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Abstract. Extraction of local features constitutes a first step of many algorithms used in3
computer vision. The choice of keypoints and local features is often driven by the optimization of a4
performance criterion on a given computer vision task, which sometimes makes the extracted content5
difficult to apprehend. In this paper we propose to examine the content of local image descriptors6
from a reconstruction perspective. For that, relying on the keypoints and descriptors provided by7
the scale-invariant feature transform (SIFT), we propose two stochastic models for exploring the set8
of images that can be obtained from given SIFT descriptors. The two models are both defined as9
solutions of generalized Poisson problems that combine gradient information at different scales. The10
first model consists in sampling an orientation field according to a maximum entropy distribution11
constrained by local histograms of gradient orientations (at scale 0). The second model consists in12
simple resampling of the local histogram of gradient orientations at multiple scales. We show that13
both these models admit convolutive expressions which allow to compute the model statistics (e.g.14
the mean, the variance). Also, in the experimental section, we show that these models are able15
to recover many image structures, while not requiring any external database. Finally, we compare16
several other choices of points of interest in terms of quality of reconstruction, which confirms the17
optimality of the SIFT keypoints over simpler alternatives.18
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1. Introduction. 122

A fundamental problem of vision consists in extracting a minimal representation23

that is sufficient for a human to apprehend the semantic content of an image. Marr24

and Hildreth [40, 39] proposed a raw primal sketch image representation based on25

the zero-crossings of the Laplacian computed at different scales, which extract spatial26

positions corresponding to edges, blobs, and terminations. Since this pioneering work,27

many authors proposed to extract different points of interest (keypoints), or local28

descriptors (features) based on several differential operators, while being invariant to29

given image transformations. Extracting keypoints and local features in images is30

indeed a fundamental step for many imaging tasks [21], like image recognition [63,31

33, 9, 10, 26], image matching and rectification [33, 60, 32], object detection and32

tracking [8, 58, 66, 53], video stabilization [6, 65], image classification [29, 68, 28], etc.33

In this paper, we propose to discuss the role of such keypoints and descriptors, from34

a reconstruction point of view.35

In the seminal paper [5], Attneave suggests that the most important points for36

image perception are the ones of maximum curvature. Since then, many techniques37

have emerged to single out keypoints and build local descriptors around them. De-38

pending on the applicative context, one should use descriptors that are invariant with39

respect to specific geometric transformations2 (e.g. image recognition generally needs40

invariance to homography and illumination change). Here we will only mention a few41

famous local descriptors, and we refer to [43, 59, 45, 32] for a more comprehensive42

survey.43

Harris and Stephens proposed a combined corner and edge detector based on the44
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1A preliminary version of this work was published as a conference paper in [17].
2The translation invariance is generally always required, and often trivial.
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2 A. DESOLNEUX, A. LECLAIRE

determinant and trace of the structure tensor of the image [23]. A multiscale variant45

based on a normalized Laplacian of Gaussian (LoG) scale-space, coined Harris-Laplace46

was proposed by Milokajczyk and Schmid [42]. The same authors also proposed in [42]47

the Harris-affine point detector which extends the previous one with a normalization48

step in order to get invariance to affine transformations. Tuytelaars and Mikolajczyk49

proposed in [60] two region detectors both starting from anchor points (e.g. Harris50

points); then the first one selects a region within detected edges around the anchor,51

and the second one extracts a region by analyzing intensity profiles on rays emanating52

from the anchor. Rosten and Drummond introduced in [55] the “features from ac-53

celerated segment test” (FAST) which is a corner detector accelerated by a machine54

learning technique. This approach has been further fastened by Mair et al. [37] using55

optimal decision trees, thus obtaining an “adaptive and generic accelerated segment56

test” (AGAST). Musé et al. proposed in [48] to extract shapes from the image level57

lines, and to process them in order to get an affine invariant representation.58

In parallel of this research on keypoints, many techniques have been proposed59

for invariant local descriptions of images. An early descriptor is given by the local60

binary patterns (LBP) defined by Ojala et al. [51] which extracts signs of differences61

of image values on pixels located on a circular neighborhood of a keypoint. The LBP62

were originally designed for texture description but can also be used for face detec-63

tion [1]. In [33], Lowe introduced the scale invariant feature transform (SIFT) which64

first extracts the keypoints as local extrema of the “Difference of Gaussian” (DoG)65

approximation of the LoG, and next computes around each keypoint a local descriptor66

based on normalized histograms of gradient direction (HOG), see the details in Sec-67

tion 2. Notice that similar HOG descriptors computed on a dense grid were actually68

used in [14] for person detection; one reference implementation of the HOG descrip-69

tors is given in [22]. A fully affine-invariant extension of SIFT, named ASIFT, was70

proposed by Morel and Yu [45] and consists in applying the SIFT method with the71

image transformed with several simulated affine maps. The SURF method (Speeded-72

up robust features) proposed by Bay et al. [7] is closely related in construction to the73

SIFT method, but allows for a faster implementation. At a higher semantic level,74

local image behavior can be also represented as visual words [58, 11] which are ob-75

tained as cluster points in a feature space. Later, some authors proposed to describe76

a patch using local binary descriptors (LBD), which extracts the signs of differences77

between Gaussian measurements taken at different locations. Using different ways of78

selecting these locations leads to the methods BRISK [30] (binary robust invariant79

scalable keypoints) or FREAK [2] (fast retina keypoint). All of these descriptors have80

quite different invariance properties (evaluated either in a theoretical or experimental81

framework).82

Long before the design of these image descriptors, the question of a minimal83

representation of an image was thoroughly studied, mainly for compression purpose.84

Through the concept of raw primal sketch, Marr [39] suggested that the human visual85

system processes images by retaining essentially the lines of zero-crossing of the Lapla-86

cian at several scales. This leads to the conjecture that an image is uniquely defined87

by these zero-crossing lines, a conjecture that was later precised by Mallat [38] using88

wavelet modulus maxima. Both these conjectures were proved wrong by Meyer [41]89

but still, algorithms for approximate reconstruction were proposed by Hummel and90

Moniot [24] for zero-crossings and by Mallat and Zhong [38] for the case of wavelet91

modulus maxima. Besides, unique characterization can be shown to be true under92

some additional hypotheses [12, 13, 56, 4, 3].93

From a more practical point of view, several authors have raised the question of94
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inversion of a feature-based representation. For example, Elder and Zucker [20] pro-95

posed an algorithm for image reconstruction from detected contours, based on the heat96

diffusion. Nielsen and Lillholm [50] consider the problem of variational reconstruc-97

tion from linear measurements; in addition to the minimum variance reconstruction98

(given by the pseudo-inverse of the measurements matrix), they propose two varia-99

tional reconstructions based on either the entropy (of the image seen as a probability100

distribution on its domain) or the H1 norm. Interestingly, they discuss the problem101

of extracting a subset of linear measurements which leads to the best reconstruction102

and empirically compare three different strategies for that purpose.103

Motivated by privacy issues (since the descriptors may be transmitted on an104

unsecured network), Weinzaepfel et al. [64] addressed image reconstruction from the105

output of a SIFT transform adapted with elliptic keypoints. One important difference106

with previous works is that this method exploits a database of image patches: for107

each keypoint, a patch with similar description is looked for in the database, and108

all the patches are stitched together with Poisson image editing [52]. Vondrick et109

al. [62] address reconstruction from dense HOGs by relying on a paired dictionary110

representation of HOGs and patches. Also, d’Angelo et al. [15] address reconstruction111

from local binary descriptors by relying on primal-dual optimization techniques; in112

contrast with [64, 62], this method does not need any external information. Kato113

and Harada [27] formulate reconstruction from bag of visual words as a problem of114

quadratic assignment. Finally, Juefei-Xu and Savvides [25] propose to invert the115

LBP representation with an approach based on paired dictionary learning with an `0116

constraint.117

More recently, the success of deep convolutional neural networks in image classi-118

fication [28, 67] has urged the need of inverting the corresponding representations in119

order to intuitively understand the kind of information that is extracted at each layer.120

Even if they do not formulate it as an inverting procedure, Zeiler and Fergus [67] pro-121

posed to build a deconvolution network that allows to visualize in image space the122

stimuli that excite one response at a particular layer of the neural network. Given an123

image u, Mahendran and Vedaldi [35, 36] proposed to search for a pre-image of an124

image representation ϕ(u) by minimizing a functional containing a loss term related125

to the representation ϕ and a regularizing term (in particular the H1 norm). Even if126

the regularizer is convex, the transformation ϕ is in general highly non-linear so that127

the resulting optimization problem is not convex; so the output of the inversion may128

depend on the parameters and initializations of the chosen optimization procedure.129

On the other hand, Dosovitskiy and Brox [19] suggest to learn an approximate left in-130

verse of the representation (i.e. a mapping ϕ−1
L such that ϕ−1

L (ϕ(u)) ≈ u for every u)131

in the form of an up-convolutional network. These methods are generic in the sense132

that they can be applied to any image representation that can be approximated by133

the output of a convolutional neural network; in particular, the authors of [19] display134

inversion results for both HOG, SIFT and AlexNet [28] representations. Notice that135

the inversion/visualization techniques of [67, 19] exploit an external database while136

the one of [35, 36] does not.137

Instead of building a uniquely defined inversion technique (using regularization),138

another way to perform reconstruction from the image representation ϕ is to sample139

from a stochastic model that explores the set of pre-images of ϕ(u). This is particu-140

larly relevant if one uses an image representation that is not invertible: for example,141

the SIFT cells of an image may not cover its whole domain and thus many images142

could have the same SIFT descriptors. Besides, the HOG descriptors are inherently143

of a statistical nature: each HOG extracts the distribution of gradient orientations144
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4 A. DESOLNEUX, A. LECLAIRE

in one small area. Thus they only provide a locally pooled information and thus do145

not precisely constrain each gradient value. For this reason, the inversion by direct146

(regularized) optimization proposed in [35, 36] is not adapted to the usual SIFT rep-147

resentation (sometimes called sparse SIFT as opposed to SIFT descriptors computed148

on a dense grid).149

One way to address this problem is to sample from the maximum entropy model150

that complies with these statistical constraints. Such maximal entropy models were151

considered by Zhu, Wu and Mumford in [69, 47] for texture modelling based on re-152

sponses to an automatically selected subset of filters chosen in a filter bank. This153

approach has been recently extended by Lu, Zhu and Wu to responses to a pre-154

trained neural network [34]. Maximum entropy models were also used to question the155

noise models used in the a contrario framework for feature detections in images [18]:156

in [16], for two types of given detections (cluster of points, or line segments), Desol-157

neux proposes explicit computations of maximal entropy image models that lead to158

the same detections (in average). Let us emphasize that one important difference159

with previous works is that, more than reconstructing the original image, we aim at160

exploring the set of images with similar HOG description at the keypoints positions,161

with the least possible a priori of what the reconstruction should look like. In con-162

trast, the dependence on an external database in [52, 19] poses a strong a priori on163

the reconstruction.164

In the present paper, we propose two stochastic models that complies with sta-165

tistical features given by a SIFT-like representation. In order to derive explicit com-166

putations, we work on a simplified SIFT transform which extracts multiscale HOGs167

from regions around the (usual) SIFT keypoints. The first model, called MaxEnt, is168

indeed an instance of maximum entropy model which complies with local statistical169

constraints on the gradient orientations (at scale 0, i.e. the image scale). Once the170

parameters of this model are estimated (using a gradient descent), a target gradient171

orientation can be sampled, and we recover an image by solving a classical Poisson172

problem. The second model, called MS-Poisson, consists in first independent sam-173

pling of multiscale gradient orientations in all the SIFT cells, and next merging all174

the pieces by solving a global multiscale Poisson problem. Even if this model does not175

solve an explicit maximum entropy problem, it allows to coherently merge information176

given at several scales. Several experiments show that both these models are able to177

recover large image structures and compare well to the results of [64] while not using178

any external information. Finally, we discuss the definition of the SIFT keypoints in179

terms of optimality of reconstruction, thus raising the following question related to180

visual information theory: “Can we measure the optimality (at fixed memory budget)181

of some image descriptor in terms of reconstruction?”182

The paper is organized as follows. In Section 2, we briefly recall the main steps183

of the SIFT method, and explain the simplified SIFT descriptors that we use for184

reconstruction. In Section 3, we build and study the maximum entropy model (Max-185

Ent) used for reconstruction from monoscale HOGs computed in the SIFT subcells.186

In Section 4, we propose the multiscale Poisson model (MS-Poisson) that allows to187

comply with multiscale HOGs taken in the SIFT subcells; the corresponding H1-188

regularized multiscale Poisson problem is explicitly solved. Finally, in Section 5 we189

display several reconstruction results obtained with both models (applied with sim-190

plified SIFT, or also the true SIFT), study the variability of the reconstruction (in191

terms of first and second order moments, but also of SIFT keypoints computed on the192

reconstruction). We also compare with other existing reconstruction techniques and193

apply the reconstruction models on other keypoint sets, thus confirming (from the194
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synthesis perspective) the efficiency of the SIFT method for global image description.195

Finally in Section 6 we conclude the discussion proposed in this paper and open some196

perspectives for future research. A preliminary version of this work was published as197

a conference paper in [17]. Compared to the conference version, here we explain in198

more details the derivation of MaxEnt and MS-Poisson models and we provide some199

more properties of these models and in particular explicit formulae for the first and200

second order moments of these models. We also propose several new experiments201

which illustrate the performance and the variability of these models (with qualitative202

and quantative evaluation) and question the role of the keypoint definition in the203

quality of reconstruction.204

2. A Brief Summary of the SIFT Method. In this section we briefly recall205

the construction of keypoints and local descriptors used in the SIFT method, and we206

explain the simplified descriptors that will be later used for the reconstruction in the207

next sections.208

2.1. Gaussian Scale-Space and Keypoints. Following [31], we introduce the209

Gaussian scale-space in a continuous domain. Let u : R2 → R be an integrable210

function. For σ > 0, we introduce the function gσ : R2 → R defined by211

gσ(x) =
1

2πσ2
exp

(
−|x|

2

2σ2

)
.212

The Gaussian scale-space associated with u is then defined by the convolution213

∀x ∈ R2, ∀σ > 0, Lu(x, σ) = gσ ∗ u(x) =

∫
R2

gσ(y)u(x− y)dy.214

Another way to parameterize the scale-space is to use a time parameter t = σ2215

and the kernel kt = g√t which satisfies216

∂

∂t
(kt(x)) =

1

2
∆kt(x).217

In other words, (x, t) 7→ Lu(x,
√
t) is the solution of the heat equation on R2 with218

initial condition u (in particular, it is a C∞ function on R2 × (0,∞)).219

Then we consider the scale-normalized Laplacian of Gaussian σ2∆gσ. The PDE220

satisfied by kt gives after change of variables that221

σ
∂gσ
∂σ

(x) = σ2∆gσ(x) =

(
|x|2 − 2σ2

2πσ4

)
exp

(
−|x|

2

2σ2

)
.222

The detection of keypoints will be based on the local extrema of the function223

Du(x, σ) := σ2∆gσ ∗ u(x) = σ2∆(gσ ∗ u)(x).224

The following proposition which is recalled without proof shows that these key-225

points are covariant to several image transformations.226

Proposition 1 ([31]). We have the following invariance properties.227

1. ∀a ∈ R, Dau = aDu.228

2. If v is an affine function of x, then Du+v = Du.229

3. If h ∈ R2 and τhu(x) = u(x− h) is a translated version of u, then230

Dτhu(x, σ) = Du(x− h, σ).231
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6 A. DESOLNEUX, A. LECLAIRE

4. (Scale invariance) If u(x) = v(sx) with s > 0, for all x ∈ R2, then232

Du(x, σ) = Dv(sx, sσ).233

The existence of a keypoint (x, σ) indicates the presence of a blob-like structure234

at position x with scale σ. For example, the Gaussian function gs (s > 0) admits a235

keypoint (0, s) which corresponds to a strict local minimum of Dgs .236

The authors of [46] also discussed the effect of several other image transformations237

on the SIFT keypoints but left aside the factor σ2 in the definition of Du.238

2.2. SIFT Summary. In the paper by Lowe [33], the scale-normalized LoG is239

approximated by a finite difference of Gaussian functions: for a constant scale factor240

k > 1, he considers instead241

(1) (x, σ) 7→ (gkσ − gσ)(x) ≈ (kσ − σ)
∂gσ
∂σ

(x) = (k − 1)σ2∆gσ(x).242

Also, the practical implementation of [33] only works with discretized images, so that243

the extracted keypoints are actually strict local extrema computed on a discretized244

scale-space.245

Here is a quick summary of the original SIFT method [33]. For technical details246

we refer the reader to [54]. Here, and in the remaining of the paper, u0 refers to the247

original image on which we compute keypoints and local descriptors.248

1. Computing SIFT keypoints:249

(a) Extract local extrema of a discrete version of (1).250

(b) Refine the positions of the local extrema in position and scale using a251

quadratic approximation.252

(c) Discard extrema with low contrast (thresholding low values of (1)) and253

extrema located on edges (thresholding high values of the ratio between254

Hessian eigenvalues).255

2. Computing SIFT local descriptors associated with the keypoint (x, σ):256

(a) Compute one or several principal orientations α. For that, in a square257

of size 9σ×9σ centered at x (and parallel to the image axes), compute a258

smoothed histogram of orientations of∇gσ∗u0, and extract its significant259

local maxima.260

(b) For each detected orientation α, consider a grid of 4× 4 square regions261

around (x, σ). These square regions, which we call SIFT subcells, are262

of size 3σ × 3σ with one side parallel to α. In each subcell compute the263

histogram of Angle(∇gσ ∗u0)−α quantized on 8 values (`π4 , 1 ≤ ` ≤ 8).264

(c) Normalization: the 16 histograms are concatenated to obtain a feature265

vector f ∈ R128, which is thresholded and normalized266

(2) fk ← min(fk, 0.2‖f‖2) , fk = min

(
255,

⌊
512

f

‖f‖2

⌋)
267

and finally quantized to 8-bit integers.268

When computing orientation histograms in steps 2(a) and 2(b), each pixel votes269

with a weight that depends on the value of the gradient norm at scale σ and on its270

distance to the keypoint center x. Also in step 2(b), there is a linear splitting of the271

vote of an angle between the two adjacent quantized angle values.272

2.3. Keypoints and Descriptors used in our method. In the reconstruction273

models proposed in this paper, we work with images defined on a rectangle Ω ⊂ Z2 and274
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STOCHASTIC IMAGE MODELS FROM SIFT-LIKE DESCRIPTORS 7

Fig. 1. Examples of SIFT keypoints and subcells. On the left, one can see an original image
(Courtesy of J. Delon) with overimposed SIFT oriented keypoints (x, σ, α) represented as arrows
originating from x, with orientation α and length 6σ. On the right, we display the 16 SIFT subcells
associated with one particular keypoint. Each subcell is of size 3σ × 3σ.

we consider the oriented keypoints extracted by the original SIFT method. However,275

we will only work with simplified SIFT descriptors in the sense that we extract hard-276

binned histograms of gradient orientations at several scales. In other words, we do277

not include the vote weights nor the normalization step 2(c).278

We thus denote by (sj)j∈J the collection of SIFT subcells, sj ⊂ Ω (if a 3σ × 3σ279

subcell is not entirely contained in Ω, then we replace it with its intersection with Ω).280

The SIFT subcells must not be confounded with the SIFT cells: in a SIFT cell, there281

are 16 SIFT subcells so that different subcells sj can correspond to the same keypoint.282

We will denote by (xj , σj , αj) the oriented keypoint associated with sj . For y ∈ Ω, we283

denote by J (y) = {j ∈ J | y ∈ sj} the set of indices of SIFT subcells containing y.284

See Fig. 1 for an illustration.285

For technical reasons, the statistics that are used in the two proposed models are286

slightly different: the MaxEnt model of Section 3 works on orientations at scale 0287

whereas the MS-Poisson model of Section 4 works on orientations computed at mul-288

tiple scales. For that reason, we postpone to the next sections the definition of the289

extracted statistics.290

3. Stochastic Models for Gradient Orientations. In this section, we pro-291

pose a model for generating random images constrained to have prescribed local HOGs292

in the SIFT subcells. When designing such a model, the main difficulty arises from293

the fact that several SIFT subcells can overlap, and thus one has to combine the294

information available in all corresponding local HOGs in a way that finally complies295

with all the statistical constraints. In order to cope with this issue, we exploit the296

framework of exponential distributions to design stochastic orientation models with297

prescribed statistical features. The obtained distribution is “as uniform (random) as298

possible” in the sense that it is of maximal entropy among all absolutely continuous299

distributions which satisfy the desired constraints. We combine this random orienta-300

tion field with a deterministic magnitude (which is computed with the scales of locally301

available keypoints) in order to obtain a random objective vector field for the gradi-302

ent. Finally we solve a Poisson reconstruction problem in order to get back a random303

image whose gradient is as close as possible as the randomly sampled objective vector304

field.305
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3.1. Exponential Models with local HOG. Recall that Ω ⊂ Z2 is a discrete306

rectangle. We will denote by T = R/2πZ the set of angles, and TΩ the set of all307

possible orientation fields θ = (θ(x))x∈Ω on Ω.308

Extracted Statistics. For simplicity, in contrast with the usual SIFT method,309

in this section we only extract gradient orientations at scale 0 and besides we adopt310

the same quantization bins for all SIFT subcells311

(3) B` =
[
(`− 1)π4 , `

π
4

)
, (1 6 ` 6 8)312

(i.e. we do not adapt quantization to the principal orientation of the keypoint).313

For all j ∈ J and 1 6 ` 6 8, we thus consider the real-valued function defined on314

orientation fields by315

(4) ∀θ ∈ TΩ, fj,`(θ) =
1

|sj |
∑
x∈sj

1B`(θ(x)).316

Thus fj,`(θ) is the proportion of points x ∈ sj having their orientation θ(x) in B`.317

Maximum Entropy Distribution. We are then interested in probability dis-318

tributions P on TΩ such that319

(5) ∀j ∈ J ,∀` ∈ {1, . . . , 8}, EP
(
fj,`(Θ)

)
=

1

|sj |
∑
x∈sj

P(θ(x) ∈ B`) = fj,`(θ0) ,320

where θ0 = Angle(∇u0) is the orientation field of the original image u0, and where321

Θ is a random orientation field with probability distribution P . In other words, we322

look for a random model on orientation fields which preserves in average the extracted323

statistics in the SIFT subcells, see Fig. 2.324

Let us emphasize here that we only aim at average preservation of the extracted325

statistics (fj,`) because of the statistical nature of the SIFT descriptors. As will326

be clarified with the expression of the MaxEnt model (in particular in the case of327

non-overlapping SIFT subcells), this average preservation guarantee is sufficient to328

precisely set the gradient orientation distribution at each point.329

There are many probability distributions P on TΩ that satisfy (5), and we will be330

mainly interested in the ones that are at the same time as “random” as possible, in the331

sense that they are of maximal entropy. The following theorem shows the existence332

of such maximal entropy distributions.333

Theorem 2. There exists a family of numbers λ = (λj,`)j∈J ,16`68 such that the334

probability distribution335

(6) dPλ =
1

Zλ
exp

(
−
∑
j,`

λj,`fj,`(θ)

)
dθ,336

where the partition function Zλ is given by Zλ =
∫
TΩ exp

(
−
∑
j,` λj,`fj,`(θ)

)
dθ, sat-337

isfies the constraints (5) and is of maximal entropy among all absolutely continuous338

probability distributions w.r.t. the Lebesgue measure dθ on TΩ satisfying the con-339

straints (5).340

Proof. This result directly follows from the general theorem given in [47]. The341

only difficulty is to handle the hypothesis of linear independence of the fj,`. In our342

framework, the fj,` are not independent (in particular because
∑8
`=1 fj,` = 1, and also343
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Fig. 2. Extracting HOG in SIFT subcells. On the left, we display an original image (Courtesy
of J. Delon) with three overimposed SIFT subcells sj , and on the right, we display the corresponding
HOG (fj,`(θ0))16`68 extracted in these subcells. The MaxEnt model is a probability distribution on
orientation fields that will respect in average the local HOG extracted in the SIFT subcells.

because there may be other dependencies for instance when one subcell is exactly the344

union of two smaller subcells). But one can still apply the theorem to an extracted345

linearly independent subfamily. This gives the existence of the solution for the initial346

family (fj,`) (but of course not the unicity).347

Remark: We do not repeat here the argument (based on Lagrange multipliers) show-348

ing that maximizing entropy under constraints (5) leads to exponential distributions.349

However, once a solution Pλ has been computed, and if P is an absolutely continuous350

probability distribution satisfying (5), one can write the Kullback-Leibler divergence351

using the entropy H(P ):352

(7) D(P ||Pλ) =

∫
log
( P (θ)

Pλ(θ)

)
P (θ)dθ = −H(P ) + logZλ +

∑
λj,`fj,`(θ0),353

which shows that maximizing H(P ) under (5) is equivalent to minimize D(P ||Pλ).354

In particular, this shows that the maximal entropy distribution under (5) is unique355

(because of the strict concavity of the entropy) even if there may be several sets of356

parameters λ corresponding to that solution.357

Independence Property of the MaxEnt Model.358

Proposition 3. Under Pλ the values Θ(x) are independent. Besides, the prob-359

ability density function of Θ(x) is given by360

(8)
1

Zλ,x
e−ϕλ,x =

1

Zλ,x

8∑
`=1

exp
(
−

∑
j∈J (x)

λj,`
|sj |

)
1B`361

362

(9) where Zλ,x =

8∑
`=1

exp
(
−

∑
j∈J (x)

λj,`
|sj |

)
|B`|.363

Proof. Taking the logarithm of (6), one can group the terms corresponding to the364

same pixel x so that365

(10) − log
dPλ
dθ
− logZλ =

∑
j∈J ,16`68

λj,`fj,`(θ) =
∑
x∈Ω

ϕλ,x(θ(x)),366
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10 A. DESOLNEUX, A. LECLAIRE

(11) where ϕλ,x =

8∑
`=1

( ∑
j∈J (x)

λj,`
|sj |

)
1B` .367

We thus obtain that Pλ can be written in a separable form.368

On the one hand, this proposition shows that for a given λ, one can easily sample369

from the model Pλ. On the other hand, it also allows to compute several statistics370

associated with this model. In particular, we can compute for any bounded measurable371

function ψ : T→ C372

(12) EPλ [ψ(Θ(x))] =

∑8
`=1 exp

(
−
∑
j∈J (x)

λj,`
|sj |

) ∫
B`
ψ(t)dt∑8

`=1 exp
(
−
∑
j∈J (x)

λj,`
|sj |

)
|B`|

373

It also allows to compute the expected value of the statistics f(Θ) in the model Pλ374

(which will be useful in Section 3.3)375

(13)

EPλ [fj,`(Θ)] =
1

|sj |
∑
x∈sj

P(Θ(x) ∈ B`) =
1

|sj |
∑
x∈sj

exp
(
−

∑
k∈J (x)

λk,`
|sk|

)
|B`|∑

16`′68 exp
(
−

∑
k∈J (x)

λk,`′
|sk|

)
|B`′ |

.376

But it remains to show how to estimate λ in order to satisfy the constraints (5).377

These constraints can be rewritten as378

(14) ∀j, `,
∑
x∈sj

1

Zλ,x
exp

(
−

∑
k∈J (x)

λk,`
|sk|

)
|B`| = |{x ∈ sj ; θ0(x) ∈ B` }| .379

Notice that this system is highly non-linear and is in general difficult to solve.380

A simple case: non-overlapped SIFT subcells. When a SIFT subcell sj is381

not overlapped, then we have for any x ∈ sj , |J (x)| = 1 and therefore382

(15) Zλ,x =

8∑
`=1

exp
(
− λj,`
|sj |

)
|B`|.383

Then (14) gives384

(16) ∀`, 1

Zλ,x
exp

(
− λj,`
|sj |

)
=
|{x ∈ sj ; θ0(x) ∈ B` }|

|sj ||B`|
= fj,`(θ0),385

which gives the marginal distribution on any x ∈ sj :386

(17)
1

Zλ,x
e−ϕλ,x =

8∑
`=1

|{x ∈ sj ; θ0(x) ∈ B` }|
|sj ||B`|

1B` =

8∑
`=1

fj,`(θ0)
1

|B`|
1B` .387

So when the subcells do not overlap, the maximum entropy distribution only amounts388

to independent resampling of the local HOGs, as expected. Notice that we indeed389

obtain a unique maximal entropy distribution. However, the solutions λ are only390

unique up to the addition of a constant: indeed the last calculation shows that for a391

non-overlapped subcell sj , there exists a constant cj > 0 such that392

(18) ∀`, λj,` = −|sj |(log fj,`(θ0) + log cj).393
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Maximum-likelihood estimation. If the SIFT subcells intersect, there is no394

explicit solution anymore. To cope with that, as in [69] we use a numerical scheme395

to find the maximum entropy distribution Pλ. The solution can be obtained with a396

traditional maximum likelihood estimation technique, as will be detailed here. Indeed,397

the minus-log-likelihood function can be written as398

(19) Φ(λ) = logZλ +
∑
j,`

λj,`fj,`(θ0).399

The gradient of Φ can be obtained by differentiating the partition function400

(20)
∂ logZλ
∂λj,`

=
1

Zλ

∂Zλ
∂λj,`

= −EPλ
[
fj,`(Θ)

]
,401

which gives402

(21)
∂Φ

∂λj,`
= fj,`(θ0)− EPλ

[
fj,`(Θ)

]
.403

Notice that ∇Φ(λ) = 0 if and only if Pλ satisfies the constraints (5).404

Similarly, we can also obtain the second order derivatives405

(22)
∂2Φ

∂λj,`∂λj′,`′
= EPλ

[(
fj,`(Θ)− EPλ [fj,`(Θ)]

)(
fj′,`′(Θ)− EPλ [fj′,`′(Θ)]

)]
.406

One can observe that this Hessian matrix ∇2Φ(λ) is actually the covariance of the407

vector f(Θ) when Θ has distribution Pλ. In particular it is a semi-positive definite408

matrix, which shows that Φ is a convex function. The global minima of Φ are exactly409

the points λ where ∇Φ vanishes, which is equivalent to have the constraints (5) on Pλ.410

Therefore, we can compute the solution Pλ by a gradient descent algorithm in411

order to minimize Φ. The complete algorithm is summarized in Section 3.3. Since Φ is412

not strictly convex, we will not have a guarantee of convergence on the iterates, but on413

the function values. Since |fj,`(θ)| 6 1, it is straightforward to see that all coefficients414

of the Hessian ∇2Φ(λ) have modulus 6 1. Therefore, the `2 operator norm of ∇2Φ415

is bounded by 8|J |, which implies that ∇Φ is L-Lipschitz with L = 8|J |. Writing416

λk the iterates of the gradient descent with constant step size h < 2
L , [49, Th 2.1.14]417

gives418

(23) Φ(λk)−min Φ = O
(1

k

)
.419

Let us also mention that since Φ is convex smooth, it would be possible to use420

higher-order optimization schemes to minimize Φ. However, Newton’s method will be421

in general too costly because of the dimension of the system and because the Hessian422

may be ill-conditioned.423

3.2. Monoscale Poisson Reconstruction. Now that we have built a random424

orientation field Θ with maximum entropy distribution Pλ, we will use it to propose425

a target vector field V for the image gradient. More precisely, we set the gradient426

magnitude at x in a deterministic manner, as the inverse scale of the smallest subcell427

that covers x. For pixels x which lie outside the SIFT subcells, we set V (x) = 0.428

This choice allows to give more weight to the locations for which we have information429

at finer scale. It is also motivated by the following homogeneity argument. Assume430
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that u : R2 → R has a keypoint (x, σ) and for a > 0 let v(y) = u(ya ). Then, thanks to431

Proposition 1, v has a keypoint (ax, aσ). Let us compare the mean gradient magnitude432

at scale σ in the corresponding subcell s to the analogous quantity for v. A simple433

computation shows that434

1

|as|

∫
λs

|∇gaσ ∗ v(y)|dy =
1

a

1

|s|

∫
s

|∇gσ ∗ u(y)|dy,435

so that the mean gradient magnitude in the subcell is multiplied by 1
a with the change436

of scale. From this calculation we get the following remark: if two very similar shapes437

(with similar graylevels) are seen in the image at two different scales with ratio a, then438

we can obtain a pairwise matching of their SIFT keypoints, and the ratio between the439

mean gradient magnitude of the two matched subcells is 1/a. Of course this remark440

does not extend to the comparison of two SIFT subcells with very different geometric441

content, but it still provides a general rule for fixing the gradient magnitude as the442

inverse of the scale. Therefore, we get the random objective vector field443

(24) ∀x ∈ Ω, V (x) =
(

max
j∈J (x)

1

σj

)
eiΘ(x)1J (x) 6=∅.444

The aim of the Poisson reconstruction is to compute an image whose gradient is445

as close as possible to the vector field V = (V1, V2). In the case of image editing,446

this technique has been proposed by Pérez et al. [52] in order to copy pieces of an447

image into another one in a seamless way. More precisely, the goal is to minimize the448

functional449

(25) F (u) =
∑
x∈Ω

‖∇u(x)− V (x)‖22.450

Since F (c + u) = F (u) for any constant c, we can impose
∑
x∈Ω u(x) = 0. Thus we451

set452

(26) U = Argmin{F (u) ; u : Ω→ R and such that
∑
x∈Ω

u(x) = 0}.453

If we use periodic boundary conditions for the gradient, we can solve this problem454

with the Discrete Fourier Transform [44]. Indeed, if we use the simple derivation455

scheme based on periodic convolutions456

(27) ∇u(x) =

(
∂1 ∗ u(x)
∂2 ∗ u(x)

)
where

{
∂1 = δ(0,0) − δ(1,0)

∂2 = δ(0,0) − δ(0,1)
,457

the problem can be expressed in the Fourier domain with Parseval formula since458

F (u) =
1

|Ω|
∑
ξ

|∂̂1(ξ)û(ξ)− V̂1(ξ)|22 + |∂̂2(ξ)û(ξ)− V̂2(ξ)|22.(28)459

460

Thus, for each ξ we have a barycenter problem which is simply solved by461

(29) ∀ξ 6= 0, Û(ξ) =
∂̂1(ξ)V̂1(ξ) + ∂̂2(ξ)V̂2(ξ)

|∂̂1(ξ)|2 + |∂̂2(ξ)|2
and Û(0) = 0.462

Let us emphasize (with the capital letter U) that the solution of this problem is463

random because the target field V is random.464
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Using the notation ∇ = (∂1, ∂2)T , ∇̂ = (∂̂1, ∂̂2)T , z∗ = z̄T , we can write465

(30) Û(ξ) = ν̂(ξ)V̂ (ξ) where ν̂(ξ) =

{
∇̂(ξ)∗

|∇(ξ)|2 if ξ 6= 0

0 if ξ = 0
.466

Notice that ν̂(ξ) ∈ C1×2 and V̂ (ξ) ∈ C2×1 so that (30) is equivalent to467

(31) U = ν ∗ V = ν1 ∗ V1 + ν2 ∗ V2.468

In other words, ν is the (vector-valued) convolution kernel associated to the Poisson469

reconstruction. This expression allows to compute the moments of the random field470

U (see also Section 4.3 for a detailed more general calculation).471

3.3. Algorithm. Here we summarize the algorithm for estimating and sampling472

the MaxEnt model proposed in this section. In Fig. 3 we display an example of473

reconstruction with the MaxEnt model.474

Algorithm: Estimating and Sampling the MaxEnt Model

• Maximum-likelihood estimation of λ
– Compute the observed statistics f(θ0) = (fj,`(θ0))j,`.
– Initialization λ← 0. Choose a step size h < 4

|J | .

– For N(= 10000) iterations, compute f̄ = EPλ [f ] using (13) and set

λ← λ− h(f(θ0)− f̄).

• Draw a sample θ according to the distribution Pλ.
• Compute the corresponding target vector field

(32) V (x) =
(

max
j∈J (x)

1

σj

)
eiθ(x)1J (x) 6=∅

• Compute a sample u of MaxEnt via the Poisson reconstruction (29).

For images having many SIFT keypoints in overlapping positions, this algorithm475

may be slow to converge as can be observed on the case of Fig. 3. This case is476

relatively simple because it has only 187 keypoints but this corresponds already to477

8 × 16 × 187 ≈ 24000 λj,` parameters to estimate. This is why we use a stopping478

criterion based on a maximal number of iterations.479

3.4. Discussion on MaxEnt Model. One drawback of MaxEnt is that the480

guarantee on the local distributions of orientations is lost after the Poisson recon-481

struction step. One way to cope with that would be to consider a model that operates482

directly on the image values, and not on the orientation field. Theorem 2 could be483

extended to statistics like484

(33) f̃j,`(u) =
1

|sj |
∑
x∈sj

1B`(Angle(∇u(x))).485

It is even possible to consider multiscale statistics using ∇gσj ∗ u instead of ∇u (as486

it will be the case in Section 4). But the analog of Proposition 3 would not hold for487

these models, so that sampling should rely on a Gibbs strategy. Its cost would be488
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Fig. 3. Reconstruction with the MaxEnt model. In the first row from left to right, we display
an original image with overimposed 187 oriented keypoints, a sample of the associated MaxEnt
model, and the expectation of the MaxEnt model. In the second row we display the evolution of Φ
along the iterates, and also the behavior of the difference between iterates ∆λk = λk − λk−1. The
value of Φ stabilizes in about 105 iterations. One can remark that both reconstructions show several
important structures of the original image. The mean reconstruction is of course smoother than a
sample of the model (because pixels are sampled independently, see Proposition 3).

clearly prohibitive in the multiscale case due to the large Markov neighborhood size.489

Even in the monoscale case the convergence of this Gibbs sampler may be very long490

depending on the parameters λ; and since we would need one sample per iteration of491

gradient descent to estimate λ, we chose to leave it aside and concentrate on models492

with reasonably fast sampling.493

Also, one can consider another orientation model in which the local HOGs are494

computed with a quantization that depends on the keypoint orientation. The inde-495

pendence property still holds for this model, and the marginal orientations still have496

a piecewise constant density, but the number of parameters would be much larger497

(there would be as many `’s as bins of a subdivision that is adapted to all keypoints498

orientations). Therefore this model is practically untractable, and also only of minor499

interest. Indeed, in view of the results of Fig. 3, it is likely that the used quantization500

has only a minor impact on the visual results (provided that we still have a minimal501

number of bins).502

4. Multiscale Poisson Model. In this section, we propose a stochastic model,503

called MS-Poisson, for reconstruction using multiscale local HOGs computed in SIFT504

subcells. This new model is based on a heuristic algorithm for orientation resampling505

in all SIFT subcells. Therefore, in contrast to the MaxEnt model, the MS-Poisson506

model can be straightforwardly sampled using the multiscale local HOGs, and does507

not require an iterative estimation procedure. Another difference is that MS-Poisson508

is designed to combine information at multiple scales, whereas MaxEnt only operates509

with the gradient at scale 0.510

4.1. Construction of MS-Poisson Model.511

Extracted Statistics. The MS-Poisson model is based on local statistics on512

multiscale gradient orientations. More precisely, in sj we extract the quantized HOG513
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at scale σj514

(34) Hj,` =
1

|sj |
∣∣{x ∈ sj ; Angle(∇gσj ∗ u0)(x)− αj ∈ [(`− 1)π4 , `

π
4 )
}∣∣.515

In view of resampling, this local HOG can be identified to a piecewise constant density516

function517

(35) hj =
4

π

8∑
`=1

Hj,`1[αj+(`−1)π4 ,αj+`
π
4 ).518

Notice that, in contrast to the statistics (4) used in the MaxEnt model, the quanti-519

zation here depends on the local orientation αj .520

Target Vector Fields at Multiple Scales. Using the local orientation distri-521

butions hj , we define vector fields Vj : Ω → R2 that will serve as objective gradients522

at scale σj in the SIFT subcell sj . We propose to set523

(36) ∀x ∈ Ω, Vj(x) =
1

σj
eiγj(x)1sj (x),524

where the orientations γj(x) are independently sampled according to the distribu-525

tion hj . Again, as justified in Section 3.2, we set the gradient magnitude in a deter-526

ministic way using the inverse of the scale σj . Once these vector fields Vj have been527

sampled, we obtain an image U by solving a multiscale Poisson problem as explained528

in the next paragraph.529

4.2. Multiscale Poisson Reconstruction. In order to simultaneously con-530

strain the gradient at several scales (σj)j∈J , we propose to consider the following531

multiscale Poisson energy532

(37) G(u) =
∑
j∈J

w(σj)
∑
x∈Ω

‖∇(gσj ∗ u)(x)− Vj(x)‖22,533

where gσ is the Gaussian kernel of standard deviation σ, Vj = (Vj,1, Vj,2)T is the534

objective gradient at scale σj , and {w(σj), j ∈ J } is a set of weights. In our applica-535

tion, since there are more keypoints in the fine scales (i.e. with small σj), and since536

the keypoints at fine scales are generally more informative, a reasonable choice is to537

take all weights w(σj) = 1. But we keep these weights in the formula for the sake of538

generality. We thus set539

(38) U = Argmin{G(u) ; u : Ω→ R and such that
∑
x∈Ω

u(x) = 0}.540

Again, with periodic boundary conditions, this problem can be expressed in541

Fourier domain as542

(39) G(u) =
1

|Ω|
∑
j∈J

∑
ξ

w(σj)
(
|ĝσj (ξ)∂̂1(ξ)û(ξ)− V̂j,1(ξ)|22 + |ĝσj (ξ)∂̂2(ξ)û(ξ)− V̂j,2(ξ)|22

)
.543

As for the monoscale Poisson problem, the solution U is still a barycenter given by544

Û(0) = 0 and545

(40) ∀ξ 6= 0, Û(ξ) =

∑
j∈J

w(σj)ĝσj (ξ)
(
∂̂1(ξ)V̂j,1(ξ) + ∂̂2(ξ)V̂j,2(ξ)

)
∑
j∈J

w(σj)|ĝσj (ξ)|2
(
|∂̂1(ξ)|2 + |∂̂2(ξ)|2

) .546
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Let us remark that in the above formula, we have ĝσj (ξ) ∈ R since gσj is even.547

Regularization. Notice that, depending on the finest scale, the denominator548

may numerically vanish in the high frequencies because of the term ĝσj (ξ) (as it is the549

case in a deconvolution problem). Therefore, it may be useful to add a regularization550

term controlled by a parameter µ > 0. Then, if we set551

(41) U = Argmin{G(u) + µ‖∇u‖22 ; u : Ω→ R and such that
∑
x∈Ω

u(x) = 0},552

then we get the well-defined solution U given by Û(0) = 0 and553

(42) ∀ξ 6= 0, Û(ξ) =

∑
j∈J

w(σj)ĝσj (ξ)
(
∂̂1(ξ)V̂j,1(ξ) + ∂̂2(ξ)V̂j,2(ξ)

)
µ+

∑
j∈J

w(σj)|ĝσj (ξ)|2
(|∂̂1(ξ)|2 + |∂̂2(ξ)|2

) .554

As we will see in Section 5.1, the parameter µ allows to attenuate the noise555

generated by the randomly sampled gradient fields in the fine scale SIFT subcells.556

We will see (empirically) that the value µ = 50 realizes a good compromise between557

recovered details and smoothness.558

We end this paragraph by summarizing the MS-Poisson sampling algorithm.559

Algorithm: Sampling the MS-Poisson Model

• In each subcell sj , draw independent orientations γj(x),x ∈ sj according to
the p.d.f. hj .

• Set Vj = 1
σj
1sje

iγj .

• Compute U by solving the MS-Poisson problem (41) with targets Vj , with
w(σj) = 1 and µ = 50.

Remark: In (42), one can observe that the solution to MS-Poisson actually solves a560

monoscale Poisson problem with objective vector field V whose Fourier transform is561

given by562

(43) V̂ (ξ) =

∑
j∈J

w(σj)ĝσj (ξ)V̂j(ξ)

µ+
∑
j∈J

w(σj)|ĝσj (ξ)|2
.563

4.3. First and Second Order Moments. In order to compute the statistics564

of the MS-Poisson model, we remark that the multiscale Poisson reconstruction is565

actually a linear process. Indeed, for each j, let νj : Ω → R1×2 be the vector-valued566

kernel defined by its discrete Fourier transform567

(44) ∀ξ 6= 0, ν̂j(ξ) =
w(σj)ĝσj (ξ)∇̂(ξ)∗µ+

∑
j′∈J

w(σj′)|ĝσj′ (ξ)|2
 |∇̂(ξ)|2

and ν̂j(0) = 0.568
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Then, as in Section 3.2 we get the convolutive expression569

(45) U =
∑
j∈J

νj ∗ Vj =
∑
j∈J

(
νj,1 ∗ Vj,1 + νj,2 ∗ Vj,2

)
.570

From this expression we can compute the moments of U . By linearity571

(46) E(U) =
∑
j∈J

νj ∗ E(Vj),572

so that computing this expectation only amounts to compute E(Vj) = 1
σj
1sjE(eiγj ).573

We can also compute the variance. Since the objective fields (Vj)j∈J are inde-574

pendent, we have575

(47) Var(U(x)) =
∑
j∈J

Var(νj ∗ Vj(x)).576

Also, the Vj(y) for different pixels y are independent so that577

Var(νj ∗ Vj(x)) = Var
(∑
y∈Ω

νj(x− y)Vj(y)
)

=
∑
y∈Ω

Var(νj(x− y)Vj(y))(48)578

=
∑
y∈Ω

νj(x− y)Cov(Vj(y))νTj (x− y)(49)579

=
∑
y∈Ω

ν2
j,1(x− y)Var(Vj,1(y)) + ν2

j,2(x− y)Var(Vj,2(y))(50)580

+ 2νj,1(x− y)νj,2(x− y)Cov(Vj,1(y), Vj,2(y)).(51)581582

Therefore the variance of this model can be obtained by summing convolutions of the583

kernels νj with the covariances of Vj . Since Vj(y) = 1
σj
eiγj(y)1sj where γj(y) has584

p.d.f. hj given by (34), we can explicitly compute its covariance.585

More generally, we can compute the covariance between two pixel values of U in586

a similar way, which gives587

(52) Cov
(
U(x), U(y)

)
=
∑
j∈J

∑
z∈Ω

νj(x− z)Cov(Vj(z))νTj (y − z).588

5. Results and Discussion. In this section, we give empirical evidence that589

both models MS-Poisson and MaxEnt are able to generate images that are similar590

to the original image in many aspects, which is confirmed by several quantitative591

results (in particular based on normalized correlations). We discuss the impact592

of the regularization parameter µ of the MS-Poisson model on the quality of the593

sampled images. We also compare MaxEnt and MS-Poisson in terms of local variance594

of the sampled images, and also in terms of resulting SIFT keypoints computed in the595

sampled images. After explaining how to adapt the MS-Poisson model to operate on596

true SIFT descriptors we compare with previous approaches of [64, 19]. Finally we597

discuss the impact of the keypoints definition on the quality of the reconstruction.598

5.1. Results with MaxEnt and MS-Poisson model.599
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5.1.1. Comparison between MaxEnt and MS-Poisson. Let us first com-600

pare the reconstruction results obtained with MaxEnt and with MS-Poisson. On601

Fig. 4, using an original image with 386 keypoints, we display a sample of MaxEnt602

and a sample of MS-Poisson, together with the expected images of these models. One603

first remark is that both models are able to retrieve several geometric structures of the604

original image, so that much semantic content of the image can still be understood.605

For both models, one can observe that the samples are very close to the expected606

image, which will be later confirmed by the variance analysis on Fig. 8.607

One crucial difference between MaxEnt and MS-Poisson is that they do not rely608

on the same gradient information. Indeed, MS-Poisson exploits gradients extracted609

at multiple scales while MaxEnt only operates with gradients at scale σ = 0 (i.e.610

the same scale as the image). This is why the results obtained with MS-Poisson611

will generally look blurrier than the ones obtained with MaxEnt. Besides, because612

of the multiscale nature of the input of MS-Poisson, the corresponding optimization613

problem had to be regularized; and the adopted H1-regularization term is also a source614

of blur in the result. This is confirmed by Fig. 5 where we display several MS-Poisson615

reconstructions with varying regularization parameter µ. In Fig. 5 and in many other616

experiments, we observed that the parameter µ = 50 realizes a good compromise617

between preserving geometric structures and removing spurious oscillations.618

In the last row of Fig. 4, we also compare with the reconstructions obtained with619

the true gradient orientations (resp. multiscale gradient orientations) computed in620

the SIFT subcells and the gradient magnitude computed as in MaxEnt (resp. MS-621

Poisson). So the difference with MaxEnt (or MS-Poisson) is that local (multiscale)622

gradient orientations are not pooled in histograms but directly extracted pixelwise;623

in other words, there is no local resampling of the orientations. Thus, in some sense,624

these images are the best ones we could hope using Poisson reconstruction. Comparing625

these images with samples of MS-Poisson and MaxEnt precisely shows the effect of626

local resampling of the (multiscale) orientations; observe in particular the man’s face627

and also the folds of his t-shirt. These images thus correspond to much more precise628

reconstructions, but it is interesting to notice that in certain regions where attention629

will be focused (near the face e.g.), there are enough keypoints at fine scales in order630

to get back satisfying pieces of images even after local resampling. Also, one must631

keep in mind that the loss of the gradient magnitude information is in practice difficult632

to cope with and may force us to erroneously amplify the noise in the reconstruction.633

As one can see in the bottom left of Fig. 4, it is obvious if one tries to set the gradient634

magnitude to 1 in the global Poisson reconstruction.635

5.1.2. Quantitative evaluation. As mentioned in [15], there is no reliable cri-636

terion to quantitatively evaluate the quality of the result for such reconstruction prob-637

lems. In our context where only gradient orientations are extracted, it is reasonable638

to evaluate the reconstruction quality based on the normalized correlation to the in-639

put image (which is invariant under affine contrast change). If u, v : Ω → R are two640

images, the normalized correlation is defined as641

(53) r(u, v) =
1

|Ω|
∑
x∈Ω

(
u(x)− ū

σu

)(
v(x)− v̄

σv

)
∈ [−1, 1],642

where ū = 1
|Ω|
∑
x∈Ω u(x) and σ2

u = 1
|Ω|
∑
x∈Ω(u(x) − ū)2. On Fig. 4, for each re-643

sult we have indicated the normalized correlation value r. Surprisingly, the higher644

correlation values are attained with results linked to the MS-Poisson model (even if645

it only have access to HOG computed on a blurred gradient). Besides, the value646
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Original MS-Poisson Sample MaxEnt Sample
r = 0.7523 r = 0.5796

Keypoints MS-Poisson Mean MaxEnt Mean
r = 0.7568 r = 0.5807

Poisson global MS-Poisson Poisson
True orientations True MS orientations True orientations

r = 0.5239 r = 0.7910 r = 0.6155

Fig. 4. Reconstruction results with MaxEnt and MS-Poisson models. In the first column
we display an original image, the corresponding oriented keypoints, and the Poisson reconstruction
with true gradient orientations of the whole image and magnitude set to 1. In the second column
we display a sample of the MS-Poisson model, the expectation of this model, and the multiscale
Poisson reconstruction using the true multiscale gradient orientations in the SIFT subcells. In the
third column, we display a sample of the MaxEnt model, the expectation of this model, and the
Poisson reconstruction using the true gradient orientations in the SIFT subcells. For each result we
indicate the value of the normalized correlation r with respect to the original image. See the text for
comments on these results. (Images are better seen on the electronic version)

attained by the samples (or mean) of MS-Poisson is close to the one obtained with647

the true multiscale HOGs. In contrast, the correlations obtained with the MaxEnt648

model are lower. This is better explained by the results of Fig. 6 in which we display649

values of local normalized correlations obtained with both models: for each pixel x650

we extract patches px(u), px(v) of compared images u, v and we compute the nor-651

malized correlation r(px(u), px(v)). On the one hand, MaxEnt result is everywhere652

much noisier (because gradient orientations are sampled independently). On the other653

hand, the regularization involved in MS-Poisson helps to propagate good correlations654

values in regions located near SIFT subcells. Also, this criterion based on normalized655
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µ = 0.01 µ = 0.1 µ = 1
r = 0.5693 r = 0.70723 r = 0.74758

µ = 50 µ = 100 µ = 1000
r = 0.75229 r = 0.74938 r = 0.73518

Fig. 5. Influence of the regularization parameter µ in MS-Poisson. As expected, increasing
µ penalizes more the L2-norm of the gradient and thus makes the image blurrier. Here again we
indicate the value of the normalized correlation r with respect to the original image. We empirically
observed that a good compromise between recovered details and smoothness is often attained around
µ = 50. (Images are better seen on the electronic version)

correlation confirms the choice for the regularization parameter µ = 50, see Fig. 5.656

Another interesting way of performing quantitative evaluation in our context is657

to compare the HOG computed in the SIFT subcells to the ones of the original image.658

For each subcell, we can compute histograms Hu, Hv of gradient orientations (with 8659

bins) for the images u, v and then compute the total variation distance between these660

histograms, defined as 1
2

∑8
`=1 |Hu(`) − Hv(`)| ∈ [0, 1]. Again, we use gradients at661

scale 0 when considering the MaxEnt model, and scaled gradients when considering662

the MS-Poisson model. We can then average the HOG distances obtained for all SIFT663

subcells, weighted by the number of pixels in each subcell. With this methodology, for664

the image of Fig. 4, we obtain a mean distance around 0.27 for MS-Poisson and 0.16665

for MaxEnt. This value is lower for MaxEnt because the model is inherently made to666

satisfy the HOG constraint. One can better understand these results by examining the667

orientation fields of both models, as proposed in Fig. 7, in particular the effect of the668

final Poisson reconstruction (keeping in mind that MS-Poisson can also be written669

with a single objective vector field given by Eq. (43)). In this figure, one clearly670

observes that the objective vector field for MS-Poisson is already very smooth (and671

certainly too smooth to account for fine local variations in orientation). In constrast672

the objective vector field for MaxEnt better accounts for the fine variations, but is673

much noisier, even after the Poisson reconstruction step.674

5.1.3. Second order statistics. As we have seen in Section 4.3, it is possible675

to compute the second order statistics of the reconstructed image in each model. In676

Fig. 8 we display the standard deviations of all pixels values in each model. One first677

remark is that MaxEnt has in general much larger variance than MS-Poisson which can678

be explained by the fact that the output of MS-Poisson is in some sense a weighted679
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MS-Poisson sample 5× 5 9× 9

MaxEnt sample 5× 5 9× 9

Fig. 6. Comparison between MS-Poisson and MaxEnt with local normalized correlations.
On the left column we display samples of the models MS-Poisson and MaxEnt. On the other columns,
we display the local normalized correlation of the sample (first column) with respect to the original
image. The local normalized correlations are computed on patches of size 5×5 and 9×9, with values
in [−1, 1]. See the text for comments. (Images are better seen on the electronic version)

average of many local reconstructions. Also it is interesting to see that the image680

regions with larger variance are located in the SIFT subcells which contain sharp681

geometric details. That being said, the variance of both these models is relatively682

small compared to the global range of the mean image, which indicates that both683

these models have quite small variations around the mean.684

5.1.4. Discard boundary keypoints. Let us emphasize that in our experi-685

ments, we used all the keypoints computed by the SIFT methods and we did not686

discard keypoints located near the image boundaries. The positions of the corre-687

sponding local extrema in the normalized scale-space are indeed highly dependent on688

the boundary conditions used to compute the scale-space. This explains why SIFT689

keypoints near the image boundaries are often discarded for particular applications,690

e.g. image matching. In our reconstruction problem, there is no reason to discard such691

keypoints, and we use the information available in SIFT subcells as soon as they in-692

tersect the image domain (if the SIFT subcell is not entirely contained in the domain,693

we consider only the pixels in the intersection of the subcell and the domain). But694

still, it is clear that for some images, the reconstruction will be quite different when695

discarding those keypoints. For example in the case of Fig. 9, if boundary keypoints696

are discarded, then several parts of the man’s body are not as properly retrieved in697

the reconstruction, thus affecting the semantic understanding of the image.698

5.1.5. Matching keypoints between the original and reconstructed im-699

ages. Finally, it is interesting to compare the keypoints computed on the original700

image and the ones computed on several samples of the models. As one can see on701

Fig. 10, we get back similar keypoints in many regions of the image, but still with some702
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Original MaxEnt MS-Poisson

Objective Objective

Orientations Orientations Orientations

Fig. 7. Orientation fields of the original and reconstructions. On the left column we
display the original image (top) and the corresponding gradient orientations (bottom). On column
2 (MaxEnt) and column 3 (MS-Poisson), we display the orientation of the objective vector field
(before Poisson reconstruction, top) and the orientation of the resulting gradient field (after Poisson
reconstruction, bottom). In the regions that are covered by several SIFT subcells, one can see that
the local HOGs are quite well preserved (especially for MaxEnt) even if the orientations are locally
shuffled. One can also observe that the Poisson reconstruction step smoothes slightly the orientation
field. (Images are better seen on the electronic version)

variations in positions, scales and orientations. In particular, we observe variations703

when taking different samples of the model (sometimes, some keypoints associated704

with low contrast regions may even disappear). Notice also that we get back less705

keypoints in the MS-Poisson model: indeed, since it is more regular we loose some706

extrema in the scale-space. Besides, the regularization tends to change the scale of707

the structures, thus the scales of the keypoints is often larger than in the original708

image.709

In order to give a more quantitative evaluation of the variations of the keypoints710

over different samples of the model, it is possible to use the matching algorithm avail-711

able with the online implementation [54] (we used the proposed default parameters).712

This algorithm follows the matching method proposed in [33] which essentially pairs713

SIFT keypoints by thresholding the ratio between the distances to the first and second714

nearest neighbors (computed with the `2-distance between SIFT descriptors). First715

we can comment on what happens when matching two different samples of the same716

model. For the MS-Poisson model, when matching the two samples shown in Fig. 10,717

among the 206 keypoints found on the first image (resp. 211 on the second image), 150718

keypoints are matched. The mean spatial distance (resp. mean scale variation, mean719

angle variation) between matched keypoints is about 0.54 (resp. 0.15, 0.050). Similar720

numbers can be given for the MaxEnt model, but in this case much less keypoints are721

correctly matched: over the 452 keypoints found on the first image (resp. 458 on the722
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STD in MS-Poisson MS-Poisson
(max = 0.51%× c) Mean (blue), STD (red)

STD in MaxEnt MaxEnt
(max = 48%× c) Mean (blue), STD (red)

Fig. 8. Standard deviations of MS-Poisson and MaxEnt models. On the top left we
display the original image. On the rest of the figure we display the images formed with the standard
deviations (STD) of the models MS-Poisson (first row) and MaxEnt (second row). On the second
column we display the raw STD values. On the third column, the red component corresponds to
the raw STD values (same as in the second column) and the blue component corresponds to the
mean image m = E(U) of the model (MaxEnt or MS-Poisson). Let us emphasize that for better
visualization the images of the second column are renormalized so that the white color corresponds
to the indicated maximum value (expressed as a percentage of the empirical standard deviation

c =
√
|Ω|−1

∑
m(x)2 − (|Ω|−1

∑
m(x))2 of the mean image m). These results clearly indicate that

the MS-Poisson model is much more concentrated around its expectation than MaxEnt. (Images are
better seen on the electronic version)

Fig. 9. Discard keypoints near image boundary. In this figure, we examine the effect of
discarding keypoints whose associated SIFT cell is not entirely contained in the image domain. The
displayed reconstructions are samples of the MS-Poisson model.

second image), only 184 are matched. This reflects again the larger variance of the723

MaxEnt model.724

More interestingly, we can try to match the SIFT keypoints between the original725

image and the reconstructions. Unfortunately, only a few SIFT points are properly726

matched this way: among the 477 keypoints found in the original image, around 10727

keypoints are properly matched in samples of the MS-Poisson model, and no keypoints728

are matched when comparing to a sample of MaxEnt. This shows that even if these729
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Original Samples of MS-Poisson Samples of MaxEnt

Fig. 10. Keypoints after reconstruction. In the first column we display an original image
and the same image with its SIFT keypoints. In the second column we display two samples of the
MS-Poisson model. In the third column we display two samples of the MaxEnt model. We display
the keypoints associated to these images as overimposed blue arrows. Notice that several keypoints
are retrieved after reconstruction, with still some variations in positions and orientations. Notice
also that we observe some variations in the keypoints associated to different samples of these models.
See the text for additional comments. (Images are better seen on the electronic version)

models are able to recover gradient orientations in a somehow blurry manner, this is730

not sufficient to precisely get back the content of SIFT descriptors. By the way, the731

fact that only 75% (resp. 50%) of the keypoints are matched between two samples732

of MS-Poisson (resp. MaxEnt) illustrates the sensitivity of the SIFT descriptors to733

small random perturbations.734

5.2. Reconstruction from true SIFT descriptors. The two models MS-735

Poisson and MaxEnt are designed to propose stochastic reconstructions of an image736

based on simplified SIFT descriptors, that is, multiscale HOGs extracted around the737

SIFT keypoints. But it is also possible to test these reconstruction models with the738

true SIFT descriptors. For that, for each keypoint, we still consider the location, scale739

and principal orientation, but, following the discussion of Section 2.2, starting from740

the normalized feature vector (fk) ∈ R128, we improperly build target histograms for741

the 16 corresponding SIFT subcells: for each p ∈ {1, . . . , 16}, to the corresponding742

p-th subcell sj we associate the discrete histogram743

(54) H̃j,` =
f16(p−1)+`∑8
`′=1 f16(p−1)+`′

(1 6 ` 6 8).744

We can thus sample the MS-Poisson model using the (H̃j,`) values as a substitute for745

the extracted multiscale HOG (Hj,`).746

On Fig. 11, we display several reconstruction results obtained with the model747

MS-Poisson based on the multiscale HOGs or the true SIFT descriptors. As could748
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be expected, the reconstruction results obtained with the true SIFT descriptors are749

not as good as the ones obtained from multiscale HOGs, in particular many fine scale750

structures are lost, and the shape of small objects is not recovered in a coherent way751

(see for example the wings in the butterfly image). However, large-scale structures752

of the image are still retrieved quite properly which often suffices to understand the753

semantic content of the image.754

In order to get sharper results, we should adapt the reconstruction models to755

account for the normalizations applied in the original SIFT method. It appears quite756

straightforward to adapt the models to histograms computed with linear votes (in-757

stead of binary votes). However, it seems much more difficult to cope with the final758

normalization and thresholding (see Equation (2)), which dramatically reduce the759

quantity of information. Also, in the true SIFT descriptors, the pixels vote for ori-760

entations values with a weight that is proportional to the gradient magnitude. This761

explains why it is difficult to retrieve the local HOG from the SIFT descriptors in the762

absence of any information about the local gradient magnitude.763

5.3. Comparison with previous works. In this paragraph, we propose to764

compare our reconstruction models with the ones obtained by the methods by Wein-765

zaepfel et al. [64] and Dosovitskiy & Brox [19]. One important difference between766

these two other approaches and ours is that our method relies only on the content767

provided in the SIFT subcells while these methods exploit an external database ei-768

ther to copy local information from patches with similar SIFT descriptors (as in [64])769

or to build an up-convolutional neural network for reconstruction (as in [19]). Thus770

our work has no intention to outperform these methods in terms of visual quality of771

reconstruction (in particular, our method has absolutely no possibility of recovering772

the color information). Notice that we cannot compare to the method of [36] which is773

adapted to “dense SIFT” (i.e. SIFT descriptors computed on a dense set of patches)774

and not “sparse SIFT” (i.e. SIFT descriptors computed around the keypoints).775

They are also minor differences in the extracted information because both these776

works do not rely on the original implementation of the SIFT method. The method777

of [64] actually uses “elliptic” interest regions (extracted using the Hessian-affine778

method by [42]) in which normalized multiscale HOG are computed (in the same779

way as in the original SIFT method). In contrast, Dosovitskiy and Brox use circular780

keypoints and descriptors that are computed with the VLFeat library [61]. But in781

order to apply an up-convolutional neural network to these features, they need to782

derive a grid-based representation of these features: the image is divided in 4 × 4783

cells and each cell containing a keypoint is being associated with the corresponding784

oriented keypoint and feature vector. If there is no keypoint, then they associate the785

zero vector, and if there are several keypoints they randomly choose one of them (see786

the details in [19, Section III]).787

One advantage of the MS-Poisson model, compared to the result of [64], is that it788

is defined through the minimization of the global MS-Poisson energy (37). Therefore,789

it produces images that are globally coherent while respecting as much as possible the790

local constraints given by the multiscale HOGs. In contrast, the result of [64] is clearly791

affected by stitching artifacts which are inherent to their reconstruction method. On792

the other hand, their method is able to copy pieces of clean patches so that their793

reconstruction looks locally sharper (but also noisier).794

However, the reconstructed images obtained in [19] are both globally coherent and795

quite sharp. Indeed, our method does not rely on an external database so it cannot796

compete with the one of [19], and in particular it cannot get back information which797
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r = 0.65 r = 0.56

r = 0.79 r = 0.79

r = 0.81 r = 0.72

r = 0.80 r = 0.77

r = 0.68 r = 0.66

r = 0.74 r = 0.57

r = 0.88 r = 0.83

r = 0.80 r = 0.71

r = 0.84 r = 0.78
Original Keypoints MS-HOG True SIFT

Fig. 11. Reconstruction results from multiscale HOG or SIFT descriptors with images of
the Live database [57]. For each row, from left to right, we display an original image, the same image
with overimposed SIFT keypoints, a sample of the MS-Poisson model obtained from multiscale HOG,
and a sample of the MS-Poisson model obtained from the true SIFT descriptors. Notice that the
reconstruction from true SIFT descriptors is less sharp but still recovers many geometric structures
of the initial image.
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Original MS-Poisson Mean

[Weinzaepfel et al., 2011] [Dosovitskiy & Brox, 2015]

Fig. 12. Comparison for SIFT reconstruction. In the first row we display the original image
and the reconstruction results obtained as the expectation of the MS-Poisson model computed on the
true SIFT descriptors (see Section 5.2). In the second row we display the results obtained with the
methods of [64] and [19]. Notice that the MS-Poisson model provides images that are blurrier but
also more globally coherent than the ones obtained by the method of [64]. However, this model does
not compete with [19] in terms of restitution and visual quality since it does not rely on any external
information.

are completely lost in the SIFT descriptors (global contrast, or also color information).798

5.4. Reconstruction with other keypoints. In this paragraph we question799

the very definition of the SIFT keypoints in terms of synthesis, in a similar way800

that what was done in [50]. Indeed, one can wonder if selecting the local extrema801

of (x, σ) 7→ σ2∆gσ ∗ u(x) is the best possible choice for points of interest in order to802

extract relevant information for synthesis.803

For that, we propose to compare with two other sets of keypoints extracted in804

a very different way. The first choice (“Min-Rec-Error”) is driven by the following805

intuition: using Taylor formula around a point x, one can write when σ → 0 that806

(55)

∫
u(x+ z)gσ(z)dz − u(x) = σ2∆u(x) + o(σ2).807

Therefore, nearby the positions x where ∆u(x) is close to zero, one can approximately808

recover u(x) by averaging neighboring values. In this sense, it seems relevant to809

extract more information at the points where the average reconstruction fails, and in810

particular at the maxima of |∆u|.811

But one could also directly work with the reconstruction error: we thus propose812

to extract local maxima of the function813

(56) (x, σ) 7−→ |gσ ∗ u(x)− u(x)|.814
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In our implementation, we detect these maxima on a discretized scale-space with 30815

scales s = 2r/6, 0 6 r < 30. Besides, in order to draw a comparison with a fixed816

number of keypoints, we only keep the points having an “edgeness” value below a817

threshold. As in the original SIFT method, the edgeness measure is obtained as the818

ratio Tr(H)2

detH of the principal curvatures, where H is the Hessian of the smoothed819

image g2 ∗ u. The threshold is adapted in order to get the same number nkp of820

keypoints than the ones provided by the SIFT method.821

The second and third choices (“Random-unif” and “Random-grad”) consists in822

selecting keypoints in a random manner. More precisely, for the choice “Random-823

unif”, we independently sample nkp keypoints by choosing uniformly a position x824

in the image domain, a uniform orientation α ∈ T, and a scale by sampling an825

exponential distribution whose parameter is adjusted so that the expectation is the826

same as the mean scale of the usual SIFT keypoints. Modelling by the exponential827

distribution is empirically justified by the fact that the distribution of scales of SIFT828

keypoints is concentrated in the fine scales. For the choice “Random-grad”, we do the829

same except that the positions are randomly drawn using a probability distribution830

which is proportional to the gradient magnitude of the smoothed image g2 ∗ u.831

For these new sets of keypoints, we computed the average image of the MS-832

Poisson model. The results are displayed on Fig. 13. They clearly indicate that the833

usual SIFT keypoints lead to a reconstruction that is visually better than the oth-834

ers. The main problem of the “Min-Rec-Error” keypoints is that they do not extract835

enough small scale information: for the examples shown in Fig. 13 the average scale836

of these keypoints is approximately twice larger than the one of the SIFT keypoints.837

Besides, for both “Min-Rec-Error” and random keypoints, the spatial locations are838

not concentrated around geometric details as can be the case with the SIFT key-839

points. The comparison with “Random-grad” is particularly interesting: indeed the840

reconstruction with “Random-grad” keypoints is slightly better than the one with841

“Random-unif” keypoints, but still it fails to recover fine details. The main problem842

of the “Random-grad” approach is that it is not contrast invariant and thus it favors843

points with strong gradients in uniform regions over points in salient regions with low844

contrast. Thus, the usual definition of SIFT keypoints (and in particular the thresh-845

olding steps) is confirmed to be a relevant choice for extracting visual information846

near salient structures, both from the analysis or the synthesis perspective.847

6. Conclusion. In this paper we proposed two stochastic models (MaxEnt, re-848

spectively MS-Poisson) for reconstructing an image based only on the information849

contained in the (monoscale, respectively multiscale) local HOGs computed in the850

SIFT subcells. With both models we get back images which are close to the original851

in terms of semantic content. This is still true if we compute the reconstructions based852

on the true SIFT descriptors. One benefit of these models over competing approaches853

is that they do not rely on any external image database, and besides the convolu-854

tive expressions found in this paper allow to compute statistics of the corresponding855

output random fields (e.g. local variance).856

However, several questions raised by this work remain open. First it would be857

interesting to consider generalizations of the MS-Poisson model with different image858

priors, i.e. adopt other regularization terms in the functional. It is likely that solv-859

ing the corresponding optimization problem may require an iterative procedure, but860

on the other hand the solutions may exhibit cleaner geometric structures which are861

better extrapolated outside the SIFT subcells. Also, there is more to discuss about862

the optimality of keypoints with respect to the quality of reconstructed images. In863
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r = 0.63 r = 0.64 r = 0.72 r = 0.76

r = 0.61 r = 0.62 r = 0.72 r = 0.69

Min-Rec-Error Random-unif Random-grad SIFT

Fig. 13. Reconstruction with other keypoints. The first column (“Minimum reconstruction
error”) corresponds to the keypoints obtained as local minima of (56). The second (“Random-
unif”) and third column (“Random-grad”) corresponds to the randomly selected keypoints. The last
column corresponds to the standard SIFT keypoints. The original images are displayed on Fig. 3
and Fig. 4. Above each reconstruction we indicate the value of the normalized correlation toe the
original image. See the text in Section 5.4 for the precise definition of these sets of keypoints, and
additional comments.

particular, here we adopted one unique reconstruction strategy in order to compare864

different sets of keypoints. But it seems possible to optimize both the sets of key-865

points and the reconstruction strategy in order to maximize a criterion linked to the866

proximity of the reconstruction to the input original image. This could be thought of867

as a kind of auto-encoding procedure in which the encoder is constrained to have a868

very particular form (that is, keypoint extractor).869
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[51] T. Ojala, M. Pietikäinen, and T. Mäenpää, Multiresolution gray-scale and rotation in-985
variant texture classification with local binary patterns, IEEE Transactions on PAMI, 24986
(2002), pp. 971–987.987
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