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Abstract. Many image processing algorithms rely on local descriptors
extracted around selected points of interest. Motivated by privacy issues,
several authors have recently studied the possibility of image reconstruc-
tion from these descriptors, and proposed reconstruction methods per-
forming local inference using a database of images. In this paper we tackle
the problem of image reconstruction from local histograms of gradient
orientation, obtained from simplified SIFT descriptors. We propose two
reconstruction models based on Poisson editing and on the combination
of multiscale orientation fields. These models are able to recover global
shapes and many geometric details of images. They compare well to state
of the art results, without requiring the use of any external database.

Keywords: Image Synthesis, Reconstruction from Features, SIFT, Pois-
son Editing, Maximum Entropy Distributions, Exponential Models

1 Introduction

Extraction of local features constitutes a first step for many image analysis
tasks, e.g. image matching and rectification, object detection and tracking, im-
age recognition, image classification, image understanding, see for instance [1]
and references therein. Depending on the application, one should use local fea-
tures reflecting some kind of geometric information while being invariant with
respect to several image transformations. For example, in order to match two
images of the same distant scene taken under different view points and different
illumination conditions, one should compute local features that are invariant to
homography and contrast change. It is thus an interesting question to ask how
much we can retrieve from the initial image based only on these image descrip-
tors. In other words, what information is really contained in these descriptors.

Since the pioneering work by Attneave [2], many techniques have been pro-
posed to extract points of interest in images and information around them. Here
we will only mention a few descriptors and we refer to [3, 4, 1] for a more com-
prehensive survey. An early descriptor of a patch is given by the Local Binary
Descriptors [5]: it extracts the signs of difference between values of Gaussian
windows applied at different locations in the patch. Perhaps one of the most
famous and powerful feature extraction technique is the Scale-Invariant Fea-
ture Transform (SIFT) [6, 3]. As for most image description techniques, this
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algorithm first extracts a set of points of interest (called keypoints) and then
computes for each keypoint a descriptor based on the local behavior of the im-
age around this keypoint. We give a brief description of the SIFT method in
Section 2. Another popular local descriptor is given by the histograms of gradi-
ent orientations (HOG) [7]. “Dense” HOG descriptors are obtained as quantized
histograms of the gradient orientations in each patch of a non-overlapping patch
set. At a higher semantic level, local image behavior can be also represented as
visual words [8] which are obtained as cluster points in a feature space.

Recently, Weinzaepfel et al. [9] have raised the issue of the reconstruction
from image descriptors (in particular SIFT). This work was essentially moti-
vated by privacy issues which appear when image descriptors are clearly trans-
mitted on an unsecured network, e.g. for image recognition or classification.
Their image reconstruction method consists in pasting image parts with similar
features taken from a database. This has triggered several works based on other
descriptors. Vondrick et al. [10] address reconstruction from dense HOG by rely-
ing on dictionary representation of HOG and patches. Also, d’Angelo et al. [11]
address reconstruction from local binary descriptors by relying on primal-dual
optimization techniques. Kato and Harada address reconstruction from bag of
visual words [12]. Reconstruction problems have also been addressed with meth-
ods based on neural networks [13–15]; these methods are generic and can be
applied to any image representation that can be approximated by the output of
a convolutional neural network (in particular HOG as suggested in [14]). Finally,
generative a contrario models [16] have been proposed to recover an image from
a set of detected features (segments for example).

In all these works, the objective is essentially to reconstruct one image from
the descriptors. But in many cases, this description transform has no reason to
be invertible: for example with the SIFT descriptors, since it does not retain
information outside the SIFT cells, many images could have the same SIFT
output. Thus we propose here, rather than unique reconstruction, to sample
from a stochastic image model whose statistics comply with the information
contained in the local descriptors. We study in particular the case of simplified
SIFT transforms which extract multiscale HOG from regions around the SIFT
keypoints. We will essentially propose two models that can be adapted to several
transforms based on local HOG. They both rely on Poisson editing [17] which
is a way to compute an image whose gradient is as close as possible to a given
vector field. Also, our second model is an instance of exponential models [18, 19]
which provide maximum entropy stochastic models having prescribed average
values for a given set of numerical features.

Our paper is organized as follows. Section 2 contains a description of the
features on which our image reconstruction relies. In Section 3 we introduce a
model (called MS-Poisson) that combines gradient orientations at different scales
by solving a multiscale Poisson problem. In Section 4 we propose a maximum
entropy model (called MaxEnt) on orientation fields which respects the statistical
distribution of gradient orientation in the SIFT regions. Finally, in Section 5, we
give and comment several reconstruction results, and compare with [9, 13].
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2 Overview and notations

In all the paper we consider a gray level image u0 : Ω → R defined on a discrete
rectangle of Z2. The Gaussian scale-space of u0 is denoted by gσ ∗ u0 where gσ
is the Gaussian kernel of standard deviation σ. We will denote by T = R/2πZ
the set of angles (possible orientation values).

In this paper, we propose to reconstruct an image from a simplified SIFT
transform detailed below. Let us begin with a brief explanation of the main
steps of the SIFT methods; for technical details we refer the reader to [20].

1. Computing SIFT keypoints:
(a) Extract local extrema of a discrete version of (x, σ) 7→ σ2∆gσ ∗ u0(x).
(b) Refine the positions of the local extrema (sub-pixel precision).
(c) Discard extrema with low contrast and extrema located on edges.

2. Computing SIFT local descriptors associated to the keypoint (x, σ):
(a) Compute one or several principal orientations θ.
(b) For each detected orientation θ, consider a grid of 4 × 4 square regions

around (x, σ). These square regions, which we call SIFT subcells are of
size 3σ × 3σ with one side parallel to θ. In each subcell compute the
histogram of Angle(∇gσ ∗u0)− θ quantized on 8 values (k π4 , 1 ≤ k ≤ 8).

(c) Normalization: the 16 histograms are concatenated to obtain a feature
vector f ∈ R128, which is then normalized and quantized to 8-bit integers.

When computing orientation histograms in steps 2(a), 2(b), each pixel votes
with a weight that depends on the value of the gradient norm at scale σ and of
its distance to the keypoint center x. Also in step 2(b), there is a linear splitting
of the vote of an angle between the two adjacent quantized angle values.

The reconstruction method described in this paper relies on the SIFT key-
points (x, σ) and on 8-quantized histograms orientations of Angle(∇gσ ∗ u0)− θ
around x. In other words, we do not include the vote weights nor the normal-
ization step 2(c).

We denote by (sj)j∈J the collection of SIFT subcells, sj ⊂ Ω. In a SIFT
cell, there are 16 SIFT subcells so that different sj can correspond to the same
keypoint. We will denote by (xj , σj) the keypoint associated to sj , and θj the
principal orientation. For x ∈ Ω, we will denote by J (x) = {j ∈ J | x ∈ sj} the
set of indices of SIFT subcells containing x. In sj we extract the quantized HOG
Hj at scale σj which is identified to the piecewise constant density function

hj =

8∑
`=1

H`
j1[θj+(`−1)π4 ,θj+`

π
4 [, (1)

where H`
j =

1

|sj |
∣∣{x ∈ sj ; Angle(∇gσj ∗ u0)(x)− θj ∈ [(`− 1)π4 , `

π
4 ]
}∣∣.

The main purpose of this paper is to reconstruct an image whose content
agrees with the multiscale HOG hj in the SIFT subcells sj . One main difficulty
is that the gradient magnitude is a priori completely lost during the extrac-
tion of these features. Another issue is the fact that a point x can belong to
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several subcells sj . In that case we need to find a way to combine the different
information given by the histograms hj to recover the image orientation at x.

3 Poisson Reconstruction of an Image

For the first proposed reconstruction method, we define vector fields Vj : Ω → R2

that will serve as objective gradient at scale σj in the SIFT subcell sj . We pro-
pose to set Vj = wje

iγj where wj = 1
σj
1sj (whose choice is motivated by the

homogeneity argument ∇
(
u(xσ )

)
= 1

σ∇u(xσ )) and where γj is a random orienta-
tion field sampled from the probability density function hj . In order to obtain a
reconstructed image U , these objective vector fields Vj for all the scales σj are
combined by solving a multiscale Poisson problem explained in Section 3.2.

3.1 Classical Poisson Reconstruction

The aim of Poisson reconstruction is to look for an image u : Ω → R whose gra-
dient is as close as possible to an objective vector field V = (v1, v2)T : Ω → R2.
In the case of image editing, this technique has been proposed by Pérez et al. [17]
in order to copy pieces of an image into another one in a seamless way. More
precisely, the goal is to minimize the functional

F (u) =
∑
x∈Ω
‖∇u(x)− V (x)‖22. (2)

Since F (c + u) = F (u) for any constant c, we can impose
∑
x∈Ω u(x) = 0. If

we use periodic boundary conditions for the gradient, we can solve this problem
with the Discrete Fourier Transforms. Indeed, if we use the simple derivation
scheme based on periodic convolutions

∇u(x) =

(
∂1 ∗ u(x)
∂2 ∗ u(x)

)
where

{
∂1 = δ(0,0) − δ(1,0)
∂2 = δ(0,0) − δ(0,1)

, (3)

this problem can be expressed in the Fourier domain with Parseval formula

F (u) =
1

|Ω|
∑
ξ 6=0

|∂̂1(ξ)û(ξ)− v̂1(ξ)|22 + |∂̂2(ξ)û(ξ)− v̂2(ξ)|22. (4)

Thus, for each ξ we have a barycenter problem which is simply solved by

∀ξ 6= 0, û(ξ) =
∂̂1(ξ)v̂1(ξ) + ∂̂2(ξ)v̂2(ξ)

|∂̂1(ξ)|2 + |∂̂2(ξ)|2
. (5)

3.2 Multiscale Poisson Reconstruction

In order to simultaneously constrain the gradient at several scales (σj)j∈J , we
propose here to consider the following multiscale Poisson energy

G(u) =
∑
j∈J

w(σj)
∑
x∈Ω
‖∇(gσj ∗ u)(x)− Vj(x)‖22, (6)
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where gσ is the Gaussian kernel of standard deviation σ, Vj = (vj,1, vj,2)T is the
objective gradient at scale σj , and w(σj) is a set of weights. In our application,
since there are more keypoints in the fine scales (i.e. when σj is small), and since
the keypoints at fine scales are generally more informative, a reasonable choice
is to take all weights w(σj) = 1. But we keep these weights in the formula for
the sake of generality.

Again, with periodic boundary conditions, this problem can be expressed in
Fourier domain as

G(u) =
1

|Ω|
∑
j∈J

∑
ξ 6=0

w(σj)
(
|ĝσj (ξ)∂̂1(ξ)û(ξ)− v̂j,1(ξ)|22 + |ĝσj (ξ)∂̂2(ξ)û(ξ)− v̂j,2(ξ)|22

)
.

(7)

The solution is still a barycenter. It is given by (recall that ĝσj (ξ) ∈ R since gσj
is even):

∀ξ 6= 0, û(ξ) =

∑
j∈J

w(σj)ĝσj (ξ)
(
∂̂1(ξ)v̂j,1(ξ) + ∂̂2(ξ)v̂j,2(ξ)

)
∑
j∈J

w(σj)|ĝσj (ξ)|2
(
|∂̂1(ξ)|2 + |∂̂2(ξ)|2

) . (8)

Notice that, depending on the finest scale, the denominator can vanish in the
high frequencies because of the term ĝσj (ξ) (as it is the case in a deconvolution
problem). Therefore, it may be useful to add a regularization term controlled by
a parameter µ > 0. Then, if we minimize

G(u) + µ‖∇u‖22, (9)

we get the well-defined solution

û(ξ) =

∑
j∈J

w(σj)ĝσj (ξ)
(
∂̂1(ξ)v̂j,1(ξ) + ∂̂2(ξ)v̂j,2(ξ)

)
µ+

∑
j∈J

w(σj)|ĝσj (ξ)|2
(|∂̂1(ξ)|2 + |∂̂2(ξ)|2

) . (10)

4 Stochastic Models for Gradient Orientations

The second reconstruction method will consist in solving a classical Poisson prob-
lem (Section 3.1) with one single objective gradient V = weiγ where γ : Ω → T
is now a sample of an orientation field which is inherently designed to combine
the local HOG at the scale σ = 0.

In this section, we aim at defining stochastic models of orientation fields
that fit the distributions of oriented gradients in the SIFT subcells (sj)j∈J .
In contrast with the usual SIFT method, for simplicity we will consider the
orientations in all subcells with the same quantization bins

B` =
[
(`− 1)π4 , `

π
4

[
, (1 6 ` 6 8). (11)
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We then consider for all j ∈ J and 1 6 ` 6 8, the real-valued feature function
given by

∀θ ∈ TΩ , fj,`(θ) =
1

|sj |
∑
x∈sj

1B`(θ(x)) (12)

We are then interested in probability distributions P on TΩ such that

∀j ∈ J ,∀` ∈ {1, . . . , 8}, EP
(
fj,`(θ)

)
= fj,`(θ0) , (13)

where θ0 = Angle(∇u0) is the orientation field of the original image u0. There
are many probability distributions P on TΩ that satisfy (13), and we will be
mainly interested in the ones that are at the same time as “random” as possible,
in the sense that they are of maximal entropy. Let us notice that the gradient
orientation extracted from the MS-Poisson model (10) is not ensured to satisfy
the constraints (13).

Theorem 1 ([19]). There exists a family of numbers λ = (λj,`)j∈J ,16`68 such
that the probability distribution

dPλ =
1

Zλ
exp

(
−
∑
j,`

λj,`fj,`(θ)

)
dθ, (14)

where the partition function Zλ is given by Zλ =
∫
TΩ exp

(
−
∑
j,` λj,`fj,`(θ)

)
dθ,

satisfies the constraints (13) and is of maximal entropy among all absolutely
continuous probability distributions w.r.t. dθ satisfying the constraints (13).

Proof. This result directly follows from the general theorem given in [19]. The
only difficulty is to handle the technical hypothesis of linear independence of
the fj,`. In our framework, the fj,` are not independent (in particular because∑8
`=1 fj,` = 1, and also because there may be other dependencies for instance

when one subcell is exactly the union of two smaller subcells). But one can
still apply the theorem to an extracted linearly independent subfamily. This
gives existence of the solution for the initial family (fj,`) (but of course not the
unicity).

One can show (see [19]) that the solutions Pλ are obtained by minimizing
the smooth convex function

Φ(λ) = logZλ +
∑
j,`

λj,`fj,`(θ0). (15)

Let us examine Pλ from closer. For that we can write

− log
dPλ
dθ
− logZλ =

∑
j∈J ,16`68

λj,`fj,`(θ) =
∑
x∈Ω

ϕλ,x(θ(x)), (16)

where ϕλ,x =

8∑
`=1

( ∑
j∈J (x)

λj,`
|sj |

)
1B` . (17)
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This proves that under Pλ the values θ(x) are independent and have a proba-

bility distribution 1
Zλ,x

e−ϕλ,x where Zλ,x =
∑8
`=1 exp

(
−
∑
j∈J (x)

λj,`
|sj |

)
|B`| .

Therefore, the constraints (13) can be written in terms of λ as

∀j, `,
∑
x∈sj

1

Zλ,x
exp

(
−

∑
k∈J (x)

λk,`
|sk|

)
= |{x ∈ sj ; θ0(x) ∈ B` }| . (18)

Notice that this system is highly non-linear and is in general difficult to solve.
However, if the SIFT subcells do not overlap (which is very rare), then the
distribution on θ(x) simplifies to: the uniform distribution if x doesn’t belong
to any sj , and the distribution given by the empirical quantized histogram of θ0
on sj if x ∈ sj .

Now, if the SIFT subcells intersect, there is no explicit solution anymore.
To cope with that, as in [18] we use a numerical scheme to find the maximum
entropy distribution Pλ based on the minimization of (15). For that, we recall
the gradient of logZλ, obtained by differentiating the partition function:

∂ logZλ
∂λj,`

=
1

Zλ

∂Zλ
∂λj,`

= −EPλ
[
fj,`(θ)

]
. (19)

This expression allows us to minimize Φ with a gradient descent with constant
(sufficiently small) step size, which converges [21] since Φ is a smooth convex
function with Lipschitz gradient (as can be seen on the Hessian matrix).

5 Results and discussion

In this section, for several images, we show reconstructions obtained as samples
of the models proposed in the two previous sections. We also compare with
other reconstruction algorithms described in [9, 10] (the test images are taken
from these articles).

The first model (denoted by MS-Poisson) consists in computing the solution
of regularized multiscale Poisson reconstruction (10) with objective vector fields
Vj = 1

σj
eiγj1sj where γj is composed of independent samples of the probability

distribution hj given by (1), that is the available HOG at scale σj in the sub-
cell sj . In this case, the orientation fields (γj) are independent. The weights are
set to w(σj) = 1 for all j, and the regularization parameter is set to µ = 50.

The second model (denoted by MaxEnt) is obtained as the solution of a
classical Poisson problem associated to the objective vector field

V (x) =
(

max
j∈J (x)

1

σj

)
eiγ(x)1J (x)6=∅. (20)

where γ is a sample of the maximum entropy model of Section 4. Here again,
we chose a magnitude function |V (x)| that favors the locations where there is
information at fine scale (note that by definition of the keypoints, σj > 0).
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Original MS-Poisson MaxEnt

r = 0.76 r = 0.58

r = 0.68 r = 0.53

r = 0.7 r = 0.42

r = 0.78 r = 0.51

Fig. 1. Reconstruction results. For each row, from left to right, we display the
original image with over-imposed arrows representing the keypoints (the length of the
arrow is 6σ which is the half-side of the SIFT cell, and twice the size of the correspond-
ing SIFT subcells), the reconstruction with MS-Poisson, and the reconstruction with
MaxEnt. (Image Credits [10]).
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In Fig. 1 we give reconstruction results obtained with the models MS-Poisson
and MaxEnt. These results show some similarity: both these algorithms are able
to recover content in the SIFT subcells. They recover geometric details from the
fine scale subcells while global shapes are constrained thanks to the large scale
information; many objects contained in the image are easily recognizable. These
reconstruction results may seem surprisingly good at first but can be explained
by the fact that the local HOG in the SIFT subcells is not as sparse as one
could imagine. On the left of Fig. 1 one can see that there are many keypoints
in these images and in particular keypoints at fine scales which give a precise
local information.

Notice that the result of MaxEnt appears a bit sharper, as expected: on
the one hand, MaxEnt relies on local HOG computed at the scale of the image
(σ = 0) while MS-Poisson relies on multiscale HOG, and on the other hand, MS-
Poisson realizes a compromise between many objective vector fields at different
scales, which introduces some blur. Of course, these algorithms cannot recover
precisely the content outside the SIFT cells: this completion is essentially ob-
tained by regularization. For example, the top of the bottle in the first row of
Fig. 1 is not properly restored.

These two reconstruction methods draw a sample of a random model. But
for both of them, since Poisson reconstruction is a linear operation, it is also
possible to compute a reconstruction which is the expectation of these random
models. It turns out that these mean images are very similar (though a bit more
regular) to the random samples. In future work we will investigate the variance
of these models to better explain this.

Assessing the quality of reconstruction is a very ill-posed task, in particular
because 1) it is a very subjective question, 2) such a measure should be invariant
to affine contrast changes, and 3) there is no information outside the SIFT
subcells. In the lack of anything better, we give the values r of the normalized
cross-correlation between the reconstruction and the original image (which is
contrast-affine-invariant). In Fig. 1 we observe that MS-Poisson leads to much
better cross-correlation values which reflects the fact that large scale contrasted
regions are better retrieved (while not accounted for with MaxEnt). For that
reason, in the following experiments we only show results obtained with MS-
Poisson.

On Fig. 2, we show comparisons between the results of the Poisson recon-
struction from dense HOG (computed on 5 × 5 non-overlapping patches), and
the results of Hoggles [10]. The results of [10] look cleaner because they exploit
redundancies between overlapping HOG templates (via a learned pair-dictionary
representation of HOG templates and patches) whereas Poisson reconstruction
only performs independent sampling of pixel orientations.

The two proposed reconstruction methods can also be applied by using the
SIFT feature vectors as substitute to the input local HOG. For that, for each
subcell sj we extract the part of the descriptor that is relative to this subcell, and
we normalize its sum to 1 (in order to get a probability distribution function).
Such a result of SIFT reconstruction can be seen in Fig. 3. The result obtained
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Original Poisson from dense HOG Hoggles [10]

305× 355 r = 0.48 r = 0.73

330× 500 r = 0.02 r = 0.53

395× 210 r = 0.47 r = 0.61

225× 200 r = 0.54 r = 0.66

Fig. 2. Reconstruction from dense HOG. For each row, from left to right we
display the original image, the result of Poisson reconstruction from dense HOG (com-
puted on 5× 5 patches with no overlap), and the result of [10]. The levels of recovered
details with the two methods are comparable. However, the result of Poisson recon-
struction looks less clean because of the independent sampling of all pixels. (Image
Credits [10]).
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with the SIFT descriptors retrieves the global shapes of the image but is in
general less precise than the one obtained with the local HOG, because of the
several normalization steps applied in SIFT.

Original MS-Poisson from SIFT

[Weinzaepfel et al., 2011] [Dosovitskiy & Brox, 2015]

Fig. 3. Comparison for SIFT reconstruction. In the first row we display the
original image and the reconstruction results from the SIFT descriptors obtained with
MS-Poisson. In the second row we display the results obtained with the methods of [9]
and [13]. (Image Credits [9]).

In Fig. 3 we compare our reconstruction results with the methods by Wein-
zaepfel et al. [9] and Dosovitskiy & Brox [13]. The main difference is that our
method relies only on the content provided in the SIFT subcells while these meth-
ods use an external database either to copy local information from patches with
similar SIFT descriptors in [9] or to build an up-convolutional neural network
for reconstruction in [13]. Thus our work has no intention to outperform these
methods in terms of visual quality of reconstruction (in particular, our method
has absolutely no possibility of recovering the color information). But still, one
can see that MS-Poisson can recover the global shapes with no stitching artifacts
(compared to [9]). However, MS-Poisson gives much blurrier results; indeed the
method of [9] is able to copy patches of sharp images while the method of [13]
in some sense includes a deconvolutional step through the up-convolutional net-
work. In order to obtain sharper results, one could restrict the inner sums of
the MS-Poisson energy (6) to the SIFT subcells: this new method will certainly
avoid over-regularization (but the solution will not be explicit anymore).
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