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A. Lasjaunias

The fields of power series (or perhaps better called formal numbers)
are analogues of the field of real numbers. Many questions in number the-
ory which have been studied in the setting of the real numbers can be
transposed in the setting of the power series. The study of rational ap-
proximation to algebraic real numbers has been intensively developped
starting from the middle of the nineteenth century with the work of Liou-
ville up to the celebrated theorem of Roth established in 1955. In the last
thirty years, several mathematicians have studied diophantine approxima-
tion in fields of power series. We present here a summary of the present
knowledge on this subject, emphasizing the analogies and differences with
the situation in the real numbers case.

1. The fields of power series .

Let K be a field. If T is an indeterminate, we consider the ring
K[T ] of polynomials in T with coefficients in K, and the field K(T ) of
rational functions in T with coefficients in K. An ultrametric absolute
value in K(T ) is defined by |0| = 0 and |P/Q| = |T |degP−degQ, where |T |
is a fixed real number greater than 1. We consider the completion field of
K(T ) for this absolute value, which is denoted K((T−1)) and called the
field of power series over K. Then if α ∈ K((T−1)), and α 6= 0, we can
write

α =
∑

k≤k0

akT
k where k0 ∈ Z , ak ∈ K and ak0

6= 0.

The degree of α 6= 0 is defined by extension as degα = k0. So the absolute
value is extended in K((T−1)), and we have |α| = |T |degα if α 6= 0.

This construction is clearly similar to the construction of the real
numbers. The analogues of Z, Q and R are respectively K[T ], K(T ) and
K((T−1)).
Here we study the approximation of the elements of K((T−1)) by the
elements of K(T ). Particularly we consider this approximation for the
elements of K((T−1)) which are algebraic over K(T ).

This analogy between the field of real numbers and the field of
formal power series can be considered from another point of view. Indeed
the sequence of the coefficients of a power series can be compared to the
sequence of the digits in the decimal expansion of a real number. We
illustrate here this parallelism with an analogue of a classical result for
the real numbers. Let α ∈ K((T−1)). It is easy to prove that the sequence
of the coefficients of the power series representing α is ultimately periodic if
and only if there exist integers n ≥ 0 and m ≥ 1 such that Tn(Tm−1) α ∈
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K[T ]. Now if K is a finite field, it is a classical result that every Q ∈ K[T ],
Q 6= 0, divides Tn(Tm − 1) for some integers n,m ∈ N. Consequently we
can state the following theorem.

Theorem 1.1. Let α ∈ Fq((T
−1)) with α =

∑

k≤k0
akT

k. Then α ∈
Fq(T ) if and only if the sequence (a−k)k≥0 is ultimately periodic.

It is interesting to notice the correspondence with the classical result on
the rational numbers and their decimal expansion. Observe that the proof
is obtained in the same way as above, replacing T by 10, and using the fact
that every positive integer divides 10n(10m − 1) for some integers n ≥ 0
and m ≥ 1.

As we are concerned with algebraic power series, it is important
to mention here another result in the same direction as the previous one.
Again when the base field K is finite, Christol [C] was able to show that an
element in K((T−1)) which is algebraic over K(T ) can be characterised by
a property of the sequence of the coefficients in its power series expansion.
We state Christol’s theorem.

Theorem 1.2. Let α ∈ Fq((T
−1)) with α =

∑

k≤k0
akT

k. We put un =

a−n for n ≥ 0. Then α is algebraic over Fq(T ) if and only if the set of
subsequences

{(uqin+r)n≥0 for i ≥ 0 and 0 ≤ r ≤ qi − 1}

is finite.

We have just seen the importance of the case where K is a finite
field, which somehow simplifies the situation. In the following we will
observe this importance in other contexts, nevertheless our base field K is
arbitrary when no restriction is mentioned.

2. Analogues of Liouville and Roth theorems.

The starting point in diophantine approximation for algebraic real
numbers is a famous theorem obtained by Liouville in 1850. We have
the following theorem, due to K. Mahler [M], which is an adaptation of
Liouville’s theorem in the case of power series.

Theorem 2.1. Let K be a field. Let α be an element of K((T−1)) alge-
braic over K(T ) of degree n > 1 and P,Q ∈ K[T ] with Q 6= 0. Then there
exists a positive real constant A, depending only upon α, such that

|α− P/Q| ≥ A|Q|−n.

In 1955, Roth published his famous theorem about the rational
approximation of algebraic real numbers. We also have the following the-
orem, due to Uchiyama [U], which is an adaptation of Roth’s theorem in
our context.
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Theorem 2.2. Let K be a field of characteristic 0. If α is an algebraic
irrational element of K((T−1)) then, for every ǫ > 0, we have

|α− P/Q| ≥ |Q|−(2+ǫ)

for all P,Q ∈ K[T ] with |Q| sufficiently large.

It is well known, as we will see, that this theorem does not hold if
the characteristic of K is positive. Thus rational approximation of alge-
braic power series is much more complex when the base field has positive
characteristic. But although the equivalent of Roth’s theorem holds in
the power series case when the base field is of characteristic 0, we will see
also that the rational approximation of algebraic elements in K((T−1))
is different from the situation we know in the classical case of the real
numbers.

3. The continued fraction algorithm.

As in the classical context of the real numbers, we have a contin-
ued fraction algorithm in K((T−1)). The continued fraction theory in
K((T−1)) is in some ways simpler than in the real number case because
of the ultra-metric absolute value in the first field. For a general reference
on this subject, see [S2]. If α ∈ K((T−1)) we can write

α = a0 + 1/(a1 + 1/(a2 + ... = [a0, a1, a2, ....] where ai ∈ K[T ].

The ai are called the partial quotients and we have deg ai > 0 for i > 0.
This continued fraction is finite if and only if α ∈ K(T ). As in the classical
theory we define recursively the two sequences of polynomials (Pn)n≥0 and
(Qn)n≥0 by

Pn = anPn−1 + Pn−2 and Qn = anQn−1 +Qn−2,

with the initial conditions P0 = a0, P1 = a0a1 + 1, Q0 = 1 and Q1 = a1.
We have Pn+1Qn − Qn+1Pn = (−1)n, whence Pn and Qn are coprime.
The rational Pn/Qn is called a convergent to α and we have Pn/Qn =
[a0, a1, a2, ..., an]. Because of the ultrametric absolute value we have

|α− Pn/Qn| = |Pn+1/Qn+1 − Pn/Qn| = |QnQn+1|−1 = |an+1|−1|Qn|−2.

It is interesting to notice that there is a simple characterisation of a con-
vergent: if P,Q ∈ K[T ] and Q 6= 0 then P/Q is a convergent to α if and
only if |α− P/Q| < |Q|−2.

At last we mention an important result, whose analogue in the
classical case is well known.

Theorem 3.1. Let K be a finite field and α ∈ K((T−1)) irrational. Then
the sequence of partial quotients in the continued fraction expansion of α
is ultimately periodic if and only if α is quadratic over K(T ).

4. The approximation exponent.
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In order to mesure the quality of the rational approximation, we
introduce now the following notation and definitions.
Let α be an irrational element of K((T−1)). For all real numbers µ, we
define

B(α, µ) = lim inf
|Q|→∞

|Q|µ|α− P/Q|

where P and Q run over polynomials in K[T ] with Q 6= 0. Now the
approximation exponent of α is defined by

ν(α) = sup{µ ∈ R : B(α, µ) < ∞}.

It is clear that we have

B(α, µ) = ∞ if µ > ν(α) , B(α, µ) = 0 if µ < ν(α) and 0 ≤ B(α, ν(α)) ≤ ∞.

The approximation exponent can also be defined directly by

ν(α) = lim sup
|Q|→∞

(− log |α− P/Q|
log |Q| )

where P and Q run over polynomials in K[T ] with Q 6= 0. Observe that
the same definition could hold for the approximation exponent of a real
number, replacing P and Q 6= 0 by rational integers and the absolute value
being the usual one.

We recall that if Pn/Qn is a convergent to α, we have

|α− Pn/Qn| = |Qn|−(1+degQn+1/ degQn).

Since the best rational approximations to α are its convergents, in the
above notation we have

ν(α) = 1+lim sup
k

(degQk+1/degQk) = 2+lim sup
k

(deg ak+1/
∑

1≤i≤k

deg ai).

The approximation exponent for a real number x would be

ν(x) = 1 + lim sup
n

(ln qn+1/ ln qn),

where (pn/qn)n≥0 is the sequence of the convergents to x.

This notation is a slight modification of that introduced by B. de
Mathan [dM1]. According to W. Schmidt [S2], it is also possible to define
the approximation spectrum of α. This is the set of the accumulation
points of the sequence (1 + (degQk+1/degQk))k≥0. This set is denoted
S(α). Then ν(α) is the upper bound of S(α).

Since |α − Pn/Qn| ≤ |T |−1|Qn|−2, for all irrational α ∈ K((T−1))
we have B(α, 2) ≤ |T |−1. Thus ν(α) ≥ 2. Moreover, using continued
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fractions, it is clear that for every λ ∈ [2,+∞] there exists an irrational
α ∈ K((T−1)) such that ν(α) = λ. The same is true in the real number
case.

Mahler’s version of Liouville’s theorem says that if α ∈ K((T−1))
is algebraic over K(T ) of degree n > 1 then B(α, n) > 0. Consequently,
for all α ∈ K((T−1)) algebraic over K(T ) of degree n > 1 we have ν(α) ∈
[2, n]. Moreover, because of Uchiyama’s version of Roth’s theorem, if K
has characteristic 0 then ν(α) = 2.

We will now use the following vocabulary : If α ∈ K((T−1)), we
say that
• α is badly approximable if ν(α) = 2 and B(α, 2) > 0. This is
equivalent to saying that the partial quotients in the continued fraction
for α are bounded.
• α is normally approximable if ν(α) = 2 and B(α, 2) = 0.
• α is well approximable if ν(α) > 2.

Clearly, by Mahler’s theorem, all quadratic power series are badly
approximable. This fact is also a consequence of their particular continued
fraction expansion. We will see that there are algebraic power series in each
of these three classes. By Liouville’s theorem all quadratic real numbers
are badly approximable and by Roth’s theorem no algebraic real number
can be well approximable. Nevertheless, it is necessary to underline that
there is no example of algebraic real number of degree n > 2 that is known
to be badly or normally approximable. This is certainly a very important
open question in number theory.

Now we want to give two classical examples of algebraic elements
when the base field has positive characteristic. Let p be a prime number
and let q be a positive power of p. Both examples illustrate the disturbance
brought by the Frobenius homomorphism.

Example 1 : First we define α ∈ Fp((T
−1)) by α = [0, T, T q, .., T qk , ....].

Then, because of the Frobenius homomorphism, we have α = 1/(T + αq).
From the continued fraction expansion we deduce ν(α) = q+1 and S(α) =
{q + 1}. If α is algebraic over K(T ) of degree d, we know that ν(α) ≤ d
and therefore d = q + 1.

Example 2 : Now we define α ∈ Fp((T
−1)) by α =

∑

k≥0 T
−qk . Again,

because of the Frobenius homomorphism, we have α = 1/T + αq. If we

write Un/Vn =
∑

0≤k≤n T
−qk , we have |α − Un/Vn| = |Vn|−q. Hence we

see that ν(α) ≥ q. Consequently α is algebraic over K(T ) of degree q and
ν(α) = q.

Unlike the real numbers case, where no explicit continued fraction
is known for an algebraic number of degree ≥ 3, we can describe the
continued fraction for this element ( see [L1], p. 224).

Theorem 4.1. Let p be a prime number and q > 2 a power of p. Let
α ∈ Fp((T

−1)) be defined by α = 1/T + αq and |α| < 1. Let us define the
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sequence (Ωn)n>0 of finite sequences of elements of K[T ] recursively by

Ω1 = T and Ωn = Ωn−1,−T (q−2)qn−2

,−Ω′
n−1 for n ≥ 2.

In this formula, if Ω = a1, a2, ...., am, then Ω′ = am, am−1, ...., a1 and
−Ω = −a1,−a2, ....,−am and commas denote juxtaposition of sequences.
Denote by Ω∞ the infinite sequence begining by Ωn for all n ≥ 1 . Then
the continued fraction expansion for α is [0; Ω∞].

For q = 2, α is a quadratic element and we can see that α = [0, T +1, (T )]
(Here the brackets indicate the periodic part of the expansion). From
this continued fraction expansion we can determine the approximation
spectrum.

Corollary 4.1. Let k ≥ 1 be an integer and k =
∑

0≤i≤m ki2
i its repre-

sentation in base 2, then we define ω(k, q) =
∑

0≤i≤m kiq
i. The approxi-

mation spectrum of the element α defined in theorem 4.1 is

S(α) = {(uk)k≥1} with uk = 2 +
q − 2

(q − 1)ω(k, q) + 2− q
.

Observe that the sequence (uk)k≥1 is decreasing and that we have u1 = q
and limk→∞ uk = 2.

This second example was first introduced by K. Mahler [M] to show
the specificity of diophantine approximation in positive characteristic.

5. The subset of algebraic elements of class I.

Here we suppose that the base field K has a positive characteristic
p. As we have seen in the two preceeding examples the rational approxima-
tion of algebraic elements is disturbed by the Frobenius homomorphism.
Therefore it is important to consider a special subset of algebraic elements
in K((T−1)).

For an integer s ≥ 1, we will denoteHs the set of irrational algebraic
elements in K((T−1)) which satisfy an algebraic equation of the following
type:

(I) x = (Axps

+B)/(Cxps

+D)

where A,B,C,D are in K[T ] with AD −BC 6= 0. We put q = ps and set
H =

⋃

s≥1 Hs. We say that an element in H is of class I.

It is clear that if α ∈ K((T−1)) is algebraic of degree less than 4 then
it is an element of class I, since 1, α, αq and αq+1 are linearly dependent
over K(T ). Besides, it is easy to show that there are algebraic elements
in K((T−1)) which are not of class I. The two examples given in section 4

are of class I.

The rational approximation for elements of class I has been studied
by Voloch [V1] and more deeply by de Mathan [dM1]. They could show
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that if the partial quotients in the continued fraction expansion of such
an element α are unbounded, then ν(α) > 2. In other words there are no
normally approximable elements of class I. By the work of B. de Mathan
[dM1], we know moreover that for elements of class I, the approximation
exponent ν(α) is a rational number and B(α, ν(α)) 6= 0,∞.

Many elements of class I are well approximable, as for instance
the two previous examples. Indeed it is possible to show with the above
notation that if q > 1 + deg(AD − BC), then ν(α) > 2 (see [L2], p.
53). In particular, if AD − BC ∈ K∗, then this condition is fullfiled for
all q. The algebraic irrational elements satisfying equation (I) with the
condition AD − BC ∈ K∗ are called of class IA. Those special elements
have been considered and studied by W. Schmidt [S2] and D. Thakur [T].
The element given as example 1 in section 4 belongs to this class. For those
elements the continued fraction expansion can be explicitely described, and
thus one can determine their approximation spectrum, which is a finite set
[S2].

6. Badly approximable elements of class I.

In 1976, Baum and Sweet [BS1] were the first to study the rational
approximation of particular algebraic elements of class I for K = F2. One
famous example is the unique solution in F2((T

−1)) of the equation

TX3 +X + T = 0.

This cubic element α has the special property of being badly approximable.
More precisely we have

|α− P/Q| ≥ |T |−2|Q|−2

for all P,Q ∈ F2[T ] with Q 6= 0. It is equivalent to say that the partial
quotients of the continued fraction expansion of this element are of degree
bounded by 2. Generalizing their methods, we have obtained the following
result [L2].

Theorem 6.1. Let l be a positive integer. Let D ∈ F2[T ] be such that
D(0) = 1. We consider the algebraic equation

(E) Tx3 +Dx+ T l = 0.

Let α be an irrational solution of (E) in F2((T
−1)). Then

i) if |α| ≥ |T |−(l+1), the sequence of the partial quotients of the
continued fraction expansion for α is bounded by |T |l+1.

ii) if |α| < |T |−(l+1), the sequence of the partial quotients of the
continued fraction expansion for α is unbounded.

The existence of an irrational solution of (E) depends on the choice
of D and l. We can indicate some cases where this solution exists and
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is unique in F2((T
−1)). So for l = 1 and D = 1, the solution of (E) is

the cubic example given by L. Baum and M. Sweet. In this case we have
|α| = 1, and the partial quotients of its continued fraction expansion are
bounded by |T |2. Also if m = deg D and if 1 ≤ l ≤ m with (l,m) 6= (1, 1)
then equation (E) has a unique solution α with |α| = |T |l−m. In this last
situation, if this solution is irrational, the theorem implies that the partial
quotients of its continued fraction expansion are bounded by |T |l+1 if and
only if ⌊m/2⌋ ≤ l ≤ m.

In 1986 Mills and Robbins [MR] studied the continued fraction
expansion for the cubic example given by Baum and Sweet. They were
the first to consider the subset of algebraic elements of class I. Then they
were able to describe an algorithm to compute the partial quotients of the
continued fraction expansion for an element of class I. As a consequence of
this work, they gave for each prime p ≥ 3 an example of a non-quadratic
algebraic power series with coefficients in Fp whose partial quotients are
all of degree one. We have studied the case where the base field is F3. We
looked for non-quadratic algebraic power series whose partial quotients are
all ±T or ±T ±1. We observed that a continued fraction with such partial
quotients can satisfy a quartic equation if these polynomials are arranged
in a precise pattern. We illustrate this with the following result [L3].

Theorem 6.2. Let k be a non-negative integer. We define the sequence
of integers (un)n≥0 by

u0 = k and un+1 = 3un + 4 for n ≥ 0.

If a ∈ F3[T ] and n ≥ 0 is an integer, a[n] denotes the sequence a, a, ...., a
where a is repeated n times and a[0] denotes the empty sequence. Then for
n ≥ 0, we define a finite sequence Hn(T ) of elements of F3[T ] by

Hn(T ) = T + 1, T [un], T + 1.

Let H∞(k) be the infinite sequence defined by juxtaposition

H∞(k) = H0(T ), H1(−T ), H2(T ), ...., Hn((−1)nT ), .....

Let ω(k) be the element of F3((T
−1)) defined by the continued fraction

expansion
ω(k) = [0, H∞(k)].

Let (pn)n≥0 and (qn)n≥0 be the usual sequences for the numerators and
the denominators of the convergents of ω(k).
Then ω(k) is the unique solution in F3((T

−1)) of the irreducible quartic
equation

qkx
4 − pkx

3 + qk+3x− pk+3 = 0.

For example, if k = 0 then

ω(0) = [0, T +1, T +1,−T +1,−T [4],−T +1, T +1, T [16], T +1,−T +1, ...]
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and this element satisfies the equation x = (T 2 + 1)/(T 3 + T 2 − T − x3).
To prove this theorem, we first show, with the above notations, that for
n ≥ 0 we have

p3n+k+3/q3n+k+3 = (pkp
3
n + q3npk+3)/(qkp

3
n + q3nqk+3).

Since limm→∞ pm/qm = ω(k), this equality implies that ω(k) satisfies the
desired equation.

At last, concerning badly approximable elements of class I, we men-
tion here recent work by D. Robbins [R], in which he studied systematically
the roots of a cubic equation with polynomial coefficients in F2[T ]. Also
when the base field is a finite extension of F2, D. Thakur [T] has given ex-
amples of algebraic elements of class I with bounded partial quotients. The
question of determining which elements of class I are badly approximable
remains open.

7. Determination of the approximation exponent.

It is clear that the approximation exponent and the approximation
spectrum can be determined when the continued fraction of the element is
explicitly known, as we have seen for the two previous examples in section
4. It is important to notice that in this manner W. Schmidt [S2] and D.
Thakur [T] have independently obtained the following result.

Theorem 7.1. Let K be a finite field. For every rational number µ > 2
there exists an algebraic element α ∈ K((T−1)) of class IA such that
ν(α) = µ.

Now we will show how it is possible in some cases to compute
the approximation exponent for an algebraic element, without knowing
the whole continued fraction. This will be possible if this approximation
exponent is large enough, that is to say not close to 2 . We will give
applications to algebraic elements which are of class I and also to others
which are not.

The basic idea in the following result is due to Voloch [V1]. It has
been improved by de Mathan [dM2].

Theorem 7.2. Let K be a field. Let α ∈ K((T−1)). Assume that there
is a sequence (Pn, Qn)n≥0, with Pn, Qn ∈ K[T ], satisfying the following
conditions :

(1) There are two real constants λ > 0 and µ > 1, such that

|Qn| = λ|Qn−1|µ and |Qn| > |Qn−1| for all n ≥ 1.

(2) There are two real constants ρ > 0 and γ > 1 +
√
µ, such that

|α− Pn/Qn| = ρ|Qn|−γ for all n ≥ 0.



10

Then we have ν(α) = γ. Further, if gcd(Pn, Qn) = 1 for n ≥ 0, we have
B(α, ν(α)) = ρ, and if the sequence (gcd(Pn, Qn))n≥0 is bounded then
B(α, ν(α)) 6= 0,∞.

Using this proposition it is possible to compute the approximation
exponent for many elements of class I. We give as an example the following
result.

Theorem 7.3. Let K be a field of characteristic p. Let n > 2 be an integer
prime with p. Let P,Q ∈ K[T ] coprime, of same degree and unitary.
Assume that P/Q /∈ K(T )n. Let q be the smallest power of p such that n
divides q−1. Set λ = deg(P−Q)/degQ. Then the equation xn = P/Q has
a unique root α in K((T−1)) with |α−1| < 1. If λ = 0 or λ < 1−(1+

√
q)/n

then ν(α) = n(1 − λ). Moreover we have ν(α) = n if and only if there
exist P0, Q0 and C ∈ K[T ] such that P/Q = (P0/Q0)

n(1 + 1/C).

It was proved by Osgood (see [O2] p. 109) that if gcd(n, p) = 1 then
the n-th root of 1+1/T in Fp((T

−1)) has an approximation exponent equal
to n. We have obtained in Theorem 7.3 the converse of this result. In some
cases it is possible to improve the above theorem. For instance, with p = 2
and n = 3 and with the same conditions and notation as above, we have
ν(α) = 3(1− λ) if λ < (2−

√
2)/3.

We give another application to algebraic elements which are not of
class I. These algebraic elements are also defined by an equation involving
the Frobenius homomorphism. We have just selected an example.

Theorem 7.4. Let p be a prime number with p ≥ 11. We consider the
algebraic equation

x = T−1 + xp + T−2xp2

.

This equation has p roots in Fp((T
−1)) denoted αi for i = 0, ..., p− 1 with

|α0| < 1. There exist ω ∈ Fp((T
−1)) with |ω| = 1 and αi = α0 + iω for

i = 1, ..., p− 1. We have

ν(α0) = p(p2 − 1)/(p2 + 1) and ν(αi) = (p2 − 1)/(2p) for i = 1, .., p− 1.

Now we consider the image under a rational function of an element
α of class I. This image is generally no longer an element of class I. If we
know the approximation exponent of α, it is sometimes possible to deduce
that of its image. This phenomenon was observed by Voloch (see [V2] p.
322). We have the following result.

Theorem 7.5. Let K be a field of characteristic p. Let α ∈ K((T−1))
be an algebraic element of class I. Let q be a power of p involved in an
equation satisfied by α. Let R ∈ K[T ](X). Assume that R′

X(α) 6= 0. If
R = U/V where U and V are two coprime polynomials in K[T,X], we set
d = max(degX U, degX V ). Then if ν(α) > d(

√
q + 1), we have

ν(R(α)) = ν(α)/d and B(R(α), ν(R(α))) 6= 0,∞.
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We give here a special application of this proposition to the two
examples mentioned in section 4 :
For example 1, we have ν(α) = q + 1. Let k be a positive integer prime
with p. Then if k < (q + 1)/(

√
q + 1), one has ν(αk) = (q + 1)/k.

For example 2, we have ν(α) = q. Let k be a positive integer prime with
p. Then if k < q/(

√
q + 1), one has ν(αk) = q/k.

The proofs of Theorems 7.2, 7.3, 7.4 and 7.5 can be found in my
Ph.D. thesis [L0].

8. Thue’s method.

In 1908, A. Thue [Th] proved a famous theorem which was the first
step on the path leading to Roth’s theorem. This result is the following.

Theorem 8.1. Let α be a real algebraic number of degree n > 1, then for
all ǫ > 0 we have

|α− p/q| ≥ q−(n/2+1+ǫ)

for all (p, q) ∈ Z2 with q > 0 sufficiently large.

We have tried to adapt his proof in our context in order to obtain a
similar result. Of course we had to consider algebraic elements which are
not too well approximable by rationals. As we have seen such elements
exist in class I. In joint work with B. de Mathan, we have proved the
following theorem [LdM1].

Theorem 8.2. Let K be a field of positive characteristic. Let α be an
element of K((T−1)), algebraic over K(T ), of degree n > 1. Assume that
α is not an element of class I. Then for every positive real number ǫ we
have

|α− P/Q| ≥ |Q|−([n/2]+1+ǫ)

for all pairs (P,Q) ∈ K[T ]×K[T ] with |Q| sufficiently large.

The conclusion of this theorem is equivalent to ν(α) ≤ [n/2] + 1.
This theorem highlights the specificity of the algebraic elements of class
I. We may see that this theorem is nearly optimal. Indeed let α be the
element given as example 2 in section 4. For p large, let us consider the
element β = α2. We can show that β is algebraic of degree p, not of class
I, and with ν(β) = p/2. This remark is due to Voloch (see [V2] p. 321).

We indicate here the main steps of the proof. First we show that,
for each integer s ≥ 1, there are two polynomials Us and Vs in K[T ][X]
such that

Us(α
ps

)− αVs(α
ps

) = 0

with
µs = max (degX Us, degX Vs) ≤ [n/2]

and
max(degT Us, degT Vs) ≤ Cps
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where C is a positive constant depending upon α. Here since α is not of
class I, we have µs ≥ 2. Then the proof is obtained from the following
intermediary result:

Theorem 8.3. Suppose α is as in Theorem 8.2. With the above notation,
if µ is a real number such that µs ≤ µ for all s ≥ 1, then for all positive
real ǫ, and for all pairs (P,Q) in K[T ]×K[T ] with degQ sufficiently large,
we have

|P − αQ| ≥ |Q|−(µ+ǫ).

The proof is obtained by contradiction. We assume that the in-
equality |P − αQ| < |Q|−(µ+ǫ) has solutions with degQ arbitrarily large.
Then we show that there are two pairs (P1, Q1) and (P2, Q2) satisfying
this inequality and also an integer s such that psdeg Q1/deg Q2 is close to
1. At last we obtain a contradiction using the elements of K[T ], defined
by

As = Qµsp
s

1 Us((P1/Q1)
ps

) and Bs = Qµsp
s

1 Vs((P1/Q1)
ps

).

We have to observe that, in some cases, because of Theorem 8.3,
it is possible to get a better conclusion in Theorem 8.2. For instance, for
elements satisfying an equation such as the one mentioned in Theorem 7.4
it is possible to show that the approximation exponent must be smaller or
equal to p+ 1 (see [LdM1], p 203-204). In the next paragraph, we will re-
turn to this example and prove a better upper bound for its approximation
exponent.

As Theorem 8.2 is in some sense an analogue of Theorem 8.1, it
is natural to expect to improve it in the direction of an analogue of Roth
theorem. Evidently this can only be obtained by throwing away some other
exceptional cases of too well aproximable numbers. We have to mention
here a recent work in that direction, using tools of algebraic geometry, due
to M. Kim, D. Thakur and J.-F. Voloch [KTV].

9. The differential method.

The use of differential algebra in rational approximation to formal
power series was initiated by Kolchin [K], developed by Osgood [O1] [O2],
and further by Schmidt [S1].

We have a formal derivation by differentiating the series term by
term. If K has characteristic 0, then the field of constants is K, and
if K has characteristic p > 0, then the field of constants is K((T−p)).
If α ∈ K((T−1)) is algebraic over K(T ), then it satisfies an algebraico-
differential equation. Indeed, let F ∈ K[T,X] be the minimal polynomial
of α, with degX F = n. We have F (T, α) = 0, and differentiating this
equality we get F ′

T (T, α)+α′F ′
X(T, α) = 0. This shows that α′ ∈ K(T, α).

Thus there is G ∈ K(T )[X] such that α′ = G(α) with 0 ≤ degX G ≤ n−1.
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If we have degX G ≤ 2, we will say that α satisfies a Riccati
differential equation. In 1974, C. Osgood [O2] established the following
theorem.

Theorem 9.1. Let K be a field. Let α ∈ K((T−1)) be an algebraic el-
ement over K(T ) of degree n > 1. Assume that α does not satisfy a
Riccati differential equation. Then there exists a positive real constant C
depending only upon α such that

|α− P/Q| ≥ C|Q|−([n/2]+1)

for all (P,Q) ∈ K[T ]×K[T ] with Q 6= 0.

The conclusion of this theorem is equivalent to B(α, [n/2]+1) > 0.
We give here a sketch of the proof. First we show that there are two
polynomials U and V of K[T ][X] such that

H(α) = U(α)− α′V (α) = 0

with
Q[n/2]+1H(P/Q) ∈ K[T ] for P,Q ∈ K[T ] and Q 6= 0.

Now assume that H(P/Q) 6= 0. Then we can easily prove that P and
Q satisfy the inequality in Theorem 9.1. We use the following argument.
Given x0 ∈ K((T−1)), there exist two positive real numbers η and C1

such that for x ∈ K((T−1)) with |x − x0| < η we have |H(x) −H(x0)| ≤
C1|x− x0|. Consequently we obtain

|α− P/Q| ≥ C−1
1 |H(α)−H(P/Q)| = C−1

1 |H(P/Q)| ≥ C−1
1 |Q|−([n/2]+1).

The end of the proof is based on the following technical lemma which has
been exposed by Schmidt (see [S1] p. 762).

Lemma 9.2. Let R and S be two coprime polynomials in K[T,X]. We
consider the differential equation

(1) X ′R(X) = S(X)

Assume that we do not simultaneously have degX R = 0 and degX S ≤
2, i.e. that the differential equation is not Riccati. There is a positive
constant C depending on R and S, such that if P,Q ∈ K[T ] and P/Q is
a solution of (1), then |Q| ≤ C.

Now with the above notations, if H(P/Q) = 0 this lemma implies that
|α − P/Q| ≥ C2 for a certain positive constant. Therefore the inequality
in Theorem 9.1 holds for all P and Q 6= 0 with C = min(C−1

1 , C2).

We will now state a result which is easily obtained using the same
arguments as above in Theorem 9.1 and Lemma 9.2. The basic idea is the
one introduced by Liouville but using a differential equation instead of the
minimal polynomial. Because of this analogy the following result can be
seen as a differential version of Mahler’s theorem.
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Theorem 9.3. Let K be a field. Let α ∈ K((T−1)) be an algebraic el-
ement over K(T ) of degree n > 1. Then we can write α′ = G(α) with
G ∈ K(T )[X]and degX G < n. Assume that k = degX G > 2. Then
there exists a positive real constant C depending only upon α such that

|α− P/Q| ≥ C|Q|−k

for all (P,Q) ∈ K[T ]×K[T ] with Q 6= 0.

Let us apply this theorem to an element α satisfying the equation
introduced in Theorem 7.4. We have

α = T−1 + αp + T−2αp2

and this implies
α′ = T−2 − 2T−1α+ 2T−1αp.

Therefore, by Theorem 9.3, we have ν(α) ≤ p. Observe that for the
element α0 of Theorem 7.4 the approximation exponent which is explicitly
computed tends to this upper bound when p tends to infinity.

10. Elements of class I and Riccati differential equation.

In this paragraph we suppose that the base field K has positive
characteristic p. The likeness between Theorem 8.2 and Theorem 9.1 leads
to a natural question . What is the link between elements of class I and
Riccati differential equations ?

It is easy to show that an element of class I satisfies a Riccati
differential equation and that this equation has a rational solution. On
the other hand if α satisfies a Riccati differential equation which has a
rational solution then there is some β ∈ K((T−1)) such that α = f(βp),
where f is a linear fractional transformation with coefficients in K[T ].

Using these remarks and Theorem 9.1, in joint work with B. de
Mathan we have obtained a theorem similar to Theorem 8.2 [LdM2]. We
need a stronger hypothesis but get a stronger conclusion.

Theorem 10.1. Let K be a finite field. Let α ∈ K((T−1)) be an algebraic
element over K(T ) of degree n > 1. Assume that α is not an element of
class I. Then there exists a positive real constant C depending only upon
α such that

|α− P/Q| ≥ C|Q|−([n/2]+1)

for all (P,Q) ∈ K[T ]×K[T ] with Q 6= 0.

The proof is obtained by contradiction. Thus we assume that
B(α, [n/2] + 1) = 0. Then Theorem 9.1 implies that α satisfies a Riccati
differential equation with a rational solution (see below in section 11). It
follows that there is an α1 and a linear fractional transformation f1 with
polynomial coefficients such that α = f1(α

p
1). We show that α and α1 have
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the same degree over K(T ) and that B(α1, [n/2] + 1) = 0. By iteration,
for all n ≥ 1 there exists an αn and a linear fractional transformation fn
with polynomial coefficients such that α = fn(α

pn

n ). Then we consider the
cross-ratio of α and of three of its conjugates and show that it belongs to
L, a finite extension of K. Finally we prove that α is of class I and that
the power of p involved in the equation satisfied by α is q =card(L).

When we started our investigations we had in mind Theorem 8.1
and Theorem 9.1. In a first step towards Theorem 8.2, we could prove,
by elementary methods and using Theorem 9.1, the statement of Theorem
10.1 for K = F2 and n = 4. This confirmed the intuition that the subset of
elements of class I was the right set of exceptional cases. Then we turned
to the proof of Theorem 8.2, following Thue’s ideas. The proof of Theorem
9.1 in the general case was later made possible by using the argument of
the cross-ratio. This argument was introduced by J-F. Voloch (see [V2] p
324).

11. Badly approximable elements and Riccati differential equa-

tion.

Let us consider a Riccati differential equation

(R) x′ = ax2 + bx+ c with a, b, c ∈ K(T ).

We set H(x) = x′ − ax2 − bx − c. Then it is easy to see that there
exist D ∈ K[T ] such that, for all P,Q ∈ K[T ] with Q 6= 0, we have
DQ2H(P/Q) ∈ K[T ].

Let α ∈ K((T−1)) be an irrational element. Suppose that α satisfies
(R). Let P,Q ∈ K[T ], with Q 6= 0, and assume that H(P/Q) 6= 0.
Consequently we have |DQ2H(P/Q)| ≥ 1. Then we use the argument
which has been exposed for the proof of Theorem 9.1. There is a positive
real number C such that

|α− P/Q| ≥ C−1|H(α)−H(P/Q)| = C−1|H(P/Q)| ≥ C−1|D|−1|Q|−2.

Now we suppose first that K has characteristic 0. In this case C.
Osgood [O1] has remarked that if u, v ∈ K((T−1)) with u 6= v are such
that H(u) = 0 and H(v) = 0, then there is a positive real constant C ′

such that |u − v| ≥ C ′. Therefore, in this case, if H(P/Q) = 0 we have
|α− P/Q| ≥ C ′.

Observe that this is false if K has positive characteristic. Indeed

consider example 2 of section 4. We have α =
∑

k≥0 T
−qk . Set αn =

∑

0≤k≤n T
−qk . We see that α and αn satisfy the same Riccati differential

equation x′ = −1/T 2. But |α− αn| tends to 0, when n tends to ∞.

In conclusion we have the following theorem.

Theorem 11.1. Let K be a field. Let α ∈ K((T−1)) be an irrational
solution of (R). Assume that either K has characteristic 0, or K has
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positive characteristic and (R) has no rational solution. Then there exists
a positive real constant C such that

|α− P/Q| ≥ C|Q |−2

for all (P,Q) ∈ K[T ]×K[T ] with Q 6= 0.

Observe that the conclusion of this theorem is equivalent to saying
that the partial quotients in the continued fraction for α are bounded, i.e.
α is badly approximable. The constant C in the inequality can easily be
made explicit and depends only on the coefficients of the Riccati differential
equation satisfied by α.

In the case of characteristic 0, for instance every algebraic element
of degree 3 satisfies a Riccati differential equation and is therefore badly
approximable. This case has been considered by Osgood [O1] and latter
by W. Schmidt [S1], obtaining explicit values for the constant C in the
above inequality.

Osgood has also considered the nth root of a rational function with
rational coefficients (see [O1], p. 7). Such an element satisfies a Riccati
differential equation. As an illustration, let us consider for n ≥ 2 the
element α ∈ Q((T−1)) defined by αn = 1 + 1/T . Then we have α′ =
−(nT (T + 1))−1α and, by applying Theorem 11.1, it can be proved that
|α−P/Q| > |T |−2|Q|−2. In other words, the degree of the partial quotients
in the continued fraction for α are all equal to 1. It is natural to ask what
these partial quotients really are. In fact this question can be answered
and the continued fraction can be explicitly described. We have

(1 + 1/T )1/n = [1, nT − (n− 1)/2, u2(T + 1/2), ....., uk(T + 1/2), ....]

with for even k,

uk = −4(2k − 1)n
∏

1≤i≤(k−2)/2

(4i2n2 − 1)/
∏

1≤i≤k/2

((2i− 1)2n2 − 1),

and for odd k,

uk = (2k − 1)n
∏

1≤i≤(k−1)/2

((2i− 1)2n2 − 1)/
∏

1≤i≤(k−1)/2

(4i2n2 − 1).

For n = 2 these formulas show that the continued fraction expansion is
periodic. Indeed we get (1+1/T )1/2 = [1, 2T−1/2, (−8T−4, 2T+1)]. The
above formulas can be obtained by an adaptation of some other formulas
which apparently go back to Euler.

The second case where K has positive characteristic p is interesting
too. In joint work with B. de Mathan, we have obtained the following
result [LdM2].
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Theorem 11.2. Let β ∈ F2((T
−1)), such that |β| ≤ 1. There exists a

unique α ∈ F2((T
−1)) such that

α2 + Tα+ 1 = (T + 1)β2.

Then α is solution of a Riccati differential equation which has no rational
solution. Consequently we have, for all P,Q ∈ F2[T ] with Q 6= 0,

|α− P/Q| ≥ |T |−1|Q|−2.

This result was first proved by Baum and Sweet [BS2], without any
use of differential methods. Observe that if β is algebraic then α is also
algebraic. Moreover if α is algebraic and non-quadratic then α is not an
element of class I, since an element of class I satisfies a Riccati differential
equation which has a rational solution and this equation is unique if α is
not quadratic. In connection to Theorem 11.2, we must mention recent
work by A. Lauder [La] who has followed the original ideas introduced by
Baum and Sweet [BS2] and could extend their results.

When the characteristic of the base field K is p > 2, we have used
elementary methods to prove the following result (see [LdM2] p. 5).
If K has characteristic p = 3 and if there is some α ∈ K((T−1)), neither
rational nor quadratic, satisfying a Riccati differential equation, then this
equation has infinitely many rational solutions.
M. van der Put [vdP] has studied such differential equations and it follows
from his work that the same holds for all p ≥ 3.

12. A normally approximable algebraic element.

Mills and Robbins [MR] have considered the following algebraic
equation

x4 + x2 − Tx+ 1 = 0.

They observed that, if the base field is F3, this equation has a unique
root in F3((T

−1)) and that this root appears to have a continued fraction
with a very peculiar pattern. Later Buck and Robbins [BR] proved the
following theorem.

Theorem 12.1. Let Ω0 = ∅, Ω1 = T , and for n ≥ 2, let Ωn be the finite
sequence of polynomials defined by

Ωn = Ωn−1, 2T,Ω
(3)
n−2, 2T,Ωn−1

where commas indicate juxtapposition of sequences, and Ω
(3)
k is obtained

by cubing every element of Ωk. Let us denote by Ω∞ the sequence begining
by Ωn for all n, and consider in F3((T

−1)) the element α defined by the
continued fraction expansion α = [0,Ω∞]. Then α is the unique root in
F3((T

−1)) of x4 + x2 − Tx+ 1 = 0.

Their proof is obtained by considering some subsequences of conver-
gents of the above continued fraction, say p1,n/q1,n, p2,n/q2,n, ..., pk,n/qk,n.
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Then they prove an equality, say F (p1,n/q1,n, p2,n/q2,n, ..., pk,n/qk,n) = 0,
satisfied for all n ≥ 0. Finally by letting n go to infinity this implies that
α satisfies the desired algebraic equation f(α) = 0. The original proof
can be made shorter (see [S2] section 10). The basic idea can be used for
other algebraic elements (see the proofs of Theorem 4.1 and Theorem 6.2
for instance).

We have observed that the solution of the above quartic equation
is directly connected to example 1 in section 4 when p = q = 3. This has
allowed us to consider the corresponding element for a general q. In this
context we have obtained another proof of Theorem 12.1 [L1].

Let p be an odd prime and q a positive power of p. We consider
αq ∈ Fp((T

−1)), defined by αq = [0, T, T q, ..., T qn , ...] . This element is
the unique root, in Fp((T

−1)), of the equation x = (1/T )(1 − xq+1). We
set r = (q + 1)/2 and θq = αr

q. Then we see that θq is the unique root in

Fp((T
−1)) of the equation

x = (1/T r)(1− x2)r.

Now if p = q = 3 then r = 2 and this equation becomes x4 + x2 − T 2x+
1 = 0. Thus the theorem of Buck and Robbins can be expressed by the
following formula in F3((T

−1)):

[0, T, T 3, ..., T 3n , ...]2 = [0,Ω∞(2)],

where Ω∞(2) denotes the sequence obtained from Ω∞ by changing T into
T 2.

We have studied the continued fraction defined in Fp((T
−1)) by

θq = [0, T, T q, ..., T qn , ...]r.

If q = 3, we can prove that the above formula holds. In the general case
q > 3, we can only describe partially the pattern of the continued fraction

expansion for θq. If we put αn,q = [0, T, T q, ..., T qn−1

], we show that αr
n,q

is a convergent to θq. Thus we define, for n ≥ 0, a sequence of polynomials
in Fp[T ], Ω1,n, by αr

n,q = [0,Ω1,n]. We have Ω1,0 = ∅ and Ω1,1 = T r. We
give here a description of Ω1,n which is only partially proved.

Conjecture 12.2. There exist r− 2 sequences of finite sequences of poly-
nomials in Fp[T ], denoted (Ωi,n)n≥1 for 2 ≤ i ≤ r−1, such that, for n ≥ 1,
we have

Ω1,n+1 = Ω1,n, 2T
r,Ω2,n, 2T

r, ....,Ω
(q)
1,n−1, ....., 2T

r,Ω′
2,n, 2T

r,Ω′
1,n.

In this formula, if Ω = ω1, ω2, ...., ωk, we denote Ω′ = ωk, ωk−1, ....., ω1,

and Ω
(q)
1,n−1 is obtained by raising every element of Ω1,n−1 to the qth power.

Observe that Ω1,n+1 is split in q blocks with 2T r between two
blocks. In the general case, it is not a full conjecture since we are not
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able to describe the intermediary blocks Ωi,n for 2 ≤ i ≤ r − 1. For
p = q = 3, we have r − 2 = 0 and there are no intermediary blocks, thus
the previous formula contains only 3 blocks and in this case it is possible
to get a proof of the conjecture.

Now we come back to the rational approximation to θq. Since θq
is the unique root in Fp((T

−1)) of the equation x = (1/T r)(1 − x2)r, we
see that θq ∈ Fp((T

−r)). Thus we can define θ∗q by θ∗q (T
r) = θq(T ). So

θ∗3 is the element introduced by Mills and Robbins. We recall that the
approximation exponent of αq is q + 1. In the remark following Theorem
7.5, we have seen that ν(αk

q ) = (q + 1)/k, if k is prime to p and small
enough. Observe that for k = (q+1)/2 this formula would give ν(θq) = 2.
Besides it is clear that θq and θ∗q have the same rational approximation
properties. In fact we proved the following theorem [L1].

Theorem 12.3. Let θ∗3 be the unique root in F3((T
−1)) of the equation

x4 + x2 − Tx+ 1 = 0.

We have ν(θ∗3) = 2 and B(θ∗3 , 2) = 0. More precisely, there exist two
explicit real constants λ1 and λ2 such that there is a sequence of rationals
Pn/Qn with |Qn| tending to infinity for which we have

|θ∗3 − Pn/Qn| ≤ |Qn|−(2+λ1/
√
degQn )

and for all rationals P/Q with |Q| sufficiently large we have

|θ∗3 − P/Q| ≥ |Q|−(2+λ2/
√
degQ )

We can choose λ1 = 2/
√
3 and λ2 > 2/

√
3.

Observe, with our definitions, that θ∗3 is normally approximable
and therefore is not an element of class I. The proof of Theorem 12.3 is
obtained by means of the continued fraction for θ∗3 . Thus, because of the
partial description for the continued fraction for θ∗q exposed in Conjecture
12.2, we make a final conjecture

Conjecture 12.4. Let p 6= 2 be a prime number and q a positive power
of p. Let θ∗q be the unique solution in Fp((T

−1)) of the equation

x = (1/T )(1− x2)(q+1)/2.

Then the same theorem as Theorem 12.3 holds for θ∗q , but with 2/
√
3

replaced by
√

2(q − 1)/q.
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