’s argument, we see that Θ1 has algebraic degree 
equal to r + 1. Note that for a general element α in F1, its exact algebraic degree is an 
undecided question.

Second and third families: F2 and F3. For an element α in F2, we assume (P, Q) =
(ε1T, ε2); and for an element α in F3, we assume (P, Q) = (ε1T

2, ε2T ), where (ε1, ε2) is 
a pair in (F∗

q)2. Note that here we have r > 1 for elements in F2, but r > 2 for elements 
in F3. Our aim is to give the explicit continued fraction expansion for α. The integer 
� � 1, as above, is chosen arbitrarily. However we need to impose a restriction on the 
choice of the vector A�, in both cases: we assume that T divides ai for all integers i
with 1 � i � �. Then we can describe the sequence of partial quotients in the continued 
fraction expansion in both cases. Given A�, chosen as indicated, for all integers n � 0, 
we have:

a�+4n+2 = −ε1

ε2
T, a�+4n+3 = −ε2

2a
r
2n+2

ε1T
, a�+4n+4 = ε1

ε2
T,

while a�+4n+1 = ar
2n+1
ε1T

for α ∈ F2, and a�+4n+1 = ar
2n+1
ε1T 2 for α ∈ F3. The method to 

obtain these formulas is the same in both cases and it has been explained in [18]. Actually 
the formulas for α in F2 were published in [18, top of p. 334]. However, note that there 
is a mistake in the final statement given there and the pair (k, k + 1) to the right hand 
side of the first and third formulas must be replaced by the pair (2k−1, 2k). Concerning 
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the formulas for α in F3, they were given by Firicel in [14] (case ε1 = ε2 = −1). The 
reader is invited to consult this last work where the method is clearly explained. Note 
that the particular choice of the vector A�, has been made in order to have an integer 
(polynomial) when dividing by T or T 2 (however a larger choice could have been possible 
for elements in F3, in a particular case: for example, if � is odd, then it would be enough 
to assume that T divides ai only for odd indices i). Note that if we do not assume the 
particular choice we made for the vector A�, the continued fraction for α exists, but an 
explicit description is not given.

We make a comment concerning the last family F3. It has been introduced to cover a 
particular case of historical importance. In his fundamental paper [20], Mahler presented 
the following power series Θ2 = 1/T + 1/T r + · · · + 1/T rn + · · · . Note that Θ2 can be 
regarded as a dual of the element Θ1 in F1, presented above. However we clearly have 
Θ2 = 1/T+Θr

2, hence Θ2 is hyperquadratic and algebraic of degree � r. Mahler observed 
that we have ν(Θ2) = r, and therefore the algebraic degree of Θ2 is equal to r. Now let us 
consider the element of F3 defined as above by the pair (P, Q) = (−T 2, −T ) with � = 1
and a1 = T . Then α is the unique root in F(p)+ of the following algebraic equation:

Xr+1 − TXr + TX = 0.

Set β = 1/α, and we get β = 1/T + βr. Since 1/β is in F(p)+, we obtain

β = Θ2 = 1/T + 1/T r + 1/T r2
+ · · ·

Let us recall that the sequence of partial quotients for Θ2 has been long known (see 
for example [14, p. 633] with the references therein. See also [16, p. 224] for a different 
approach).

As we wrote in the introduction, we are interested in the leading coefficients of partial 
quotients. If (an)n�1 is the sequence of partial quotients for α, we denote by u(n) the 
leading coefficient of an. If α is in F1, then u(� + m) = ε(−1)m(u(m))r for all integers 
m � 1, and thus u(s� + m) = ε

(−1)m
1 u(m) with

ε1 = ε
∑s−1

j=0(−1)(s−j−1)�rj ∈ F
∗
q ,

for we have rs = pst = qt. As above, one can deduce at once that the sequence (u(n))n�1
is purely periodic, and 2s� (resp. (q− 1)s�) is a period (maybe not the minimum one) if 
s� is odd (resp. even).

Now we turn to the case where α belongs to F2 or F3. Both recursive definitions for 
the sequence of partial quotients, whether α is in F2 or F3, imply the same recursive 
definition for the corresponding sequence (u(n))n�1. More precisely, for all integers � � 1, 
given u(1), u(2), . . . , u(�) in F∗

q , we have, for all integers n � 0,

u(� + 4n + 1) = ε−1
1 (u(2n + 1))r, u(� + 4n + 2) = −ε1ε

−1
2 ,

u(� + 4n + 3) = −ε−1ε2(u(2n + 2))r, u(� + 4n + 4) = ε ε−1.
1 2 1 2
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In the next section we shall see in Theorem 3 that sequences of this type, for all integers 
� � 1, are 2-automatic sequences.

To conclude this section, we go back to the special element 1/Θ2 in F3, and the 
associated sequence (u(n))n�1 where � = 1 and u(1) = 1. The latter is remarkable and 
has been studied extensively (see for example [2, Section 6.5]). We define recursively the 
sequence of finite words (Wn)n�1 by W1 = 1, and Wn+1 = Wn, −1, WR

n , where commas 
indicate here concatenation of words, and WR

n is the reverse of the finite word Wn. Let 
W be the infinite word beginning with Wn for all integers n � 1. Then one can check 
that the sequence (u(n))n�1 coincides with W , and for p �= 2, it is a special paperfolding 
sequence which is known to be 2-automatic (see for example [2, Theorem 6.5.4]).

3. A family of automatic sequences

In this section, we begin with the definition of automatic sequences. For more details 
about this subject, see the book [2] of Allouche and Shallit.

Let A be a finite nonempty set, called an alphabet, of which every element is called 
a letter. Fix ∅ an element not in A and call it an empty letter over A. Let n � 0 be an 
integer. If n = 0, define A0 = {∅}. For n � 1, denote by An the set of all finite sequences 
in A of length n. Put A∗ =

⋃+∞
n=0 A

n. Every element w of A∗ is called a word over A and 
its length is noted |w|, i.e. |w| = n if w ∈ An.

Take w, v ∈ A∗. The concatenation between w and v (denoted by w∗v or more simply 
by wv) is the word over A which begins with w and is continued by v.

Now we give below a definition of finite automaton (see for example [13]):

A finite automaton A = (S, S0, Σ, τ) consists of

• an alphabet S of states; one state S0 is distinguished and called initial state;
• a mapping τ : S × Σ → S, called transition function, where Σ is an alphabet con-

taining at least two elements.

∀Q ∈ S, put τ(Q, ∅) = Q. Extend τ over S × Σ∗ (noted again τ) such that

∀Q ∈ S and ∀l,m ∈ Σ∗, we have τ(Q, lm) = τ(τ(Q, l),m).

Let k � 2 be an integer and Σk = {0, 1, . . . , k−1}. We call v = (v(n))n�0 a k-automatic 
sequence if there exist a finite automaton A = (S, S0, Σk, τ) and a mapping o defined 
on S such that v(0) = o(S0), and for all integers n � 1 with standard k-adic expansion 
n =

∑l
j=0 njk

j , we have v(n) = o(τ(S0, nl · · ·n0)).
We recall that all ultimately periodic sequences are k-automatic for all k � 2, adding a 

prefix to a sequence does not change its automaticity, and that a sequence is k-automatic 
if and only if it is km-automatic for all integers m � 1. In this work, we consider 
sequences of the form v = (v(n))n�1, and we say that v is k-automatic if the sequence 



A. Lasjaunias, J.-Y. Yao / Finite Fields and Their Applications 40 (2016) 46–60 53
(v(n))n�0 is k-automatic, with v(0) fixed arbitrarily. We have the following important 
characterization: a sequence v = (v(n))n�1 is k-automatic if and only if its k-kernel

Kk(v) =
{

(v(kin + j))n�1 | i � 0, 0 � j < k
i
}

is a finite set. The origin of this characterization for automatic sequences is due to 
Cobham [11, p. 170, Theorem 1] (see also Eilenberg [13, p. 107, Proposition 3.3], who 
was one of the first to publish a general treatise on this matter).

Let v = (v(n))n�1 be a sequence. For all integers n � 1, we define

(T0v)(n) = v(2n) and (T1v)(n) = v(2n + 1).

Then for all integers n, a � 1, and 0 � b < 2a with binary expansion

b =
a−1∑
j=0

bj2j (0 � bj < 2),

with the help of the operators T0 and T1, we obtain

v(2an + b) = (Tba−1 ◦ Tba−2 ◦ · · · ◦ Tb0v)(n).

In particular, we obtain that v is 2-automatic if and only if both T0v, T1v are 2-automatic, 
for we have K2(v) = {v} ∪K2(T0v) ∪K2(T1v).

With these definitions, we have the following theorem, which can be compared with 
a result of Allouche and Shallit (see [3, Theorem 2.2]).

Theorem 2. Let m � 0 be an integer, v = (v(n))n�1 a sequence in an alphabet A, and σ
a bijection on A.

(0m) If T0v is 2-automatic, and (T1v)(n + m) = σ(v(n)) for all integers n � 1, then v
is 2-automatic;

(1m) If T1v is 2-automatic, and (T0v)(n + m) = σ(v(n)) for all integers n � 1, then v
is 2-automatic.

Proof. Firstly we note that A is finite, thus there exists an integer l � 1 such that 
σl = idA, the identity mapping on A.

Secondly we show that (0m) implies (1m). For this, put u(n) = v(n +1), for all integers 
n � 1. Then T0u = T1v, and for all integers n � 1, we have

(T1u)(n + m) = u(2n + 2m + 1) = v(2n + 2m + 2)

= (T0v)(n + 1 + m)

= σ(v(n + 1)) = σ(u(n)).
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Hence u is 2-automatic by virtue of (0m), and so is v, for the latter is obtained from u
by adding a letter before.

In the following we shall show (0m) by induction on m.
If m = 0, then under the conditions of (00), we have T1v = σ(v) and

K2(v) = {σj(v) | 0 � j < l} ∪
l−1⋃
j=0

σj(K2(T0v)).

Thus K2(v) is finite since T0v is 2-automatic.
If m = 1, then T0v is 2-automatic, and (T1v)(n + 1) = σ(v(n)) for all integers n � 1. 

Hence T1T1v = σ(T0v), and for all integers n � 1, we have

(T0T1v)(n + 1) = (T1v)(2n + 2) = σ(v(2n + 1)) = σ((T1v)(n)).

Thus T1T0T1v = σ(T0T1v), and for all integers n � 1, we have

(T0T0T1v)(n + 1) = (T0T1v)(2n + 2) = σ((T1v)(2n + 1))

= σ2(v(2n)) = σ2((T0v)(n)).

So T0T0T1v is 2-automatic since it is obtained from σ2(T0v) by adding a letter before, 
and the latter is 2-automatic, for T0v is. Set w = T0T1v. Then T0w is 2-automatic, and 
T1w = σ(w). Thus by (00), we obtain that T0T1v is 2-automatic. But T1T1v = σ(T0v) is 
also 2-automatic, consequently T1v is 2-automatic, and then v is 2-automatic, for both 
T0v and T1v are 2-automatic.

Now let m � 1 be an integer, and assume that (0j) hold for 0 � j � m. Then (1j) 
also hold for 0 � j � m, and we shall show that (0m+1) holds. For this, we distinguish 
two cases below:

Case 1: m is odd. Then for all integers n � 1, we have

(T0T1v)(n + [m2 ] + 1) = (T1v)(2n + m + 1) = σ(v(2n)) = σ((T0v)(n)),

(T1T1v)(n + [m2 ] + 1) = (T1v)(2n + m + 2) = σ(v(2n + 1)) = σ((T1v)(n)).

Hence T0T1v is 2-automatic for it is obtained from σ(T0v) by adding a prefix of length 
[m2 ] + 1. Put w = T1v. Then T0w is 2-automatic, and for all integers n � 1,

(T1w)(n + [m2 ] + 1) = σ(w(n)).

Note that [m2 ] + 1 � m. Thus we can apply (0[m2 ]+1) with w, and we obtain that w is 
2-automatic. Hence v is 2-automatic since both T0v and T1v are 2-automatic.
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Case 2: m is even. Then for all integers n � 1, we have

(T0T1v)(n + [m2 ] + 1) = (T1v)(2n + m + 2) = σ(v(2n + 1)) = σ((T1v)(n)),

(T1T1v)(n + [m2 ]) = (T1v)(2n + m + 1) = σ(v(2n)) = σ((T0v)(n)).

So T1T1v is 2-automatic for it is obtained from σ(T0v) by adding a prefix of length [m2 ]. 
Put w = T1v. Then T1w is 2-automatic, and (T0w)(n + [m2 ] + 1) = σ(w(n)), for all 
integers n � 1. By applying (1[m2 ]+1) with w, we obtain that w is 2-automatic, and then 
v is 2-automatic since both T0v and T1v are 2-automatic.

Finally we conclude that both (0m) and (1m) hold for all integers m � 0. �
We can now prove that the sequences, associated with the elements of F2 and F3

and described at the end of the previous section are 2-automatic. This follows from the 
more general result stated below, which is a direct application of Theorem 2.

Theorem 3. Let p be a prime number, s � 1 an integer, and q = ps. Denote by Fq the 
finite field in q elements. Set r = pt, with t � 0 an integer. Fix α, β, γ, δ ∈ F

∗
q , and � � 1

an integer. Let u = (u(n))n�1 be a sequence in F∗
q such that for all integers n � 0,

{
u(� + 4n + 1) = α(u(2n + 1))r, u(� + 4n + 2) = β,

u(� + 4n + 3) = γ(u(2n + 2))r, u(� + 4n + 4) = δ.
(2)

Then the sequence u is 2-automatic.

Proof. For all x, y ∈ F
∗
q , we put σy(x) = yxr. Then σy is a bijection on F∗

q . For all 
integers n � 1, set u0(n) = u(2n) and u1(n) = u(2n + 1), and we need only show that 
both u0 and u1 are 2-automatic. For this, we distinguish below four cases.

Case I: � = 4m + 1, with m � 0 an integer. Then for all integers n � 0, from 
Formula (2), we deduce

(T0u1)(n + m + 1) = u(4(n + m + 1) + 1) = u(� + 4n + 4) = δ,

(T1u1)(n + m) = u(4n + 4m + 3) = u(� + 4n + 2) = β.

Since both T0u1 and T1u1 are ultimately constant, then u1 is ultimately periodic, and 
thus 2-automatic.

Similarly, for all integers n � 0, we also have

(T0u0)(n + m + 1) = u(4(n + m + 1)) = u(� + 4n + 3)

= γ(u(2n + 2))r = γ(u0(n + 1))r,

(T1u0)(n + m) = u(4n + 4m + 2) = u(� + 4n + 1)

= α(u(2n + 1))r = α(u1(n))r.



56 A. Lasjaunias, J.-Y. Yao / Finite Fields and Their Applications 40 (2016) 46–60
So T1u0 is ultimately periodic as u1, and (T0u0)(n + m) = σγ(u0(n)) for all integers 
n � 1. Then by Theorem 2, we obtain that u0 is 2-automatic.

Case II: � = 4m + 2, with m � 0 an integer. Then for all integers n � 0, from 
Formula (2), we deduce

(T0u0)(n + m + 1) = u(4(n + m + 1)) = u(� + 4n + 2) = β,

(T1u0)(n + m + 1) = u(4n + 4m + 6) = u(� + 4n + 4) = δ.

So u0 is ultimately periodic, and thus 2-automatic.
Similarly, for all integers n � 0, we also have

(T0u1)(n + m + 1) = u(� + 4n + 3) = γ(u(2n + 2))r = γ(u0(n + 1))r,

(T1u1)(n + m) = u(� + 4n + 1) = α(u(2n + 1))r = α(u1(n))r.

Hence T0u1 is ultimately periodic as u0, and (T1u1)(n +m) = σα(u1(n)) for all integers 
n � 1. Then by Theorem 2, we obtain that u1 is 2-automatic.

Case III: � = 4m + 3, with m � 0 an integer. Then for all integers n � 0, from 
Formula (2), we deduce

(T0u1)(n + m + 1) = u(4(n + m + 1) + 1) = u(� + 4n + 2) = β,

(T1u1)(n + m + 1) = u(4n + 4m + 7) = u(� + 4n + 4) = δ.

So u1 is ultimately periodic, and thus 2-automatic.
Similarly, for all integers n � 0, we also have

(T0u0)(n + m + 1) = u(4(n + m + 1)) = u(� + 4n + 1)

= α(u(2n + 1))r = α(u1(n))r,

(T1u0)(n + m + 1) = u(4n + 4m + 6) = u(� + 4n + 3)

= γ(u(2n + 2))r = γ(u0(n + 1))r.

Thus T0u0 is ultimately periodic as u1, and (T1u0)(n + m) = σγ(u0(n)) for all integers 
n � 1. Then by Theorem 2, we obtain that u0 is 2-automatic.

Case IV: � = 4m + 4, with m � 0 an integer. Then for all integers n � 0, from 
Formula (2), we deduce

(T0u0)(n + m + 2) = u(4(n + m + 2)) = u(� + 4n + 4) = δ,

(T1u0)(n + m + 1) = u(4n + 4m + 6) = u(� + 4n + 2) = β.

So u0 is ultimately periodic, and thus 2-automatic.
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Similarly, for all integers n � 0, we also have

(T0u1)(n + m + 1) = u(� + 4n + 1) = α(u(2n + 1))r = α(u1(n))r,

(T1u1)(n + m + 1) = u(� + 4n + 3) = γ(u(2n + 2))r = γ(u0(n + 1))r.

Hence T1u1 is ultimately periodic as u0, and (T0u1)(n + m + 1) = σα(u1(n)) for all 
integers n � 1. Then by Theorem 2, we obtain that u1 is 2-automatic. �
Remark 1. As it is pointed out at the end of Section 2, for p �= 2, the sequence associated 
with the special element 1/Θ2 in F3, is a paperfolding sequence, thus not ultimately 
periodic (see for example [2, Theorem 6.5.3]). Inspired by this example, one can then ask 
whether the sequence u discussed in Theorem 3 can be ultimately periodic or not for all 
q � 3 (in the case that q = 2, the sequence is constant). Unfortunately for the moment, 
we do not know the answer of this problem.

4. A substitutive but not automatic sequence

In this section we are concerned with the following question: is it also true for an 
algebraic power series, not hyperquadratic, that the sequence of the leading coefficients 
of the partial quotients form an automatic sequence? To such a wide question, we will 
only give a very partial answer, by considering a last example. As we remarked in the 
introduction, the possibility of describing explicitly the continued fraction expansion for 
an algebraic power series, which is not hyperquadratic, appears to be remote. However, 
a particular example, which was introduced by chance in [21], exists. This example is 
the object of the theorem below.

First, we recall notions on substitutive sequences (see for example [2]).
Let A be an alphabet with A = {A1, A2, ..., AN}. A substitution on A is a morphism σ :

A∗ → A∗. With the morphism σ, there is associated a matrix Mσ = (mi,j)1�i,j�N , where 
mi,j is the number of occurrences of Ai in the word σ(Aj). Since Mσ is a non-negative 
integer square matrix, by the famous Frobenius–Perron theorem (see for example [15]), 
Mσ has a real eigenvalue α, called the dominating eigenvalue of Mσ, which is an algebraic 
integer and greater than or equal to the modulus of any other eigenvalue, thus a Perron 
number. If there exists an integer i (1 � i � N) such that σ(Ai) = Aix for some 
x ∈ A∗ \ {∅}, and limn→∞ |σn(Ai)| = +∞, then σ is said to be prolongable on Ai. Since 
for all integers n � 0, σn(Ai) is a prefix of σn+1(Ai), and |σn(Ai)| tends to infinity with 
n → ∞, thus the sequence (σn(Ai))n�0 converges, and we denote its limits by σ∞(Ai). 
The latter is the unique infinite fixed point of σ starting with Ai. Let o be a mapping 
defined on A, extended pointwisely over A∗ ∪AN. We put v = o(σ∞(Ai)), and call it an 
α-substitutive sequence.

We have the following important characterization for automatic sequences in terms 
of substitutive sequences, due to Cobham [11]: a sequence v = (v(n))n�1 is k-automatic 
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if and only if v is a substitutive sequence with σ such that |σ(Aj)| = k, for all integers 
1 � j � N . Note that in this case v is k-substitutive.

Now let α, β be two multiplicatively independent Perron numbers. By generalizing 
another classical theorem of Cobham [10], Durand has finally shown in [12, Theorem 1, 
p. 1801] the remarkable result that a sequence is both α-substitutive and β-substitutive 
if and only if it is ultimately periodic.

We can now state and prove the following theorem.

Theorem 4. The algebraic equation X4 +X2 − TX + 1 = 0 has a unique root α in F(3). 
Let α = [0, a1, a2, . . . , an, . . .] be its continued fraction expansion and u(n) be the leading 
coefficient of an for all integers n � 1. The sequence W = (u(n))n�1 is the limit of the 
sequence (Wn)n�0 of finite words over the alphabet {1, 2}, defined recursively as follows:

W0 = ∅, W1 = 1, and Wn = Wn−1, 2,Wn−2, 2,Wn−1, for all integers n � 2, (3)

where commas indicate here concatenation of words. Then α is not hyperquadratic, and 
the sequence W = (u(n))n�1 is (1 +

√
2)-substitutive but not automatic.

Proof. The existence in F(p) of the root of the quartic equation stated in this theorem 
was observed firstly by Mills and Robbins in [21], for all prime numbers p. For p = 3, 
in the same work, a conjecture on its continued fraction expansion, based on computer 
observation, was given. Buck and Robbins established this conjecture in [7]. Shortly after 
another proof of this conjecture was given in [16]. We have α = [0, a1, a2, . . . , an, . . .] and 
the sequence of polynomials (an)n�1 is obtained as the limit of a sequence of finite words 
(Ωn)n�0 with letters in F3[T ], defined by:

Ω0 = ∅, Ω1 = T, and Ωn = Ωn−1, 2T,Ω(3)
n−2, 2T,Ωn−1, (4)

where commas indicate concatenation of words, and Ω(3)
n−2 denotes the word obtained by 

cubing each letter of Ωn−2. Since x3 = x for all x in F∗
3, we obtain immediately for W

the desired formulas (3) from (4).
The fact that α is not hyperquadratic was proved in [16] (see the remark after Theo-

rem A, p. 209). Indeed the knowledge of the continued fraction allows to show that the 
irrationality measure is equal to 2. However the sequence of partial quotients is clearly 
unbounded, and it was proved by Voloch [25] that if α were hyperquadratic with an un-
bounded sequence of partial quotients, then the irrationality measure would be strictly 
greater than 2 (the reader may consult [17, pp. 215–216], for a presentation of these 
general statements).

Now we show that W is (1 +
√

2)-substitutive, but not automatic.
Put A = {a, b, c}, and define

σ(a) = abca, σ(b) = ca, σ(c) = c, o(a) = 1, o(b) = o(c) = 2.
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For all integers n � 0, set Vn = σn(a). Then for all integers n � 2, we have

Vn = σn(a) = σn−1(abca) = Vn−1σ
n−2(ca)cVn−1 = Vn−1cVn−2cVn−1.

But we also have W1 = o(a), and W2 = 1221 = o(abca) = o(σ(a)) = o(V1), thus o(σn(a))
satisfies the same relations as Wn+1, consequently they coincide. Set v = limn→∞ σn(a). 
Then σ(v) = v, and W = o(v). So W is substitutive. Finally

Mσ =

⎛
⎜⎝ 2 1 0

1 0 0
1 1 1

⎞
⎟⎠ ,

whose characteristic polynomial is equal to (λ − 1)(λ2 − 2λ − 1), and 1 +
√

2 is the dom-
inating eigenvalue. Hence W is (1 +

√
2)-substitutive. Since 1 +

√
2 is multiplicatively 

independent with all integers k � 2, according to Cobham’s characterization and Du-
rand’s theorem, we see that W cannot be k-automatic unless it is ultimately periodic. 
To conclude the proof, we need only prove that W is not ultimately periodic. To do so, 
we compute the frequency of 2 in W . For all integers n � 0, put ln = |Wn|. Then we 
have

l0 = 0, l1 = 1, and ln = 2ln−1 + ln−2 + 2, for all integers n � 2,

from which we deduce ln = −1 + 2+
√

2
4 (1 +

√
2)n + 2−

√
2

4 (1 −
√

2)n, for all integers n � 0. 
For all integers n � 0, let mn be the number of occurrences of 2 in Wn. Then

m0 = m1 = 0, and mn = 2mn−1 + mn−2 + 2, for all integers n � 2,

from which we obtain mn = −1 + 1
2
(
(1 +

√
2)n + ((1 −

√
2)n

)
, for all integers n � 0. If 

W were ultimately periodic, then the frequency of 2 in W would exist, and it would be 
a rational number, in contradiction to limn→∞ mn/ln = 2 −

√
2. �
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