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The denoising problem

Figure: Denoising process with the ROF model1. Source: Wikipedia

1 Rudin, L. I. ; Osher, S.; Fatemi, E., 1992.
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Inverse problems

Let X be a separable Hilbert space. The denoising model writes

x = y∗ + ε,

where x is the data, y∗ the ground truth, and ε the noise.

Goal: Reconstruct y∗ given x.

The variational problem
min
y

1

2
∥y − x∥2 +R(y) (1)

gives stable solutions, where R is known as regularizer. If R is proper, convex and lower
semicontinuous (R ∈ Γ0(X )), then (1) has a unique minimizer2:

z = argmin
y∈X

1

2
∥y − x∥2 +R(y) =: proxR(x).

2 Bauschke, H. H., Combettes, P. L., 2017.
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Some observations

The main problem:
⇝ Given x, which is the best R? Or, “equivalently”, which is the best proxR?

In this talk:
⇝ Can we learn proxR from data?

Consider {(x̄i, ȳi)}ni=1 set of noisy data/ground truth term pairs. We want to solve:

min
T∈H

1

n

n∑
i=1

∥T (x̄i)− ȳi∥2

⇝ What is H?
⇝ Can we exploit the structure of proxR with R ∈ Γ0(X )?

4



Some observations

The main problem:
⇝ Given x, which is the best R? Or, “equivalently”, which is the best proxR?

In this talk:
⇝ Can we learn proxR from data?
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Consider {(x̄i, ȳi)}ni=1 set of noisy data/ground truth term pairs. We want to solve:

min
T∈H

1

n

n∑
i=1

∥T (x̄i)− ȳi∥2
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Plug-and-Play (PnP) methods3

Consider the FB iteration of (1): xk+1 = proxR(xk) and generalize it as xk+1 = Txk.

⇝ Great experimental results!
⇝ Theoretical guarantees?

How to make (xk)k∈N convergent? FB converges because:

Theorem. Let T : X → X be a firmly nonexpansive operator such that FixT ̸= ∅. Let
x0 ∈ X and set

xk+1 = Txk

Then, xk − Txk → 0 and there exists y ∈ FixT such that xk ⇀ y.

⇝ proxR, R ∈ Γ0(X), is firmly nonexpansive + “firmly nonexpansive ⇔ nonexpansive.”

3 Venkatakrishnan et al., 2013; Ryu, E. et al., 2019; Terris et al., 2021; Hertrich et al. 2021.
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Nonexpansive operators

Recall: N nonexpansive if, for every x, x′ ∈ X , we have ∥N(x)−N(x′)∥ ≤ ∥x− x′∥.

We therefore study
N := {N : X → X | N is nonexpansive} .

Consider {(x̄i, ȳi)}ni=1 set of noisy/clean pairs. We want to solve:

N̂ ∈ argmin
N∈N

1

n

n∑
i=1

∥N(x̄i)− ȳi∥2. (EP)

⇝ (EP) is computationally unfeasible⇝ We want to approximate N .
⇝ We propose a “piecewise affine” version of (EP).
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What do we mean with piecewise affine?

Step 1. Given D := {xi}mi=1, xi ∈ Rd, we want to consider a “good” simplicial partition
T of conv(D);

i.e, such that
(P1) Every simplex has nonempty interior;
(P2) the intersection of every two simpleces has to be, either empty, or coincide with the

convex envelope of its common vertices.

7
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Piecewise affine operators

Step 2. For every x ∈ conv(D),

there exists a simplex and a collection {λi}di=0 with
λi ≥ 0,

∑d
i=0 λi = 1, such that

x =
d∑

i=0

λixi ⇝ N : conv(D) → Rd; N(x) :=
d∑

i=0

λiN(xi),

being N(xi) := yi, for a given set {yi}mi=1.

Define

PA(T) :=
{
N : conv(D) → Rd : N(x) :=

d∑
i=0

λiN(xi)

}
.

8



Piecewise affine operators

Step 2. For every x ∈ conv(D),there exists a simplex and a collection {λi}di=0 with
λi ≥ 0,

∑d
i=0 λi = 1, such that

x =

d∑
i=0

λixi

⇝ N : conv(D) → Rd; N(x) :=
d∑

i=0

λiN(xi),

being N(xi) := yi, for a given set {yi}mi=1.

Define

PA(T) :=
{
N : conv(D) → Rd : N(x) :=

d∑
i=0

λiN(xi)

}
.

8



Piecewise affine operators

Step 2. For every x ∈ conv(D),there exists a simplex and a collection {λi}di=0 with
λi ≥ 0,

∑d
i=0 λi = 1, such that

x =

d∑
i=0

λixi ⇝ N : conv(D) → Rd; N(x) :=

d∑
i=0

λiN(xi),

being N(xi) := yi, for a given set {yi}mi=1.

Define

PA(T) :=
{
N : conv(D) → Rd : N(x) :=

d∑
i=0

λiN(xi)

}
.

8



Piecewise affine operators

Step 2. For every x ∈ conv(D),there exists a simplex and a collection {λi}di=0 with
λi ≥ 0,

∑d
i=0 λi = 1, such that

x =

d∑
i=0

λixi ⇝ N : conv(D) → Rd; N(x) :=

d∑
i=0

λiN(xi),

being N(xi) := yi, for a given set {yi}mi=1.

Define

PA(T) :=
{
N : conv(D) → Rd : N(x) :=

d∑
i=0

λiN(xi)

}
.

8



The piecewise affine problem

Our piecewise affine problem:

min
N∈N∩PA(T)

1

n

n∑
i=1

∥N(x̄i)− ȳi∥2. (PAP)

Some observations:

▶ (PAP) is not a computational-friendly formulation.
▶ Can we find a condition in {(x̄i, N(x̄i))}ni=1 so that the extended operator (in the

piecewise affine sense) is 1-Lipschitz?
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Seeking for a condition

Every x ∈ conv(D) can be rewritten as

x =

d∑
i=0

λixi =

d∑
i=0

λi(xi − x0) + x0,

for some simplex,

with image

N(x) :=
n∑

i=1

λiyi = BA−1(x− x0) + y0,

where A = (x1 − x0 | ... | xd − x0), and B = (y1 − y0 | ... | yd − y0).
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We found it!

Theorem
If, for every simplex ∥BA−1∥ ≤ 1, then N (as above) is nonexpansive.

Consider

min
y1,...ym

1

n

n∑
i=1

∥yi − ȳi∥2

s.t. ∥B(y1, . . . ym)A−1∥ ≤ 1, for every simplex.
(FP)

Then,

Theorem
Problems (FP) and (PAP) are equivalent.
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A convergence result

Can we prove that, in some sense, that (PAP) converges to (EP) at least in conv(D)?

Theorem
For every k ∈ N, there exists a triangulation Tk such that, if we define

N̂k ∈ argmin
L∈PA(Tk)∩N

1

n

n∑
i=1

∥Nk(x̄i)− ȳi∥2,

there exists a subsequence {kj}∞j=1 such that N̂kj

∗
⇀ N̂ , being

N̂ ∈ argmin
N∈N

1

n

n∑
i=1

∥N(x̄i)− ȳi∥2.
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Experiments

In practice, we search for
argmin
x∈Rn×n

1

2α
∥x− y∥2 +G(Dx),

where (Dx)i = (xi+1,j − xi,j , xi,j+1 − xi,j), i = 1, ..., n2. To solve the dimensionality
problem of simplicial partitions, we suppose G is of the form

G(v) =

n2∑
i=1

Gi(vi), for every v ∈ Rn2×2,

where Gi : R2 → (−∞,+∞]. With this, we learn proxGi
: R2 → R2.

Example: If G = ∥ · ∥2, ∥Dx∥2 =
∑n2

i=1 ∥(Dx)i∥2 and so

prox∥·∥2(x1, ..., xn2) = (prox∥·∥2(x1), ...,prox∥·∥2(xn2)).

13
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Some pictures

Figure: Classic regularizers compared to ours.
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Conclusions

▶ We provide a constructive method to learn nonexpansive (and therefore also firmly
nonexpansive) operators,

▶ classic optim. algorithms such as Chambolle–Pock, Douglas–Rachford,
Forward-Backward Splitting or ADMM have their corresponding convergent PnP
version,

▶ we prove that the approximate problem that we define converges to the original
empirical one,

▶ preprint will be soon (I hope) on arXiv!
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¡Muchas gracias!

Figure: vino y teoremas
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