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What is generative modeling?

Generative modeling: Given a dataset of samples from a distribution π how
to obtain new samples from π?

A general approach:

▶ Sample X0 from π0 (reference distribution).
▶ Sample Z from πZ (noise distribution).
▶ Push with g(X0,Z) → approximate sample from π.
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Why generative modeling?

Application in computational biology: Senior et al. (2020).
▶ Amino-acid sequence to 3D structure.
▶ Cryo-Electron Microscopy or crystallography = experimental techniques

to determine the shape of the protein.
▶ Crystallizing a protein is a real challenge Avanzato et al. (2019).
▶ Competition to predict structure: Critical Assessment of protein

Structure Prediction.
Conditional generative modeling.

Image extracted from Senior et al. (2020).
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A myriad of models
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Some challenges in generative modeling

Theoretical
understanding

▶ Convergence of
generative models?

Properties of the data

▶ Riemannian data.

▶ Inverse problems.

Properties of the process

▶ Optimal transport.

▶ Stochastic control.

Focus on denoising diffusion models.
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Generative Modeling: the rise of
diffusion models



Time-reversal of diffusions

Forward decomposition: p(x0:N ) = p0(x0)
∏N−1

k=0 pk+1|k(xk+1|xk).

Backward decomposition: p(x0:N ) = pN (xN )
∏N−1

k=0 pk|k+1(xk|xk+1).

Images extracted from Song and Ermon (2019).
6 / 22



Approximate time reversal

¿How to approximate the backward decomposition?

Backward decomposition: p(x0:N ) = pN (xN )
∏N−1

k=0 pk|k+1(xk|xk+1).

▶ How to compute pk|k+1(xk|xk+1) = pk+1|k(xk+1|xk)pk(xk)/pk+1(xk+1)?
▶ In practice pk+1|k = N(xk − γxk,

√
2γ Id) is Gaussian.

▶ (Discretization of dXt = −Xtdt +
√
2dBt (Ornstein-Ulhenbeck))

▶ pk|k+1 is approximately Gaussian

Score matching techniques: Vincent (2011); Hyvärinen (2005)

∇ log pk+1(xk+1) = Ep0|k+1 [∇ log pk+1|0(xk+1|X0)].

▶ Loss function: ℓ(sk+1) = E[∥sk+1(Xk+1)−∇ log pk+1|0(Xk+1|X0)∥2].
▶ Algorithm: replace∇ log pk+1 by sk+1.
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Convergence of diffusion models (π̂)

Under dissipativity conditions (D.B et al., 20211)

▶ ∥st(x)−∇ log pt(x)∥ ≤ M.

▶ π admits a density p and ⟨∇ log p(x), x⟩ ≤ −m∥x∥2 + c.

Then, there exists A ≥ 0 such that

Under the manifold hypothesis (D.B., 20222)

▶ π is supported on a compact manifoldM.

Then there exists A ≥ 0 such that

W1(π, π̂) ≤ A(exp[−T ] + γ1/2 + M).

1D.B., Thornton, Heng, Doucet – Diffusion Schrödinger Bridge – NeurIPS 2021
2D.B. – Convergence of diffusion models under manifold hypotheses – under review (2022)
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Inverse problems with denoising
diffusion models



Diffusion models for inverse problems

Question: how to use denoising diffusion models for inverse problems?

We present several techniques:

▶ Amortization
▶ Replacement (with or without correction)
▶ Conditional guidance

▶ The goals:

▶ Inpainting, deblurring
▶ Class conditional generative modelling
▶ Text-to-image
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Amortization

The simplest technique: amortize everything.

Score matching techniques: Vincent (2011); Hyvärinen (2005)

∇ log pk+1(xk+1|y) = Ep0|k+1,y [∇ log pk+1|0(xk+1|X0)].

▶ Loss function:
ℓ(sk+1) = E[∥sk+1(Xk+1, Y)−∇ log pk+1|0(Xk+1|X0)∥2].

▶ Algorithm: replace∇ log pk+1 by sk+1.

▶ Same algorithm as before but instead of sampling X0 and then noise it, sample
(X0, Y) and then noise it.

▶ Advantages:

▶ Straightforward to implement (just another input to the network).
▶ Works for generic data.

Problems:

▶ What if I only want to train one generative model?
▶ What if at inference size y has a different size than the training samples?
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The replacement method

Second technique: replacement technique.
We only train one diffusion model.
Example of inpainting:
▶ Train a denoising diffusion model.
▶ At inference time, we observe part of the image (y with a mask m)
▶ Diffuse y forward in time Y0:N

▶ Sample XN ∼ N(0, Id)
▶ Apply the backward diffusion step:

X̂n = Xn+1 + γXn+1 + 2γsθ(Xn) +
√
2γZn

▶ Replace using Xn = mX̂n + (1−m)Yn (pointwise multiplication)
▶ Go back to the backward diffusion step and iterate.

Advantages:
▶ Only one generative model to train
▶ Straightforward to implement
▶ Very useful in protein modeling

Problems:
▶ Only work on specific problems (mask)
▶ No guarantee of convergence 11 / 22



Repaint

Figure extracted from Lugmayr et al. (2022)

Additional tricks:

▶ Particle filtering at each step to ensure convergence Trippe et al. (2022).
▶ Iterating the replacement step Lugmayr et al. (2022)
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Explicit guidance

Third technique: conditional guidance
just guide the diffusion with an extra term in the drift

sθ(x) → sθ(x) +∇ω log pϕ(y|x)

▶ ω is the guidance strength.
What is pϕ?
▶ Classifier in the case of class conditional sampling Dhariwal and

Nichol (2021).
▶ Can be an amortized score model, i.e. (classifier free)

∇ log pϕ(y|x) → sθ(x, y)− sθ(x)
▶ Push the samples towards p(x|y) and away from p(x).

Increasing amount of guidance on the class “malamute” in ImageNet.
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An application: text-to-image

From prompt to images: Imagen, DALL-E 2, Stable Diffusion, Midjourney.

CLIP (Contrastive Language–Image Pre-training) guidance.
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Schrödinger Bridges: a new
generative modeling framework



Shorter generative processes?

Not enough stepsizes leads to poor approximation (the Ornstein-Ulhenbeck
process does not mix fast enough).

Illustration of failure: N is too small so pN is very different from pprior. This
harms the quality of the reconstruction for the time-reversal.

Trade-off:

▶ Large N → improvement in quality (fidelity).
▶ Large N →model is slow at sampling time.

Challenge: how to “shorten” the diffusion process?
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The trilemma of generative modeling

Image extracted from Xiao et al. (2021).
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Revisiting Generative Modeling using Schrödinger Bridges

The Schrödinger Bridge (SB) problem is a classical problem appearing in
applied mathematics, optimal transport and probability.

▶ Consider a reference density p(x0:N ), find π⋆(x0:N ) such that

▶ Goal: If π⋆ is available: XN ∼ pprior and Xk ∼ π⋆
k|k+1(·|Xk+1).

Static formulation: π⋆(x0:N ) = πs,⋆(x0, xN )p|0,N (x1:N−1|x0, xN ) where

▶ Variational form:

▶ In its static form the Schrödinger Bridge is a special case of entropic
optimal transport, see Mikami (2004).
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The Iterative Proportional Fitting algorithm

The SB problem can be solved using Iterative Proportional Fitting (IPF)
Sinkhorn and Knopp (1967); Fortet (1940), i.e. set π0 = p and for n ∈ N

π2n+1 = argmin{KL(π|π2n), πN = pprior},

π2n+2 = argmin{KL(π|π2n+1), π0 = pdata}.

This is akin to alternative projection in a Euclidean setting.
limn→+∞ πn = π⋆ under regularity conditions.
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Solving the Schrödinger Bridge

Explicit solution of the first IPF step

KL(π|π0) = KL(πN |pN ) + EπN [KL(π|N |p|N )].

Therefore,

π1(x0:N ) = pprior(xN )p(x0:N−1|xN )

π1(x0:N ) = pprior(xN )
∏N−1

k=0 pk|k+1(xk|xk+1).

Take-home message: Approximation to first iteration of IPF corresponds to
current denoising diffusion models.

The IPF is a refinement on denoising diffusion models.
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Diffusion Schrödinger Bridge

Diffusion Schrödinger Bridge3:

▶ Use diffusion models to solve IPF at each step.
▶ Alternate between updating the forward and backward dynamics.
▶ (One network parameterizing the forward, one parameterizing the

backward).

3D.B., Thornton, Heng, Doucet – Diffusion Schrödinger Bridge – NeurIPS 2021
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Inverse problems

Extension to conditional generative modeling (inverse problems):

▶ Inpainting, deblurring, colorization, class-conditional sampling...

Amortization of generative models (w.r.t. the observation):

▶ Denoising diffusion models.
▶ Schrödinger bridges4

4Shi, D.B., Deligiannidis, Doucet – Conditional Diffusion Schrödinger Bridge – UAI 2022
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Conclusion



Conclusion

Fruitful interaction between stochastic processes and generative modeling.

For specific problems: use the structure of the likelihood Kawar et al. (2022)
(DDRM), Kadkhodaie and Simoncelli (2021) (SNIPS), Come-closer-Diffuse-faster
Chung et al. (2022a,b).

Promising developments of control and optimal transport techniques for
generative models (and vice-versa).

"Thank you" generated with the text-to-prompt model Stable diffusion.
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