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Typical slice of a SPIM image. Here a spheroid (V. Lobjois, C. Lorenzo)

Motivation - SPIM
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Wide field microscope: podosome, 2048× 2048 pixels field of view, 200µm (T. Mangeat)

Motivation - Wide field microscopy
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Two possible approaches

i) Calibration

Single
bead

PSF

→ Simple

→ Accuracy

→ Time consuming

Definition: blur impulse response = point spread function = PSF

Existing solutions
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Time variation

Wide field microscopy, image of beads at few minutes interval (S. Cantaloube).

A serious issue - Time variations
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Two possible approaches

i) Calibration

Single
bead

PSF

→ Simple

→ Accuracy

→ Time consuming

ii) Blind identification

Blurry obs.
PSF

→ Mathematically challenging
Solution: deep learning

Definition: blur impulse response = point spread function = PSF

Motivation
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Hand-crafted methods
We developed 10 methods

All were failures

We tested 30 methods (some critically acclaimed)

All were failures

Our conclusion
Handcrafted = efficient in well controlled settings only

Why deep learning?
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Adapt.
Pool.

Identification Network Deblurring Network

The general architecture

Outline of the presentation
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The identification network

9/22



Assumption

The blur is parametrized by P coefficients.

Deep-Blur

ResNet18 neural network, 11× 106 parameters
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Deep-Blur: from obs. image to operator coefficients

Deep-Blur: from obs. image to operator coefficients
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Learning framework

64 51
2

64 25
6

64 12
8

64 12
8

64 12
8

128 64128 64
256 32256 32 512 16512 16

P

Adapt.
Pool.

Natural images

Sampled blur: γ ∈ RP

Est. blur
γ̂ ∈ RP

Training (MSE loss)

Learning to identify the blur
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Learning framework
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Estimation framework
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Learning to identify the blur
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The deblurring network
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A FISTA unrolled architecture
The deblurring network is:

1 FISTA algorithm with 15 iterations

2 The proximal operator is replaced by a simple trainable CNNs

3 Training independent of identification
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Natural images

True blur

Est. image

Training (MSE loss)

Deep-Blur: the deblurring architecture
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Natural images

True blur

Est. image

Training (MSE loss)

Deep-Blur: intermediate step between Plug and Play and Unrolled network:

Deep-Blur Unrolled network Plug and Play

Family of operator X × X

Task specific X X ×

Deep-Blur: the deblurring architecture
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The blur model
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Blur model

1 Spatially varying (no convolution): product-convolution

Reference
Escande, P., & Weiss, P. (2020). Approximation of integral operators using
product-convolution expansions, JMIV.

Space variant blur
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Blur model

1 Spatially varying (no convolution): product-convolution

2 Can capture an entire microscope:

A(γ)x =

P∑
p=1

γpAp(x)

Reference
Debarnot, V., Mangeat, T., & Weiss, P. (2020). Learning low-dimensional models of
microscopes, IEEE TCI.
Debarnot, V., Escande, P., & Weiss, P. (2019). A scalable estimator of sets of integral
operators. Inverse Problems

Space variant blur
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Blur model

1 Spatially varying (no convolution): product-convolution

2 Can capture an entire microscope:

A(γ)x =

P∑
p=1

γpAp(x)

3 Can be reduced to a convex set: γ ∈ C

A1 A2

A3

•

•
•

•
• •

• •• •
••

A
C

C convex set of
admissible operators

Space variant blur
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t=0

t=1,000

t=2,000

t=10,000

Problem
How to sample a convex set C ⊂ RP?

Solve approximation of MaxiSumMin problem:

sup
{δ1,...,δL}∈CL

L∑
l=1

min
l′

l 6=l′

‖δl − δl′‖2

Projected subgradient descent algorithm

Main features

• Scalable: up to P = 100 and L > 10, 000
• Single pass

Blur identification: spatially varying blur
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Experimental results
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Identification network
Product-convolution operator with P = 16
Training: 106 blurs randomly applied on 40k images from MS COCO
Evaluation: biological images

Observation
True Estimated (22.5dB)

Blur identification: spatially varying blur
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Ddeblurring network

Product-convolution operator with P = 16
Training: 106 blurs applied on 40k images from MS COCO
Evaluation: biological images

Observation – SSIM:
0.42

True
.

Est., trained with true
op.– SSIM: 0.866

Est., trained with est.
op. – SSIM: 0.868

Deblurring: spatially varying blur
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Blur identification: spatially varying blur
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Contributions

• New identification network
• New blind deblurring architecture
• Applicable to Fresnel approx., space varying and experimental operators

Key ideas

• Combine physics modelling and deep learning
• Train identification and deblurring net sequentially

Related paper

Debarnot, V. & Weiss, P. (2022). Deep-Blur: blind parameterized deblurring.
hal-03687822

Conclusion
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Toolbox

• Debarnot, V., Sage, D., Soubies, E., Mangeat, T., & Weiss, P. (2021). Eigen-PSF
extractor. ongoing

Methodology

• Debarnot, V. & Weiss, P. (2022). Deep-Blur: blind parameterized deblurring.
hal-03687822

• Debarnot, V., Mangeat, T., & Weiss, P. (2020). Learning low-dimensional models
of microscopes, IEEE TCI.

Foundations

• Debarnot, V., & Weiss, P. (2021). Blind deblurring and super-resolution with
isolated spikes. Information & Inference

• Debarnot, V., Escande, P., & Weiss, P. (2019). A scalable estimator of sets of
integral operators. Inverse Problems

Propaganda!
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Improve identifiability

A1 A2

A3

•

•

•

•
• •

• •• •
••

A
C

A[C] def.
=

{∑P
p=1 γpAp, γ ∈ C ⊂ RP

}
, C convex set of admissible operators

Blur identification: spatially varying blur
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Zernike example
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Zernike
P = 7 Zernike coefficents in [−0.15, 0.15]. 106 blurs randomly applied on 40k
images from MS COCO dataset.

True Blurry-Noisy Deep-Blur

Goldstein Fattal NAFNET

Blur identification: Zernike
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Blur identification: spatially varying blur
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