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Introduction

e Forward model:
y = Hu+w, (1)

where,
o u € R? unknown image, y € R? observed data and d € N,

e H a circulant block matrix of dimension d X d obtained from a blur
kernel h and ...

o w~ N(0,0°Id) noise, 0% > 0.

@ Deconvolution problems: Estimating u from y.

Deconvolution problems can be broadly classified in 3 groups:
Non-blind, blind and semi-blind.
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Introduction

@ Non-blind problems: H is known and u is unknown. The problem
is ill-posed so it requires regularisation to estimate u.
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Introduction

@ Non-blind problems: H is known and u is unknown. The problem
is ill-posed so it requires regularisation to estimate u.

e Blind problems: The operator H and u are completely unknown.

The problem is Ill-posed and regularisation on u and h is required.

@ Semi-blind problems: H € IC where,

K = {H(a) :RdHRd,ae@a}.

e Pros: Introduces more structure.

e Cons: The problem is non-linear w.r.t «

The problem is ill-posed and regularisation on u is required.
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Problem formulation in Bayesian framework

e Likelihood function

p(ylu, 0%) o< exp (— fr2(u;y)), (2)

B 2
= % is the data fidelity term.

e Maximum likelihood estimation (MLE)

where f2(u;y)

@, = argmax log p(y|u, o)
u€R?
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Problem formulation in Bayesian framework

e Likelihood function

p(ylu, 0%) o exp (—fp2 (u;)), (2)
o) — ly=Hul? . -
where f2(u;y) 5o — is the data fidelity term.

e Maximum likelihood estimation (MLE)

@, = argmax log p(y|u, 0%) = argmin ||Hu — y||3 (3)
ucR4 ueRd

e Limitations: MLE achieves limit image reconstruction,

e H is poorly conditioned
o The problem is ill-posed (dim u > dim y)

@ Solution: regularise the solution space.
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Problem formulation in Bayesian framework

e Prior distribution:  wu ~ p(ula),
where ol g(u) = —log p(u|a) with g the regularisation term and o
the regularisation parameter.
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Problem formulation in Bayesian framework

e Prior distribution:  wu ~ p(ula),
where ol g(u) = —log p(u|a) with g the regularisation term and o

the regularisation parameter.

@ Posterior distribution

pluly, o®, a) o< plylu, o*)p(ula), (4)
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Problem formulation in Bayesian framework

e Prior distribution:  wu ~ p(ula),
where ol g(u) = —log p(u|a) with g the regularisation term and o
the regularisation parameter.

@ Posterior distribution
p(uly, o*, &) < p(y|u, o*)p(ula), (4)

@ Retrieve u from vy
Q@ Maximum a posteriori (MAP) estimator

tiprap = argmax log p(uly, 02, a) = argmin ||y — Hul|3 + aTg(u)
u€ER? ueR

© Minimum mean squared error (MMSE) estimator

ﬂNHWSEIZ(/P ﬂp@ﬂy,az,a)dﬂ
Rd
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How to choose the best prior ?
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How to choose the best prior ?

e Hand-crafted priors model: Tikhonov regularisation, total
variation, ¢; regularisation. ..

e Capture the statistical nature of the images

e We can control o automatically. ..

Drawback: Doesn’t capture probability distribution of the image
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How to choose the best prior ?

e Hand-crafted priors model: Tikhonov regularisation, total
variation, ¢; regularisation. ..

e Capture the statistical nature of the images

e We can control o automatically. ..

Drawback: Doesn’t capture probability distribution of the image

e Plug and Play priors
e Non-local mean, Non-local Bayes and BM3D

o Machine learning models (capture probability distribution of the
image)

Drawback: Requires a training for each level of noise, calibrating «
is difficult.
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Plug and Play prior

e PnP-ULA [Laumont et al., 2022]

84
Xpr = Tle [ Xi =1Vl (Xiiy) + = (De(X0) = X0) + V27 Zks

Where,

« « 18 the regularisation parameter,
« D, is the denoiser,
* ¢ is the noise level.

« Il¢ is the projection operator onto the convex set C.

e Limitations of the PnP-ULA:

+ Estimating the variance o of the model is difficult,

« The Markov kernel doesn’t have good mixing properties.
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Regularise PnP-ULA methodology

e Latent variable

u=2z+w where w’ ~ N (0, p*Id)

e Joint probability distribution

o o DPylu;o)p(ulz; p?)me, (2)
. — 5

where,
1
p(ulz; Pz) X exp (z—ngU - Z||2>

and 7, is the data distribution with variance €3.
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Regularise PnP-ULA methodology

Then simulating v and z from p(u, z|y; 02, p?) is similar to

1
@ u~ p(ulz,y;p?,0%) x exp ( — 52 ||ly — Hul|* — 2—p2||u—z||2) ,

7

~"

—log p(u|z;p?)

Q z ~ p(z|y; ,02) X exp ( — #Hu — ZH2)7T€0(Z).
It is important to point out that

p(u, zly; p*,0%) — p(uly;0%) when — p—0

The question of interest here, is how to effectively calibrate o and p?
for the measurement y77
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Computation of o2 and p?

e We evaluate the Maximum Marginal likelihood estimator from y,

(6%,p°) € argmax logp(ylo?, p?).
02€0_2 ,p269p2

where,

Pl 7 = [ [ plola,otptalz )m (2)dads.
R4 JRd

@ Stochastic approximation proximal gradient (SAPG)
[Vidal et al., 2019]

Vn > 0,

o1 = e 5 [pn + 0nt1V 2 log p(ylpy, o7)]
and,

op 1 =1o_, [00 + 6011V 2 logp(ylpr, o7)]
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Computation of o2 and p?

Where,

1 ’ d
og p(ulz, p )}_ 5 (Fisher’s identity)

va lng(y‘p27 02) — _Eu,z|y,p2,02 [ p2 2p
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Computation of o2 and p?

Where,

1 ’ d
og p(ulz, p )}_ 5 (Fisher’s identity)

va logp(y‘p27 02) — _Eu,z|y,p2,02 [ p2 2p

m 1 7 2
[ogp(Uk;\ ks P )] d (Appro. MC integral)

V2 logp(ylp?,0®) ==Y 5 —5 .2
Pt p p

(Ug)rv, and (Z)j-, are sampled according to p(uly, z; p*, 02) and
p(z|u; p?) respectively.
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Computation of o2 and p?

Where,

log p(ulz, p?)
2

}— d (Fisher’s identity)

va logp(y‘p27 02) — _Eu,z|y,p2,02 [ 2p2

V2 log p(y|p*, 0?) = — 5 (Appro. MC integral)

Em: llogp(Uk\Zk,P2)] _d
=1 p’ 20

(Uk) -1 and (Z);v, are sampled according to p(uly, z; p?,0%) and
p(z|u; p?) respectively.

Accordingly,

. logp Uk, o d
v 2 logp(y’p J Z [ (O|'2 )] _ 20_2
k=1
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u ~ p(ulz,y; p*, 0°)

e Simulate u according to p(u|z,y; p°, o?)

1 1
u ~ p(ulz,y; p?, 0?) oc exp (— 7oz lly - Hul|* — 2—p2Hu — z|?)
UNN(U’a Nu;zu)
where,
HTH 1\ * HTy 2
Zu:(0_2 —|—?> and Muzzu(o_gy—i_?)

Finally, at iteration ¢ > 0 we consider

ut = Byjz 2,02 U] =
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z ~ p(2|u; p°)

o Simulate z according to p(z|u; p?)

1
z ~ p(z|u; p2) X exp ( — 2—p2]|u — ZH%)TFGO(Z).

Impossible to sample directly from p(z|u; p?).

o PnP-ULA to simulate z targetting p(z|y; p?) o p(y|z; p?, 0?)me, (2)

Zrpr =1e | Ze — AV log p(yl Ze, p°) — AV log ey (Z1) + / 27Zt+1}

where,
1
V. log p(y|Zs, p?) ~ ?Eu|y,zt;p2 [Zy —u]  (Fisher’s identity)
1 : :
V. logme, (Z) = — (DeyZt — Zy) (Tweedy’s identity)
€0
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Algorithm 4.1 R-PnP-ULA within SAPG
1: Initialization: {fy, UJ, Z0}, sct O, define v, A and N.
2. forn=0:N—-1do
3:  if n > 0 then

4: set Uy = t'f,’,'}:l_l and Zj = Z::L;l_l
5. end if
6: fork=0:m, —1do
7: S;uuplu Ut ~ plulZy,y;0,)
8: Sample (py ~ N(0, Id)
.- D (Z7) — Z}!

Yy oy | r N 11 _ E i -

o Zp, =20+ B\ - R TN Up| 4 e TR G

10): end for )
11: Opyy = g, [ﬁ,, f TTI,l e { Ve lugp(t‘;"’;,Z;:“m;ﬁ)}}
12: end for

L N . N _ N
13: mmse = 2 oney WnUn/N and Oy = > " wnbp /N, where N =377 | wy,

n n=
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Application: Non-blind deblurring. . .

For a non-blind deconvolution problem,
@ Blur kernel: Gaussian of size 9 x 9 pixels
@ Measurement data y of size 512 x 512 pixels
@ Noise level: 30dB SNR setup
e Warm-up phase: 5 x 10 iterations
e Sampling phase: 2 x 10° with 30% burn-in.
@ Unknown parameters: § = (02, ,02>
@ The regularisation parameter of the model: o = 0.5

@ Denoiser D, is Proposed by [Pesquet et al., 2021]

(*)] 60:%
o C=10,1]%
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[llustration. ..

—R—PnP-ULA|
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10* s A
Nb I 0.4
107 o2
10-6,0 " ‘4 -ws T Ty ISV 0 ) )
10 10 10 10 10° 102 10* 10° '0'20 5 16 15 fo 25 30 35 40 45 50
Iteration (n) Iteration (n) Lags
(a) Noise var. o (b) p? (c) ACF
Remember,
€2 = (2.25/255)% ~ 7.78 x 107°
and

§2=1.79x107°

We can denote that p? is approximately 23% of €3.

Charlesquin HWU




[llustration. ..

(a) Blurred - (b)

Table 1: Metrics.

Methods PSNR MSE ESS Speed-up
PnP-ULA (Remi) 26.16 +11.48 3.3x103+£6.3x1076 3 -
R-PnP-ULA (Ours) 27.56 + 09.02 2.2x 10734+ 2.6 x 1076 73 21.37
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Conclusion and perspectives. . .

To conclude,

e Introducing latent variable z permits to:
e Disentangle the data term from the prior distribution,

e Regularise the PnP-ULA to achieve state-of-the-art method with
good mixing property

o Efficiently estimate the variance of the model o2.

e Enhance the reconstructed image in terms of PSNR measure.

As perspective,

e Calibrating the regularisation parameter « of the model.
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