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Reconstructing a clean image 
x ∊ Rd from a set of degraded 

observations y ∊ Rm

𝑦 = 𝐴𝑥 + 𝑛

𝑦 ∊ Rm : input observations
𝐴 ∊ Rmxd : degradation operator

𝑛 ∊ Rm : additive noise

INVERSE PROBLEMS
I n t r o d u c t i o n

Original image

Blurred image



December 07-08, 2022 3Mathematical Models for Plug-and-play Image Restoration, Paris

INVERSE PROBLEMS
I n t r o d u c t i o n

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥
1

2
ԡ𝑦 − ԡ𝐴𝑥 2 + 𝜎2ϕ x

data fidelity term regularization term 

Inverse problems are ill-posed because rank(A)<d  introduce prior knowledge on images, in the form 
of an extra regularization term 

assures the similarity 

with the degraded 

measurements

reflects prior knowledge 

and a property to be 

satisfied by the searched  

solution. 
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PLUG-AND-PLAY

Plug-and-Play (PnP): typically consider proximal splitting algorithms (e.g. ADMM) which
decompose the problem in two sub-problems and solve them alternately.

The regularization sub-problem consists in evaluating the proximal operator of the
regularization term defined as:

𝑝𝑟𝑜𝑥𝜎2𝜙 can be replaced by a denoiser D “plugged” in the algorithm

Inverse problem with degradation matrix 𝐴 = 𝐼
(i.e. the only degradation is the addition of noise of s.t.d. 𝜎) 

⇔

𝑝𝑟𝑜𝑥𝜎2𝜙(𝑧) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥
1

2
𝑥 − 𝑧 2

2 + 𝜎2𝜙(𝑥)

• Limitation: D can only be used in proximal algorithms

P r o x i m a l  P n P
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PLUG-AND-PLAY
P n P  G r a d i e n t - D e s c e n t

𝑥𝑘+1 = 𝑥𝑘 − 𝜇 𝛻𝑓 𝑥𝑘 + 𝜎2 ⋅ 𝛻𝜙 (𝑥𝑘)

= 𝑥𝑘 − 𝜇 𝐴𝑇 𝐴 𝑥𝑘 − 𝑦 + 𝜎2 ⋅ 𝛻𝜙 (𝑥𝑘)

Plug-and-Play Gradient-Descent (PnP-GD): requires the gradient of the regularization term with
respect to the current estimate.

A framework to train a network that can serve as the gradient of the regularization term in

PnP GD.
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PLUG-AND-PLAY
P r o x i m a l  P n P

Let’s consider a denoiser defined as the proximal operator:

𝒟σ 𝑧 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥ℱϕ 𝑥, 𝑧, σ

𝜕ℱϕ

𝜕𝑥
ቚ
𝑥=𝒟σ 𝑧

= 0

σ2 ⋅ ∇ϕ 𝒟σ 𝑧 = 𝑧 − 𝒟σ 𝑧 , ∀𝜎 > 0

ℒ∇ϕ = ||σ2 ⋅ ∇ϕ 𝒟σ 𝑧 − 𝑧 − 𝒟σ 𝑧 ||2
2

For 𝜎 and z fixed, the denoised image 𝑥 = 𝒟σ 𝑧 minimizes 
ℱϕ 𝑥, 𝑧, σ . Therefore, we have: 

Furthermore,
𝜕ℱϕ

𝜕𝑥
can be computed as:

𝜕ℱ𝜙

𝜕𝑥
= 𝑥 − 𝑧 + σ2 ⋅

𝜕ϕ 𝑥

𝜕𝑥

Combining (A) and (B) at 𝑥 = 𝒟σ 𝑧 we can derive
an expression linking the gradient of the regularizer
and the denoiser:

(A)

(B)

Loss for training ∇ϕ:

∇ϕ

with ℱϕ 𝑥, 𝑧, σ =
1

2
||𝑥 − 𝑧||2

2 + 𝜎2 𝜙 𝑥
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ReG: TRAINING FRAMEWORK

𝜎0 : true noise level (used for generating 𝜂).
𝜎 : noise level assumed by the denoiser.

• In practice, we want to use the regularizer in gradient-based algorithms ➔ we only need its gradient rather than an
explicit definition of the regularizer.

• ℒ𝒢 is valid for any value of 𝜎 regardless of the degradation in the noisy image➔ 𝜎 can be seen as a free parameter of the

loss ℒ𝒢 .

• In order to handle different values of 𝜎 in ℒ𝒢 , 𝒟σ is modeled to be a non-blind denoiser that takes as input a noise level

map concatenated with the noisy image z.
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• However 𝐷 may not satisfy the definition of a proximal operator of a differentiable function➔ start from a pre-trained 𝐷,
and update 𝐷 jointly with ∇ϕ

• Use ℒ𝒟σ to preserve the performance of 𝐷. ℒ𝒟σ is valid for training a denoiser only when 𝜎 = 𝜎0, since the non-blind

denoiser must be parameterized with the true noise level 𝜎0 of the noisy input.

ReG: TRAINING FRAMEWORK

𝜎0 : true noise level (used for generating 𝜂).
𝜎 : noise level assumed by the denoiser.
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• For the regularizing network, it is preferable to select 𝜎 independently of 𝜎0.
• 𝜎 < 𝜎0 : 𝒟σ(𝑧) will be close to the degraded image→ 𝒢 will be trained to fit the artifacts in the degraded image
• 𝜎 > 𝜎0 : over-denoised input with reduced artifacts but less details→ 𝒢 will be trained to recover details

• Alternate during the training between either selecting independently 𝜎 and 𝜎0, or setting 𝜎 = 𝜎0.
• Our goal is therefore to minimize the global loss defined as:

ℒ = δ ℒ𝒟σ + λ ℒ∇ϕ, where 𝜆 > 0 and 𝛿 = ቊ
1 𝑖𝑓𝜎 = 𝜎0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

→ Transfer the image prior implicitly represented by the denoiser to our regularizing network.

ReG: TRAINING FRAMEWORK

𝜎0 : true noise level (used for generating 𝜂).
𝜎 : noise level assumed by the denoiser.



December 07-08, 2022 10Mathematical Models for Plug-and-play Image Restoration, Paris

TRAINING DETAILS

• We choose to initialize 𝐷 to the DRUNet:

✓ It uses a bias-free architecture, which has been shown to allow for good generalization of denoisers over various noise
levels, even if they were not seen during training.

✓ It can represent the non-blind denoiser that we want to have since it takes as input the noisy image concatenated in the
channel dimension with a noise level map.

• For our regularizing network, we choose the same architecture as the bias-free DRUNet denoiser, with the only difference that it
does not take a noise level map as additional input.

• For the standard deviations, we alternate between 𝜎 = 𝜎0 and choosing 𝜎 and 𝜎0 randomly with uniform distribution in [0;50].

Architecture of the DRUNet network, that we have chosen for G by changing the input channel to 3 instead of 4 (the ReG network does not need a noise 
level map as additional input as it does not depend on noise level).
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APPLICATION OF ReG

• We evaluated the performance of our regularizing network first in a PnP-GD framework.
• Compare to algorithms that are designed to solve different inverse problems using a single

regularizing network in a PnP framework.

𝑥𝑘+1 = 𝑥𝑘 − 𝜇 𝛻𝑓 𝑥𝑘 + 𝜎2 ⋅ 𝛻𝜙 (𝑥𝑘)

= 𝑥𝑘 − 𝜇 𝐴𝑇 𝐴 𝑥𝑘 − 𝑦 + 𝜎2 ⋅ 𝛻𝜙 (𝑥𝑘)

• We only need to tune the step size and the weight of the regularization term if the application is
noise-less.
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PnP-ReG: EXPERIMENTAL RESULTS

Deblurring results (measured in PSNR [dB]) . The input blurred images two 
anisotropic Gaussian kernels from followed by adding Gaussian noise with 3 
different noise levels

Pixel-wise inpainting results (measured in PSNR [dB]). The corrupted images 
have been generated by keeping 20% and 10% of the known pixels.
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PnP-ReG: EXPERIMENTAL RESULTS

Visual comparison of pixel-wise inpainting results with known pixel rate of p = 20%.
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CONVERGENCE OF PnP-ReG

Comparison of the convergence for Deblurring. The degraded images have been
generated using an isotropic Gaussian kernel of standard deviation 2.0 followed by
adding Gaussian noise of standard deviation σn = 0.01. For PnP-ADMM, we have used
the setting with fixed parameter sk = 30/255 for which the best results are obtained

Comparison of the convergence for Super-Resolution. The input low resolution
images have been generated using bicubic downsampling with a factor 2. For
PnP-ADMM, we have used the setting with variable parameter sk until the 25th
iteration for which the best results are obtained, and let sk fixed afterwards.
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ABLATION STUDY
ℒ = δ ℒ𝒟σ + λ ℒ∇ϕ, where 𝜆 > 0 and 𝛿 = ቊ

1 𝑖𝑓𝜎 = 𝜎0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ℒ = λ ℒ∇ϕ, where 𝜆 > 0

(b) Fixing the denoiser, 33.72 dB
→ blurrier & has colored fringes artifacts

(a) Updating the denoiser, 35.46 dB

there may not exist a differentiable regularizer ϕ for which 𝑝𝑟𝑜𝑥𝜎2𝜙(𝑧) = 𝒟σ(z) for every value of

σ. The assumption that the denoiser is a MAP Gaussian denoiser for a differentiable prior may not
be satisfied

➔ Need to update 𝒟σ(z) to better represent such a MAP Gaussian denoiser

(c) 
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ABLATION STUDY

Although the original DRUNet can obtain better PSNR performances when stopping the ADMM after a few iterations, the algorithm
does not converge and may even strongly diverge after a large number of iterations. On the other hand, our modified denoiser
allows for a better convergence of the PnP ADMM.

Comparison of the performances of the original and the updated denoisers in PnP-ADMM for deblurring. (a) Average PSNR 
over the ADMM iterations (b) MSE of the difference between two consecutive iterations (in log scale).
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CONCLUSION

→ We proposed a novel framework for solving linear inverse problems in a PnP GD

algorithm, where the gradient of the regularizer is required rather than its proximal

operator.

→ This joint training gives us a network that can be used in a PnP-GD algorithm and can

outperform other generic approaches in different inverse problems, and also it can serve as

a pre-training strategy for unrolled gradient descent.

→ Lastly, the joint training of the denoiser with the regularizing gradient network makes the

former match better the definition of a proximal operator compared to the original pre-

trained DRUNet.


