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Abstract. Given an odd prime number p, we describe a continued
fraction in the field F(p) of power series in 1/T with coefficients in the
finite field Fp, where T is a formal indeterminate. This continued fraction
satisfies an algebraic equation of a particular type , with coefficients in Fp[T ]
which are explicitely given. We observe the close connection with other
algebraic continued fractions which were studied thirty years ago by Mills
and Robbins.
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In this note p is an odd prime number and Fp is the finite field
having p elements. We denote F(p) the field of power series in 1/T , where T
is a formal indeterminate, with coefficients in Fp. Every irrational element
α of F(p) is expanded as an infinite continued fraction denoted by α =
[a1, a2, · · · , an, · · · ], where the ai’s are polynomials in Fp[T ]. Our aim is to
describe a particular sequence (an)n≥1 such that α is algebraic over Fp(T )
and it satisfies a particular equation explicitely described. This element α
belongs to the subset of hyperquadratic elements : we have

Aαp+1 +Bαp + Cα+D = 0 where A,B,C,D ∈ Fp[T ].

In the last forty years many examples of such hyperquadratic continued frac-
tions were studied by different authors. For general information concerning
this subject and also more references, the reader may consult [1] and [4].
An important and fundamental article on continued fractions in function
fields is due to Mills and Robbins [3]. The example described in the present
note belongs to a family which has been derived from this pioneer work. A
detailed account about this connection was given in a recent note [2].

We recall briefly that if α = [a1, a2, · · · , an, · · · ], the tail of the ex-
pansion is denoted αn = [an, · · · ], and we have

α = [a1, a2, · · · , an, αn+1] = fn(αn+1) for n ≥ 1,

where fn is a linear fractional transformation with coefficients in Fp[T ], de-
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pending on the first partial quotients a1, · · · , an. Indeed if we set xn/yn =
[a1, · · · , an] for the rational, called convergent, representing the finite con-
tinued fraction, we have

α = (xnαn+1 + xn−1)/(ynαn+1 + yn−1) for n ≥ 1. (1)

Remember that xn and yn are the continuants obtained from the partial
quotients by the same recurrence relation : Kn = anKn−1 +Kn−2 with the
initial conditions (x1 = a1, x0 = 1) for x and (y1 = 1, y0 = 0) for y.

Our continued fraction α is such that α = [u1T, u2T, u3T, α4], where
(u1, u2, u3) ∈ (F∗

p)
3 is an arbitrary triplet. Then we define a particular

polynomial F ∈ Fp[T ] by F = (T 2 +4)(p−1)/2. We will now build a sequence
in Fp[T ], for each prime p ≥ 3, depending on this triplet (u1, u2, u3) and this
polynomial F .
Let us define the following sequence (Pn)n≥0 in Fp[T ]:

P0 = T and Pn+1 = F.P p
n , for n ≥ 0.

Hence we have deg(Pn+1) = p − 1 + p deg(Pn). Consequently, we get
deg(Pn) = 2pn − 1 for n ≥ 0.
For n ≥ 0, we define two triples in Fp[T ]:

A1,n = u1T, u2Pn, u3T and A2,n = (4u3)
−1T, 4u1u2u3Pn, (4u1)

−1T.

For n ≥ 0 we define two finite sequences of length pn − 1 in Fp[T ]:

B1,n = ((2u3)
−1T, 2u3T )[(p

n−1)/2] and B2,n = (2u1T, (2u1)
−1T )[(p

n−1)/2],

where a[k] = a, · · · , a (k times). Finally, for n ≥ 0, we define the following
finite sequences in Fp[T ]:

C2n = A1,2nB1,2n and C2n+1 = A2,2n+1B2,2n+1.

Note that B1,0 = ∅ and C0 = u1T, u2T, u3T . We denote R = T p − TF ∈
Fp[T ]. We observe that R is simply the remainder in the Euclidean division
of T p by F . Then we consider in F(p) the infinite continued fraction defined
by

α = [C0, C1, · · · , Cn, · · · ] = [u1T, u2T, u3T, (4u3)
−1T, 4u1u2u3P1, · · · ].

This continued fraction satisfies the following equalities

α = [u1T, u2T, u3T, α4] and αp = 4u1u3Fα4 + u1R. (2)
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Combining equalities (1) and (2), it becomes clear that α is algebraic
and hyperquadratic. Hence, we have

y3α
p+1 − x3αp + (4u1u3y2F − u1y3R)α+ u1x3R− 4u1u3x2F = 0. (3)

Remark 1. We shall now show the origin of the polynomial F and
its particular place in function fields arithmetic. In their article [3, p. 400]
Mills and Robbins introduce the following sequence (fn)n≥0 of polynomials
in Fp[T ]:

f0 = 1, f1 = T and fn = Tfn−1 + fn−2 for n ≥ 2.

These polynomials can be regarded as the formal Fibonacci numbers. Indeed
we have limn fn/fn−1 = ω = [T, T, · · · , T, · · · ]. This quadratic continued
fraction ω is the analogue in the formal case of the real number (1+

√
5)/2 =

[1, 1, · · · , 1, · · · ]. These polynomials have been considered in several articles
by the author (see [2] and the references therein). They satisfy, among
others, the following identities

fp−1 = (T 2 + 4)(p−1)/2 and fp + fp−2 = T p.

Note that F = fp−1 and R = T p − TF = fp + fp−2 − Tfp−1 = 2fp−2. Mills
and Robbins considered in F(p) for p ≥ 5, the continued fractions defined
by

α = [u1T, u2T, α3] and αp = Fα3 − (1/2)R, (4)

where u1 ∈ Fp with u1 6= 0,−1/2 and u2 = −u1(1 + 2u1)
−1 ∈ F∗

p.
In the same article they presented a general algorithm allowing to obtain the
complete continued fraction expansion for certain hyperquadratic elements.
They could apply this algorithm to obtain the explicit continued fraction
of the elements satisfying (4). The remarkable fact about these continued
fractions is that all the partial quotients are of the form uT with u ∈ F∗

p. If
u1 = −1 then we have α = −ω, otherwise α is algebraic but not quadratic.
This was the beginning of many extensions and generalizations concerning
particular hyperquadratic continued fractions by the author and others (see
[2] and the references therein).
We have not tried to write a proof of our claim concerning the continued
fraction defined by (2), using Mills and Robbins algorithm. However the
truth of this claim is conforted by computer observations presented in the
following remark.

Remark 2. Given an algebraic equation with coefficients in Fp[T ]
having a solution in fields of power series, there exists a mechanical process
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to obtain one after the other the partial quotients of this solution. This gen-
eral principle was brought to light by Mohamed Mkaouar (Sfax university,
Tunisia). With the help of Domingo Gomez (Cantabria university, Spain),
using Sage programming code, we could adapt this process to our equation
(3). This program is presented below. By letting p vary as well as the triplet
(u1, u2, u3), the reader will be convinced of the correctness of the pattern
for the continued fraction described above.

def contf(P,m):

n = P.degree()

an = P[n]

an1 = P[n-1]

a = []

for i in range( m ):

an = P[n]

an1 = P[n-1]

bar = - an1//an

if P(bar) == 0:

return bar

else:

P = P(x+bar)

P=P.reverse()

a.append(bar)

return a

def leading_coefficients(P,m):

return [f.leading_coefficient() for f in contf(P,m)]

def degree(P,m):

return [f.degree() for f in contf(P,m)]

p = 7

F=GF(p)

u1=F(2)

u2=F(4)

u3=F(5)

z=F(4*u1*u3)

k=(p-1)/2

Ft.<t> = PolynomialRing(F)

Ftx.<x> = PolynomialRing(Ft)
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Fib=(t^2+4)^k

R=t^p % Fib

x3=u1*u2*u3*t^3+(u1+u3)*t

y3=u2*u3*t^2+1

x2=u1*u2*t^2+1

y2=u2*t

P=y3*x^(p+1)-x3*x^p+(z*y2*Fib-u1*y3*R)*x+u1*x3*R-z*x2*Fib

print "p=",(p)

print "cfe",contf(P,7)

print "degrees",degree(P,65)

print "lead.coef.", leading_coefficients(P,65)

p= 7

cfe [2*t, 4*t, 5*t, 6*t, 6*t^13 + 2*t^11 + t^9 + 6*t^7, t, 4*t]

degrees [1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 97, 1, 1, 1, 1

, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

, 1, 1, 1, 1, 685]

lead.coef. [2, 4, 5, 6, 6, 1, 4, 2, 4, 2, 4, 2, 2, 4, 5, 5, 3,

5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5,

3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3,

5, 3, 5, 3, 6, 6]

Remark 3. Contrarily to the historical example introduced by Mills
and Robbins, in our continued fraction the sequence of the degrees of the
partial quotients is unbounded. Indeed this sequence (dn)n≥1 contains the
sub-sequence (2pn − 1)n≥1. To describe more precisely this sequence of
degrees, we introduce the sequence (nk)k≥1 such that dnk

= 2pk − 1 for
k ≥ 1. We have n1 = 5. From the definition of the sequence of partial
quotients we get

nk+1 = nk + pk + 2 and nk = (pk − 1)/(p− 1) + 2k + 2 for k ≥ 1.

Let us introduce sk =
∑

1≤i<nk
di for k ≥ 1. We have s1 = 4. Since we have

dn = 1 if n 6= nk, we obtain, for k ≥ 1,

sk+1 = sk + 2pk − 1 + pk + 1 = sk + 3pk and sk = 3(pk − 1)/(p− 1) + 1.
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We are now interested in the irrationality measure ν(α) of our continued
fraction α. For any irrational α ∈ F(p), if α = [a1, a2 · · · , an, · · · ], we have

ν(α) = 2 + lim sup
n

(deg(an+1)/
∑

1≤i≤n

deg(ai)).

In our case, we can write

lim sup
n

(dn+1/
∑

1≤i≤n

di) = lim
k
dnk

/sk.

Therefore, we obtain

ν(α) = 2 + lim
k

(2pk − 1)/sk = 2 + 2(p− 1)/3.

By a famous theorem of Liouville-Mahler, if α is algebraic over Fp(T ) and
d = [Fp(T, α) : Fp(T )] > 1, then we have ν(α) ∈ [2; d]. In our case, since
α satisfies the algebraic equation (3), this implies 2 < ν(α) ≤ d ≤ p + 1.
Hence in the particular case p = 3, we must have d = 4 and consequently,
equation (3) is irreducible.
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