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Outline

Deep Plug-and-Play Image Restoration
IRCNN (CVPR2017), DPIR (TPAMI 2021)

Deep Unfolding Image Restoration
USRNet (CVPR 2020)

Deep Blind Image Restoration

BSRGAN (ICCV 2021)
SCUNet (Arxiv 2022)
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Image restoration: the problem

« Reconstruct the latent image from its degraded measurement
« Denoising, deblurring, super-resolution, ...

Blurred Low-resolution
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General image observation/degradation/formation model

y=Hx+n y=x®kl;+n
H: The observation (degradation) matrix | &: two-dimensional convolution of x with
n: The additive white Gaussian noise blur kernel k
with standard deviation o l¢: Downsampling with scale factor s

- Goal of image restoration
Given observation y, recover the latent image x
- Image restoration is a typical ill-posed inverse problem.
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Many-to-many problem

Many-to-one

One-to-many

y=x®k)ls+n
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Model based methods

- Based on the image degradation process and the available image priors,
build a model (objective function) and optimize it.

« General model:
Data fidelity term  Regularization (prior) term

\ /

1
ming o— ly = (x @ k) L I*+2-R(x)

« Key issues:

« Modeling of the degradation process
« Good priors about the latent image
« Good objective function for minimization
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Learning based methods

« Learn a compact inference or a mapping function from a training set of
degraded-latent image pairs.

« General formulation:

Loss function Set of parameters to be learned
\ /
mingloss(X,x) s.t. X = f(y,H;0)
« Key issues
- The avalilability of paired training data
« The design of learning architecture
« The definition of loss function
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Representative methods

« Model based methods

Total variation (TV)
Sparse representation
Dictionary learning
Low-rank approximation

* Learning based methods

Mixture of experts

Shrinkage fields

Trainable nonlinear reaction diffusion

MLP and deep learning (Convolutional Neural Networks)
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Motivation

« Model based methods

v'High flexibility; clear interpretability; do not need training
x The prior may not strong enough; time-consuming

 Learning based methods

v'End-to-end training with training paired data; fast and effective
x Need training; limited flexibility and interpretability

Can we integrate the model based methods and learning based
methods for general image restoration?

CV Ilmk | 2022/12/7 | 9



Motivation

Need training;
fast and effective;
limited flexibility

Learning based /

methods \

Deep unfolding methods

X P
IR Methods A
Model based g
methods \
No training;
time-consuming; . _ . L
high flexibility: . Deep unfolding methods: design optimization

algorithm-inspired network architecture
. Deep plug-and-play methods: plug learned deep
model into optimization algorithm
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Half quadratic splitting (HQS) algorithm

- The general model for image restoration
1
miny >[Iy — (x & k) L I* + 2+ R(x)
« Introducing an auxiliary variable z (z = x when u is large enough)
: 1 2 K 2
mlnx,zF”y - (x X k) ‘l's 1“+A- R(z) + E”x — Z||

« Solving x and z alternatively and iteratively

() (@) x = ming |y — (x @ k) L5 |5 + po?llx — zp_4l° % Solving data subproblem
(b)

. 1
Z,, = min, s ||x, — z||* + R(2) % Solving denoising sub-problem

(77

Replace it with

sss- CVIE" CNN denoiser
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Plug-and-play image restoration with CNN denoiser prior

Plugging the strong CNN denoiser prior into model based methods
« Step (a): Solving data subproblem
« Step (b): Solving denoising sub-problem with CNN denoiser

Noise Level Map

oisy Tmiage &

o Denoised Image

Skip Connection

Conv
¥
¥
Conv

[ 4 Residual Blocks

4 [ 4 Residual Blocks |

The network architecture of the CNN denoiser

K. Zhang, W. Zuo, S. Gu, L. Zhang. "Learning Deep CNN Denoiser Prior for Image Restoration." CVPR 2017.
PR CVLk Code: https://github.com/cszn/ircnn
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https://github.com/cszn/ircnn

Denoising results

The average PSNR(dB) results of different methods on grayscale BSD68 dataset.

Datasets Egﬁ BM3D WNNM DnCNN IRCNN FFDNet DRUNet
15 3237 3270 3286 3277 3275 33.25
Set12 25 20.07 3028 3044  30.38 3043  30.94
50 26.72  27.05  27.18 2714 2732  27.90
15 31.08 3137 3173  31.63 3163  31.91
BSD6S 25 98.57  28.83 2023 2015  29.19  29.48
50 95.60  25.87  26.23  26.19 2629  26.59

Average PSNR(dB) results of different methods for noise levels 15, 25 and 50 on different datasets.

Datasets 152\1: CBM3D DnCNN IRCNN  FFDNet DRUNet
15 33.52 33.00 33.86 33.87 34.30
CBSD6S 25 30.71 31.24 31.16 31.21 31.69
50 97.38 27.95 27.86 97.96 28.51
15 34.93 34.60 34.69 34.63 35.31
Kodak24 25 32.15 32.14 32.18 32.13 32.89
50 98.46 28.95 28.93 928.08 29.86
15 34.06 33.45 34.58 34.66 35.40
McMaster 25 31.66 31.52 32.18 32.35 33.14
s CVIEF 50 28.51 28.62 28.91 29.18 30.08 e 1



Denoising visual results

Noisy (14.78dB) BM3D (25.82dB) DnCNN (26.83dB) Proposed (27.31dB)

Grayscale image denoising results of different methods on image “Monarch” from Set12 dataset with
noise level 50.

b\ S CVIE" | 2002127 | 14



Denoising visual results

Noisy(14.99dB) CBM3D (28.36dB) DnCNN (28.68dB) Proposed (29.28dB)

Color image denoising results of different methods on image “163085” from CBSD68 dataset with noise
level 50.

@ Gompuler
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Plug-and-play image restoration with deep denoiser prior

Algorithm 1: Plug-and-play image restoration with deep denoiser prior (DPIR)

Input : Deep denoiser prior model, degraded image y, degradation
model y = (x ® k) [s + n, image noise level o, 3 of
denoiser prior model at k-th iteration for a total of /X
iterations. trade-off parameter A.

Output: Restored image zj .

1 Initialize zy from y, pre-calculate ay = A\o? /32,
2 for k=1,2,--- , K do
3 | xp=argming ||y — (x®@Kk)ls ||* + arllx —z1_1]|* ; // Solving

data subproblem
4 z, = Denoiser(Xy, Bx) ; // Denoising with deep DRUNet denoiser

AN

5 end
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Parameter setting

SINGLE IMAGE SUPER-RESOLUTION VIA BM3D SPARSE CODING
Karen Egiazarian and Viadimir Katkovnik

Department of Signal Processing, Tampere University of Technology
Korkeakoulunkatu 10, 33720, Tampere, Finland, email: *firstname.lastname’ @tut.fi

- the threshold parameter for Color BM3D (CBM3D) fil-
ter is varying in iterations as a quadratic function decreasing
from 12s to s.

Inspired by such domain knowledge, we can instead set o,
and A to implicitly determine /i, Based on the fact that y;,
should be monotonically increasing, we uniformly sample
oy, from a large noise level o to a small one ok in log space.
This means that ji;, can be easily determined via 1, = \/oz.
Following [17], o1 is fixed to 49 while ok is determined by
the image noise level o. Since K is user-specified and o, has
clear physical meanings, they are practically easy to set. As
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Fig. 5. The values of «;, and o}, at k-th iteration with respect to different
number of iterations K = 8, 24, and 40.

the fact that A comes from the prior term and thus should
be fixed, we can choose the optimal A by a grid search
on a validation dataset. Empirically, A can yield favorable
performance from the range of [0.19,0.55]. In this paper,
we fix it to 0.23 unless otherwise specified. It should be
noted that since A can be absorbed into ¢ and plays the
role of controlling the trade-off between data term and prior
term, one can implicitly tune A by multiplying ¢ by a scalar.
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Application: deblurring

Solution of data subproblem:

x, = F~! (m}"(y) +cm]—'(zk1))
| FUOF (k) + o

‘
a\ s
. T L

L 4

DMPHN (9.74dB)

o CVIE EPLL (20.06dB) Proposed DPIR (30.27dB) o |



Intermediate results and convergence

11111111

(e) xs (29.34dB) (f) Convergence curves

{Zk =argmin,|ly — (2@ k) |5 |[|*+po? ||z — x4 ||?

X :a,rgnﬁnxgnzk — x||? + AB(x).

« While the data subproblem can handle the distortion of blur, it also aggravates the
strength of noise.

» The deep denoiser prior plays the role of removing noise, leading to a noise-free z_k.

« Compared with x_1 and x_4, x_8 contains more fine details, which means the data
subproblem can iteratively recover the details.

 X_kand z_k enjoy a fast convergence to the fixed point.
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Deblurring example
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Application: single image super-resolution

Fast Single Image Super-Resolution Using a New
Analytical Solution for £—{> Problems

Ningning Zhao, Sudent
Nicola

N 1
& = argmin 3 ly - SHx|2 + 7x — xqf3. (25)

This optimization problem was solved using a gradient descent
approach in [7]. However, it can benefit from the analytical
solution provided by Theorem 1 that can be implemented using
Algo. 1.

Algorithm 1 FSR With Image-Domain £;-Regularization:
Implementation of the Analytical Solution (15)

Input: y, H, 8, %, 7, d

Low-resolution

Solution of data subproblem: RCAN (24.61dB) MZSR (27.34dB) Proposed (29.14dB)

(F(k)d) I ))

—1 i T
e (ak(d e, (FK)F(k)) bs +ax

Ningning Zhao, Qi Wei, Adrian Basarab, Nicolas Dobigeon, Denis Kouame, and Jean-Yves Tourneret. Fast single image super-resolution
using a new analytical solution for 12-12 problems. IEEE TIP, 25(8):3683-3697, 2016.

@ Gompuler
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Intermediate results and convergence
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(a) x1 (24.95dB) (b) z1 (27.24dB) (c) x6 (27.59dB) (d) ze (28.57dB) (e) x24 (29.12dB)  (f) Convergence curves
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Application: image inpainting
Solution of data subproblem:

M®y + az;
M + ay,

XP'\’+1 —

Input
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Application: image inpainting
Solution of data subproblem:

- Moy + agz,
M+QL7

Xk+1

~

59 T
:,f) "5;
W B4

A

Input
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Application: color image demosaicing

Solution of data subproblem:

MOy + apzg
M+(Yk:

Xk+1

Input
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Application: color image demosaicing

Demosaicing results of different methods on Kodak and McMaster datasets.

Datasets Matlab DDR DeepJoint MMNet RLDD RNAN LSSC IRI FlexISP IRCNN  IRCNN+  DPIR
Kodak 35.78 41.11 42.00 40.19 42.49 43.16 41.43 39.23 38.52 40.29 40.80 42.68
McMaster 34.43 37.12 39.14 37.09 39.25 39.70 36.15 36.90 36.87 37.45 37.79 39.39

i m i el =
it ||‘ ‘\ - R i

i "‘

(a) Ground-truth  (b) Matlab (33.67dB) () DDR (41.94dB)  (d) DeepJoint (42.49dB) (e) MMNet (40. 62dB) (f) RNAN (43 77dB)

() 1SSC (42 31dB) (h) TR (39.49dB) (i) FlexISP (3695dB) (j) TRCNN (40. 1&113) (k) TRCNN+ (40. 85dB) (1) DPIR (43. 23dB)

Visual results comparison of different demosaicing methods on image kodim19 from Kodak dataset.
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Discussion

What if the denoiser is trained
for blind Gaussian denoising?
* Much lower PSNR

Noise distribution for the
denoiser input.
« Task-dependent

6 ‘ 3

I 3 15
% 0 5 0 15 30 45 45 30 -5 0 15 M 45 45 20 A5 0 15 30 45
5210t 12210" 510"
15 ] 45
1 & 3
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945 -30 -15 0 15 30 45 945 30 15 Li] 15 30 45 045 30 15 1] 15 30 45

(a) Deblurring (b) Super-Resolution (c) Demosaicing

Histogram of the noise (difference) between the ground-truth and input of
the denoiser in the first iteration (first row) and last iteration (second row)
for (a) deblurring, (b) super-resolution, and (c) demosaicing. The
histograms are based on x_1 and x_8.

The denoiser prior mostly removes the noise along with some fine details, while the subsequent data
subproblem plays the role of alleviating the noise-irrelevant degradation and adding the lost details back.

uuuuuuu
eos - CVI&F
oo
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Limited flexibility of learning based methods

I I |
I I |
| AN 'I\'% | Degradation Process ) |
SN
by =S | | y=(x®k)|s+n I
| g — | |
W T I |
| . | SISR Process |
| N —— l
X - f(y? S? 7 0)
| (A single model?) |
I I |
I I |

While the classical degradation model can result in various LR images for an HR
image with different blur kernels, scale factors and noise, the study of learning a
single deep model to invert all such LR images to HR image is still lacking.
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Deep unfolding image restoration

(1) Problem y=x®Kk)|s+n
. . . 1
(2) Objective function E(x) = 55y — (x @k) s || + A®(x)
o | 21, =arg min |y — (2 © k) o |2 +110%|z — x4 1|
(3) Optimization algorithm {X;gargﬂlinx%ﬂk P e, [ £
o 3
Se o3
%o,, 5
4 /¢ A 4 A 4
5|~ 51|~ R
AR > = || =
o I il » - H 5 P - - M e
£ 115 2% 115
Pll* 9117 1
5 S N
A A A
S CVL Zhang, Kai, Luc Van Gool, and Radu Timofte. "Deep unfolding network for image super- 20

e resolution.” CVPR, 2020.



1) Data module: FFT block

z, = D(xp_1,s8, K, y,ax). Clearer

ay

zk:f—l (l (dfm\’)b (

© * Closed-form solution for the data

where d is defined as subproblem

d = F)F(y 1) + anF(xi-1) « Take the scale factor s and blur kernel k
with o, £ 0% and where the F(-) and F () denote i
FFT and inverse FFT, F(-) denotes complex conjugate of as InpUt ) )
F(-). ®s denotes the distinct block processing operator . Impose degrada’uon constraint on the
with element-wise multiplication, i.e., applying element- .
wise multiplication to the sx s distinct blocks of F(k), {s SOIUt|On
denotes the distinct block downsampler, i.e., averaging the . : : :
sxs distinct blocks, T denotes the standard s-fold upsam- Contaln no tralnable parameters! WhICh
pler. i.e., upsampling the spatial size by filling the new en- in turn results in better genera”zabi"ty
tries with zeros. It is especially noteworthy that Eq. (6) also
works for the special case of deblurring when s = 1. For

Ningning Zhao, Qi Wei, Adrian Basarab, Nicolas Dobigeon, Denis Kouame, and Jean-Yves Tourneret. Fast single image super-resolution
using a new analytical solution for 12-12 problems. IEEE TIP, 25(8):3683-3697, 2016.
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2) Prior (denoiser) module: ResUNet

X = P(Zk_j /Bk) Cleaner

Skip Connection

Conv
v
2 Residual Blocks

|

|

<
[

>/| 2 Residual Blocks |
¥
Conv

« Takes the noisy image and hyper-parameter noise level as input and output the
denoised image.

« Has advantages of both U-Net and ResNet for effectiveness and efficiency.

« Shares parameters across iterations.
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3) Hyper-parameter module

o, 8] = H(a;s).

(Input)-->Linear-->RelLU-->Linear-->RelLU-->Linear-->Softplus+1e-6-->(Output)

The hyper-parameter module acts as a ‘slide bar’ to control the outputs of the
data module and prior module.

It consists of three fully connected layers with RelLU as the first two activation
functions and Softplus as the last.
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End-to-end training

Width ¢ = 0.7

5 10 15 20 25

5 10 15 20 25

|sotropic Gaussian Anisotropic Gaussian Motion

Scale factors: {1, 2, 3, 4}, applicable to the case of deblurring with s = 1
Noise levels: [0, 25]

Loss function: L1 loss for PSNR; L1 loss + VGG perceptual loss +
PatchGAN with spectral norm loss for perceptual quality
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Experiments: PSNR results

Table 1. Average PSNR(dB) results of different methods for different combinations of scale factors, blur kernels and noise levels. The best
two results are highlighted in red and blue colors, respectively.

Blur Kernel
Scale Noise
e i aaEE e A E
L
%2 0 29.48 26.76 25.31 24.37 24.38 24.10 24.25 23.63 20.31 20.45 20.57 22.04
RCAN [65] %3 0 24.93 27.30 25.79 24.61 24.57 24.38 24.55 23.74 20.15 20.25 20.39 21.68
x4 0 22.68 25.31 25.59 24.63 24.37 24.23 24.43 23.74 20.06 20.05 20.33 21.47
%2 0 29.44 29.48 28.57 27.42 27.15 26.81 27.09 26.25 14.22 14.22 16.02 19.39
ZSSR [50] %3 0 25.13 25.80 25.94 25.77 25.61 25.23 25.68 25.41 16.37 15.95 17.35 20.45
x4 0 23.50 24.33 24.56 24.65 24.52 24.20 24.56 24.55 16.94 16.43 18.01 20.68
IKC[21] x4 0 22.69 25.26 25.63 25.21 24.71 24.20 24.39 24.77 20.05 20.03 20.35 21.58
%2 0 29.60 30.16 29.50 28.37 28.07 27.95 28.21 27.19 28.58 26.79 20.02 28.96
X3 0 25.97 26.89 27.07 27.01 26.83 26.76 26.88 26.67 26.22 25.59 26.14 26.05
IRCNN [63] X3 2.55 25.70 26.13 25.72 25.33 25.28 25.18 25.34 24.97 25.00 24.64 24.90 24.73
%3 7.65 24.58 24.68 24.59 24.39 24.24 24.20 24.27 24.02 23.94 23.77 23.75 23.69
x4 0 23.99 25.01 25.32 25.45 25.36 25.26 25.34 25.47 24.69 24.39 24.44 24.57
x2 0 30.47 30.88 30.48 29.40 29.03 29.03 29.19 28.19 30.83 30.57 30.53 30.65
%3 0 27.07 27.68 27.81 27.78 27.62 27.58 27.65 27.48 27.57 27.36 27.38 27.31
USRNet %3 2.55 26.92 27.33 27.17 26.72 26.50 26.53 26.66 26.08 26.80 26.70 26.61 26.41
%3 7.65 26.39 26.46 26.06 25.53 25.42 25.34 25.45 24.96 25.32 25.40 25.14 2493
x4 0 25.19 25.86 26.08 26.18 26.09 26.03 26.06 26.20 25.78 25.41 25.62 25.56

USRNet with a single model significantly outperforms the other methods.
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Experiments: visual results

PSNR(dB) 24.92/22.53/21.88  25.24/23.75/21.92  25.42/23.55/26.45  25.76/24.58/27.22 24.80/22.44/21.51  23.76/23.06/24.35
Zoomed LR (x4) RCAN [6H] IKC [21] IRCNN [63] USRNet (ours) RankSRGAN [67]  USRGAN (ours)
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Experiments: analysis on data module and prior module

xo (Top); x (Bottom) VAl X1 Zs5 X5 Zs X8

Figure 5. HR estimations in different iterations of USRNet (top row) and USRGAN (bottom row). The initial HR estimation xg 1s the
nearest neighbor interpolated version of LR image. The scale factor is 4, the noise level of LR image is 2.55 (1%), the blur kernel is shown

on the upper-right corner of x.

As expected, D can recover clearer result, while P can produce cleaner result.
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Experiments: analysis on hyper-parameter module

10° w
—*—5-2,0=0
101 ¢ —0—5=3,0=0 2
—P—s5=4,0=0 o~
- s=38,0=255 _o "
10 =3, 0 -

# |terations # lterations

(a) o (b) 8
Figure 6. Outputs of the hyper-parameter module H, i.e., (a) «

and (b) 3, with respect to different combinations of s and o.
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Experiments: generalizability

(a) Result of USRNet(x3) for kernel size 67x67 A RPN DRSS T e

Even trained with kernel size 25x25, USRNet and USRGAN generalize well to much
larger kernel size.

] Gompuler
oo CVIF | 2022127 | 38



Blurry low-resolution image SR (x2)
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Blurry low-resolution image SR (x3)

Input Output
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Blurry noisy low-resolution image SR (x4)

® G
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Experiments: real image SR

(a) Zoomed LR (x4) (b) USRNet

Computer
eos - CVI&F
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Experiments: real image SR
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Experiments: image deblurring
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Experiments: image deblurring
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Deep blind image restoration

« The degradations in real images are too complex to be described by
simple models

« Non-Gaussian noise, signal dependent, non-uniform blur,
compression artifacts, system distortions, ...

« Deep learning for blind real image restoration?

b\ S CVIE" | 2002127 | 46



Limitation of existing degradation models for practical super-
resolution

w Low-Resolution - Traditional degradation model:
— y = (k * x) | +n, blur kernel k and

AWGN n
« Advantage: simple and
mathematically convenient
« Drawback: does not match
real degradation model

« Data-specific degradation model
* Unsupervised training: pixel
misalignment issue
» Supervised training: difficult to

el

Simple Interpolation (x4) Result by ESRGAN [1] accurately estimate the blur
Bicubic resizing degradation kernel

[1] Wang, Xintao, et al. "ESRGAN: Enhanced super-resolution generative adversarial
networks." ECCVW, 2018.
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Limitation of existing degradation model for practical denoising

« Gaussian noise model: y = x + n, AWGN n
* Mathematically convenient but do not
work well for real noisy images
« Data-specific degradation model
« Lack generalization ability
« Laborious collection

Real noises are much more complex!

Different noise types: additive white Gaussian noise;
interchannel correlated Gaussian Noise; JPEG
compression noise; low-frequency noise.

® Computer
..‘.‘ CV k“ | 2022/12/7 | 48

Noisy Input Result by DnCNN [2]

Gaussian noise degradation

[2] Zhang, Kai, et al. "Beyond a gaussian denoiser: Residual
learning of deep cnn for image denoising." IEEE TIP, 2017.



A new degradation model for practical super-resolution

Design a complex degradation model and learn a blind model with purely synthetic data

Blur
» Isotropic Gaussian blur
» Anisotropic Gaussian blur

Downsampling

H * Nearest
: Y : : J )  Bilinear/Bicubic
: Snintontentes ot > LR « Down-up

= C. Noise
A, » Gaussian noise
 JPEG compression noise

Schematic illustration of the proposed degradation model for scale factor 2. For an * Processed camera sensor noise

HR image, the randomly shuffled degradation sequences are first performed, thena 4 Random shuffle
JPEG compression degradation is applied to save the LR image into JPEG format.
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Model the blur from both

« HR space
« LR space
with

» isotropic Gaussian kernels
» anisotropic Gaussian kernels

An illustration of different Gaussian blur operations with (a)
isotropic Gaussian kernel with width 1.6, (b) anisotropic
Gaussian kernel with axis lengths 3, 6 and rotation angle =4,
and (c) a cascade of the above two kernels on the 256x256
‘Butterfly’ image.

o CVI#" | 202127 | 50



B. Downsampling

Different downsampling

methods

* Nearest
* Bilinear
* Bicubic

* Down-up-sampling

An illustration of different downsampling methods, i.e., (a)
nearest, (b) bilinear and (c) bicubic, with scale factor 2. The
blur kernel (with width 1.0) for the nearest downsampling is
shown on the upper-left corner of the image.
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C. Noise

Noise is ubiquitous in real images
as it can be caused by different
sources.

Different noise types

» (Gaussian noise

 JPEG compression noise

* Processed camera sensor
noise

An illustration of different noise types, (a) grayscale Gaussian
noise with standard deviation 25, (b) JPEG compression noise
with quality factor 30, and (c) processed camera sensor noise.
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4 Random shuffle

Revisiting Single Image Super-Resolution
Under Internet Environment: Blur Kernels

201 5 Y= (J' * k‘) ls. and Reconstruction Algorithms
Kai Zhang, Xiaoyu Zhou, Hongzhi Zhang, and Wangmeng Zuo™) hd General ized deg radation mOdeI
Bicubic and traditional
Learning a Single Convolutional Super-Resolution Network for . .
2018 y=(xl)®k+n Multiple Degradations degradation models are special

Kai Zhang'?, Wangmeng Zuo®*, Lei Zhang? cases

« Large blur degradation space
Two blur operations and four
downsampling methods

 Large noise degradation space

Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels

2019 Y= (x)s) ®k + n.

Kai Zhang'?, Wangmeng Zuo'** Lei Zhang*

Deep Unfolding Network for Image Super-Resolution

2020 y=(x®k)|.4n, Blur and dgwnsampllng.cc')uld
Kai Zhang Luc Van Gool Radu Timofte Change noise CharaCte I'IStICS
. . -@--8-8-8 Designing a Practical Degradation Model for Deep Blind
3 -E o .g Image Super-Resolution
2021 WHgeesesd
) Kai Zhang' Jingyun Liang' Luc Van Gool ' Radu Timofte'
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Visual results for real images

— P ; — st g 3 =T

/] “ ]

NIQEJ/NRQM1/PIL] 4.47/3.15/5.65 “4. 19/7.08/3.55

IQA (Image Quality
Assessment) metric should
also be updated with new
image degradation types.

NlQEUNRQMT/PM ‘ 7.10/3.92/6.59 5.31/6.26/4.52 6.39/6.83/4.78 4.45/7.14/3.65 5.83/5.99/4.92
(a) LR (x4) (b) ESRGAN [49] (¢c) FSSR-JPEG [15]  (d) RealSR-DPED [20] (e) RealSR-JPEG [20]  (f) BSRGAN (Ours)

Results of different methods on super-resolving real images from RealSRSet with scale factor 4.
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Visual Results

Proposed

| 2022127 | 55



® Models for challenge results
o DF2K for corrupted images with processing noise.

: o DPED for real images taken by cell phone camera.
Visual Results

e Extended models

o DF2K-JPEG for compressed jpeg image.

DF2K JPEG Jeec Images DPED Smartphone Images
@0 CVET
o0 ] First place method in NTIRE 2020 Challenge on Real-World Image Super-Resolution | 2022712/7 | 56



Visual Results

Low-Resolution (x4) Proposed
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Visual Results

Proposed
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Visual Results

Low-Resolution (x4) Proposed
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Cited by “Stable Diffusion”

High-Resolution Image Synthesis with Latent Diffusion Models D.6.1 LDM-BSR: General Purpose SR Model via Diverse Image Degradation

bicubic LDM-SR LDM-BSR

Robin Rombach! *  Andreas Blattmann' * Dominik Lorenz! Patrick Esser® Bjérn Ommer!
'Ludwig Maximilian University of Munich & IWR, Heidelberg University, Germany ~ ®Runway ML
https://github.com/CompVis/latent-diffusion

Text-to-Image with Stable Diffusion

To evaluate generalization of our LDM-SR, we apply it both on synthetic LDM samples from a class-conditional ImageNet
model (Sec. 4.1) and images crawled from the internet. Interestingly, we observe that LDM-SR, trained only with a bicubicly
downsampled conditioning as in [ ' '], does not generalize well to images which do not follow this pre-processing. Hence, to
obtain a superresolution model for a wide range of real world images, which can contain complex superpositions of camera
noise, compression artifacts, blurr and interpolations, we replace the bicubic downsampling operation in LDM-SR with the
degration pipeline from [ ' ~]. The BSR-degradation process is a degradation pipline which applies JPEG compressions
noise, camera sensor noise, different image interpolations for downsampling, Gaussian blur kernels and Gaussian noise in a
random order to an image. We found that using the bsr-degredation process with the original parameters as in [ /"] leads to

[105] K. Zhang, Jingyun Liang, Luc Van Gool, and Radu Timo-
Computer fte. Designing a practical degradation model for deep blind
b\ S CVI# image super-resolution. ArXiv, abs/2103.14006, 2021. 23 | 20021277
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Degradation model for practical blind denoising

N\

.
>

4
Noisy Patch

\

Shuffle
Resizing
Gaussian
Resizing
Cropping

=
S
‘%
o
=
5
O

L\

High Quality Image

y _/

”l

- Clean Patch
Schematic illustration of the proposed paired training patches synthesis pipeline.

« (Gaussian, Poisson, speckle, JPEG compression, and processed camera
Sensor noises

* Resizing

« Random shuffle strategy

* Double degradation strategy

| 2022/12/7 | 61



Synthesized noisy/clean patch pairs

Noisy

Clean

Synthesized noisy/clean patch pairs via our proposed training data synthesis pipeline
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Weighted Nuclear Norm Minimization and Its Applications
to Low Level Vision

Shuhang Gu! - Qi Xie? - Deyu Meng? . Wangmeng Zuo® - Xiangchu Feng* -
Lei Zhang!

:‘

(b) BM3D

(d)LSSC (&) NCSR
W v |

(1) SAIST (2)WNNM

Figures from WNNM (IJCV 2017)
‘:‘.‘ CVIE | 202127 | 63



. IPOL Journal - Image Processing On Line
HOME - ABOUT - ARTICLES - PREPRINTS - WORF
The Noise Clinic: a Blind Image Denoising Algorithm
article | demo | archive
Please cite the reference article if you publish results obtained with this online demo.

The algorithm result is displayed hereafter. It ran in 9.32s.
You can run again this algorithm with new data.

Restart with new input data, different parameter or different subimage: |« new input| |« different param

The Noise Clinic was configured with the following parameters:
« Number of scales: 4.

Noisy, denoised, and difference images

Original
Denoised

Difference

. Vision
%’ =" Processing On Line 5 (2015): 1-54.

Noise Clinic (2015)

2022/12/7

CVL Lebrun, Marc, Miguel Colom, and Jean-Michel Morel. "The noise clinic: a blind image denoising algorithm." Image
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Noisy Input Noise Clinic (2015)

® CVL.. Lebrun, Marc, Miguel Colom, and Jean-Michel Morel. "The noise clinic: a blind image denoising algorithm." Image
Processing On Line 5 (2015): 1-54. | 2022127 | 65



CBDNet (2019) DeamNet (2021)

@ Gompuler
..‘.. CV t“ | 2022/12/7 | 66



Our result
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Online demo

cszn / scunet

@ puBuc  Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

B Overview (A Examples D Versions

Run with APl &7 Run on your own computer

Input

https://replicate.com/cszn/scunet
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