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Averaged Operators

Goal: Build averaged Neural Networks.

Definition

An operator T : Rd → Rd is t-averaged wrt. ‖ · ‖ if

T = tR + (1− t)Id , where R : Rd → Rd is 1-Lipschitz continuous wrt. ‖ · ‖.

Properties of averaged operators:

• 1-Lipschitz continuous.

• If T1, ..., TK are averaged wrt. ‖ · ‖, then also TK ◦ · · · ◦ T1 is averaged wrt. ‖ · ‖.
• If T : Rd → Rd is averaged with non-empty fix-point set, then the sequence x(r+1) = Tx(r)

converges for any initialization x(0) to a fixed point of T .
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Special case: Proximity Operators

Definition

For a proper, convex and lower semi-continuous function f ∈ Γ0(Rd ) and T ∈ Rn×d we define the

proximity operator by

proxf ,T (x) = argmin
y∈Rd

{
1
2‖x − y‖2

T + f(y)
}
,

where

‖x‖2
T :=

‖Tx‖2
2

‖T‖2
+ ‖PN (T)x‖2

2.

• proximity operators are 1
2 -averaged wrt. ‖ · ‖T .

• Obersevation: TTT = I or TTT = I implies ‖ · ‖T = ‖ · ‖Id = ‖ · ‖2.

→ write proxf for proxf ,Id
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Interplay between Proximity and Linear Operators

Theorem (Hasannasab, H., Neumayer, Plonka, Setzer, Steidl, 2020)

Let T ∈ Rn×d , b ∈ Rn and f ∈ Γ0(Rd ). Then,

T †proxf ,In
(T ·+b) = proxg,T , for some g ∈ Γ0(Rd ).

• Proof is based on a characterization of Moreau.

• Result holds true in Hilbert spaces.

Corollary

Let T ∈ Rn×d with TTT = I or TTT = I, b ∈ Rn and f ∈ Γ0(Rd ). Then,

TTproxf (T ·+b) = proxg , for some g ∈ Γ0(Rd ).
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Proximal NN Layers

An activation function σ : R→ R is called stable if it is monotone increasing, 1-Lipschitz

continuous and satisfies σ(0) = 0.

→ Includes ReLU, ELU and the sigmoid function.

Lemma (Combettes, Pesquet, 2018)

A function σ : R→ R is a stable activation function if and only if there exists g ∈ Γ0(R) having 0

as a minimizer such that σ = proxg .

Proximal NN layers

Let TTT = I or TTT = I and let σ be a stable activation function, then NN layers of the form

TTσ(T ·+b)

are proximity operators wrt. ‖ · ‖2.
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Proximal Neural Networks

Assumption: σ is a stable activation function.

Definition

Define a Proximal Neural Network (PNN) as

Φ(·; u) = LK (·; u) ◦ · · · ◦ L1(·; u), Lk (x; u) = TT
k σ(Tk x + bk )

with parameters u = ((Tk )K
k=1, (bk )K

k=1), where TT
k Tk = Id or Tk TT

k = Ink and bk ∈ Rnk .

• Lk (x, u) = TT
k σ(Tk x + b) = proxg(x) for some g ∈ Γ0(Rd ).

→ Each layer is 1
2 -averaged wrt. ‖ · ‖2.

• Averaging constant t = K
K+1 .

PNNs are averaged operators!
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Parameter Manifold
We have to ensure that TTT = I or TTT = I.

Definition

For d ≤ n the (compact) Stiefel manifold St(d, n) is given by

St(d, n) :=
{

T ∈ Rn×d : TTT = Id
}
.

• The above requirement can be rewritten as

- T ∈ St(d, n) if n ≥ d and TT ∈ St(n, d) if d < n.

• Orthogonal projection by the U-factor of the polar decomposition T = US, U ∈ St(d, n),

S ∈ SPD(d).

→ Computation by the fixed point equation Un+1 = 2Un(I + UT
n Un)−1, U0 = T .

• The parameters u = ((Tk )K
k=1, (bk )K

k=1) of a PNN live on the manifold

M =
K

×
k=1

Mk , Mk := St(d, nk )× Rnk .
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Training methods

Minimize J (u) :=
∑N

i=1 `(Φ(xi ; u), yi ) s.t. u ∈M.

Possible training methods:

• SGD onM using the Riemannian geometry.

• Inertial stochastic PALM1:

ũ(r+1) = u(r) + α(u(r) − u(r−1))

u(r+1) = PM(ũ(r+1) − ∇̃J (ũ(r+1)))

with stochastic gradient estimator ∇̃ and α ∈ [0, 1).

• Minimize J (PM(u)) with u ∈×K
k=1(Rnk×d × Rnk ) using the Adam optimizer.

1Ref.: H., Steidl. Inertial Stochastic PALM and Applications in Machine Learning, 2022.
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Convolutional Proximal Neural Networks (cPNNs)

• Replace matrix vector multiplications Tx by convolutions, i.e.

T =


Circm(a(1,1)) · · · Circm(a(1,m2))

...
...

Circm(a(m1,1)) · · · Circm(a(m1,m2))

 , Circm((a1, ..., am)T) =


a1 a2 · · · am

am a1

. . .
...

...
. . .

. . . a2

a2 · · · am a1


• We say the corresponding PNN is a convolutional PNN (cPNN) if Tk ∈ bCirc(m,m1,m2) for

all k = 1, ..., K .

Lemma (H., Neumayer, Steidl, 2021 )

The intersection bCirc(m,m1,m2) ∩ St(mm1,mm2) defines a submanifold of St(mm1,mm2). In

particular, the parameter space of cPNNs is again a manifold.

Train cPNNs as in the non-convolutional case!
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Convolutional PNNs with limited filter length

Usually, in CNNs the filters of the convolutions are sparse!

• Let u = ((Tk )K
k=1, (bk )K

k=1) be the parameters of a PNN.

• We say the corresponding PNN is a convolutional PNN (cPNN) with filter length 2l + 1 if

there exist a(e,f) = (a(e,f)0 , ..., a(e,f)l , 0, ..., 0, a(e,f)−l , ..., a
(e,f)
−1 ) such that

Tk =


Circm(a(1,1)) · · · Circm(a(1,m2))

...
...

Circm(a(m1,1)) · · · Circm(a(m1,m2))

 ∈ bCirc(l,m,m1,m2).

Unfortunately, bCirc(l,m,m1,m2) ∩ St(mm1,mm2) is not longer a manifold!
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Orthogonal projection

Task: Compute orthogonal projection of T ∈ Rn,d onto bCirc(l,m,m1,m2) ∩ St(mm1,mm2).

• The fixed point iteration Un+1 = 2Un(I + UT
n Un)−1, U0 = T increases the filter length in

each step.

→ previous procedure not applicable

• Compute instead

T̂ ∈ argmin
S
‖T − S‖2

F + λ‖STS − I‖2
F , λ� 0

→ Minimizers converge to the orthogonal projection for λ→∞.

Computationally costly!
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Training of cPNNs with limited filter length

Given: Samples (xi , yi ), i = 1, ...,N

Let J (u) =
∑N

i=1 `(Φ(xi ; u), yi ).

Goal: Solve

(T̂ , b̂) ∈ argmin
Tk∈bCirc(l,m,m1,m2)∩St(mm1,mm2),bk∈Rmm1

J (u).

Approach: Solve the relaxed problem

(T̃ , b̂) ∈ argmin
Tk∈bCirc(l,m,m1,m2),bk∈Rmm1

{
J (u)+λ

K∑
k=1

‖TT
k Tk − I‖2

F

}
for some large λ > 0. Here we use the Adam optimizer.

Finally, compute the orthogonal projection T̂ of T̃ onto bCirc(l,m,m1,m2) ∩ St(mm1,mm2).
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Network Architecture

Ingredients for a powerful cPNN denoiser:

• Learn the noise instead of the noise-free images (”Residual Learning”)2

• Learn cPNNs with one additional fixed scaling parameter γ ≥ 1.

→ Upper bound for the Lipschitz constant of the cPNN

• Start with m2 copies of the input images.

Summarized, the denoiser has the form

D(x; u) = x − γATΦ(Ax; u), A =
1√
m2


Im
...

Im

 ,

where Φ is a cPNN.

Parameters: 8 layers, m1 = 64, m2 = 128.
2Ref.: Zhang et al., 2016
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Numerical Results

We train the networks on the 400 training images of the BSDS500 data set and test it on the BSD68

data set. For the corrupted images, we add Gaussian noise of noise level 25/255 ≈ 0.098.

Method BM3D γ = 1 γ = 1.99 γ = 5 γ = 10 unconst. CNN DnCNN3

PSNR 28.59 28.48 28.81 29.02 29.08 29.11 29.23

Original Noisy
PSNR 20.17

cPNN, γ = 1.99
PSNR 29.68

cPNN, γ = 5
PSNR 29.93

unconst. CNN
PSNR 29.86

BM3D
PSNR 29.56

3Ref.: Zhang et al., 2016
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Plug-and-Play4

Algorithm 1 FBS and FBS-PnP

Initialization: y (0) ∈ Rm, η ∈ (0, 2
L )

Iterations: For r = 0, 1, . . .
y (r+1) = x(r) − η∇f(x(r))

x(r+1) = proxηg(y (r+1))

PnP Step: x(r+1) = D(y (r+1))

• Replace the proximity operator wrt the regularizer by a more general denoiser.

• The same can be done with other algorithms from convex analysis, e.g. ADMM.

Lemma

Let f : Rm → R be convex and differentiable with L-Lipschitz gradient and letD : Rm → Rm be

averaged. Then for 0 < η < 2
L , FBS-PnP converges.

4Venkatakrishnan et al., 2013
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Averaged Denoiser with cPNNs

Recall that we used for denoising the mapping Im − γATΦ(A·; u).

→ Ψ = ATΦ(A·; u) is averaged.

Lemma (H., Neumayer, Steidl, 2021)

Let x∗ ∈ Rm be fixed. Further, let Ψ: Rm → Rm be an t-averaged operator with t ∈ [ 1
2 , 1]. For a

scaling factor 0 < γ < 2, the mapping

D(x) =
(
1− 1

1−γ+2tγ

)
x∗ + 1

1−γ+2tγ (Im − γΨ(x))

is t̃ -averaged with t̃ = tγ
1−γ+2tγ .

• For t = 1
2 , it we have in the lemmaD(x) = Im − γΨ(x).

• If t > 1
2 , we need some oracle.
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Numerical Avaraging Parameter

It is important that the avaraging parameter t of Ψ = ATΦ(A·; u) is as close to 1
2 as possible.

• By theory we obtain that t = K
K+1 .

• In practice, we observe numerically that t is often smaller than it can be shown by theory.

Approximate t∗ := min{t ∈ [ 1
2 , 1] : Ψ is t-averaged} numerically as follows:

• Start with t = 1
2 .

• Check if R := 1
t Ψ− 1−t

t I is 1-Lipschitz.

• If yes: set t∗ = t , otherwise: increase t by 0.05 and repeat this procedure.

A necessary criterion for R being 1-Lipschitz:

• generate xi , i = 1, ...,N uniformly on [0, 1]m.

• Check if ‖JR(xi )‖2 ≤ 1 (can be implemented matrix-free via the power-method).
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Numerical Results: PnP-Denoising

• cPNNs are trained on BSD500 for noise level of 25/255 ≈ 0.098.

• The numerical averaging parameter is t = 0.6.

• The test images are corrupted by Gaussian noise with standard deviation σ.

• Use BM3D as oracle.

Method σ = 0.075, σ = 0.1, σ = 0.125, σ = 0.15

Noisy images 22.50 20.00 18.06 16.48

FBS-PnP with cPNN 30.12 28.80 27.82 27.06

Variational network5 30.05 28.72 27.72 26.95

BM3D6 29.88 28.50 27.50 26.73

5Ref.: Effland, Kobler, Kunisch, Pock. Variational networks: an optimal control approach to early stopping variational methods
for image restoration, 2020.

6Ref.: Dabov, Foi, Katkovnik, Egiazarian. Image denoising by sparse 3D transform-domain collaborative filtering, 2007.
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Numerical Results: PnP-Denoising

Original Noisy
PSNR 16.44

FBS-PnP with cPNN
PSNR 27.00

BM3D
PSNR 26.62
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Numerical Results: PnP-Deblurring

• cPNNs are trained on BSD500. The test set is BSD68.

• The test images are corrupted by a Gaussian blur kernel of width τ and Gaussian noise with

standard deviation 0.01.

• The cPNN-denoiser is trained for the noise level of 0.005.

• The numerical averaging parameter is t = 0.5. No oracle is needed.

Method τ = 1.25, τ = 1.5, τ = 1.75, τ = 2.0

Blurred images 26.46 25.60 24.98 24.53

FBS-PnP with cPNN 29.78 28.62 27.70 26.98

Variational network7 29.95 28.76 27.87 27.13

L2-TV, λ = 0.001 29.14 28.08 27.22 26.53

7Ref.: Effland, Kobler, Kunisch, Pock. Variational networks: an optimal control approach to early stopping variational methods
for image restoration, 2020.
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Numerical Results: PnP-Deblurring

Original Blurred
PSNR 25.21

FBS-PnP with cPNN
PSNR 30.51

L2-TV
PSNR 29.77

Convolutional Proximal Neural Networks | Johannes Hertrich

Page 26



Contents

Proximal Neural Networks (PNNs)

Convolutional PNNs

Scaled cPNNs for Denoising

Plug-and-Play Algorithms

Proximal Resdiual Flows

Convolutional Proximal Neural Networks | Johannes Hertrich

Page 27



Normalizing Flows

PX

T

T −1

PZ

• Goal: Approximate a complicated probability distribution PX , which is given by samples

x1, ..., xN .

• Learn diffeomorphism T such that T#PX ≈ PZ , i.e., PX ≈ T −1
# PZ .

• Sampling by drawing a sample z from PZ and computing T −1(z).

• Density evaluation by the change-of-variables formula

pT−1
#

PZ
(x) = pZ (T (x))|det(∇T (x))|.

• Maximum likelihood loss: Maximize

J (θ) =
N∑

i=1

log(pT−1
#

PZ
(xi )) =

N∑
i=1

log(pZ (T (xi ))) + log(det|∇T (xi )|).
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Residual Flows

• Proposed by Behrmann et al., 2019.

• Concatenate layers of the form L(x) = x + g(x), where g is a c-Lipschitz neural network

with c < 1.

Theorem

Let g be c-Lipschitz continuous for some c < 1. Then L is invertible and the inverse L−1(y) is

given by the limit of the sequence

x(r+1) = y − g(x(r)).

• Lipschitz constraints imposed by spectral normalization.

Can be improved by the use PNNs!

Ref.: Behrmann et. al. Invertible Residual Networks, Chen et. al. Residual Flows for Invertible Generative Modeling

Convolutional Proximal Neural Networks | Johannes Hertrich

Page 29



Proximal Residual Flows

Use layers of the form L(x) = x + γΦ(x), where Φ is a PNN.

Theorem (H., 2022)

Let Φ be a t-averaged operator with 1
2 < t ≤ 1 and let 0 < γ < 1

2t−1 . Then, L is invertible and the

inverse of L−1(y) is given by the limit of the sequence

x(r+1) =
1

1 + γ − γt
y − γt

1 + γ − γt
R(x(r)), where R(x) =

1

t
Φ(x)− 1− t

t
x.

Additionally, if Φ is t-averaged with 0 ≤ t ≤ 1
2 , the above statement is true for arbitrary γ > 0.

• γΦ might have a Lipschitz constant larger than 1.

→ γ < K+1
K−1 for a K -layer PNN.

• Averaged constraint imposed directly by the definition of the PNN.
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Toy Examples

Figure: Reconstruction of toy densities. Top: Ground truth, Bottom: Reconstructions with proximal residual
flows.
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Conditional Proximal Residual Flows
Consider the Bayesian inverse problem

Y = F(X) + Ξ, X ∼ PX , Ξ ∼ N (0, σ2).

Goal: PX|Y=y ≈ T (y; ·)#PZ for all y .

→ T (y; ·) has to be invertible for any y .

Conditional Proximal Residual Flows

Use layers of the form:

L(y; x) = x + γΦ2(y, x), where Φ = (Φ1,Φ2) : Rn × Rd → Rn × Rd is a PNN.

→ If Φ is averaged, then also Φ2 is averaged.

Maximize:

J (θ) =
N∑

i=1

log(pT−1(yi ;·)#PZ
(xi )) =

N∑
i=1

log(pZ (T (yi ; xi ))) + log(|∇T (yi ; xi )|).
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Approximation of the Posterior for Gaussian Mixtures

Consider the Bayesian inverse problem

Y = AX + Ξ, A ∈ Rd×d , Ξ ∼ N(0, b2I)

where

• The prior distribution PX is a GMM in R50 with 5 mixture components.

• A diagonal matrix with diagonal entries 0.1/k2 for k = 1, ..., 50.

• Ξ ∼ N (0, 0.05I).

• Posterior can be derived analytically.

Approximation error (sample-based Wasserstein distance):

Method Real NVP Residual Flow Proximal Residual Flow

Error 2.122± 1.007 1.374± 0.060 1.028± 0.079
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Conclusions

• We constructed (convolutional) PNNs, which are averaged (C)NNs.

• cPNNs can be used for constructing denoisers with upper bound on the Lipschitz constant.

→ Competitive performance.

• cPNNs can be used for convergent Plug-and-Play iterations.

• PNNs can be used for proximal residual flows, a new architecture of normalizing flows.

Future work:

• Which class of functions can be approximated by PNNs?

• Efficient projection onto the orthogonal convolutions with limited filter length.

• Overcome the numerical averaging parameter.
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Thank you for your attention!
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