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Texture Inpainting Using Efficient Gaussian Conditional Simulation∗

Bruno Galerne† and Arthur Leclaire‡

Abstract. Inpainting consists in computing a plausible completion of missing parts of an image given the avail-
able content. In the restricted framework of texture images, the image can be seen as a realization
of a random field model, which gives a stochastic formulation of image inpainting: on the masked
exemplar one estimates a random texture model which can then be conditionally sampled in order
to fill the hole. In this paper is proposed an instance of such stochastic inpainting methods, dealing
in particular with the case of Gaussian textures. First, a simple procedure is proposed for estimating
a Gaussian texture model based on a masked exemplar, which, although quite naive, gives sufficient
results for our inpainting purpose. Next, the conditional sampling step is solved with the traditional
algorithm for Gaussian conditional simulation. The main difficulty of this step is to solve a very
large linear system, which, in the case of stationary Gaussian textures, can be done efficiently with
a conjugate gradient descent (using a Fourier representation of the covariance operator). Several
experiments show that the corresponding inpainting algorithm is able to inpaint large holes (of any
shape) in a texture, with a reasonable computational time. Moreover, several comparisons illus-
trate that the proposed approach performs better on texture images than state-of-the-art inpainting
methods.
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1. Introduction. Inpainting consists in filling missing or corrupted regions in images by
inferring from the context. In other words, given an image whose pixel values are missing
in a masked domain, the problem is to propose a possible completion of the mask that will
appear as natural as possible given the available part of the image. Inspired by art restorers,
this problem was called “inpainting” by Bertalmio et al. [8], but was already addressed under
the name “disocclusion” in [68, 67]. Both these works suggest to fill the hole by extending
the geometric structures, either by level-lines completion [68] or by iterating a finite-difference
scheme [8]. These early methods already give good results on structured images, provided
that the mask is sufficiently thin. However, they fail to inpaint textural content, which is the
main purpose of this paper.

General image inpainting is a very ill-posed problem, and instead of retrieving the occluded
content, one can only make a guess at what the image should have been. However, in the
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restricted framework of textures, we have at our disposal several stochastic models which
can be used to model and synthesize a large class of textures. In this setting, inpainting
consists in first estimating a stochastic model from the unmasked region, and then performing
conditional simulation of the estimated random model given the values around the mask. This
point of view thus provides a better-posed formulation of textural inpainting, which has been
seldom considered in the past. In particular, such approximate conditional sampling results
are given in [31, 84, 54] under the name “constrained texture synthesis.” Also, the authors
of [24] give an instructive discussion which opposes deterministic and stochastic strategies for
image inpainting (with the intention of explaining the differences between [31] and [84]).

It seems reasonable to assert that the choice between deterministic methods or stochastic
methods must be driven by the level of randomness of the data. Here, we will mainly focus
on inpainting very irregular texture images, called microtextures. Following the definition
of [36], microtextures are images whose visual perception is not affected by randomization of
the Fourier phase. These textures are not well described by a generic variational principle. In
contrast, they can be precisely and efficiently synthesized with simple stochastic models that
rely on second-order statistics, for example, the asymptotic discrete spot noise (ADSN) intro-
duced in [83] and thoroughly studied in [36, 86, 59]. In this paper, we propose a microtexture
inpainting algorithm that relies on a precise conditional sampling. Conditional sampling of the
ADSN model can be easily formulated and gives inpainting results which are visually better
than the ones obtained with recent methods, while keeping strong mathematical guarantees.

In the remaining paragraphs of this introduction, we discuss existing inpainting tech-
niques, and in particular the links between image inpainting and texture synthesis. Giving
an exhaustive overview of the literature on this famous problem is not the main purpose of
this paper. We refer the interested reader to [44, 15, 78] for much more detailed reviews of
existing methods.

1.1. Inpainting algorithms for geometric content. As mentioned above, a very natural
way to inpaint images is to propagate the geometric content through the masked region. To
that purpose, the early geometric inpainting methods described by Masnou and Morel [68,
67] consist in connecting the level lines across the hole in order to satisfy the Gestaltist’s
principle of good continuation. More precisely, the inpainted image is the solution of a generic
minimization problem which includes the total variation (TV) of the image and the angle
total variation of the level lines (Euler’s elastica).

Closely related to these generic variational inpainting methods lie models based on partial
differential equations (PDEs). Bertalmio et al. [8] suggest iterating a finite-difference scheme,
which was later interpreted as a numerical scheme for a PDE related to Navier–Stokes equa-
tion [7]. Of course, there is a strong connection between PDE-based and variational methods
because the minimum of a generic functional satisfies the associated Euler–Lagrange equation
(but a PDE may not be associated with a variational problem [78]). Among many papers
lying between PDEs and generic variational problems, we will only quote a few important
contributions.

Ballester et al. [5] propose performing joint interpolation of image values and gradient
orientations by solving a minimization problem which leads to coupled second-order PDEs
on image values and gradient orientations. Chan and Shen [18] give a detailed study of the
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inpainting method based on TV minimization (which, compared to [68], drops the elastica
term in the minimization problem) and propose a more general scheme called curvature-driven
diffusion (which allows one to better respect the good continuation principle). The link with
the Mumford–Shah image model was already discussed in [18] and more importantly exploited
by Esedoglu and Shen [34], who completed the Mumford–Shah model with an Euler’s elastica
term, leading to fourth-order nonlinear parabolic PDEs and allowing better connectivity in the
inpainting result. Later, other fourth-order PDEs were exploited to inpaint nontexture images
with better connectivity: Bertozzi, Esedoglu, and Gillette [10] propose solving a modified
Cahn–Hilliard equation for fast inpainting of binary or highly contrasted images, an approach
which was generalized to real-valued images by Burger, He, and Schönlieb [14]. Finally,
Bornemann and März [12] propose an efficient noniterative inpainting algorithm which is
based on a transport equation and inspired by the fast marching algorithm of [81].

A common drawback of these deterministic methods is that they are not able to inpaint
textural content precisely because solving a PDE or a variational problem often imposes a
certain degree of smoothness for the solution.

1.2. Exemplar-based inpainting, sampling, or minimizing. . . ? An efficient way to model
irregular images is to consider stochastic image models, and in particular many texture syn-
thesis algorithms can be formulated as sampling a probability distribution. Thus, an initial
strategy to inpaint textural parts of an image is to use an exemplar-based texture synthesis
algorithm and to blend the synthesized content in the masked image. Such a method was
proposed by Igehy and Pereira [49], who relied on the Heeger–Bergen synthesis algorithm [47]
to produce textural content.

On the other hand, if a stochastic image model is fixed, inpainting can be understood as
sampling a conditional distribution, as illustrated in Figure 1. This point of view was originally
adopted by Efros and Leung [31]. These authors suggest the approximate conditional sampling
of a Markov random field (MRF) model by progressive completion of the unknown region using
patch nearest neighbor search. Even if they show some texture inpainting results, their main
concern is structured texture synthesis. For inpainting, this patch-based approach was made
more precise in [11, 24]. In particular, Demanet, Song, and Chan discuss the two possible
formulations of the inpainting problem as either minimizing the energy E or sampling the
probability distribution Ce−E . They give several arguments supporting the variational point
of view as a lighter and sufficient method for efficiently computing an inpainting solution.
However, let us mention that the patch-based energy given in [24] is highly nonconvex, and
that the adopted optimization strategy does not offer many theoretical guarantees. Therefore,
the empirical conclusions based on the results of this algorithm must be interpreted carefully.
Our paper will shed some more light on this interesting (and still open) question in the case
of Gaussian textures.

Many other inpainting methods were inspired by these exemplar-based synthesis algo-
rithms [24, 30, 23, 71, 53, 85, 4, 13, 87, 3, 2, 57, 63, 46, 69, 15]. These papers contain
several clever algorithmic extensions of the original algorithm of [24]. In particular, Criminisi,
Pérez, and Toyama [23] highlighted the importance of the pixel-filling order and suggested
that it should be driven by (progressively updated) patch priorities measuring the amount
of available data and the quantity of structural information in the currently synthesized con-
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Figure 1. Textural inpainting via conditional simulation. Inpainting with a stochastic texture model
amounts to sampling the values on the mask M knowing the values on conditioning points C located at the
border of the mask.

tent. Many authors [30, 53, 85, 3, 69] demonstrated that the inpainting problem could be
more efficiently solved (both in visual terms or numerical terms) by relying on a multiscale
strategy. From a computational point of view, the speed of these algorithms highly depends
on the method used for getting patch nearest neighbors, and many state-of-the-art methods
rely on the PatchMatch method, which efficiently computes an approximate nearest neighbor
field [6, 2, 63, 69]. Let us also mention that the choice of the metric used for patch compari-
son may influence the inpainting results; to that purpose, the authors of [63, 69] suggested to
improve the comparison by including textural features in the patch distance (e.g., local sum
of absolute derivatives).

Here we would like to put the emphasis on a few papers which provide a thorough mathe-
matical analysis of the variational formulation proposed by [24]. Aujol, Ladjal, and Masnou [4]
show the existence of a solution to a continuous analogue of Demanet, Song, and Chan’s en-
ergy among the set of piecewise roto-translations, propose several extensions of this problem
(allowing for either regularization or cartoon+texture decomposition), and also provide a 2D
example which illustrates the model ability to globally reconstruct geometric features. Arias
et al. [3] propose and compare several variational models obtained by varying the distance
used in patch comparison (using the L1- or L2-norm on the image values or gradients), and
they also propose replacing the patch correspondence with generalized patch linear combina-
tions using an adaptive weighting function. In [2], the same authors provide an additional
mathematical analysis, with a proof of the solution existence, of the convergence of the pro-
posed minimization algorithm. In these works, the inpainting problem is mainly formulated
with a correspondence map (or a more general weighting function in [3]). In contrast, Liu
and Caselles have shown in [63] that using an offset map instead allows one to formulate
inpainting as a discrete optimization problem which is efficiently solved with graph cuts. The
statistics of patch offsets have been studied in [46]; He and Sun compute and exploit recurrent
patch offsets in order to simplify the graphcut inpainting approach, leading to an even faster
algorithm.

Finally, the above-mentioned structural and exemplar-based methods can be combined
to obtain hybrid structure-texture inpainting methods [9, 50, 80, 17]. Also, several authors
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proposed inpainting methods based on sparse decompositions of images or patches [32, 64, 16,
72]. In these methods, the inpainting is also formulated as a minimization problem (which
can be coupled with the dictionary learning problem as in [64]). Although these methods are
efficient in recovering missing data for thin or randomly distributed masks, they are not able
to fill large missing regions.

1.3. Gaussian conditional simulation. In this paper, we will address textural inpainting
with precise conditional sampling of a stochastic texture model.

In the computer graphics community, many authors have demonstrated the expressive
power of microtexture models based on Fourier phase randomization [60, 61] or on convolution
of spot functions with noisy patterns [83]. Later, these models were studied in more detail
by Galerne, Gousseau, and Morel [36], who propose in particular a simple analysis-synthesis
pipeline for example-based microtexture synthesis with the asymptotic discrete spot noise
(ADSN) model (which is the Gaussian limit of Van Wijk’s spot noise model [83]). Such a
Gaussian model is described by its first- and second-order moments and allows for fruitful
mathematical developments, with applications in texture analysis [25], texture mixing [86],
and procedural texture synthesis [38, 40].

In this paper (following the preliminary work of [39]), we propose taking advantage of
another benefit of the Gaussian model, which is the availability of a precise conditional sam-
pling algorithm. Indeed, for Gaussian vectors, independence is equivalent to uncorrelatedness,
which can be rephrased as orthogonality in the Hilbert space of square-integrable random vari-
ables. Therefore, conditional simulation of a zero-mean Gaussian vector F only requires one
to compute an orthogonal projection F ∗ on a subspace of random variables (which corre-
sponds to the conditional expectation given the known values) and to sample the orthogonal
component F − F ∗. Following the presentation of [55], we will rely on the terminology which
is traditionally used in “simple kriging estimation”: the conditional expectation F ∗ will be
called the “kriging component,” and F − F ∗ will be called the “innovation component.” The
role of these two components for conditional simulation is illustrated in Figure 2. Let us men-
tion that in the Gaussian case, solving the maximum a posteriori for the conditional model
amounts to computing the conditional expectation (i.e., the kriging component), which is very
different from conditional sampling, as one can see from Figure 2.

To the best of our knowledge, microtexture inpainting has not been addressed in those
terms in the past. A Gaussian conditional simulation algorithm was used by Hoffman and
Ribak [48] for cosmological constrained simulations with parametric Gaussian models. More
recently, local Gaussian conditional models were used for structured texture synthesis in [75,
74]. In the monoscale version [75], Raad, Desolneux, and Morel suggest progressively sampling
the texture with conditional sampling of local Gaussian models estimated from the exemplar
(with nearest neighbor search as in [31, 84]); they also propose a multiscale adaptation of this
algorithm [74]. As for [31], this algorithm could also be adapted for inpainting, but, because of
the progressively estimated local models, the global model is not Gaussian. Ordinary kriging
was used by Chandra, Petrou, and Piroddi [19] to interpolate sparsely sampled textural data
(but they do not compute a conditional sample).

1.4. Connections with geostatistics. Kriging-based Gaussian conditional simulation is
a traditional method used for data interpolation in geostatistics [21, 55, 22, 43, 26]. Several
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Figure 2. Summary of our microtexture inpainting method. The main idea of our method is to fill the
masked region with a conditional sample of a Gaussian model. So this method is less about retrieving the initial
image than computing another plausible sample of the texture model in the masked region. The Gaussian model
is estimated from the unmasked values and conditionally sampled knowing the values on a set C composed of
a 3 pixel wide border of the mask. The conditional sample is obtained by adding a kriging component (derived
from the conditioning values) and an innovation component (derived from an independent realization of the
Gaussian model). The former extends the long-range correlations, and the latter adds texture details, in a way
that globally preserves the global covariance of the model. Though limited to microtextures, this algorithm is
able to fill both small and large holes, whatever the regularity of the boundary.

parts of the method we propose are already well known to geostatisticians, sometimes under
other names. In particular, the ADSN model that we use is an instance of moving-average
random fields [51, 70], whose spectral-based unconditional sampling algorithm is explained
in [45, 20, 58]. The authors of [58] also suggest an optimization procedure to modify the
unconditional sample so that it complies with the available data. In contrast, we propose
direct sampling of a global conditional Gaussian model. Let us emphasize that, contrary to
many examples shown in the geostatistics literature, our imaging application leads to very
large conditioning sets (with possibly several thousand conditioning values). Thus, in our
case, precise conditional sampling is much more difficult than unconditional sampling.

Also, in the geostatistics literature, several authors have proposed generalized kriging
algorithms for data prediction with various stochastic models [76, 1, 77, 33, 21, 62]. In
particular, in [76], Rue proposes a fast algorithm for conditional simulation in the particular
case of Gaussian Markov random fields. Another technique for fast sampling in geostatistics
is given by sequential simulation [42], which amounts to progressive filling the pixels in a
random order using successive conditional sampling. In our context, this approach would
require solving larger and larger kriging systems and would not be as efficient as our global
approach. About progressive filling of the pixels, let us also mention a clear connection
between the inpainting adaptation of [31] and the direct sampling method of [66]. We refer
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the interested reader to [65] for a much deeper discussion on the links between texture synthesis
and multiple-point geostatistics.

1.5. Plan of the paper. In section 2, we explain the traditional algorithm for Gaussian
conditional simulation (using terminology that is derived from kriging estimation). In sec-
tion 3, we apply this conditional sampling algorithm to microtexture inpainting. In particular,
we discuss the estimation of a Gaussian model on a masked exemplar, and we also provide
a Fourier-based algorithm which allows us to compute the kriging estimation even when the
number of conditioning points is very large. Finally, in section 4, we provide several texture
inpainting experiments to illustrate the validity of our approach; in particular we show that
our method can compete with state-of-the-art inpainting methods on textural content.

2. Gaussian conditional simulation. In this section, we recall the classical algorithm
for conditional sampling of Gaussian random vectors. Following [55], we rely on a kriging
framework that we introduce next.

Notation. Let Ω be a finite set. Let (F (x))x∈Ω be a real-valued Gaussian vector, that is,
a real-valued random vector for which any linear combination of the components is Gaussian.
We assume that F has zero mean. The covariance of F is written Γ(x, y) = Cov(F (x), F (y)) =
E(F (x)F (y)), x, y ∈ Ω. For a set A ⊂ Ω and a function f : Ω → R we denote by |A| the
cardinality of the finite set A, and by f|A the restriction to A of the function f .

We also introduce a subset C ⊂ Ω of conditioning points. Given prescribed values
ϕ : C → R on C, conditional Gaussian simulation consists in sampling the conditional dis-
tribution of F given that F|C = ϕ. As we shall see later, this conditional sampling makes
sense as soon as ϕ belongs to the support of the distribution of F|C , which is the range of the
restricted covariance matrix Γ|C×C and denoted by Range(Γ|C×C).

2.1. Simple kriging estimation. We define the simple kriging estimator

(1) F ∗(x) = E( F (x) | F (c) , c ∈ C ).

A standard result of probability theory [28] ensures that in the Gaussian case F ∗(x) is the
orthogonal projection of F (x) on the subspace of linear combinations of (F (c))c∈C (for the
L2-distance between square-integrable random variables). Hence, there exist deterministic
coefficients (λc(x))c∈C , called kriging coefficients, such that

(2) F ∗(x) =
∑
c∈C

λc(x)F (c).

Notice that by definition, F ∗(x) = F (x) for every x ∈ C.
Generally speaking, for a given x, there may be several possible sets of kriging coefficients

i.e., several vectors (λc(x))c∈C which satisfy (2) (for example, if there are two distinct points
c1, c2 ∈ C such that F (c1) = F (c2)). But we will later give a canonical way to compute a valid
set of kriging coefficients.

2.2. Gaussian conditional sampling using kriging estimation. Let us fix a set of co-
efficients (λc(x))x∈Ω,c∈C satisfying (2). For any ϕ : C → R, we denote by ϕ∗ the kriging
estimation based on the values ϕ, defined for x ∈ Ω by ϕ∗(x) =

∑
c∈C λc(x)ϕ(c). With an

abuse of notation, if ϕ : Ω→ R, we will denote ϕ∗ = (ϕ|C)∗.
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Theorem 1 (see, for example, [28, 55]). F ∗ and F − F ∗ are independent. Consequently, if
G is independent of F with the same distribution, then H = F ∗ + (G − G∗) has the same
distribution as F and satisfies H|C = F|C.

If ϕ|C ∈ Range(Γ|C×C), a conditional sample of F given F|C = ϕ|C can thus be obtained
with ϕ∗+F −F ∗. In this decomposition, ϕ∗ will be called the kriging component and F −F ∗
will be called the innovation component.

2.3. Expression of the kriging coefficients. In order to compute the kriging estimator
at x ∈ Ω, one needs to compute a valid set of kriging coefficients (λc(x))c∈C . Since F ∗ and
F − F ∗ are orthogonal, we get that the row vector λ(x) = (λc(x))c∈C is a solution of the
following |C| × |C| linear system:

(3) ∀c ∈ C,
∑
d∈C

λd(x)Γ(d, c) = Γ(x, c), i.e., λ(x)Γ|C×C = Γ|{x}×C .

Conversely, any solution of (3) gives a valid set of kriging coefficients satisfying (2).
Aggregating the kriging coefficients in an |Ω| × |C| matrix Λ = (λc(x))x∈Ω,c∈C , the system

characterizing the kriging coefficients can also be written ΛΓ|C×C = Γ|Ω×C . If the matrix Γ|C×C
is invertible, the global system admits a unique solution Λ = Γ|Ω×CΓ

−1
|C×C . In the case where

Γ|C×C is not invertible, it is always possible to compute valid kriging coefficients with the
pseudoinverse Γ†|C×C . Indeed, since the system (3) has a solution,1 then Γ|{x}×CΓ

†
|C×C is also a

solution. Thus we can always consider the set of kriging coefficients given by Λ = Γ|Ω×CΓ
†
|C×C .

Once a set Λ of valid kriging coefficients has been computed, a conditional sample of F
given F|C = ϕ can be obtained as Λϕ + F − ΛF|C , where ϕ and F are written as column
vectors.

2.4. Matrix expression of the conditional simulation. From this expression of the con-
ditional sample, we will derive the usual expression of the Gaussian conditional distribution
in matrix notation (as, e.g., in [77, 74]).

Let p = |C|, q = |Ω \ C| (where Ω \ C denotes the complement of C in Ω), and n = |Ω|. Let
us introduce the matrices R =

(
Ip 0

)
∈ Rp×n, S =

(
0 Iq

)
∈ Rq×n. Using the first p indices

for the elements of C, we write block decompositions

F =
(
F|C
F|Ω\C

)
=
(
RF
SF

)
, Γ =

(
Γ|C×C Γ|C×(Ω\C)

Γ|(Ω\C)×C Γ|(Ω\C)×(Ω\C)

)
=
(
RΓRT RΓST

SΓRT SΓST

)
.

With such notation, if ϕ ∈ Range(Γ|C×C), a conditional sample of F given F|C = ϕ is given by
Λϕ+ F − ΛRF . From this expression we get the conditional distribution

(4) F | F|C = ϕ ∼ N
(

Λϕ , (In − ΛR)Γ(In − ΛR)T
)
.

1The existence of such a solution directly comes from the existence of the orthogonal projection of F (x) on
the subspace spanned by the F (c), c ∈ C.
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Using the kriging system (which rewrites ΛRΓRT = ΓRT ), we get the usual formulae

E( SF | F|C = ϕ ) = SΛϕ = S

(
RΓRT

SΓRT

)
(RΓRT )†ϕ = SΓRT (RΓRT )†ϕ,(5)

Cov( SF | F|C = ϕ ) = SΓST − SΓRT (RΓRT )†RΓST .(6)

When RΓRT = Γ|C×C is nonsingular, we get back the expressions of [77, 74].

3. Microtexture inpainting algorithm. This section contains our main contribution: how
to use Gaussian conditional sampling for microtexture inpainting.

We are given an input texture image u : Ω → R defined on a finite rectangular domain
Ω ⊂ Z2. The values of u are known except on the mask M ⊂ Ω, and we want to generate
plausible values on the mask given the surrounding content. For that, we sample a stationary
Gaussian texture model (U(x))x∈Ω given the values of u outside M . More precisely, we
consider a Gaussian model associated with an asymptotic discrete spot noise (ADSN), which
we sample knowing the values on a conditioning set C = ∂wM defined as the outer border of
M with a width of w pixels (we usually take w = 3, but we discuss this choice in section 4.4).

After recalling the basics about the ADSN model, we discuss the estimation of such a
model on a masked exemplar texture. Then we give an efficient and scalable way to compute
the kriging estimator for the ADSN model by relying on conjugate gradient descent (numerical
issues are discussed in the IPOL companion paper [37]). Visual results are given in the next
section.

3.1. ADSN models. As shown in [83, 36], a convenient model for microtexture is given by
the asymptotic discrete spot noise (ADSN). Given a function h : Z2 → R with finite support,
the ADSN corresponding to h is the convolution of h with a normalized Gaussian white noise
W on Z2, defined as

(7) ∀x ∈ Z2, h ∗W (x) =
∑
y∈Z2

h(y)W (x− y).

This Gaussian random field is stationary and has zero mean, and its covariance function is
given by E(h∗W (x)h∗W (y)) = (h∗ h̃)(x−y), where h̃(z) = h(−z). The restriction on a finite
Ω ⊂ Z2 of h∗W is a zero-mean Gaussian model (F (x))x∈Ω. Thanks to the simple convolutive
expression of the ADSN, it can be efficiently sampled using the fast Fourier transform (FFT).
Depending on the boundary conditions, we can consider a periodic ADSN or a nonperiodic
ADSN. Apart from a slight gain of complexity, there is no general reason to favor the periodic
model. The choice is often driven by the applicative context; for example, nonperiodic models
are better suited for on-demand texture synthesis [38, 40]. Here we choose the nonperiodic
model, and we refer the reader to [59, Chap. 2] for a detailed exposure regarding both ADSN
models.

Extension to color images. ADSN models extend to color images by convolving each color
channel with the same white noise in (7). This gives an Rd-valued Gaussian random field F
on Ω (where d is the number of channels, i.e., 3 for color images). Regarding the conditional
simulation, a simple way to understand this extension is to consider the Rd-valued random
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field F as a real-valued random field on Ω × {1, . . . , d}. The covariance matrix is then given
by

(8) ∀(x, j), (y, k) ∈ Ω× {1, . . . , d}, Γ((x, j), (y, k)) = E(Fj(x)Fk(y)).

Even if this changes the covariance matrix, we keep the same notation for restrictions of the
covariance matrix: for example, we still use the notation Γ|C×C for the covariance of F on C,
but strictly speaking we should write Γ|(C×{1,...,d})×(C×{1,...,d}).

3.2. Estimation of the Gaussian model. If the image u : Ω→ Rd were entirely available,
the estimation procedure would be the same as for texture synthesis [36, 38], which is briefly
recalled here. We compute the mean value ū = 1

|Ω|
∑

x∈Ω u(x) and the normalized spot
tu = 1√

|Ω|
(u − ū) (extended by zero-padding). The microtexture u is then synthesized by

sampling ū+ tu ∗W , with W a normalized Gaussian white noise. In the following, the ADSN
model estimated from the unmasked exemplar is referred to as the oracle model.

In the inpainting context, only the values on Ω \ M are available. Thus, we choose a
subdomain ω ⊂ Ω \M and derive an ADSN model using the restriction v = u|ω. A simple
way to do that is to consider the Gaussian model U = v̄ + tv ∗W , where

(9) v̄ =
1
|ω|
∑
x∈ω

v(x), tv(x) =


1√
|ω|

(v(x)− v̄) if x ∈ ω,

0 otherwise.

This choice amounts to estimating the texture covariance by cv = tv ∗ t̃ T
v , which is written as

(10) cv(h) =
1
|ω|

∑
x∈ω∩(ω−h)

(u(x+ h)− v̄)(u(x)− v̄)T ∈ Rd×d.

This subdomain ω is not constrained to be a rectangle; for example, a canonical choice
would be to consider ω = Ω \M . As will be observed in section 4.2, this choice already gives
good results in our inpainting framework. However, one must be aware that the geometry of
ω may impact the quality of the estimation. We illustrate this effect in Figure 3. In general,
we observed that the performance of the naive estimator is surprisingly good, provided that
the mask is not too irregular.

We would like to point out here that designing more precise estimators of the covariance is
an interesting question. In particular, at first sight one might be puzzled by the normalization
of (10). A better normalized estimator c′v(h) would be obtained by replacing 1

|ω| by 1
|ω∩(ω−h)|

in this formula. But a drawback of this new estimator is that it does not define a semidefinite
positive estimator, and thus is not associated with a Gaussian model that could be sampled.
A way to cope with this effect is to enforce semidefinite positiveness, which in the stationary
case is equivalent to projecting onto the nonnegative orthant in the Fourier domain. We have
led some experiments in this direction, and they have shown that the resulting Gaussian model
is not better than one obtained with the naive estimator (both in terms of resynthesis and in
terms of optimal transport distance between Gaussian models [38]). Indeed, the projection
on the Fourier orthant has a dramatic impact on the model (in particular, it may significantly
impact the estimation of the marginal variance).
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Figure 3. Estimation of an ADSN model on a masked exemplar. We illustrate with several types of masks
the estimation of the Gaussian model with the naive estimator (10) using ω = Ω \M . We display in the first
row the masked exemplar, in the second row a sample of the estimated ADSN model, and in the third row a
sample of the oracle ADSN model estimated from the unmasked exemplar (generated with the same random
seed). As one can see, in terms of synthesis, the naive estimator produces nearly perfect results as soon as the
mask complement contains a sufficiently large connected region to capture the textural aspect. The worst case
is encountered for very irregular masks like the one shown in the third column ( 75% of masked pixels).

One explanation of the success of the naive estimator for regular masks is that in this
case we have |ω∩(ω−h)|

|ω| ≈ 1 when h ≈ 0. Therefore the naive estimator is approximately well
normalized around 0 and thus correctly estimates the covariance in a neighborhood of 0, which
is the most important part for microtexture images.

3.3. Kriging estimation with conjugate gradient descent. In this section, we propose
an efficient way to compute a conditional sample of the ADSN model. The most difficult part
consists in solving a large linear system involving the conditional values. This step is dealt
with by using a conjugate gradient descent algorithm, which proves to be efficient even for
very large images.

In order to draw a conditional sample on the mask M , we introduce a set of conditioning
points C ⊂ Ω \ M . Ideally, we should choose C = Ω \ M , but we will see below that for
computational and theoretical reasons, taking C = ∂wM (border of M with width w) may be
useful. Of course, in the case where C ( Ω \M , we draw a conditional sample on Ω, but we
exploit only the restriction on M to get the inpainting result (in other words, on Ω \M we
always impose the original image).

As explained in the last section, after subtracting the estimated mean v̄, we can use the
ADSN model (F (x))x∈Ω corresponding to the spot tv (which is a zero mean Gaussian vector).
Using the framework and notation of section 2, we draw a conditional sample (F (x))x∈Ω given
F|C = u|C − v̄ by computing

(11) (u− v̄)∗ + F − F ∗ = Λ
(
(u− v̄)|C

)
+ F − Λ(F|C).

Let us explain how to efficiently apply the matrix Λ = Γ|Ω×CΓ
†
|C×C to a given ϕ ∈ RC .
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Let us begin with the multiplication by ΓΩ×C , which is easier. Assume that ψ = Γ†|C×Cϕ
has been computed. Using the notation of section 2.4, Γ|Ω×Cψ = ΓΨ, where Ψ = RTψ ∈ RΩ is
the zero-padding extension of ψ. Now, since Γ is the covariance function of an ADSN model,
it can be simply computed by convolution. More precisely, ΓΨ is the restriction on Ω of the
convolution of Ψ by tv ∗ t̃v.

Computing A†ϕ where A = Γ|C×C is more costly. Assume for a moment that A is invertible.
Then computing A−1ϕ amounts to solving a linear system of size p×p (where p = d|C|). Since
A is symmetric positive-definite, this can be reduced to solving two triangular systems thanks
to the Cholesky factorization of A. Nevertheless, finding the Cholesky factorization of A
requires O(p3) flops in general. Therefore, this direct method will only work for small values
of p. This was a major limitation of our preliminary work presented in [39].

To cope with this problem, we propose here to solve the linear system with a conjugate
gradient descent algorithm, taking advantage of the fact that applying the matrix A can
be done efficiently. Indeed, computing Aψ amounts to extending ψ to Ω by zero-padding,
convolving by tv ∗ t̃v, and restricting the result on C. In addition, using a conjugate gradient
descent on the normal equations allows one to cope with possibly singular matrices A.

Following [52], we compute A†ϕ by performing a conjugate gradient descent on

(12) f : ψ 7−→ 1
2
‖Aψ − ϕ‖2

with initialization ψ0 = 0. This optimization procedure actually solves the normal equations
ATAψ = ATϕ, which are equivalent to Aψ = ϕ when ϕ ∈ Range(A) (recall that the range of
A and the kernel of AT are orthogonal subspaces). The algorithm is summarized below.

Algorithm CGD: Conjugate gradient descent to compute A†ϕ
• Initialize k ← 0, ψ0 ← 0, r0 ← ATϕ−ATAψ0, d0 ← r0.
• While ‖rk‖ > ε, do

– αk = ‖rk‖2
dT

k AT Adk

– ψk+1 ← ψk + αkdk

– rk+1 ← rk − αkA
TAdk

– dk+1 ← rk+1 + ‖rk+1‖2
‖rk‖2

dk

– k ← k + 1
• Return ψk.

Notice that in our case where A is symmetric, Algorithm CGD is nothing but the classical
algorithm for solving A2ψ = Aϕ. In this case, the range and kernel of A are orthogonal
subspaces so that the convergence of the algorithm follows from the nonsingular case (applied
to the restriction of A2 to the range of A).

Since the multiplication by A can be computed efficiently with the FFT, the complexity of
Algorithm CGD with N iterations is O(N |Ω| log |Ω|). The main benefit of using this algorithm
is that it allows us to consider very large conditioning sets C. Of course, increasing C may
increase the number of iterations required to obtain the solution at a given precision ε. But if
the condition number of the system is low, we will get a good approximation of the solution
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in a reasonable number of iterations. Let us mention that Algorithm CGD is theoretically
expected to get the exact solution in a finite number of iterations, but this remark is not
useful for our practical case because of the numerical errors caused by the FFT.

Stopping criterion. The stopping criterion that we use in Algorithm CGD is ‖rk‖ ≤ ε,
where the residual at iteration k is given by

(13) rk = ATϕ−ATAψk,

and where ‖rk‖ is the unnormalized `2-norm of rk ∈ R|C|. In practice, to keep a simple choice,
we take ε := 10−3, and we also constrain the number of iterations to be less than kmax = 1000.
The numerical behavior of this CGD algorithm is studied in the IPOL companion paper.

3.4. Comments on the kriging system.

The matrix A is not necessarily invertible. Indeed, let us consider the case of a color
periodic ADSN model on Ω estimated by (9). Then the DFT of the covariance operator Γ is
given by

(14) t̂v(ξ)t̂v(ξ)∗ =

{
1
|ω| v̂(ξ)v̂(ξ)∗ if ξ 6= 0,

0 if ξ = 0.

As noted in [86], this matrix has rank ≤ 1, which constrains the rank of the matrix Γ (of
size d|Ω| × d|Ω|) to be bounded by |Ω| − 1. Since A is a submatrix of Ω, Rank(A) ≤ |Ω| − 1.
In particular, if the conditioning set is sufficiently big so that d |C| ≥ |Ω|, then A cannot be
invertible.

The vector ϕ = u|C − ū may not be in the range of A. Indeed, if A is not invert-
ible, the conditioning values could be out of the range of A. However, we would not apply
Algorithm CGD to this problem, because taking Aϕ implicitly cancels the component on the
kernel of A.

Notice also that if the estimated ADSN model is well adapted to the masked texture, then
it is likely that ϕ is close to the range of A. In practice, the distance of ϕ to the range of A
is bounded by the norm of the residual obtained with the direct conjugate gradient method
‖ϕ−Aψk‖ ≥ dist

(
ϕ,Range(A)

)
.

3.5. Complete algorithm. To end this section, we summarize our microtexture inpainting
algorithm. In Algorithm CGD the matrix A = Γ|C×C is not formed explicitly, and we only
need to apply it efficiently with the FFT-based algorithm. Also, if one is not interested in the
kriging and innovation components but only in the inpainting result, then only one instance of
gradient descent is needed since the output depends only on (u−v̄−F )∗ = Γ†|C×C(u|C−v̄−F|C).

The overall complexity of this algorithm is O(kmax|Ω| log |Ω|), where kmax is the number of
iterations used in the gradient descent algorithm. The overall number of FFTs required by the
whole inpainting process (whose detailed computation can be found in the IPOL companion
paper) is (4kmax + 6)d FFTs. Using our C implementation (involving parallel computing, in
particular for the FFT) run with a modern computer (Intel i7 processor @2.60GHz with 4
cores), the whole inpainting process takes about 20 seconds for a 256 × 256 image and 1000
iterations of CGD.
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Algorithm: Microtexture inpainting

Input: Mask M ⊂ Ω, texture u on Ω \M , conditioning points C = ∂3M .

- Choose a subdomain ω ⊂ Ω \M for the estimation (by default, ω = Ω \M)
- From the restriction v of u to ω, compute

v̄ =
1
|ω|
∑
x∈ω

v(x), tv =
1√
|ω|

(v − v̄)1ω

- Draw a Gaussian sample F = tv ∗W
- Compute ψ1 = Γ†|C×C(u|C − v̄), ψ2 = Γ†|C×CF|C
(Algorithm CGD with A = Γ|C×C , ε = 10−3 and kmax = 1000 iterations)
- Extend ψ1 and ψ2 by zero-padding to get Ψ1 and Ψ2

- Compute
(u− v̄)∗ = tv ∗ t̃Tv ∗Ψ1 (kriging component)

F ∗ = tv ∗ t̃Tv ∗Ψ2 (innovation component)

Output: Fill M with the values of v̄ + (u− v̄)∗ + F − F ∗.

4. Results and discussion.

4.1. Inpainting with an oracle model. First, we propose a validation experiment to con-
firm that Gaussian conditional simulation can be applied to constrained microtexture syn-
thesis. For that, we consider a nonmasked texture image u on which we estimate an oracle
ADSN model as explained in section 3.2. We compute one realization of this oracle ADSN
model (with a random seed s1), on which we put a mask M . Then we perform conditional
sampling of the values in the masked region (with a random seed s2 6= s1), based on a set of
conditioning points C, which is taken to be either C = Ω \M or C = ∂3M . This amounts to
applying our inpainting algorithm, except that we use an oracle model.

The results are reported in Figure 4 for a square mask and in Figure 5 for more irregular
masks (obtained as level sets of white or correlated noise). Notice that in all these experiments,
the result is visually perfect in the sense that the inpainted texture is visually similar to
a realization of the global ADSN model. Therefore, with our conjugate gradient descent
scheme, the error made in the resolution of the linear system has only a negligible visual
impact. Another important point raised by the results of Figure 4 is that conditioning on the
two different sets C = Ω \M and C = ∂3Ω gives very similar results. This illustrates that
this inpainting scheme truly respects the covariance structure (and in particular the long-
range correlations) even if the conditioning border is thin. Increasing further the conditioning
border only adds some redundancy in the conditional model (and worsens the kriging system
condition number). See section 4.4 for a more detailed analysis of this parameter.

Let us remark that the results obtained in Figure 5 with irregular masks look impressive
at first sight since a wide majority of pixels are masked; one should recall, however, that in
this experiment the oracle ADSN model is estimated on the unmasked exemplar, which makes
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ADSN Input C = Ω \M C = ∂3M

Figure 4. Inpainting Gaussian textures with the oracle Gaussian model: regular masks. The masked input
has been inpainted with Gaussian conditional simulation using an oracle Gaussian model (estimated from the
unmasked exemplar texture) based on conditioning values on C ⊂ Ω. From left to right, we show a sample
of the oracle model, the masked input, and the inpainted results obtained for C = Ω \M or C = ∂3M . The
inpainted results are visually perfect in the sense that they cannot be distinguished from a sample of the oracle
model. This is true for both C = Ω\M and C = ∂3M , which shows that conditioning on C = ∂3M is practically
sufficient.

the inpainting problem much simpler (compare with the results of section 4.2).
In the experiment of Figure 6, we show that Gaussian conditional simulation with an oracle

model can be used to extrapolate textural content defined on a thin domain. In this case, the
simulated conditional Gaussian vector is very high-dimensional, which illustrates the benefit
of having a scalable algorithm based on gradient descent (and not on explicit computation of
the covariance operators).

4.2. Inpainting with an estimated Gaussian model. In this section, we provide experi-
mental results which show that our algorithm is able to inpaint holes in microtextures, what-
ever the size of the hole, and with only minimal requirements on the hole regularity. In
contrast with the last section, the Gaussian model is now estimated from the masked exem-
plar. We will show that the naive estimation technique explained in section 3.2 and illustrated
in Figure 3 leads to satisfying inpainting results, except in the case where the mask is made
of randomly scattered pixels. In the experiments shown in this section, we took C = ∂3M .

In Figure 7, we show some results of our algorithm for several microtextures and macro-
textures, with various types of masks. As one can observe, the results with microtextures are
globally very satisfying, the most difficult case being the irregular mask of the third column,
for which the Gaussian model cannot be properly estimated, in accordance with one of the
conclusions drawn in [66]. Surprisingly, we also obtained quite convincing results on more
structured textures.

To end this section, we show that our algorithm can be used to inpaint textural parts of
more general images. For example, on Figure 8, we used it to remove some undesirable details
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ADSN Input 1 Output 1 Input 2 Output 2

Figure 5. Inpainting Gaussian textures with the oracle Gaussian model: irregular masks. The masked
input has been inpainted with Gaussian conditional simulation using an oracle Gaussian model (estimated from
the unmasked exemplar texture) based on conditioning values on C ⊂ Ω. From left to right, we display a sample
of the oracle model, a first masked input (the mask is obtained as an excursion set of a Gaussian process)
and the corresponding inpainting result, and a second masked input (the pixels are masked independently with
probability 0.8). Again, these inpainted results are visually perfect since they look exactly like a realization of
the global ADSN model.
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Input Extrapolated Baseline

Figure 6. Gaussian texture extrapolation with an oracle Gaussian model. From left to right: input images,
extrapolated texture (C = ∂3M), baseline result (obtained with an independent ADSN realization on the mask).
The images are of size 621 × 427. The extrapolation by Gaussian conditional simulation has succeeded since
the letters cannot be retrieved in the resulting image. In contrast, with the baseline method, the border of the
extrapolated region is still visible (essentially because of the low-frequency component).

located in a region composed of one homogeneous microtexture. In such a case, one must
manually specify the subdomain ω on which the Gaussian model is estimated in order to take
only values in the desired texture region.

4.3. Computing and visualizing the kriging coefficients. In order to better understand
the conditional simulation, it is interesting to visualize the kriging coefficients. Heuristically
speaking, every nonzero coefficient λc(x) corresponds to a position x whose value F (x) depends
on F (c) in the conditional simulation. We can thus expect the correlations of the adopted
Gaussian model to be reflected in the kriging coefficients.

First, let us explain how to visualize (λc(x))x∈Ω for a fixed c ∈ C. We have

(15) (λc(x))x∈Ω = Λδc = Γ|Ω×CΓ
†
|C×Cδc,

where we used the notation δc = (1c=d)d∈C . Thus, to compute (λc(x))c∈C , we just use our
algorithm on a Dirac input.

In a dual manner, one can also visualize (λc(x))c∈C for each x ∈ Ω. For that, we simply
notice that

(16) (λc(x))c∈C = ΛT δx = Γ†|C×CΓ|C×Ωδx,

where δx = (1x=y)y∈Ω. So the computation of these coefficients can be done in a similar
fashion, except that the covariance convolution Γ|C×Ω is performed before pseudoinverse com-
putation (with Algorithm CGD).

In the case of the inpainting application, we get the coefficients shown in Figure 9. These
results clearly indicate that the correlations captured in the Gaussian model are reflected by
the large kriging coefficients. We can also observe in this figure that the kriging coefficients
are not positive in general.
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Figure 7. Examples of textural inpainting. We present results of our inpainting method for several textures
and masks. From top to bottom (rows 1–3 and rows 4–6), we display a masked input, the inpainted result, and
a sample of the estimated ADSN model (which is useful to exhibit the limit of the Gaussian model). On rows
1–3, we display results on microtextures, while on rows 4–6 we display results on more structured textures. The
results on microtextures are visually pleasing, except for the irregular mask of the third column. The results
on macrotextures are of course not as perfect (in particular, for the wood example at the bottom of the fourth
column, the mask is still visible on close examination). Nevertheless, it is surprising that our method (based
on Gaussian synthesis) still gives convincing results on some macrotextures.

4.4. Impact of the size of the conditioning border. In this section, we investigate the
impact of changing the size of the conditioning border. Again, an ideal setting would be to
choose C = Ω\M , but then the kriging system is very large. Here we will confirm that taking
C = ∂wM is sufficient, and we will precisely examine the variation of the conditional model
when increasing the width w of the border.

In order to give a quantitative comparison, we suggest computing the distances between
the conditional models, which are basically Gaussian random vectors on M . One possible way
to perform this comparison is to rely on the L2-optimal transport distance, which has already
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Figure 8. Inpainting textural parts of an image. From top to bottom, we display the original image (of size
768× 577), the masked input (the Gaussian model has been estimated in the subdomain ω delimited by the red
box), and the inpainted result. Our algorithm is able to synthesize microtexture content which naturally blends
with the surrounding context.
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Figure 9. Visualizing kriging coefficients. In the first column, we display the masked input. For the three
other columns, in the first row, we display the kriging coefficients (λc(x))x∈M for different positions of the
conditioning pixel c ∈ C (drawn in red); in the second row, we display the kriging coefficients (λc(x))c∈C for
different positions of the pixel x ∈M (drawn in red). So in the first row, we can observe the values that will be
more impacted by a given conditioning point c, and in the second row, we can observe the conditioning values
which contribute most in conditional sampling at a given position x. The kriging coefficients are obtained from
an oracle model estimated on the unmasked exemplar, and we took C = ∂3M . The color map is renormalized in
each case. It is interesting to remark that the vertical correlations captured by this texture model are reflected
by larger kriging coefficients.

been used in several works on texture synthesis [86, 38]. Let us recall [29] that the L2-optimal
transport distance between two Gaussian models µX = N (mX ,ΣX), µY = N (mY ,ΣY ) is
given by

(17) dOT(µX , µY )2 = ‖mX −mY ‖2 + Tr(ΣX) + Tr(ΣY )− 2Tr
(

(ΣXΣY )1/2
)
.

We consider a gray-level exemplar texture u : Ω → R on which we estimate an oracle
model N (ū,Γ) and on which we put a mask M ⊂ Ω. Then we consider the reference con-
ditional model µ∞ = N (m∞,Σ∞) obtained with C∞ = Ω \M , and the conditional models
µw = N (mw,Σw) obtained with Cw = ∂wM (border of M with width w pixels). Using the
expressions found in sections 2.3 and 2.4, we recall that

mw = Γ|M×CwΓ†|Cw×Cw(u− ū)|Cw , Σw = Γ|M×M − Γ|M×CwΓ†|Cw×CwΓ|Cw×M .

For our experiment, we choose a reasonably small texture so that all these covariance matrices
can be explicitly built and stored (relying on standard numerical routines for pseudoinverse
and square-root computation2). We then plot the function

(18) w ∈ {1, . . . , 20} 7−→ dOT(µw, µ∞)
σu

√
|M |

,

2The pseudoinverse is only computed up to a given precision. However, we checked that after conditional
simulation with the approximate kriging coefficients, the covariance matrix of the global Gaussian model is the
desired one up to an error of `∞-norm less than 10−15.
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Figure 10. Quantitative study of the conditional models depending on the conditioning set C. We computed
the distance between the reference conditional model (obtained for C∞ = Ω \M) and the conditional models
(obtained for Cw = ∂wM); see (18). On the same diagram, we also show the distance between the mean
and covariance components separately. On the right diagram, we display the conditioning number of the kriging
system. When w increases, the conditional model slowly gets closer to the reference model, and the conditioning
number increases.

where σu is the marginal standard deviation of the oracle model. We also report separately
the distances between the mean values and the covariance matrices, i.e.,

d(mw,m∞) = ‖mw −m∞‖, d(Σw,Σ∞)2 = Tr(Σw) + Tr(Σ∞)− 2Tr
(

(ΣwΣ∞)1/2
)
.

The results can be observed in Figure 10. One can observe a global tendency of these distances
to decrease when the conditioning border gets larger. But we do not observe a sudden plunge
of the value (even if the covariance distance decreases a bit quicker for w < 5). Also, an
interesting fact revealed by these graphs is that the marginal error made when replacing C∞
by Cw is in general less than one σu. Notice also that when w increases, the kriging system
becomes more and more ill-conditioned.

We also propose in Figure 11 a more qualitative experiment. This qualitative study is
important to examine the quality of the inpainting result around the mask border (which is
not reflected through the marginal L2 error between two conditional models). For several
values of the border width w = 1, 3, 5, we inpaint a texture image (with the oracle Gaussian
model), and we compare the results with the one obtained in the ideal case C∞ = Ω \M . In
order to give a pixel-by-pixel comparison, we used the same random seed for the conditional
sampling. Apart from the visual results, we also report the distance between the mean values
of the corresponding conditional models.

It is interesting to notice that the kriging components look very different with w = 5
and w = ∞. Indeed, when the conditioning set gets larger, the kriging component depends
on a larger number of random variables, and thus has an increased stochastic nature. This
explains why the distance between the Gaussian models (or their mean or covariance functions)
does not quickly tend to zero when w increases. Still, as reflected by the example of Figure 11
and as observed in all our experiments, the inpainting result is already good for w = 3 (in
particular, for many textures, this value is sufficient to naturally blend the inpainted domain
in the context).

To conclude this section, we confirm that taking C = ∂3M is in general sufficient for our
inpainting purpose. In addition, growing C adds redundancy in the kriging system, and also
increases the stochastic nature of the kriging component.
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w = 1 w = 3 w = 5 w =∞

d = 0.3621 d = 0.33398 d = 0.3058

d = 0.23967 d = 0.21926 d = 0.20396

Figure 11. Qualitative study of the conditional models depending on the conditioning set C. From left
to right, we display the inpainting results obtained for C being a border of M of width w = 1, 3, 5 pixels and
also the limit solution C = Ω \M . In the first row, we display the sample of the conditional model, and on
the second row the mean value of the conditional model (kriging component). In both rows, we compute the
standard `2-distance to the image shown on the right (normalized by σu

√
|M |d). See the text for additional

comments.

4.5. Comparisons. In this section, we compare our microtexture inpainting algorithm
with several recent inpainting techniques.

First, in Figure 12, we compare our method with two very famous methods, namely,
inpainting based on total variation (TV) [18] and the patch-based method of Criminisi, Pérez,
and Toyama [23]. As could be expected, the TV inpainting method is not appropriate for this
example, because the water texture in this image is not of bounded variation. In contrast,
much better results are obtained with our method or that of Criminisi, Pérez, and Toyama.
Compared to [23], our result seems a bit more stochastic, maybe even too stochastic in the
upper part of the inpainted domain. This clearly reflects one limitation of our model, which
is stationarity.

In Figures 13 and 14, we compare our Gaussian inpainting algorithm with several patch-
based methods. In the first rows of Figure 13, one can observe that Gaussian inpainting
gives nearly perfect results on microtextures (which was expected). Also, the last rows of
Figure 13 show that the results obtained on macrotextures, although not perfect, are still
quite convincing in comparison to patch-based methods. Even if Gaussian inpainting is not
able to preserve salient geometric features, it has two important benefits: the synthesized
content is smoothly blended in the input data, and the synthesized content does not suffer
from repetition artifacts. But of course Gaussian inpainting will clearly fail if one tries to
inpaint a very wide hole in a highly non-Gaussian texture (because the human visual system
is able to discriminate between a highly structured texture and its ADSN counterpart). Let
us mention that some examples in Figure 13 are difficult to handle with patch-based methods
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Original TV inpainting [18]

Our result Criminisi et al. [23]

Figure 12. Comparison with [18, 23]. In the first row, we display the original image (taken from [23]) on
the left, and on the right the result of TV inpainting [18] (obtained with the implementation available at [41]).
In the second row, on the left we show the result of Gaussian inpainting (with a model estimated in the red
box), and on the right the result of the patch-based method of [23]. As one can see, the TV inpainting is not
able to preserve texture. In contrast, the method of [23] is truly able to generate textural content, but may lead
to repetition artifacts. ( c©2004 IEEE. Reprinted, with permission, from IEEE.)

because the number of available patches in the unmasked area is quite small, which favors
repetitions. This is a noticeable advantage of our method; i.e., it is applicable even if the
unmasked part does not contain many complete patches.

All these remarks are confirmed by the results shown in Figure 14, which provides a
comparison of these methods on a difficult textural inpainting problem. This striking example
clearly exhibits the benefits and drawbacks of each method. With Gaussian inpainting, the
color distribution and frequential content are precisely respected, and long-range correlations
are preserved (as can be seen in the kriging component), but complex geometric structures
are not properly synthesized, as they would be with a patch-based method. In contrast,
with patch-based methods, even if there are enough available patches here, we observe some
repetition artifacts which can be explained in the same way as the growing garbage effect,
which was already brought up by the seminal paper [31]. There may also be other artifacts
which are more specific: on the result of [3], the inpainted domain is a bit too blurry and
the border of the inpainted domain is still clearly visible; and on the result of [69], after close
examination of the inpainted domain, we can perceive small seams which are due to changes
in the offsets used for region pasting.

5. Conclusion. In this paper, we proposed a stochastic inpainting method based on Gauss-
ian conditional simulation. It is able to inpaint holes of any shape and size in microtexture
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Input Our method Newson et al. [69] Arias et al. [3] Daisy et al. [15]

Figure 13. Comparison with patch-based methods (I). In each row, from left to right, we display a masked
input, the result of our Gaussian inpainting algorithm, the result of [69], the result of variational nonlocal
inpainting [3] (obtained with the online implementation of [35] using the NLmeans option), and the result
of [15] (obtained with the publicly available G’MIC plugin for GIMP [82]). With the results of the first four
rows, one clearly sees that Gaussian inpainting gives much better results on microtextures. The results of the
last four rows show that Gaussian inpainting also gives reasonable results on macrotextures, and, in particular,
it avoids the repetition artifacts that can sometimes be encountered with patch-based synthesis (first and fifth
rows). In contrast, patch-based inpainting better preserves geometric features (like the stitches of the sixth and
seventh examples), which are completely lost with Gaussian synthesis.
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Original Gaussian inpainting Kriging component

Arias et al. [3] Daisy et al. [15] Newson et al. [69]

Figure 14. Comparison with patch-based methods (II). We compare several inpainting methods on a
difficult textural inpainting problem. In the first row, from left or right, we display the masked input, the
result of our method, and the corresponding kriging component. In the second row, we display the results of
variational nonlocal inpainting [3] (obtained with the online implementation of [35] using the NLmeans option),
the result of [15] (obtained with the publicly available G’MIC plugin for GIMP [82]), and the result of [69].
Again, we observe on this example that Gaussian inpainting fills the hole with a truly stochastic content which
respects the second-order statistic of the texture (in particular the color distribution and the power spectrum),
but fails to reproduce the geometric features in contrast to patch-based methods. The second row precisely
highlights typical artifacts associated with state-of-the-art patch-based methods: with [3] the inpainted content
is too blurry, with [15] we get repetition artifacts, and with [69] we can perceive small seams between inpainted
regions using different offsets.

images while precisely respecting a random texture model. Gaussian texture inpainting of
course shares some limitations with Gaussian texture synthesis, but we have illustrated on
many texture images that this simple approach competes with state-of-the-art inpainting al-
gorithms in terms of visual results.

As discussed in the paper, we have proposed a very simple procedure for estimating a
Gaussian texture model from a masked exemplar texture. Numerical experiments show that
this naive technique gives good results, provided that the mask complement contains a suf-
ficiently plain piece of texture. Still, we believe that it would be interesting to dispose of a
more robust estimation technique capable of dealing with very irregular masks. This may
be rephrased as parameter estimation with hidden variables and might be addressed with an
expectation-maximization technique, but keeping the computational cost of such a procedure
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seems very challenging. Notice that this problem has already been generally discussed in [79]
and more particularly addressed in [56, 27, 73] in a Bayesian framework for parametrized
covariances.

A promising (but equally challenging) direction for future work is to extend conditional
simulation to nonstationary models in order to address inpainting of images of natural scenes.
It is likely that for such images, one should use a deterministic method for extension of geomet-
ric structures, coupled with a (conditional) stochastic step to complete the textural content.
Such a model would build another bridge between variational and stochastic inpainting, thus
shedding light on the question of whether inpainting should be considered as minimizing a
functional or sampling a large-scale distribution.

6. Source codes. We provide C and MATLAB implementations of our textural inpaint-
ing method in the supplementary material (files M110904 01.zip [local/web 88.9KB] and
M110904 02.zip [local/web 7.95MB]).
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[17] F. Cao, Y. Gousseau, S. Masnou, and P. Pérez, Geometrically guided exemplar-based inpainting,
SIAM J. Imaging Sci., 4 (2011), pp. 1143–1179, https://doi.org/10.1137/110823572.

[18] T. F. Chan and J. Shen, Mathematical models for local nontexture inpaintings, SIAM J. Appl. Math.,
62 (2002), pp. 1019–1043, https://doi.org/10.1137/S0036139900368844.

[19] S. Chandra, M. Petrou, and R. Piroddi, Texture interpolation using ordinary Kriging, in Pattern
Recognition and Image Analysis, Springer, New York, 2005, pp. 183–190.
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Géostatistique, 5 (1995), pp. 97–112.

[21] J.-P. Chilès and P. Delfiner, Geostatistics: Modeling Spatial Uncertainty, John Wiley & Sons, Hobo-
ken, NJ, 2012.

[22] N. Cressie, Statistics for Spatial Data, John Wiley & Sons, New York, 1993.
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[29] D. C. Dowson and B. V. Landau, The Fréchet distance between multivariate normal distributions, J.

Multivariate Anal., 12 (1982), pp. 450–455, https://doi.org/10.1016/0047-259X(82)90077-X.
[30] I. Drori, D. Cohen-Or, and H. Yeshurun, Fragment-based image completion, ACM Trans. Graphics,

22 (2003), pp. 303–312.
[31] A. A. Efros and T. K. Leung, Texture synthesis by non-parametric sampling, in Proceedings of the

7th IEEE International Conference on Computer Vision (ICCV), Vol. 2, IEEE, 1999, pp. 1033–1038.
[32] M. Elad, J. L. Starck, P. Querre, and D. L. Donoho, Simultaneous cartoon and texture image

inpainting using morphological component analysis (MCA), Appl. Comput. Harmon. Anal., 19 (2005),
pp. 340–358, https://doi.org/10.1016/j.acha.2005.03.005.

[33] X. Emery, Conditioning simulations of Gaussian random fields by ordinary kriging, Math. Geology, 39
(2007), pp. 607–623, https://doi.org/10.1007/s11004-007-9112-x.

[34] S. Esedoglu and J. Shen, Digital inpainting based on the Mumford-Shah-Euler image model, European
J. Appl. Math., 13 (2002), pp. 353–370.

[35] V. Fedorov, G. Facciolo, and P. Arias, Variational framework for non-local inpainting, Image Pro-
cessing On Line, 5 (2015), pp. 362–386, https://doi.org/10.5201/ipol.2015.136.

[36] B. Galerne, Y. Gousseau, and J.-M. Morel, Random phase textures: Theory and synthesis, IEEE
Trans. Image Process., 20 (2011), pp. 257–267, https://doi.org/10.1109/TIP.2010.2052822.

[37] B. Galerne and A. Leclaire, An algorithm for Gaussian texture inpainting, Image Processing On
Line, submitted.

[38] B. Galerne, A. Leclaire, and L. Moisan, A texton for fast and flexible Gaussian texture synthesis, in
Proceedings of the 22nd European Signal Processing Conference (EUSIPCO), IEEE, 2014, pp. 1686–
1690.

[39] B. Galerne, A. Leclaire, and L. Moisan, Microtexture inpainting through Gaussian conditional sim-
ulation, in Proceedings of the International Conference on Acoustics, Speech and Signal Processing

https://doi.org/10.1137/080728548
https://doi.org/10.1137/110823572
https://doi.org/10.1137/S0036139900368844
https://doi.org/10.1016/0047-259X(82)90077-X
https://doi.org/10.1016/j.acha.2005.03.005
https://doi.org/10.1007/s11004-007-9112-x
https://doi.org/10.5201/ipol.2015.136
https://doi.org/10.1109/TIP.2010.2052822


TEXTURE INPAINTING USING EFFICIENT GAUSSIAN CONDITIONAL SIMULATION 1473

(ICASSP), IEEE, 2016.
[40] B. Galerne, A. Leclaire, and L. Moisan, Texton noise, Computer Graphics Forum, (2017), https:

//doi.org/10.1111/cgf.13073.
[41] P. Getreuer, Total variation inpainting using split Bregman, Image Processing On Line, 2 (2012),

pp. 147–157, https://doi.org/10.5201/ipol.2012.g-tvi.
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