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Human: 1 want to understand Plug-and-play methods tor image restoration

AT: Sure thing! Plug-and-play methods for image restoration use deep learning algorithms to restore
degraded images. These methods use the training data to learn the mapping between the input image and
the output image, allowing them to restore images with minimal user intervention.

Human: What are the maths behind ?

AI: Plug and play methods for image restoration are based on variational-optimization methods, which are
used to solve minimization problems. These methods typically use a data fidelity term and a regularization
term, which correspond to the input and output images, respectively. The optimization process then
minimizes the difference between the two. Additionally, the denoiser is used as an implicit prior, which helps
the AT accurately restore details and color. Does this answer your question?

Human: Do I still need to do my presentation on Plug-and-play 7

AT: Yes, it is still advisable to do a presentation on Plug-and-play methods for image restoration. It will help
you better understand the underlying concepts and give you a deeper insight into the topic. Furthermore,
you will be able to explain the concepts to your audience in an effective and engaging way.

Human: How do I start my presentation ?

ATL: It's great that you are preparing for your presentation on Plug-and-play methods for image restoration.
The best way to start is by explaining the types of images that can be restored using these methods. After
that, you can introduce the denoiser as an implicit prior and explain how it helps to restore details and color.
Then, you can discuss the variational-optimization methods used in Plug-and-play methods and how they
help to create a mapping between the input and output images. Finally, you can conclude the presentation

by summarizing the key points and highlighting the advantages of using Plug-and-play methods for image
restoration |

2/37



Variational Image Restoration

PnP Mathematical Formulation
1st order optimization
Denoising as Implicit Prior
PnP and RED algorithms

Convergence analysis
Fixed-point convergence
Global convergence

Algorithm in practice

New trends in PnP image restoration
Deep Unfolding
Denoising diffusion models
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Image Inverse Problems

Find z from observation y = Ax + &

m y € R™ observation
® z € R” unknown input
m A € R™*" degradation operator

¢ random noise, generally & ~ N(0,021d,,)
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Image Inverse Problems

Find z from observation y = Ax + &

m y € R™ observation
® z € R” unknown input
m A € R™*" degradation operator

m ¢ random noise, generally & ~ N(0,021d,,)

Deblurring:
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Image Inverse Problems

Find z from observation y = Ax + &

m y € R™ observation
® z € R” unknown input
m A € R™*" degradation operator

m ¢ random noise, generally & ~ N(0,021d,,)

Super-resolution:
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Image Inverse Problems

Find x from observation y = Az + £

m y € R™ observation
® z € R” unknown input

m A € R™*" degradation operator

¢ random noise, generally & ~ N(0,021d,,)

Inpainting:
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Image Inverse Problems

Find z from observation y = Ax + &

m y € R™ observation
® z € R” unknown input

m A € R™*" degradation operator

¢ random noise, generally & ~ N(0,021d,,)

Compressed Sensing : e¢.g. Magnetic Resonance Imaging (MRI)

\
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Image Inverse Problems

Find z from observation y ~ p(y|z)

m y € R™ observation
m z € R” unknown input

m p(y|x) forward model

Computed Tomography :
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Maximum A-Posteriori

Find z from observation y ~ p(y|z)

x* € arg max p(z|y)

reR™
g 20I)P(@)
z€ER™ ( )

= arg min — log p(y|z) — log p(z)
zeR”

= argmin f(x) + A\g(z)
zeR™
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Maximum A-Posteriori

Find z from observation y ~ p(y|z)

Maximum A-Posteriori

z* € argmin f(z) + Ag(x)
TER™
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TER™

Arg min, - data-fidelity

f(z) = —logp(y|z)
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Maximum A-Posteriori
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< argmingcg»

6/37



Maximum A-Posteriori

Find z from observation y ~ p(y|z)

Maximum A-Posteriori

z* € argmin f(z) +A g(z)
TER™

data-fidelity regularization

_|_
f(x) = —logp(yl|r) g < —logp

< argmingcg»

6/37



A variety of data-fidelity terms f

m Assuming Gaussian noise model £ ~ N(0, 02 1d),

1
f(z) = —logp(yle) = 5—||Aw — yl?
g

— convex and smooth f, non-strongly conver in general
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A variety of data-fidelity terms f

m Assuming Gaussian noise model £ ~ N(0, 02 1d),
1 2
f(a) = —logp(ylz) = 55 lAz — |
o
— convex and smooth f, non-strongly conver in general
m With other regularities

- Laplace / Poisson noise model — non-smooth f
- Phase retrieval — nonconvex f

7/37



A variety of data-fidelity terms f

m Assuming Gaussian noise model £ ~ N(0, 02 1d),

1
f(z) = —logp(yle) = 55|z — y|I*
g

— convex and smooth f, non-strongly conver in general
m With other regularities

- Laplace / Poisson noise model — non-smooth f
- Phase retrieval — nonconvex f

m More complex non-linear modeling of real complex physical
systems (X-ray CT, electron-microscopy ...)
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A variety of explicit image priors
Design an explicit regularization on image features: TV [Rudin et
al. ‘92], Fourier spectrum [Ruderman ‘94|, Wavelet sparsity [Mallat "09]
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A variety of explicit image priors
Design an explicit regularization on image features: TV [Rudin et
al. ‘92], Fourier spectrum [Ruderman ‘94|, Wavelet sparsity [Mallat "09]

Learn an explicit deep prior
on full images (generative models):
VAE [Kingma & Welling, ‘13]
Normalizing flows [Dinh et al. ‘15]
Score-based ODE [Song. et al 21
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PnP motivations

Find z* € arg min,cp. Data-fidelity(z) + Regularization(x)

m Decouple data-fidelity and regularization optimizations in
iterative algorithms. [Combette & Pesquet ‘11] [Zoran & Weiss ‘11|
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PnP motivations

Find z* € arg min,cp~ Data-fidelity(z) + Regularization(x)

m Decouple data-fidelity and regularization optimizations in
iterative algorithms. [Combette & Pesquet ‘11] [Zoran & Weiss ‘11]

X Previous explicit priors are limited.

v Image Denoising : easier / well-understood.
— State-of-the art denoisers without explicit prior
Filtering methods [Dabov et al. ‘07] [Lebrun et al. “13]
Deep denoisers [Zhang et al. ‘16,°17, ‘21] [Song et al. ‘19|
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PnP motivations
Find z* € arg min,cp. Data-fidelity(z) + Regularization(x)

m Decouple data-fidelity and regularization optimizations in
iterative algorithms. [Combette & Pesquet ‘11] [Zoran & Weiss ‘11|

R

Previous explicit priors are limited.

v Image Denoising : easier / well-understood.

— State-of-the art denoisers without explicit prior
Filtering methods [Dabov et al. ‘07] [Lebrun et al. “13]
Deep denoisers [Zhang et al. ‘16,17, ‘21] [Song et al. ‘19]

Denoiser : Noisy Image — Clean Image

— Step towards the manifold of clean images : implicit prior

From y degraded, iterate :

1. Take a denoising step
2. Enforce data-fidelity
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PnP Mathematical Formulation
1st order optimization
Denoising as Implicit Prior
PnP and RED algorithms
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1st order optimization algorithms

Find z* € arg min,cpn F(z)
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1st order optimization algorithms

Find z* € argmin,p» F(z)

Discretization of the Gradient Flow

{ 2() = -VF(x(t))

Jf(to) = X0

m Gradient Descent (forward Fuler)

T+1 — Tk — TVF((Ek)

— converges to z* € argmin F'(z) for L-smooth convex F' and 7L < 2.

m Proximal Point Algorithm (backward Euler)

Tpy1 = T — TV (2p41) = Prox.r(zx)

1
where Proxp(y) = argmin —||z — y||* + F(z)
z€ER™ 2

— converges to x* € arg min F'(x) for non-smooth convex F and 7 > 0.
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(Proximal) splitting optimization algorithms
Find z* € argmin,cpn f(z) + g(x)

m Gradient Descent (GD) :

rpp1 = (Id=7(Vf + Vg))(zx)

Proximal Gradient Descent (PGD) :
Tpy1 = Prox,q o(Id =7V f)(z1)
m Half Quadratic Splitting (HQS) :

Tp41 = Prox,q o Prox,;(xy) M\ does not target f + g

Douglas-Rashford Splitting (DRS) / ADMM :

1
$k+1 = <; Id +§(2 PI‘OXTg - Id) © (2 PrOXTf _Id)> (ZL’k)
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Denoising prior

Find z from observation y = x + &
= Input distribution p(x).

m Gaussian noise £ ~ N(0, 02 Id).
= Noisy observation y ~ p, (y) = p * N(0, 0> Id).

— Two optimal denoisers
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= Input distribution p(x).

m Gaussian noise £ ~ N(0,0°Id).
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Denoising prior

Find z from observation y = x + &
= Input distribution p(x).
m Gaussian noise £ ~ N(0, 02 Id).
= Noisy observation y ~ p, (y) = p * N(0, 0> Id).

— Two optimal denoisers

MAP estimator MMSE estimator
Dy (y) = arg max p(x|y) DMMSE(y) =, o1 (]
= arg max ————= p(ylz)p(z)
rER™ ( )
= arg min — log p(y|=) — log p(x)
zeR™

1
= argmin |z — y|[* ~ log p(z) = Prox_ 105, (1)
rER™ g
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Denoising prior

Find z from observation y = x + &

= Input distribution p(x).

m Gaussian noise £ ~ N(0,0°Id).

= Noisy observation y ~ p, (y) = p * N(0, 0> Id).

— Two optimal denoisers

MAP estimator
DYF (y) = arg max p(z[y)

MMSE estimator
Dlt;'/IMSE(y) = ]Ewrvp(z|y) [ZL‘]

Bayes :

DMAF = Prox_,» g
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Denoising prior

Find z from observation y = x + &
= Input distribution p(x).

m Gaussian noise £ ~ N(0,0°Id).
= Noisy observation y ~ p, (y) = p * N(0, 0> Id).

— Two optimal denoisers

MAP estimator MMSE estimator
DY () = argmaxp(aly) || DI () = Byl
Bayes : Tweedie :
DYAY = Prox_,2 1o p DMMSE — 1d —V(—0? log p,)
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Denoising prior

Find z from observation y = x + &
= Input distribution p(x).

m Gaussian noise £ ~ N(0, 02 Id).
= Noisy observation y ~ p, (y) = p * N(0, 0> Id).

— Two optimal denoisers

MAP estimator MMSE estimator
DY () = argmaxp(aly) || DI () = Byl
Bayes : Tweedie :
DYAY = Prox_,2 1o p DMMSE — 1d —V(—0? log p,)

— Real denoiser D, ~ DMAF or D, ~ DMMSE

A denoiser provides an implicit prior
13 /37



PnP and RED algorithms

Find z from observation y ~ p(y|z)
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PnP and RED algorithms

Find z from observation y ~ p(y|z)

MAP formulation f= —logp(y|.) and g x —logp

GD
HQS
PGD
DRS

Find z* € argmin f(z) + Ag(z)

c 1 = (Id—7(Vf 4+ AVg))(zx)

g1 = Prox;yg o Prox, ¢ (zx)

: Ty = Prox, g o(Id =7V f) ()

Pyl = % Id —I—%(Q Prox,yy —Id) o (2Prox, s — Id)(zx)
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PnP and RED algorithms

Find z from observation y ~ p(y|z)

MAP formulation f= —logp(y|.) and g x —logp
Find z* € argmin f(z) + Ag(z)

GD  :zpyr = Id—7(VSf+ AVg))(zk)

HQS :xp11 = Prox,yg o Prox, ¢(zx)

PGD : xpi1 = Prox g o(Id —7Vf)(zk)

DRS :xpiq = % Id —|—%(2 Prox,yy —Id) o (2Prox, s — Id)(zx)

X Unknown prior g

MAP denoiser MMSE denoiser

Da(y) = Prox_,2 logp(y) D, (y) = (Id +U2v IOg pfr) (y)
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PnP and RED algorithms

Find z from observation y ~ p(y|z)

MAP formulation f= —logp(y|.) and g x —logp

Find z* € argmin f(z) + Ag(z)

GD  :apgr = (Id=7(Vf +AVyg))(zk)
HQS :xp11 = Prox,yg o Prox, ¢(zx)
PGD : xpi1 = Prox g o(Id —7Vf)(zk)

DRS :@gq1 = 3 1d+4(2Prox;5g —Id) o (2Prox,; — Id)(zy)

X Unknown prior g

MAP denoiser

Da(y) = Prox_,2 logp(y)

MMSE denoiser
Dy (y) = (Id+0°V log ps ) (y)

4

PnP algorithms

[Venkatakrishnan et al., ‘13]

Prox:yg < D,

RED algorithms
[Romano et al., ‘16]

Vg« 1d—D,
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PnP and RED algorithms

Find z* € argmin f(x) + Ag(z)

GD iz = Id—7(VSf+ AVg))(zk)

HQS
PGD
DRS

: Tpy1 = Prox, g o Prox, ¢(zr)
g1 = Prox, g o(Id =7V f)(zk)
P Tyl = % Id —I—%(Q Prox,yy —Id) o (2 Prox, s — Id)(zx)

MAP denoiser

Dy (y) = Prox_s2 10 p(y)

MMSE denoiser
Dy (y) = (Id +0°V log ps ) (y)

PnP algorithms

[Venkatakrishnan et al., ‘13]

Prox:g < Dy

.

RED algorithms!
[Romano et al., ‘16]

Vg« Id-D,

!More recently called “score-based” [Song. et al ‘19] for generative

models
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PnP and RED algorithms
Find z* € argmin f(x) + Ag(x)

GD  :xpyr = (Id—7(Vf+ AVg))(zk)

HQS : xpq1 = Prox,yg o Prox, ¢(z)

PGD :xpi1 = Prox,ago(Id—7Vf)(zk)

DRS k41 = 3 1d+1(2Prox,yy —Id) o (2Prox, s —Id)(zy)

e A

MAP denoiser

DU (y) = PI‘OXfaz logp(y>

PnP algorithms

[Venkatakrishnan et al., ‘13]

Prox:zg < Ds

J

PnP-HQS : k11 = D, o Prox,f(xx)
PuP-PGD  : ki1 = D, o (Id—7Vf)(zk)
PnP-DRS  :zj41 = 31d+3(2D, —Id) o (2Prox,; — Id)(zy)
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PnP and RED algorithms
Find z* € argmin f(x) + Ag(x)

GD  :xpyr = (Id—7(Vf+ AVg))(zk)

HQS : xpq1 = Prox,yg o Prox, ¢(z)

PGD :xpi1 = Prox,aso(ld —7Vyg)(ak)

DRS :@gq1 = 3 1d+21(2Prox,yy —Id) o (2Prox,; —Id)(zy)

e "

MMSE denoiser
Do (y) = (Id+0°V log po) (y)

J

N\

RED algorithms!
[Romano et al., ‘16]

Vg« 1d-D,

RED-GD  :zpy1 = (TADs + (1 —7A) Id =7V f)(zx)
RED-PGD  : 441 = Prox; s o(7AD, + (1 — 7A) Id)(zy)
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PnP and RED algorithms

Find z from observation y ~ p(y|z)

Proximal Algorithms
x* € argmin f(z) + Ag(x)
TeR"

X unknown prior g
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PnP and RED algorithms

Find z from observation y ~ p(y|z)

- - PnP / RED algorithms
Proximal Algorithms

x* € argmin f(z) + Ag(x)
z€R™

DMAP _ Prox,, v implicit prior

X unknown prior g
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PnP and RED algorithms

Find z from observation y ~ p(y|z)

- - PnP / RED algorithms
Proximal Algorithms

x* € argmin f(z) + Ag(x) D, = Prox,4 v implicit prior
ver D, =1d—Vyg

X unknown prior g

Plugged D, : (Noisy image, 0) = Clean image
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PnP and RED algorithms
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- - PnP / RED algorithms
Proximal Algorithms

" € argmin f(x) + Ag(x) Dy = Proxrg v implicit prior
e D, ~1d—Vg v/ SOTA restoration
X unknown prior g X no convergence guarantees

X no minimization problem
Plugged D, : (Noisy image, 0) = Clean image

v CNN e.g. DRUNet [Zhang et. al "20], NCSN [Song et. al "21] ...
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PnP and RED algorithms

Find z from observation y ~ p(y|z)

- - PnP / RED algorithms
Proximal Algorithms

" € argmin f(x) + Ag(x) Dy = Proxrg v implicit prior
e D, ~1d—Vg v/ SOTA restoration
X unknown prior g X no convergence guarantees

X no minimization problem
Plugged D, : (Noisy image, 0) = Clean image

v CNN e.g. DRUNet [Zhang et. al "20], NCSN [Song et. al "21] ...

A D, # Prox,q, D, #1d—Vg

Objective : Find minimal conditions on D, to restore
convergence guarantees.
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Convergence analysis
Fixed-point convergence
Global convergence
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PnP fixed-point convergence

PnP algorithms :
Tpy1 = Tpnp(xk)
Tugs = Dy oProx;s
with Tppp =< Trap = Doo(Id—7Vf)
Tprs = +1d+3(2D, —1d) o (2Prox,; —1d)

Objective : Show that xp — z* € Fix(Tp,p).
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PnP fixed-point convergence

PnP algorithms :
Tpy1 = Tpnp(xk)
Tugs = Dy oProx;s
with Tppp =< Trap = Doo(Id—7Vf)
Tprs = +1d+3(2D, —1d) o (2Prox,; —1d)

Objective : Show that xp — z* € Fix(Tp,p).

Solutions :

m Averaged (nonexpansive) D,. [Sun et. al ‘18, ‘19, ‘21] [Hertrich et.
al ‘20] [Terris et. al ‘21] [Bohra et. al ‘21]

m [Chan et. al ’16] PnP-DRS with stepsize 7 — 0 and a “bounded”
denoiser.

m [Cohen et. al "20] RED-PRO reformulates as a convex
minimization problem.
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PnP fixed-point convergence

PnP algorithms :
Tpy1 = Tpnp(xk)
Tugs = Dy oProx;s
with Tppp =< Trap = Doo(Id—7Vf)
Tprs = +1d+3(2D, —1d) o (2Prox,; —1d)

Objective : Show that xp — z* € Fix(Tp,p).

Solutions :

m Averaged (nonexpansive) D,. [Sun et. al ‘18, ‘19, ‘21] [Hertrich et.
al ‘20] [Terris et. al ‘21] [Bohra et. al ‘21]

m [Chan et. al ’16]

m [Cohen et. al 20]
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Averaged operator theory [Bauschke & Combettes “11]

Definition

T:R" — R"and 0 € (0,1). T is f-averaged if there is a
nonexpansive operator R such that

T=0R+(1-6)1d

m T f-averaged = T nonexpansive.

m 1/2-averaged = “firmly nonexpansive”.
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Averaged operator theory [Bauschke & Combettes “11]

Definition

T:R" — R"and 0 € (0,1). T is f-averaged if there is a
nonexpansive operator R such that

T=0R+(1-6)1d

m T f-averaged = T nonexpansive.

m 1/2-averaged = “firmly nonexpansive”.
Theorem

If T is a 0-averaged operator that admits fixed points, then the
sequence xp+1 = T(xy) converges to a fized point of T.
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Averaged operator theory [Bauschke & Combettes “11]

Proposition

Let Ty 61-averaged and Ty 6s-averaged.

m Then Ty o T is 0-averaged with 6 = 91—"'10_29_129—2192

m For a €0,1], o1 + (1 — ) Id is aby-averaged.

Proposition
If f:R™ = R is convex and L-smooth,

m Prox,; is #ﬁm-avemged.

mId—7Vfis %—avemged.
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Averaged operator theory for PnP convergence

PnP algorithms : Tpr1 = Tpnp(zk)

THQS = Dg o PI‘OXTf
with Tp,p = Tpap = Dgyo (Id —TVf)
Tprs = 31d+3(2D, —1d) o (2Prox,; —1d)
Theorem
If f:R™ — R is convez, L-smooth and D, is 8-averaged,

m [f0 <1, PnP-HQS converges towards a fized point of Trgs.

m If0<1andTL <2, PnP-PGD converges towards a fixed point
of Tpap-
m I[f0 <1/2, PnP-DRS converges towards a fized point of Tprs.
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Averaged operator theory for PnP convergence

PnP algorithms : Tpr1 = Tpnp(zk)

Trgs = Do oProx,s
with Tppp =< Tpgp = Dyo(Id—7Vf)
Tprs = 31d+3(2D, —1d) o (2Prox,; —1Id)

Theorem
If f:R™ — R is convez, L-smooth and D, is 8-averaged,

m [f0 <1, PnP-HQS converges towards a fized point of Trgs.

m I[f0<1 and 7L <2, PnP-PGD converges towards a fixed point
of TprGp-

m I[f0 <1/2, PnP-DRS converges towards a fized point of Tprs.

Remark
X Does not extend to nonconvex data-fidelity term f.

m For f strongly convex, Prox,; and Id —7V f are contractive
— D, (1+ €)-Lipshitz (“almost averaged”) [Ryu et. al, '19].
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How to build averaged deep denoisers 7

D, =0R, + (1 —0)Id with R, nonexpansive.
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Spectral normalization. [Miyato et. al ‘18] [Ryu et. al ‘19|

X Lipschitz constant < 1 for large networks.
X Does not allow skip connexions.

Deep spline neural networks [Neumayer et. al, 22|

m Convolutional Proximal Neural Networks [Hertrich et. al, ‘20]

Soft regularization of the training loss [Terris et. al '21].

m D, =1d —Vyg, with g, Input Convex Neural Network (ICNN)
[Meunier et. al ‘21].

@ Non-expansivity can harm denoising performance.
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PnP and RED algorithms

Find z from observation y ~ p(y|z)

. . PnP / RED algorithms
Proximal Algorithms

x* € argmin f(z) + A\g(z) Do = Prox. v implicit prior
n _ .
oot Dy~ 1d—Vyg v/ SOTA restoration
X unknown prior g X no convergence guarantees

X no minimization problem

D, averaged

1
PnP Fixed-Point
convergence
z* € {x =Tp,p(z)}
v/ convergence guarantees
X no minimization problem
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PnP and RED global convergence

Objective : Show that x; — x* € argmin,, f(z) + g(x).

Solution : Make PnP/RED algorithms real proximal splitting
algorithms again ... by enforcing exactly :

PnP algorithms

D,=Prox,

RED algorithms

D,=1d -Vyg
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RED global convergence

m [Romano et. al, ‘16] If D, has symmetric Jacobian,

1
D, =1d -Vyg, with gcr(x) = 5(575735 - Da’(x»

X Not verified by common denoisers [Rechorst & Schniter,

m [Cohen et. al, ‘22] [Hurault et. al, ‘22]
“Gradient Step” Denoiser :

D, =1d —Vg,(z) with g, neural network

v SOTA denoising performance.

vV D, ~ DMMSE —1d 402V logp, (Tweedie)
= go ~ —0”logp,

'18).
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PnP and RED global convergence

Objective : Show that x; — x* € argmin,, f(z) + g(x).

Solution : Make PnP/RED algorithms real proximal splitting
algorithms again ... by enforcing exactly :

PnP algorithms

D,=Prox,
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PnP global convergence

m [Moreau, 65
If D, = Vh, with h, convex and D, is nonexpansive, then
dg, : R™ — R convex such that

D, = Proxg,,
X Hard too enforce both conditions in the same time

m [Gribonval and Nikolova, '20]
If D, = Vh, with h, convex and-D isnonexpansive, then

dg, : R™ — R nonconvex such that

D, = Proxg,

— Prox-PnP [Hurault et. al, ‘22]

2
D, =1d—Vé, = Vh, with h,(z) = @ -

¢o ()

hs convex < V¢, nonexpansive = Jg,, D, = Prox,,

X Dy = Proxy, # Prox,,, restrict stepsize 7 = 1.
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PnP and RED global convergence

Objective : Show that z; — x* € argmin,, f(z) + g(x).

Solution : Make PnP/RED algorithms real proximal splitting
algorithms again ... by enforcing exactly :

PnP algorithms

D,=Prox,

RED algorithms

D,=1d-Vyg

7 Convergence of proximal splitting algorithms for nonconvex g
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Convergence of nonconvex proximal splitting algorithms

m PGD : 2441 = Prox,, o(Id =7V f5)
® DRS : 2441 = £ Id+4(2Prox, s, —Id) o (2Prox,, —Id)

Objective : Show that z; — z* € {0 € df1(z) + V fa(x)}.

Suppose
- f2 is L-smooth
- f1 + f2 coercive and bounded from below.
- f1 and fy verify the Kurdyka-Lojasiewicz (KL) property.

(PGD) 7L <1 [Attouch, '13]

Then, for { (DRS) 7L < 1/2 [Themelis & Patrinos, "19]

(zx) converges towards a critical point of fi + fa.
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PnP and RED algorithms

Find z from observation y ~ p(y|z)

. . PnP / RED algorithms
Proximal Algorithms

x* € argmin f(z) + A\g(z) Do = Prox. v implicit prior
n _ .
mer Dy~ 1d—Vyg v/ SOTA restoration
X unknown prior g X no convergence guarantees

X no minimization problem

D, = Proxg, /‘

Dy =1d-Vg, D, averaged
{
PnP / RED global PnP Fixed-Point
convergence convergence
x* € argmin f(x) + Mgy () z* € {x = Tppp(v)}

TER™
v convergence guarantees
v/ minimization problem

v/ convergence guarantees
X no minimization problem
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Algorithms in practice

PnP-HQS :2p41 = D, o Prox,s(zx)
PnP-PGD  :2p41 = Dy o (Id =7V f)(ag)
PnP-DRS  :xpy1 = % Id —|—%(2Da —1Id) o (2Prox, ¢ —Id)(z)

RED-GD  :zpi1 = (TADy, + (1 —7A) Id =7V f)(z)
RED-PGD  : zgy1 = Prox,fo(7ADy + (1 — 7A) Id) ()

m Manual parameter tuning of o, A

— automatic via RL [Wei et. al ‘20’], SURE [Ramani et. al,
08).

m Backtracking Line Search for 7 [Hu et al. “22] [Hurault et al. ‘22]

m Annealing of ¢ [Zhang et al. 21] [Kadkhodaie & Simoncelli]
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Variational Image Restoration

PnP Mathematical Formulation
1st order optimization
Denoising as Implicit Prior
PnP and RED algorithms

Convergence analysis
Fixed-point convergence
Global convergence

Algorithm in practice

New trends in PnP image restoration
Deep Unfolding
Denoising diffusion models
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Global convergence [furault et. al 22|

Deblurring with motion kernel and Gaussian noise std v = 0.03

(b) Observed (c) IRCNN (d) DPIR (e) GSPnP-HQS
(28.66dB) (29.76dB) (29.90dB)
200 =7 ;iz
180
160
140
120
(f) Prox-PnP-PGD (2) Prox-PnP-DRS 10 0 60 120 180 240 300 360 420 480 0 60 120 180 240 300 360 420 480
(29.41dB) (29.65dB) (h) Fxo (k) () ming<g [|@irr — @4
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Global convergence [furault et. al 22|

Super-resolution with scale 2, Gaussian blur kernel and Gaussian
noise std v = 0.01

(b) Observed (¢) IRCNN (d) DPIR () GSPnP-HQS
(22.82dB) (23.97dB) (24.81dB)

—— PGD 107
—— DRS

—— PGD
1o —— DRS

- O})
(g) Prox PnP DRS 0 60 120 180 240 300 360 420 480 0 60 120 180 240 300 360 420 480
- . 2
(24.36dB) () F o () () mini<k ||zip1 — zil|
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Fixed Point convergence [Terris et. al 21]
?'Jl ‘_‘l “r, T i L / \ /

(b) Observation ' (¢) prox,yt.|, (d) prox,
(20.48,0.387) (26.13,0.775) (26.57
P ) P Y

wll v
787)

b ; B e 2E 3
(e) BM3D (f) RealSN (g) DnCNN (h) Proposed
(24.68,0.726) (26.12,0.643) (27.09,0.789)

(26.09,0.732)

Cn T Cn
1073 1073 N
AN
103 10-° N
| | 1077 | 1077
300 600 900 300 600 900 300 600
PnP FB iteration n PnP FB iteration n PnP FB iteration n

(a) BM3D (b) RealSN (c) Proposed
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New trends in PnP image restoration
Deep Unfolding

Denoising diffusion models
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Deep Unfolding/Unrolling

m Deep Unfolding/Unrolling (DU) [Zhang et. al ‘17| [Zhang et.
al ©20] PnP/RED with deep denoiser D? with trainable
parameters 6.

eg. fork=1,..,K x4 =Prox,¢ oD? (x,)
Train 6 on pairs (y,x*)
L(0) =E [[lzx —2*||]

and backpropagate through the PnP/RED iterations.

v/ State-of-the-art results.

v/ Also learns optimal regularization hyperparameters.
X Heavy memory backpropagation

X Specialized on single restoration tasks.

m Deep Equilibrium (DEQ) [Bai et. al ‘19, Gilton et. al ‘21] : DU
with oo nb of layers.
v Backward pass with constant memory using implicit
differentiation of the fixed point equation.
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Link with conditional denoising diffusion

RED-GD  :zp41 = (7AD, + (1 — 7N Id =7V f) ()
RED-PGD  : 2411 = Prox, s o(tAD, + (1 — 7A) Id) ()

Discretization of the Gradient Flow

{ da(t) = —Vf(x(t) + MId —D, )(x(t))

z(0) =
{ Gx(t) = = (Viogp(ylz(t)) + 2V log po (z(t)))
z(0) = zo

[Song et. al, ‘21] one can sample x ~ p discretizing the “probability
flow ODE” from white noise with o(t) — 0.

{ da(t) = —g(t)>V log po () (z(t))
z(0) ~ N(0,1d)

with scaled guidance [[o & Salimans, 22

{ Zr(t) = —g(t)* (wV log p(y|z(t)) + V log ps (s ((t)))
2(0) ~ N(0,1d)

= RED + o(t) = deterministic Denoising Diffusion models.
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Key points

Denoising provides an approximation of the prox / gradient of
the true log image prior.

A generic denoiser can be plugged in optimization algorithms to
solve any IR task with known degradation model.

m State-of-the art performance using deep denoisers.

m Convergence results can be obtained with particular
parametrizations on the denoiser.
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Thank you !
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GSPnP and ProxPnP
D, =1d —Vg, with g, C' neural network R” — R
go(@) = 1l — Ny (@)
with a C! neural network N, : R™ — R" (e.g. DRUNet [Zhang et al.
'21] with ELU activations)
Do (2) = @ = Vgo(2) = No(z) + In, ()" (x — No(2))

v/ g, nonconvex, C2, lower-bounded and KL
= Function values and iterates convergence.

v" SOTA denoising with classical denoising CNN architectures for N,.

Training loss : GS-Denoiser - Prox-Denoiser

Eoc, [HD,T(.,. L €,) — 2|2 + pmax(||Jeg, (z + €5)[|s, 1 — e)]
o(./255) 5 15 25
DRUNet  40.19 33.89 31.25

GS-Denoiser 40.26 33.90 31.26
Prox-Denoiser  40.12 33.60 30.82

Table: Denoising PSNR on the CBSD68 dataset, for various o. "



GSPnP and ProxPnP
D, =1d —Vg, with g, C' neural network R” — R
go(@) = 1l — Ny (@)
with a C! neural network N, : R™ — R" (e.g. DRUNet [Zhang et al.
'21] with ELU activations)
Do (2) = @ = Vgo(2) = No(z) + In, ()" (x — No(2))

v/ g, nonconvex, C2, lower-bounded and KL
= Function values and iterates convergence.

v" SOTA denoising with classical denoising CNN architectures for N,.

Training loss : GS-Denoiser - Prox-Denoiser

Eeg, [IDa (2 + &) = all” + pmax(([Jog, (@ + &0)lls, 1 = €)]
o(./255) 5 15 25
GS-DRUNet 1.26 1.96 3.27

Prox-DRUNet  0.92 0.99 0.96

Table: max, ||Jvg, (z)||s on the CBSD68 dataset, for various o.
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More on g, (GSPnP)

1
9o () = 5llv = No(2)|]”
with a neural network N, : R™ — R"

® g, is bounded from below, C! and with L > 1 Lipschitz gradient

8000

6000

4000

2000

m Coercivity to bound iterates xy:

o (@) = g0 (2) + 52 — Projc(o)]

for a large convex compact set C' (never activated in practice)
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More on ¢, (ProxPnP)

Let g5 : R® — R a C**! function with £ > 1 and Vg, L-Lipschitz with
L < 1. Then, for hy : & — 3||z|[* — g»(2) and D, := Vh, =1d —Vg,,

(i) he is (1 — L)-strongly convex and Vz € R", Jp_(z) is positive
definite

(ii) D, is injective, Im(D,) is open and, Vz € R™,
Dy (z) =Proxg, (z), with ¢, : ¥ = RU {400} defined by

0o (Dy (@) = LID, (@) = 2? if @ € Im(D,),
400 otherwise,
(1)

a0 o {

(i) ¢, is LLH weackly convex.
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Inpainting

Inpainting (v = 0): A diagonal, with values in {0, 1},
f(x) = Uz | Az=y}

PI"OXTf(x) = H{r [ Ax:y}(x) =Ay— Az +=x
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Inpainting

o GsPrp
ott)

7

mini<g ||@ip1 — SEzHZ

B o 4 0 B %

(b) minc ||wip1 — ail[*

107

107

10 \ o e
T e otg)

10

107¢

6 15 30 45 60 75 %

Observed GS-PnP (33.71dB) (c) ming<k ||@ip1 — 4] \2
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Influence of the parameter o

27.5
25.0
22,5

o

& 20.0

o
17.5
15.0

125

1.0 15 2.0

3.0
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Influence of the parameter A

—e— motion blur
—e— static blur

0.0 0.1 0.2 0.3 0.4 0.5
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Influence of the initialization

zo =y +n with n~ N(0,0:,:1d)

25

PSNR
N
S

0 20 40 60
Oinit (./255)

Oinit — 20/255 Tinit = 40/255 Oinit = 60/255

The first proximal steps on the data-fidelity term (with a large 7)

prevent the algorithm to be stuck in a poor local minimum.
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Fixed-points of the GS-Denoiser

Trt1 = 'P[o’1]n($k =7V, (z1))
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