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The denoising problem

Original Maoisy image Denaised image
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Figure: Denoising process with the ROF model’. Source: Wikipedia
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Inverse problems
Let X be a separable Hilbert space. The denoising model writes
r=y" +e,

where z is the data, y* the ground truth, and ¢ the noise.
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Inverse problems

Let X be a separable Hilbert space. The denoising model writes
r=y" +e,
where z is the data, y* the ground truth, and ¢ the noise.

Goal: Reconstruct y* given z.

The variational problem
o1
min 2 [ly —z|* + R(y) (1)

gives stable solutions, where R is known as regularizer.
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Inverse problems

Let X be a separable Hilbert space. The denoising model writes
r=y" +e,
where z is the data, y* the ground truth, and ¢ the noise.

Goal: Reconstruct y* given z.

The variational problem
o1
min 2 [ly —z|* + R(y) (1)

gives stable solutions, where R is known as regularizer. If R is proper, convex and lower
semicontinuous (R € T'y(X)), then (1) has a unique minimizer?:

1
z = argmin >y — 2| + R(y)
yeEX 2
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Inverse problems

Let X be a separable Hilbert space. The denoising model writes
r=y" +e,
where z is the data, y* the ground truth, and ¢ the noise.

Goal: Reconstruct y* given z.

The variational problem
o1
min 2 [ly —z|* + R(y) (1)

gives stable solutions, where R is known as regularizer. If R is proper, convex and lower
semicontinuous (R € T'y(X)), then (1) has a unique minimizer?:

1
z = argmin - ||y — z||* + R(y) =: proxz(z).
yex 2
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Some observations

The main problem:
~» Given z, which is the best R? Or, “equivalently”, which is the best prox;?
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Some observations

The main problem:

~» Given z, which is the best R? Or, “equivalently”, which is the best prox;?
In this talk:

~» Can we learn proxy from data?
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Some observations

The main problem:
~» Given z, which is the best R? Or, “equivalently”, which is the best prox;?
In this talk:
~» Can we learn proxy from data?
Consider {(z;,9;)}"; set of noisy data/ground truth term pairs. We want to solve:

n

1
in — T(z;) — i
%né%n;:l” (@) — %l
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Some observations

The main problem:
~» Given z, which is the best R? Or, “equivalently”, which is the best prox;?
In this talk:
~» Can we learn proxy from data?
Consider {(z;,9;)}"; set of noisy data/ground truth term pairs. We want to solve:

n

1
in — T(z;) — i
%né%n;:l” (@) — %l

~ What is H?
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Some observations

The main problem:
~» Given z, which is the best R? Or, “equivalently”, which is the best prox;?
In this talk:
~» Can we learn proxy from data?
Consider {(z;,9;)}"; set of noisy data/ground truth term pairs. We want to solve:

1 n
in — T(z;) — i
%né%n;” (z:) — 5l
~s What is H?
~ Can we exploit the structure of prox; with R € I'y(X)?
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Plug-and-Play (PnP) methods?

Consider the FB iteration of (1): z;.1 = proxg(zx) and generalize it as x4, 1 = Twg.
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Consider the FB iteration of (1): z;.1 = proxg(zx) and generalize it as x4, 1 = Twg.

~+ Great experimental results!
~+ Theoretical guarantees?

How to make (xy)ren CcONnvergent?
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Plug-and-Play (PnP) methods?

Consider the FB iteration of (1): z;.1 = proxg(zx) and generalize it as x4, 1 = Twg.

~+ Great experimental results!
~+ Theoretical guarantees?
How to make (zy)ren cOnvergent? FB converges because:

Theorem. Let T : X — X be a firmly nonexpansive operator such that Fix T # (. Let
zo € X and set
Try1 = Ty,

Then, x;, — Tz, — 0 and there exists y € Fix T such that z;, — .
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Plug-and-Play (PnP) methods?

Consider the FB iteration of (1): z;.1 = proxg(zx) and generalize it as x4, 1 = Twg.

~+ Great experimental results!
~+ Theoretical guarantees?
How to make (zy)ren cOnvergent? FB converges because:

Theorem. Let T : X — X be a firmly nonexpansive operator such that Fix T # (. Let

zo € X and set
Tpp1 = Ty,

Then, x;, — Tz, — 0 and there exists y € Fix T such that z;, — .

~ proxg, R € Tg(X), is firmly nonexpansive + “firmly nonexpansive < nonexpansive.”
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Nonexpansive operators

Recall: N nonexpansive if, for every z, 2’ € X, we have |[N(z) — N(2')| < ||z — 2|
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Nonexpansive operators

Recall: N nonexpansive if, for every z, 2’ € X, we have |[N(z) — N(2')| < ||z — 2|

We therefore study
N :={N:X — X | N is nonexpansive} .
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Nonexpansive operators

Recall: N nonexpansive if, for every z, 2’ € X, we have |[N(z) — N(2')| < ||z — 2|

We therefore study
N :={N:X — X | N is nonexpansive} .

Consider {(z;,9;)}"_, set of noisy/clean pairs. We want to solve:

Ne argmln— N(Z;) — yi 2, (EP)
g Z H [
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Nonexpansive operators

Recall: N nonexpansive if, for every z, 2’ € X, we have |[N(z) — N(2')| < ||z — 2|

We therefore study
N :={N:X — X | N is nonexpansive} .

Consider {(z;,9;)}"_, set of noisy/clean pairs. We want to solve:

~ 1<
N € argmin — N(z;) — 3% (EP)
e - ING) - i

~ (EP) is computationally unfeasible ~» We want to approximate .
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Nonexpansive operators

Recall: N nonexpansive if, for every z, 2’ € X, we have |[N(z) — N(2')| < ||z — 2|

We therefore study
N :={N:X — X | N is nonexpansive} .

Consider {(z;,9;)}"_, set of noisy/clean pairs. We want to solve:

~ 1<
N € argmin — N(z;) — 3% (EP)
e - ING) - i

~ (EP) is computationally unfeasible ~» We want to approximate .
~ We propose a “piecewise affine” version of (EP).
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What do we mean with piecewise affine?

Step 1. Given D := {z;}7,, x; € R?, we want to consider a “good” simplicial partition
% of conv(D);
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What do we mean with piecewise affine?

Step 1. Given D := {z;}7,, x; € R?, we want to consider a “good” simplicial partition
% of conv(D); i.e, such that

(P1) Every simplex has nonempty interior;

(P2) the intersection of every two simpleces has to be, either empty, or coincide with the
convex envelope of its common vertices.

Y .
D . Y‘l | '| ’{‘r :Dr\r} '
ﬂ/ \ ) ¥3 y
. . 5
¥3 ¥ \/ Y5
y a4 ¥y » // OG]\ ¥y
v i / -
L : é\ / ¢ i,
. Y %, xu X,
% %, .
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Piecewise affine operators

Step 2. For every = € conv(D),
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Piecewise affine operators

Step 2. For every = € conv(D),there exists a simplex and a collection {);}¢_, with
Ai >0, 2% A =1, such that

d
=0
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Piecewise affine operators

Step 2. For every z € conv(D),there exists a simplex and a collection {);}¢_, with
i >0, Z;‘i:o A; = 1, such that

d d
z=Y Nz ~ N:conv(D) =R N(x):=Y \N(z),
=0 i=0

being N(z;) := y;, for a given set {y;}™ .
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Piecewise affine operators

Step 2. For every z € conv(D),there exists a simplex and a collection {);}¢_, with
i >0, Z;‘i:o A; = 1, such that

d d
z=Y Nz ~ N:conv(D) =R N(x):=Y \N(z),
=0 3

being N(z;) := y;, for a given set {y;}™ .

Define

d
PA(Z) := {N :conv(D) —» R : N(z):= Z)\i]\f(xi)} :

DATA-DRIVEN EXPERTS IN
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The piecewise affine problem

Our piecewise affine problem:

N(z:) — 5|2 PAP
N&;BAWZH ol (PAP)
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The piecewise affine problem

Our piecewise affine problem:

N(z:) — 5|2 PAP
NEE%EAWZH ol (PAP)

Some observations:

» (PAP) is not a computational-friendly formulation.
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The piecewise affine problem

Our piecewise affine problem:

N(z:) — 5|2 PAP
NEE%EAWZH ol (PAP)

Some observations:

» (PAP) is not a computational-friendly formulation.

» Can we find a condition in {(z;, N(z;))}"_, so that the extended operator (in the
piecewise affine sense) is 1-Lipschitz?
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Seeking for a condition

Every z € conv(D) can be rewritten as

d
x:Z)\ixl Z)\ x; — xo) + o,
i=0

for some simplex,
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Seeking for a condition

Every z € conv(D) can be rewritten as

d
x:Z)\ixl Z)\ x; — xo) + o,
i=0

for some simplex, with image
= Nigi = BA™ (z — 20) + vo,

where A = (1’1 — Xg ‘ | Tq — 1'()), and B = (yl — Yo | | Yd — y()).
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We found it!

Theorem
If, for every simplex | BA~!|| < 1, then N (as above) is nonexpansive.
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We found it!

Theorem
If, for every simplex | BA~!|| < 1, then N (as above) is nonexpansive.

Consider

I g
min = > ly; — Gl
Y15---Ym N im1

St [[B(y1,- .. ym)A™H| < 1, for every simplex.
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We found it!

Theorem
If, for every simplex | BA~!|| < 1, then N (as above) is nonexpansive.

Consider
R _ o
min -— i — Yi
st |B(y1,...ym)A™"| < 1, for every simplex.
Then,
Theorem

Problems (FP) and (PAP) are equivalent.
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A convergence result

Can we prove that, in some sense, that (PAP) converges to (EP) at least in conv(D)?
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A convergence result

Can we prove that, in some sense, that (PAP) converges to (EP) at least in conv(D)?

Theorem
For every k € N, there exists a triangulation T,
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A convergence result

Can we prove that, in some sense, that (PAP) converges to (EP) at least in conv(D)?

Theorem
For every k € N, there exists a triangulation ¥, such that, if we define

Ny € argmin Z | Nk(Z:) — 9%
LEPA(T)NN TV i
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A convergence result

Can we prove that, in some sense, that (PAP) converges to (EP) at least in conv(D)?

Theorem
For every k € N, there exists a triangulation ¥, such that, if we define

Ny € argmin Z | Nk(Z:) — 9%
LEPA(T)NN TV i

there exists a subsequence {k;}72, such that ﬁk.j X N, being

~ 1 <&
N € argmin — N(z;) — 5%
g 35 IV () -5
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Experiments

In practice, we search for
arg min —||:E —y|* + G(Du),

TER™X™
where (Dz); = (w41, — T4 j, Tij+1 — Tij), @ = 1,...,n% To solve the dimensionality
problem of simplicial partitions, we suppose G is of the form

v) =Y Gi(v;), foreveryve R™ %2,

where G; : R? — (—oo, +oc]. With this, we learn prox, : R? — R
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Experiments

In practice, we search for

arg min —||:E —y|* + G(Du),
TER™X™

where (Dz); = (w41, — T4 j, Tij+1 — Tij), @ = 1,...,n% To solve the dimensionality
problem of simplicial partitions, we suppose G is of the form

v) =Y Gi(v;), foreveryve R™ %2,

where G; : R? — (—o0, +00]. With th|s we learn prox : R? — R
Example: If G = | - ||?, | Dal|? = S, [|(Da),||? and so

prOX”_Hz(Il, "'717’”2) = (prox‘luz(ﬂfl), ceey prOXH‘lz(Inz))
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Some pictures

Noisy image Reconstruction with learned prox

20 4 60 80 100 120 20 4 60 8 100 120

Reconstruction with prox of |||,

Reconstruction with prox of ||.||2

20 4 6 8 100 120 20 4 60 80 100 120

Figure: Classic regularizers compared to ours.
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Conclusions

» We provide a constructive method to learn nonexpansive (and therefore also firmly
nonexpansive) operators,

» classic optim. algorithms such as Chambolle-Pock, Douglas-Rachford,
Forward-Backward Splitting or ADMM have their corresponding convergent PnP
version,

> we prove that the approximate problem that we define converges to the original
empirical one,

» preprint will be soon (I hope) on arXiv!
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:Muchas gracias!

Figure:vino y teoremas



