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Outline

@ Variational autoencoders
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Variational autoencoders

Variational autoencoders (VAEs)! allows to learn latent variable models of
the form:

po(x) = / po(xlz) polz) dz,
~—— —~—

decoder (latent) prior
ointly with an approximate posterior distribution (encoder):

qs(z]x) ~ po(z|x)
VAE are trained to maximize the evidence lower-bound (ELBO):

108 Po(%) = Eq, 210 [Iog ”9(( z )] = KUgo(zl®)po(xlz) (1)
(

)

po(x, z)
> Eion o8 5| )
59,¢(X)

IDjederik P Kingma and Max Welling. "Auto-encoding variational bayes”. In: arXiv
preprint arXiv:1312.6114 (2013).
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Hierarchical VAE

Hierarchical prior

L1
po(z) = po(20) | [ po(zilz<1) (3)
I=1
with z; € RGXH>W and
po(zilz<1) ~ N(zi|1e(21), Xo(21)) (4)
Hierarchical encoder?:
-1
as(21x) = ay(20%) [ | 96(zilz<1, x) (5)
=1

2Casper Kaae Sg nderby et al. “How to train deep variational autoencoders and
probabilistic ladder networks”. In: Advances in Neural Information Processing Systems.
Vol. 29. 2016.
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Hierarchical VAE: Architecture
C
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Hierarchical VAE: Architecture

po(z,x) = po(20) [T/=; po(zi|z<1)po(x|2)

L—1
ds(2]x) = qg(20|x) [T/ =1 94(2112</, x)

[ Pooling ]

[ Unzool ]

( el block )=
x

—)[Top—down b\ock]
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} 2~ N (215 pol ), To(2)
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Outline

© Plugging the VAE prior in a restoration model
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Super-resolution

e High-resolution (HR) image (x)
@ Low-resolution (LR) image (y)
e Forward operator H (low-pass + subsampling)
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Super-resolution

@ One-to-many problem : there can be many good solutions (consistent
and realistic)
@ Goal : model the distributions of solutions : psg(x|y)
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Plugging the VAE prior in a restoration model

Target distribution:

po(x|y) :ox p(y|x) po(x) (6)
——
VAE prior
po(xly) = / po(x|z, y)po(zly)dz )
_ / po(x|2) po(zly)dz (8)
~—

VAE decoder

— When py(x|z,y) = pg(x|z), we only need to model py(x|y)
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Learning the low-resolution encoder
Model distribution :

psr(xly) = / po(x|2) aplzly) dz (9)
—— ———

decoder LR encoder

Conditional log likelihood of the model3:

log psr(x|y) = Eq,(z|x)[log po(x|2)] — KL(qs(2|x)[|au(2]y))  (10)

— Loss function:

Epp(xy) | KL| 9s(21x) || 9u(2ly) (11)

HR encoder LR encoder

3William Harvey, Saeid Naderiparizi, and Frank Wood. "Conditional Image
Generation by Conditioning Variational Auto-Encoders”. In: International Conference on
Learning Representations. 2022.
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© Application: Super-resolution with VDVAE
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For deep HVAE, the low-frequency information is only encoded at the
beginning of the hierarchy, in the low-resolution latents:

’

Figure: Samples from VDVAE* generative model py(x|z-43). Right: pixel-wise
standard deviation.

— po(X|z<k,y) = po(X|z<k)-
— We just have to learn qy(z<k|y)

“Rewon Child. “Very Deep VAEs Generalize Autoregressive Models and Can
Outperform Them on Images”. In: arXiv preprint arXiv:12011.10650 (2021).
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Low-resolution encoder (super-resolution)

HR 1

Ce )
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Low-resolution encoder (super-resolution)

HR features LR features

[ Pooling ] [ Unpool ]
( Residu:I block Top-down block
[ Residu:I block ] Topfdovtn b\ock]
T = Loss(x,y, ) = KL(qs(z[x)[lay(zly))
[ Residual block ] Top-down b\ock]
X
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Low-resolution encoder (super-resolution)

ures

=
s
=

psr(x|y) = [ po(x|z<k)qy(z<k|x)dz<k
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© Results
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Experiments

@ Super-resolution on FFHQ256 dataset
@ x4, x8, x16 upscaling

e Comparaison with HCFlow® and bicubic interpolation

5 Jingyun Liang et al. "Hierarchical Conditional Flow: A Unified Framework for Image
Super-Resolution and Image Rescaling”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2021, pp. 4076-4085.
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Results

Bicubic HCFlow (7 = 0.8)

Figure: x4
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Bicubic HCFlow (1 =0.8)

Figure: x8
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Results

Visual Qual- | Consistency Diversity
ity
BRISQUEJ] LR-PSNR 1 APD (MSE) | APD (LPIPS)
(x10%) 1 (x10°) 1
Bicubic 61.79 36.99 0 0
HCFlow (7 =0.1) 48.21 52.66 1.3 1.1
x4 | HCFlow (7 = 0.8) 37.21 52.81 161.8 62.6
CVD-VAE (1 =0.1) | 36.47 75.70 64.6 104.5
CVD-VAE (7 =0.8) | 32.30 75.20 88.8 123.0
Bicubic 78.42 33.61
HCFlow (7 =0.1) 69.05 51.35 4.9 4.2
x8 | HCFlow (7 = 0.8) 36.25 51.13 575.5 155.3
CVD-VAE (r =0.1) | 50.34 71.63 140.4 179.0
CVD-VAE (r =0.8) | 32.26 70.15 248.2 236.4
Bicubic 97.53 30.67
HCFlow (7 =0.1) 74.28 51.93 3.3 14.6
x16| HCFlow (7 = 0.8) 30.83 53.81 323.7 268.6
CVD-VAE (r =0.1) | 52.75 60.68 299.4 242.4
CVD-VAE (r =0.8) | 32.01 57.02 613.8 341.2

APD = Average Pairwise Distance
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Effect of the temperature

LR 7=0 7=025 7=05 7=0.7 7T=1

Figure: Effect of the sampling temperature 7

LR

Figure: Reducing the temperature can help to reduce artifacts for difficult images.
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More samples

Figure: x4
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More samples

Figure: x8
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Conclusion

@ Hierarchical VAE can model complex image priors that can be used to
solve inverse problems.

o For future works:

o Apply on different datasets
o Flexible method (for general inverse problems)
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Expected consistency of the super-resolution

Expected consistency of psg(x|y)

1

ﬁon—yuz] . (12)

CE(k) = Epp(y)Epsp(xly) [

Proposition
If
© The low-resolution encoder has enough capacity and is trained to
optimality
@ The VAE encoder g4(x|z) and generative model pg(x, z) have enough
capacity and are trained to optimality
Then:

CE(k) =E Hx|l2| == Us.  (13)

v

1.
po(z<i)Epo x|z ) Epy (%]24) ﬁHHx—
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Expected consistency of the super-resolution model

0 10 20 30 40 50 60

Figure: Average low-resolution pairwise distance, U; between samples from the
conditional generative model py(x|z<x) of VD-VAE, for downscaling factors
s =1,4,8,16. Image with pixel values in [0, 255].
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Enforcing the consistency with the input

Projection to space of consistent solution {x|Hx = y} :
2+ (I—HT(HHT)"'"H)x + HT(HHT) 'y (14)

We use the CEM implementation of®

5Yuval Bahat and Tomer Michaeli. “Explorable super resolution”. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020,
pp. 2716-2725.
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Effect of the projection

Diverse SR with pretrained HVAEs

December 7, 2022

Distortion Visual Consistency Diversity
Quality
model PSNRt SSIMT LPIPS | BRISQUE] | LR- APD APD
PSNR (MSE) (LPIPS
i) (x10) | (x10%)
CVD-VAE (7 =0.1) 29.09 0.839 0.177 34.56 35.31 7.5 123.6
! CVD-VAE (7 = 0.8) 28.66 0.825 0.177 30.37 35.09 105.7 142.9
CVD-VAE (7 = 0.1) (cons) | 30.75 0.863 0.152 36.47 75.70 64.6 104.5
CVD-VAE (7 = 0.8) (cons) | 30.24 0.850 0.157 32.30 75.20 88.8 123.0
CVD-VAE (7 =0.1) 25.46 0.735 0.312 47.48 33.93 181.6 200.7
<8 CVD-VAE (7 = 0.8) 24.71 0.697 0.284 30.40 33.42 308.0 256.2
CVD-VAE (7 = 0.1) (cons) 26.27 0.747 0.299 50.34 71.63 140.4 179.0
CVD-VAE (7 = 0.8) (cons) | 25.47 0.708 0.275 32.26 70.15 248.2 236.4
CVD-VAE (7 =0.1) 20.16 0.601 0.440 47.34 25.20 711.1 283.1
w16 | CVD-VAE (7 =0.8) 19.21 0.541 0.401 29.17 24.22 1278.8 374.0
CVD-VAE (7 = 0.1) (cons) 22.06 0.622 0.427 52.75 60.68 299.4 242.4
CVD-VAE (7 = 0.8) (cons) | 21.14 0.564 0.388 32.01 57.02 613.8 341.2
Figure: Effect of the projection
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Effect of the projection

LR

SR (projected)

Figure: x16

From top row to bottom row : LR, SR,
SR projected
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More samples (x16)
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Figure: x16

Jean Prost Diverse SR with pretrained HVAEs December 7, 2022 23 /23



	Variational autoencoders
	Plugging the VAE prior in a restoration model
	Application: Super-resolution with VDVAE
	Results

