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[Introduction] Satellite imaging and image restoration

Images are degraded during their

acquisition because of Image Restoration
» sensors and transmission (noise, blur, &

compression artefacts)

» the acquisition conditions (movement,

atmospheric perturbations) Figure: Acquisition of the satellite and restored
image

Other challenges to improve image quality — super-resolution, pan sharpening

= Images need to be restored for further uses.
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[Introduction] CNES image restoration pipelinel

ON BOARD s’

Acquisition — ‘ Compression Transmission %
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Decompression
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1J.M. Delvit, C. Thiebaut, C. Latry, G. Blanchet, R. Camarero, A pipeline to improve compressed

image quality, ICSO 2018
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[Introduction| Data-based method requirements

Adaptive to the inverse problem =- data-driven model independent of the degradation
» Variety of on-board sensors

» Drift of sensors’ characteristics over time

Explicitly using the forward model
» Forward model precisely known

» More interpretability

Easily tunable regularization parameter
» Rather easy inverse problems

» Complex data with highly varying statistics
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[Problem| Inverse problem

Acquisition

—

Inverse Problem

Image x € X

Measurement y € Y

. Example of problems
Degradation model

y =x+n (denoising)

y=A(X)+n y=hxx+n (deblurring)
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[Problem]| Neural networks based image restoration methods

Learning to inverse:
» Supervised learning of a function 7 : Y — X from samples (x;, y;)

» Specific to the problem = a network for each degradation

Learning only the regularisation from (x;):
» No need of simulated images (y;)
» Generic method = adaptive to the degradation
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T~

Using denoisers Using generative models
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[Problem]| Generative neural networks

» To synthesize realistic data
» Different types : GAN, VAE, Normalizing Flows, Diffusion Models
» Function G that maps z ~ pz to x = G(z) from the image distribution px

z ~N(O,1,) Generator . px

Figure: A generative model
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[Problem] Compressed sensing using Generative Models!

Looking for the solution in the latent space of a generator G.

£ = G(2) where 2 = argmin||AG(z2) — y||? + \||z|? (1)

~ MAP estimation in the latent space

Impressive results, but drawbacks:
» The solution X = G(2) lies in the range of the generator
= Need for an excellent generative model
= Even with it, not robust to out-of-distribution samples

1A Bora, A Jalal, E.Price, A.G.Dimakis, Compressed Sensing using Generative Models, ICML, 2017.
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| Contributions| Analysis formulation

Initial problem looks like a synthesis
formulation:

s . o 2 2
zZ = al’gmlnz HAG(Z) .y|| + >\| |Z|| N Encoder 7 ~ N(H(,b(x)/ e 52 - N(‘llg(Z),
1 Ey AZ«T)(X)) Go v1a)

An analysis formulation would be: .
“pz2) = NO,1)

% = argmin, [|Ax — yI[2 + Al ()1
Figure: A variational autoencoder
» Any X € RMXN potentially reachable
» is not working with VAE

» — found solution has a high reconstruction loss

lM. Duff N.D. Campbell, M.J. Ehrhardt, Regularising Inverse Problems with Generative Machine Learning Models, arXiv preprint, 2021.
2M. Gonzilez, A. Almansa, P. Tan, Solving inverse problems by joint posterior maximization with autoencoding prior, SIAM, 2022.

3S.A. Bigdeli, M. Zwicker, P. Tan, Image restoration using autoencoding priors, VISIGRAPP, 2018.
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| Contributions| Analysis formulation

Initial problem looks like a synthesis
formulation:

2 = argmin, [[AG(2) — y[|* + A[|2|]?
!

An analysis formulation would be:
% = argmin, ||Ax — y|? + Alus(x)|13
+allx = po (e (x))13

> Any £ € RMXN potentially reachable
» is working

» Similar to related works 123

¢ Encoder  Z~N(uo(®), Generator X ~ N(Ho(2),
E4 Az(p(x)) Ge vla)

“p2@) = NO,1)

Figure: A variational autoencoder

M. Duff N.D. Campbell, M.J. Ehrhardt, Regularising Inverse Problems with Generative Machine Learning Models, arXiv preprint, 2021.

M. Gonzélez, A. Almansa, P. Tan, Solving inverse problems by joint posterior maximization with autoencoding prior, SIAM, 2022.

S.A. Bigdeli, M. Zwicker, P. Tan, Image restoration using autoencoding priors, VISIGRAPP, 2018.
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| Contributions| Test methodology

Image restoration process

Neural network training on ideal  Gradient descent on ||AG(z) — y||> + A||z||? for a
images (x;) measured image y
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| Contributions| Test methodology

Image restoration process
Neural network training on ideal Gradient descent on ||[AG(z) — y||? + \|z||? for a
images (x;) — measured image y
Neural network settings
» Simple convolutionnal structure, latent dimension denoted as k
» Adam optimiser, Ir = 104, 100 epochs
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| Contributions| Test methodology

Image restoration process
Neural network training on ideal Gradient descent on ||AG(z) — y||> + \||z||? for a
images (x;) — measured image y
Neural network settings
» Simple convolutionnal structure, latent dimension denoted as k
» Adam optimiser, Ir = 10~%, 100 epochs

Image restoration setting

» 2 inverse problems: denoising (given o) and inpainting (given p, 0 = 10). ¢ and p
vary depending on the dataset

» 2 metrics: MSE (Mean Squared Error) and SSIM (Structural SIMilarity)
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| Contributions| Comparison of analysis and synthesis approaches

INPAINTING DENOISING
p = 80% p = 50% o =65 oc=25
MSE SSIM | MSE SSIM | MSE SSIM | MSE SSIM
MNIST  Synthesis | 0.016 0.72 0.014 0.75 0.014 0.75 0.013 0.76
Analysis 0.017 0.55 0.010 0.69 0.014 0.58 0.007 0.68
CelebA  Synthesis | 0.0062 0.68 | 0.0059 0.68 | 0.0061 0.68 | 0.0059 0.69
Analysis 0.0078 0.64 | 0.0048 0.71 0.008 0.63 | 0.0044 0.67

Figure: Results of synthesis and analysis approaches on MNIST and CelebA using a VAE. On 4

inverse problems, using 50 test images per problem.

10/18



| Contributions| Comparison of analysis and synthesis approaches

INPAINTING DENOISING
p = 80% p = 50% o =65 oc=25
MSE SSIM MSE SSIM MSE SSIM MSE SSIM
MNIST  Synthesis | 0.016 0.72 0.014 0.75 0.014 0.75 0.013 0.76
Analysis 0.017 0.55 0.010 0.69 0.014 0.58 0.007 0.68
CelebA  Synthesis | 0.0062 0.68 | 0.0059 0.68 | 0.0061 0.68 | 0.0059 0.69
Analysis 0.0078 0.64 | 0.0048 0.71 0.008 0.63 | 0.0044 0.67

Figure: Results of synthesis and analysis approaches on MNIST and CelebA using a VAE. On 4

inverse problems, using 50 test images per problem.

10/18



| Contributions| Comparison of analysis and synthesis approaches

INPAINTING DENOISING
p = 80% p = 50% o =65 oc=25
MSE SSIM MSE SSIM MSE SSIM MSE SSIM
MNIST  Synthesis | 0.016 0.72 0.014 0.75 0.014 0.75 0.013 0.76
Analysis 0.017 0.55 0.010 0.69 0.014 0.58 0.007 0.68
CelebA  Synthesis | 0.0062 0.68 | 0.0059 0.68 | 0.0061 0.68 | 0.0059 0.69
Analysis 0.0078 0.64 | 0.0048 0.71 0.008 0.63 | 0.0044 0.67

Figure: Results of synthesis and analysis approaches on MNIST and CelebA using a VAE. On 4
inverse problems, using 50 test images per problem.

10/18



| Contributions| Comparison of analysis and synthesis approaches (2)

DENOISING 0=25/255

- K

Target image x

Measured image y

Synthesis
regularization

Analysis
regularization

Figure: Visual results of synthesis and analysis approaches on CelebA for a denoising inverse

problem (o = 25/255).

» More accurate results on easy inverse problems
» But more artefacts
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|Contributions| Getting better results with the same network size

The problem is the quality of the generated images
» Increase the dimension of the latent space ? Hard with VAE.

— Posterior collapse: Vx € X, q4(zi|x) = p(z;)

1B. Dai, D. Wipf, Diagnosing and enhancing VAE models, ICLR 2020
2P.Ghoshn, M. Sajjadi, A.Vergari, M.Black, From Variational to Deterministic Autoencoders, ICLR 2019
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|Contributions| Getting better results with the same network size

The problem is the quality of the generated images
» Increase the dimension of the latent space ? Hard with VAE.

— Posterior collapse: Vx € X, q4(zi|x) = p(z;)

= Switch to regularized autoencoders 2 (RAE) — non generative autoencoders

Two possibilities:
» Stochastic autoencoder with variable KL-divergence strength parameter?

» Deterministic autoencoder with constraints on z? (— A||z||3)

1B. Dai, D. Wipf, Diagnosing and enhancing VAE models, ICLR 2020
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| Contributions| Comparison VAE / RAE (1)

INPAINTING DENOISING
p=80% p =50% o =65 oc=25
MSE SSIM \ MSE SSIM \ MSE SSIM \ MSE SSIM
VAE | 0.0062 0.68 0.00569 0.68 | 0.0061 0.68 | 0.0059 0.69
RAE | 0.0030 0.83 | 0.0012 0.90 | 0.0034 0.75 | 0.0012 0.87

Table: Metrics for image restoration problems with VAE and RAE using the synthesis approach
on CelebA dataset. Latent dimension k = 64 for VAE, k = 200 for RAE.

» RAE has significant better results than VAE
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|Contributions| Comparison VAE / RAE (2)

______INPAINTING p=0.8
e |

Image x ‘ P 5 ad: B

Measure y

VAE

RAE

Figure: Visual results using RAE and VAE networks using the synthesis approach, for an
inpainting problem (p = 0.8 missing pixels, o = 10/255)
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| Contributions| Comparison VAE / RAE (3)

INPAINTING p=0.8
Measure y VAE RAE-I2

Figure: Visual results (zoom)
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| Contributions| Preliminary results

MSE 0.00038 -- SSIM 0.85 MSE 0.00022 -- SSIM : 0.93 MSE 0.00018 —- SSIM : 0.94
Image x Measure y RAE (Synthesis) RAE (Analysis)

Figure: Results of RAE using analysis and synthesis approaches. On a denoising problem
(o0 = 5/255). Images furnished by CNES.
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[ Perspectives| Adaptive regularization

argmin, ||ADy(z) — y||3+ Al|z|[3 — not informative enough
» Not image dependent
» Not landscape dependent
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Figure: A fully convolutional autoencoder for translation-invariant
representations
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RAE (Synthesis) Figure: A fully convolutional autoencoder for translation-invariant

) ) representations
Figure: A restored image
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[ Perspectives| Adaptive regularization
argmin, ||ADy(z) — y||3+ Al|z|[3 — not informative enough
» Not image dependent
» Not landscape dependent

Appropriate
regularization
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RAE (Synthesis) Figure: A fully convolutional autoencoder for translation-invariant
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[ Perspectives| Adaptive regularization
argmin, ||ADy(z) — y||3+ Al|z|[3 — not informative enough
» Not image dependent
» Not landscape dependent

Too weak
regularization ?

Input image Reconstructed image
Feature
map

B Paig Latent Space
L Representation
-‘ y

.-~ channe/s

RAE (Synthesis) Figure: A fully convolutional autoencoder for translation-invariant

) ) representations
Figure: A restored image
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Conclusion

» Ongoing work to regularize satellite image restoration problems using (generative)
autoencoders

» First results interesting on CelebA, needs further ameliorations for satellite images
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» Ongoing work to regularize satellite image restoration problems using (generative)
autoencoders

» First results interesting on CelebA, needs further ameliorations for satellite images

Thanks for your attention !
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