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Introduction

Forward model:
y = Hu+ w, (1)

where,

u ∈ Rd unknown image, y ∈ Rd observed data and d ∈ N,

H a circulant block matrix of dimension d× d obtained from a blur
kernel h and ...

w ∼ N (0, σ2Id) noise, σ2 > 0.

Deconvolution problems: Estimating u from y.

Deconvolution problems can be broadly classified in 3 groups:
Non-blind, blind and semi-blind.
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Introduction

Non-blind problems: H is known and u is unknown. The problem
is ill-posed so it requires regularisation to estimate u.

Blind problems: The operator H and u are completely unknown.

The problem is Ill-posed and regularisation on u and h is required.

Semi-blind problems: H ∈ K where,

K =
{
H(α) : Rd −→ Rd, α ∈ Θα

}
.

Pros: Introduces more structure.

Cons: The problem is non-linear w.r.t α

The problem is ill-posed and regularisation on u is required.

Charlesquin HWU 4/ 21



Introduction

Non-blind problems: H is known and u is unknown. The problem
is ill-posed so it requires regularisation to estimate u.

Blind problems: The operator H and u are completely unknown.

The problem is Ill-posed and regularisation on u and h is required.

Semi-blind problems: H ∈ K where,

K =
{
H(α) : Rd −→ Rd, α ∈ Θα

}
.

Pros: Introduces more structure.

Cons: The problem is non-linear w.r.t α

The problem is ill-posed and regularisation on u is required.

Charlesquin HWU 4/ 21



Introduction

Non-blind problems: H is known and u is unknown. The problem
is ill-posed so it requires regularisation to estimate u.

Blind problems: The operator H and u are completely unknown.

The problem is Ill-posed and regularisation on u and h is required.

Semi-blind problems: H ∈ K where,

K =
{
H(α) : Rd −→ Rd, α ∈ Θα

}
.

Pros: Introduces more structure.

Cons: The problem is non-linear w.r.t α

The problem is ill-posed and regularisation on u is required.

Charlesquin HWU 4/ 21



Problem formulation in Bayesian framework

Likelihood function

p(y|u, σ2) ∝ exp (−fσ2(u; y)), (2)

where fσ2(u; y) =
||y−Hu||2

2σ2 is the data fidelity term.

Maximum likelihood estimation (MLE)

û = argmax
u∈Rd

log p(y|u, σ2)

= argmin
u∈Rd

||Hu− y||22 (3)

Limitations: MLE achieves limit image reconstruction,

H is poorly conditioned
The problem is ill-posed (dim u > dim y)

Solution: regularise the solution space.
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Problem formulation in Bayesian framework

Prior distribution: u ∼ p(u|α),
where αT g(u) = − log p(u|α) with g the regularisation term and α
the regularisation parameter.

Posterior distribution

p(u|y, σ2, α) ∝ p(y|u, σ2)p(u|α), (4)

Retrieve u from y
1 Maximum a posteriori (MAP) estimator

ûMAP = argmax
u∈Rd

log p(u|y, σ2, α) = argmin
u∈Rd

||y −Hu||22 + αT g(u)

2 Minimum mean squared error (MMSE) estimator

ûMMSE =

∫
Rd

ũp(ũ|y, σ2, α)dũ

Charlesquin HWU 6/ 21



Problem formulation in Bayesian framework

Prior distribution: u ∼ p(u|α),
where αT g(u) = − log p(u|α) with g the regularisation term and α
the regularisation parameter.

Posterior distribution

p(u|y, σ2, α) ∝ p(y|u, σ2)p(u|α), (4)

Retrieve u from y
1 Maximum a posteriori (MAP) estimator
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How to choose the best prior ?

Hand-crafted priors model : Tikhonov regularisation, total
variation, ℓ1 regularisation. . .

Capture the statistical nature of the images

We can control α automatically. . .

Drawback: Doesn’t capture probability distribution of the image

Plug and Play priors

Non-local mean, Non-local Bayes and BM3D

Machine learning models (capture probability distribution of the
image)

Drawback: Requires a training for each level of noise, calibrating α
is difficult.
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Plug and Play prior

PnP-ULA [Laumont et al., 2022]

Xk+1 = ΠC

[
Xk − γ∇xfσ2(Xk; y) +

αγ

ϵ
(Dϵ(Xk)−Xk) +

√
2γZk+1

]
Where,

∗ α is the regularisation parameter,

∗ Dϵ is the denoiser,

∗ ϵ is the noise level.

∗ ΠC is the projection operator onto the convex set C.

Limitations of the PnP-ULA:

∗ Estimating the variance σ2 of the model is difficult,

∗ The Markov kernel doesn’t have good mixing properties.
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(a) Blurred (b) MMSE: 29.1

(c) Autocorrelation (d) Noise var. σCharlesquin HWU 9/ 21



Regularise PnP-ULA methodology

Latent variable

u = z + ω′ where ω′ ∼ N (0, ρ2Id)

Joint probability distribution

p(u, z|y;σ2, ρ2) =
p(y|u;σ2)p(u|z; ρ2)πϵ0(z)∫
R2d p(ũ, z̃|y;σ2, ρ2)dũdz̃

(5)

where,

p(u|z; ρ2) ∝ exp

(
1

2ρ2
||u− z||2

)
and πϵ0 is the data distribution with variance ϵ20.
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Regularise PnP-ULA methodology

Then simulating u and z from p(u, z|y;σ2, ρ2) is similar to

1 u ∼ p(u|z, y; ρ2, σ2) ∝ exp
(
− 1

2σ2 ||y −Hu||2 − 1

2ρ2
||u− z||2︸ ︷︷ ︸

− log p(u|z;ρ2)

)
,

2 z ∼ p(z|u; ρ2) ∝ exp
(
− 1

2ρ2
||u− z||2

)
πϵ0(z).

It is important to point out that

p(u, z|y; ρ2, σ2) −→ p(u|y;σ2) when ρ −→ 0

The question of interest here, is how to effectively calibrate σ2 and ρ2

for the measurement y??
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Computation of σ2 and ρ2

We evaluate the Maximum Marginal likelihood estimator from y,

(σ̂2, ρ̂2) ∈ argmax
σ2∈Θσ2 ,ρ2∈Θρ2

log p(y|σ2, ρ2).

where,

p(y|σ2, ρ2) =

∫
Rd

∫
Rd

p(y|ũ, σ2)p(ũ|z̃; ρ2)πϵ0(z̃)dũdz̃.

Stochastic approximation proximal gradient (SAPG)
[Vidal et al., 2019]

∀n > 0,
ρ2n+1 = ΠΘρ2

[
ρ2n + δn+1∇ρ2 log p(y|ρ2n, σ2

n)
]

and,
σ2
n+1 = ΠΘσ2

[
σ2
n + δn+1∇σ2 log p(y|ρ2n, σ2

n)
]
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Computation of σ2 and ρ2

Where,

∇ρ2 log p(y|ρ2, σ2) = −Eu,z|y,ρ2,σ2

[
log p(u|z, ρ2)

ρ2

]
− d

2ρ2
(Fisher’s identity)

∇ρ2 log p(y|ρ2, σ2) = −
m∑
k=1

[
log p(Uk|Zk, ρ

2)

ρ2

]
− d

2ρ2
(Appro. MC integral)

(Uk)
m
k=1 and (Zk)

m
k=1 are sampled according to p(u|y, z; ρ2, σ2) and

p(z|u; ρ2) respectively.

Accordingly,

∇σ2 log p(y|ρ2, σ2) = −
m∑
k=1

[
log p(y|Uk, σ

2)

σ2

]
− d

2σ2
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u ∼ p(u|z, y; ρ2, σ2)

Simulate u according to p(u|z, y; ρ2, σ2)

u ∼ p(u|z, y; ρ2, σ2) ∝ exp
(
− 1

2σ2
||y −Hu||2 − 1

2ρ2
||u− z||2

)

u ∼ N (u;µu,Σu)

where,

Σu =

(
HTH

σ2
+

I

ρ2

)−1

and µu = Σu

(
HT y

σ2
+

z

ρ2

)
Finally, at iteration t ≥ 0 we consider

ut = Eu|z,y;ρ2,σ2 [u] = µu
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z ∼ p(z|u; ρ2)

Simulate z according to p(z|u; ρ2)

z ∼ p(z|u; ρ2) ∝ exp
(
− 1

2ρ2
||u− z||22

)
πϵ0(z).

Impossible to sample directly from p(z|u; ρ2).

PnP-ULA to simulate z targetting p(z|y; ρ2) ∝ p(y|z; ρ2, σ2)πϵ0(z)

Zt+1 = ΠC

[
Zt − γ∇z log p(y|Zt, ρ

2)− γ∇z log πϵ0(Zt) +
√

2γZt+1

]
where,

∇z log p(y|Zt, ρ
2) ≈ 1

ρ2
Eu|y,Zt;ρ2 [Zt − u] (Fisher’s identity)

∇z log πϵ0(Zt) ≈
1

ϵ0
(Dϵ0Zt − Zt) (Tweedy’s identity)
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Application: Non-blind deblurring. . .

For a non-blind deconvolution problem,

Blur kernel: Gaussian of size 9× 9 pixels

Measurement data y of size 512× 512 pixels

Noise level: 30dB SNR setup

Warm-up phase: 5× 104 iterations

Sampling phase: 2× 105 with 30% burn-in.

Unknown parameters: θ =
(
σ2, ρ2

)
The regularisation parameter of the model: α = 0.5

Denoiser Dϵ0 is Proposed by [Pesquet et al., 2021]

ϵ0 =
2.25
255

C = [0, 1]d.
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Illustration. . .

(a) Noise var. σ2 (b) ρ2 (c) ACF

Remember,
ϵ20 = (2.25/255)2 ≈ 7.78× 10−5

and
ρ̂2 = 1.79× 10−5

We can denote that ρ̂2 is approximately 23% of ϵ20.
Charlesquin HWU 18 / 21



Illustration. . .

(a) Blurred (b) Remi: 29.1 (c) Ours: 29.9

Table 1: Metrics.

Methods PSNR MSE ESS Speed-up

PnP-ULA (Remi) 26.16± 11.48 3.3× 10−3 ± 6.3× 10−6 3 -

R-PnP-ULA (Ours) 27.56 ± 09.02 2.2 × 10−3 ± 2.6 × 10−6 73 21.37
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Conclusion and perspectives. . .

To conclude,

Introducing latent variable z permits to:

Disentangle the data term from the prior distribution,

Regularise the PnP-ULA to achieve state-of-the-art method with
good mixing property

Efficiently estimate the variance of the model σ2.

Enhance the reconstructed image in terms of PSNR measure.

As perspective,

Calibrating the regularisation parameter α of the model.
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