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Many computational imaging problems
can be formulated as inverse problems

Forward problem: generate y from «

Inverse problem: recover x from y

Source: Michael Unser
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Many computational imaging problems
can be formulated as inverse problems

Optical Microscopy

Denoising

A = E (Identity)

Deblurring

Image restoration Medical Imaging

Source: Yu Sun


https://sunyumark.github.io/

Example: Intensity diffraction tomography (IDT)
collects intensity measurements of scattered light



Example: Intensity diffraction tomography (IDT)
collects intensity measurements of scattered light

: [>—am €——— Digital camera : IDT is a relatively cheap and simple
T . optical microscopy system
@ «<—— Objective =

- ng ht source E Liu et al, “Recovery of continuous 3D refractive index maps from discrete intensity-
" only measurements using neural fields,” Nature Machine Intelligence, 2022



Example: Intensity diffraction tomography (IDT)
collects intensity measurements of scattered light

Liu et al, "Recovery of continuous 3D refractive index maps from discrete intensity-
only measurements using neural fields,” Nature Machine Intelligence, 2022




Example: Intensity diffraction tomography (IDT)
collects intensity measurements of scattered light

Liu et al, "Recovery of continuous 3D refractive index maps from discrete intensity-
only measurements using neural fields,” Nature Machine Intelligence, 2022




Example: Intensity diffraction tomography (IDT)
collects intensity measurements of scattered light

Liu et al, "Recovery of continuous 3D refractive index maps from discrete intensity-
only measurements using neural fields,” Nature Machine Intelligence, 2022



Example: Intensity diffraction tomography (IDT)
collects intensity measurements of scattered light

{ Forward problem

3D refractive index

IDT is a data-intensive limited-angle tomography
B under light-scattering and phase-loss

Liu et al, "Recovery of continuous 3D refractive index maps from discrete intensity-
only measurements using neural fields,” Nature Machine Intelligence, 2022
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Due to undersampling, motion, model mismatch, and noise
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Classical issues In the context of inverse problems:
costly acquisition, Imaging artifacts, and big data

P‘ Tikhonov —10.00 um
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“missing-angle” artifacts

Challenge #1: Acquisition is too slow or costly:
Due to sequential and indirect acquisition of data

Challenge #2: Reconstructed images contain artifacts:
Due to undersampling, motion, model mismatch, and noise

Challenge #3: High computational/memory requirements:
Due to large volumes of data to process in 3D, 4D, or 5D



&8 Washington

University in St Louis

Outline for the rest of the talk

e Plug-and-Play Methods for Inverse Problems (IEEE SPM 2022)
Integrating physical models and learned deep priors

@ Online Deep Equilibrium Learning (NeurlPS 2022)
A new PnP framework for efficient prior learning

© Deep Continuous Artifact-Free Fields (Nature Ml 2022)
A new PnP framework for continuous image recovery
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Plug-and-Play Methods (PnP) tutorial for IEEE
Signal Processing Magazine is available online

U.I

Ulugbek S. Kamilov!, Charles A. Bouman?, Gregery T. Buzzard®, Brendt Wohlberg?
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Plug-and-Play Methods for Integrating
Physical and Learned Models in Computational Imaging

— (?—’ L(xo — Dg(xo +w))

to see the tutorial

_____________________________________________________________________

Figure 1: Image priors for PnP can be obtained by training CNNs to remove AWGN from a set of images.

Kamilov et al, “Plug-and-Play Methods for Integrating Physical and Learned
Models in Computational Imaging,” IEEE Signal Processing Magazine, 2022
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Bayesian perspective is common, but the view on
how to best represent image priors is still evolving

Probabilistic interpretation of an inverse problem

P L L L L L - e e e m e mm . ——————————— P T

....................................................................................................................

forward model image prior noise model

Remark: Generating images from p, is equivalent to sampling from a
lower-dimensional and non-linear subset X C R" of a high-dimensional space



& Washington

University in St Louis

Bayesian perspective is common, but the view on
how to best represent image priors is still evolving

Probabilistic interpretation of an inverse problem
y=A(x)+e T~ Dy e ~ N(0,0°T)

MAP and MMSE statistical estimators can be
expressed as model-based optimization

...............................................................................................................
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|
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arg min {—ny _ A@)|2+ 0%
T ER™ 2

................................................................................................................

Remark: Maximum a posteriori probability (MAP) estimator
returns an image that maximizes p(x|y) « p(y|x)p(x)
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Bayesian perspective is common, but the view on
how to best represent image priors is still evolving

Probabilistic interpretation of an inverse problem
y=A(x)+e T~ Dy e ~ N(0,0°T)

MAP and MMSE statistical estimators can be
expressed as model-based optimization

...............................................................................................................

hwae () = —log(ps(x))

8)
|

argmin {2y — A@) + 0%h(x) |

xcR™ hymse () = some expression

................................................................................................................

Remark: Minimum mean squared error (MMSE) estimator returns the conditional
mean E [x|y], which is the solution that maximizes the signal-to-noise ratio (SNR)

Gribonval and Machart, “Reconciling “priors” & “priors” without prejudice?” Proc NeurlPS, 2013
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Bayesian perspective is common, but the view on
how to best represent image priors is still evolving

Probabilistic interpretation of an inverse problem

y=A(x)+e T ~ P e ~ N(0,0°I)

MAP and MMSE statistical estimators can be
expressed as model-based optimization

hune () = —log(pz (2
Z = arg min {%IIy—A(w)H% -|—(72h(33)} (z) g(pz(T))

xcR™ Aymse () = some expression

Image denoising is a special inverse problem
where the forward model is an identity

...............................................................................................................

. Proximal operator is a
} convenient proxy for the prior

{1
D, (y) = argmin { 3y al}} + o%h(a) |
’ i from the algorithmic perspective

xrcR™

................................................................................................................
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Plug-and-Play Methods (PnP) are flexible deep
models that use image denoisers as image priors

Learned model: Pre-trained image denoising neural network

Remark: PnP is a self-supervised learning framework
since the image prior Is learned on a “pretext task”

£ Washington

University in St Louis
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Plug-and-Play Methods (PnP) are flexible deep
models that use image denoisers as image priors
Learned model: Pre-trained image denoising neural network

Dg : more noisy image > less noisy image

Physical model: Infuses information from the forward model

.....................................................................................................................................................................................

......................................................................................................................................................................................

Remark: Smaller values of g(x) = %Hy — A(x)||3

are more consistent with the measured data
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Plug-and-Play Methods (PnP) are flexible deep
models that use image denoisers as image priors

Learned model: Pre-trained image denoising neural network
Dg : more noisy image > less noisy image
Physical model: Infuses information from the forward model

| — vV g : less measurement consistent — more measurement consistent

PnP methods integrate both models into a deep model-based
architecture (DMBA) that can have infinitely many layers

' — 't — Gt G(z) = Vyg(x) + 7(x — Dg(x))

0 >l — Vg 1 >l — Vg t

n
-------

=|—D9_,77_ :l—Dg_,YT

\__ lteration 1/ \__ lterationt /

Romano et al, “The Little Engine That Could: Regularization by
Denoising (RED),” SIAM J Imaging Science, 2017
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Plug-and-Play Methods (PnP) are flexible deep
models that use image denoisers as image priors

Learned model: Pre-trained image denoising neural network
Dg : more noisy image > less noisy image
Physical model: Infuses information from the forward model

| — vV g : less measurement consistent — more measurement consistent

PnP methods integrate both models into a deep model-based
architecture (DMBA) that can have infinitely many layers

' — 't — 4Gt G(z) = Vg(x) + 7(x — Dg(x))

PnP methods have become influential in the context of inverse problems
due to their mathematical elegance, flexibility, and performance
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PnP does not have to be restricted to PhnP-ADMM,
MAP, implicit priors, denoisers, and point estimates

e While PnP-ADMM was the first PnP method, there are variants
based on other algorithms (such as PnP-FISTA)

Example Architecture of PnP-ISTA

.............................................................................................................

.............................................................................................................

Kamilov et al, “A Plug-and-Play Priors Approach for Solving Nonlinear Imaging Inverse Problems,” IEEE SPL, 2017
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PnP does not have to be restricted to PnP-ADMM,
MAP, implicit priors, denoisers, and point estimates

e While PnP-ADMM was the first PnP method, there are variants
based on other algorithms (such as PnP-FISTA)

e While original PnP is interpreted as using implicit priors, there are
formulations based on explicit reqularizers (such as RED)

Example: RED regularizer and its gradient

h(z) =x'(x —Dg(x)) = Vh(z)=x— Dg(x)

Romano et al, “The Little Engine That Could: Regularization by Denoising (RED),” SIAM J Imaging Science, 2017

Reehorst and Schniter, “Regularization by Denoising: Clarifications and New Interpretations,” IEEE Trans Comput Imag, 2019



& Washington

University in St Louis

PnP does not have to be restricted to PnP-ADMM,
MAP, implicit priors, denoisers, and point estimates

e While PnP-ADMM was the first PnP method, there are variants
based on other algorithms (such as PnP-FISTA)

e While original PnP is interpreted as using implicit priors, there are
formulations based on explicit reqularizers (such as RED)

e While the MAP view of the proximal operator is common, CNNs
are often trained to act as MMSE estimators over the training data

D(";(z) — argminE [Hw . D(Z)HS} MMSE estimator
D forz=x+e



&2 Whshington

University in St Louis

PnP does not have to be restricted to PnP-ADMM,
MAP, implicit priors, denoisers, and point estimates

e While PnP-ADMM was the first PnP method, there are variants
based on other algorithms (such as PnP-FISTA)

e While original PnP is interpreted as using implicit priors, there are
formulations based on explicit reqularizers (such as RED)

e While the MAP view of the proximal operator is common, CNNs
are often trained to act as MMSE estimators over the training data

Theorem: PnP-ISTA using D} monotonically converges to a stationary point
of the following composite function

> generally not convex

f(@) = g(2) + Romee () + # himapl(X) = -log(ps(x)
» MAP estimator for the prior: p(x) < exp(-hmmse(x))

Xu et al, “Provable Convergence of Plug-and-Play Priors with MMSE denoisers,” IEEE SPL, vol. 27, 2020
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PnP does not have to be restricted to PnP-ADMM,
MAP, implicit priors, denoisers, and point estimates

e While PnP-ADMM was the first PnP method, there are variants
based on other algorithms (such as PnP-FISTA)

e While original PnP is interpreted as using implicit priors, there are
formulations based on explicit reqularizers (such as RED)

e While the MAP view of the proximal operator is common, CNNs
are often trained to act as MMSE estimators over the training data

) - ) C1
|IDs(2) — Dy (2)|2 <o = i IG*(z") |5 < — + T70eCs

Remark: Even when the denoiser is not exact,
PnP converges up to an error bound!

Shoushtari et al, “Deep Model-Based Architectures for Inverse Problems under Mismatched Priors,” IEEE JSAIT, 2022
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PnP does not have to be restricted to PnP-ADMM,
MAP, implicit priors, denoisers, and point estimates

e While PnP-ADMM was the first PnP method, there are variants
based on other algorithms (such as PnP-FISTA)

e While original PnP is interpreted as using implicit priors, there are
formulations based on explicit reqularizers (such as RED)

e While the MAP view of the proximal operator is common, CNNs
are often trained to act as MMSE estimators over the training data

-~ GAMP
= PnP (MMSE)

- PnP (DnCNN)
-©- LASSO

113

f(x)/f(x")
SNR (dB)
SNR (dB)

— PnP (MMSE)

— PnP (DnCNN)
0.1 — LASSO -0
1 Iterations 100 1 Iterations 100 0.2 Measurement rate (m/n) 1

Note how DnCNN, trained to approximate the MMSE denoiser, perfectly agrees
with the results using the true MMSE denoiser!

Xu et al, “Provable Convergence of Plug-and-Play Priors with MMSE denoisers,” IEEE SPL, vol. 27, 2020
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PnP does not have to be restricted to PnP-ADMM,
MAP, implicit priors, denoisers, and point estimates

e While PnP-ADMM was the first PnP method, there are variants
based on other algorithms (such as PnP-FISTA)

e While original PnP is interpreted as using implicit priors, there are
formulations based on explicit reqularizers (such as RED)

e While the MAP view of the proximal operator is common, CNNs
are often trained to act as MMSE estimators over the training data

e While original PnP was restricted to image denoisers, there are
tools for efficiently learning priors end-to-end (such as DEQ)

Example DEQ formulation for the end-to-end optimization of PnP- ISTA

.................................................................................................................................................................................

R S (0) = Jw(0) - o

Iteration t

.................................................................................................................................................................................

Gilton et al, "Deep equilibrium architectures for inverse problems in imaging,” IEEE Trans Comput Imag, 2021
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PnP does not have to be restricted to PnP-ADMM,
MAP, implicit priors, denoisers, and point estimates

e While PnP-ADMM was the first PnP method, there are variants
based on other algorithms (such as PnP-FISTA)

e While original PnP is interpreted as using implicit priors, there are
formulations based on explicit reqularizers (such as RED)

e While the MAP view of the proximal operator is common, CNNs
are often trained to act as MMSE estimators over the training data

e While original PnP was restricted to image denoisers, there are
tools for efficiently learning priors end-to-end (such as DEQ)

e While original PnP was restricted to point estimates, there are
tools for efficiently sampling from priors (such as PnP-ULA)

Laumont et al, “Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie,” SIAM J Imag Science, 2022



Training PnP denoisers as diffusion models can
enable sampling realistic images with little data

Sinogram (6 < 60°) Sample #1

Sample #2 Variance Abs. Error

Ground-truth suitcaise

Liu et al, “DOLCE: A Model-Based Probabilistic Diffusion Framework
for Limited-Angle CT Reconstruction,” arXiv:2211.12340, 2022




Training PnP denoisers as diffusion models can
enable sampling realistic images with little data

Ground Truth FBP TV DOLCE (Ours)
v ST / o b | v .

) | 1 | )

Limited-angle CT with 6., < 60°. Note how DOLCE can synthesize
realistic-looking 3D reconstruction from very little datal

Liu et al, “DOLCE: A Model-Based Probabilistic Diffusion Framework
for Limited-Angle CT Reconstruction,” arXiv:2211.12340, 2022
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ODER is a PnP method for learning end-to-end
optimal image priors for large-scale problems

eve M- <« 0 openreview.net ¢ h +

1] :]-Fnﬂ.:':ll...

Jiaming Liu* Xiaojian Xu* I 1 ]

Online Deep Equilibrium Learning for
Regularization by Denoising

Washington University in St. Louis Washington University in St. Louis = B
jiaming.liu@wustl.edu xiaojianxu@uustl.edu |
Weijie Gan Shirin Shoushtari
Washington University in St. Louis Washington University in St. Louis
weijie.gan@Qwustl.edu s.shirin@wustl.edu

Ulugbek S. Kamilov
Washington University in St. Louis
kamilov@wustl.edu

Abstract

Plug-and-Play Priors (PnP) and Regularization by Denoising (RED) are widely-
used frameworks for solving imaging inverse problems by computing fixed-points
of operators combining physical measurement models and learned image priors.
While traditional PnP/RED formulations have focused on priors specified using

image denoisers, there is a growing interest in learning PnP/RED priors that are S h Q R d
end-to-end optimal. The recent Deep Equilibrium Models (DEQ) framework has C a n t e CO e
enabled memory-efficient end-to-end learning of PnP/RED priors by implicitly
differentiating through the fixed-point equations without storing intermediate acti- h

vation valuesngowe\g/er, the depeﬁgenceqof the computational/n%emory complexity t O S e e t e p a p e r
of the measurement models in PnP/RED on the total number of measurements
leaves DEQ impractical for many imaging applications. We propose ODER as
a new strategy for improving the efficiency of DEQ through stochastic approx-
imations of the measurement models. We theoretically analyze ODER giving
insights into its ability to approximate the traditional DEQ approach for solving
inverse problems. Our numerical results suggest the potential improvements in
training/testing complexity due to ODER on three distinct imaging applications.

Liu et al, “Online Deep Equilibrium Learning for Regularization by Denoising,” Proc NeurlPS, 2022
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PnP models achieve SOTA performance
when the image prior is trained at the fixed points

PnP can be interpreted as a model-based implicit network

xt +— Tg (:Bt_l)

4 N
:130
D

K Iteration 1 /

a N

S>

Ed()

K Iteration t /

:Ut_l — (vg(wt—l) 4 T(:l?t_l . Dg(il?t_l)))

Two types of operations:
physical forward model

learned CNN prior



PnP models achieve SOTA performance
when the image prior is trained at the fixed points

PnP can be interpreted as a model-based implicit network
' To(z' ) =a'' —~ (Vg(z" ")+ 7(x" " — Do(z')))

Performance of PnP models is significantly improved by
going beyond AWGN denoisers to artifact removing (AR) priors

o= ~s

..............................................................................................................................................................

Remark: AWGN denoisers are suboptimal at intermediate PnP layers!



PnP models achieve SOTA performance
when the image prior is trained at the fixed points

PnP can be interpreted as a model-based implicit network
't Tox™H)=x'"1 —~» (Vg(a:t_l) + (et — Dg(a:t_l)))

Performance of PnP models is significantly improved by
going beyond AWGN denoisers to artifact removing (AR) priors

Dg : more image artifacts — less image artifacts

Deep equilibrium models (DEQ) enable efficient training of
AR operators at PnP fixed points using implicit differentiation

(0) = |®6) ~ "3 ®(6) € Fix(To)

=  VUO) = (VeTe@)) (I —=V,Te@)) " (= — %)

Gilton et al, "Deep equilibrium architectures for inverse problems in imaging,” IEEE Trans Comput Imag, 2021



PnP models achieve SOTA performance
when the image prior is trained at the fixed points

PnP can be interpreted as a model-based implicit network

! Tox™H)=x"""1 —» (Vg(:vt_l) + (et — Dg(a?t_l))) forward pass

Performance of PnP models is significantly improved by
going beyond AWGN denoisers to artifact removing (AR) priors

Dg : more image artifacts — less image artifacts

Deep equilibrium models (DEQ) enable efficient training of
AR operators at PnP fixed points using implicit differentiation

(0) = |®6) ~ "3 ®(6) € Fix(To)
=  VUO) = (VeTe@) (I = V,Te@) (& — =¥)

= b« F(b') = (VyaTe(@) b + (T —x*) backward pass



PnP models achieve SOTA performance
when the image prior is trained at the fixed points

ILO (ICML 2021) PnP (AWGN)

Example: In compressive sensing from random projections with 10% subsampling,
PnP (AR) significantly outperforms PnP (AWGN)!

Liu et al, “Recovery Analysis for Plug-and-Play Priors using the Restricted Eigenvalue Condition,” Proc. NeurlPS, 2021
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ILO (ICML 2021) ‘ PnP (AWGN) PnP (AR)

Example: In compressive sensing from random projections with 10% subsampling,
PnP (AR) significantly outperforms PnP (AWGN)!

Liu et al, “Recovery Analysis for Plug-and-Play Priors using the Restricted Eigenvalue Condition,” Proc. NeurlPS, 2021



PnP models achieve SOTA performance
when the image prior is trained at the fixed points

Table 3: Average PSNR (dB) values for several algorithms on test images from CelebA HQ.

ot C5 Ratio 10% 20% 30% 40% 50%
TV 32.13 35.24 3741 39.35 41.29
PULSE [36] 27.45 29.98 33.06 34.25 34.77
ILO [37] 36.15 40.98 43.46 47.89 48.21
PnP (denoising) 35.61 41.51 45.71 48.05 52.24
PnP (AR) 39.19 44.20 48.66 51.32 53.89

Example: In compressive sensing from random projections with 10% subsampling,
PnP (AR) significantly outperforms PnP (AWGN)!

Liu et al, “Recovery Analysis for Plug-and-Play Priors using the Restricted Eigenvalue Condition,” Proc. NeurlPS, 2021



Training deep equilibrium models becomes
expensive as the number of measurements grows



Training deep equilibrium models becomes
expensive as the number of measurements grows

Consider data-fidelity terms that can be expressed as

b
each term g; depends
g(x) = Zgi(w)
1=1

on a subset of measurements Y;

I

1
Example in IDT: g;(x) = §|lyz —Ai(x)|; v-




Training deep equilibrium models becomes
expensive as the number of measurements grows

Consider data-fidelity terms that can be expressed as
b
g(x) = A Zgi(@
1=1

DEQ gradient becomes impractical to compute when the
number of measurements grows

VO) = (VoTo(x)) b
x'  To(x' ™) =" —v(Vg(z'™!) +7(z"~" — Do(z')))
b’ + F(b'™) = (VoTe(®) b ! + ( — z*)

impractical per-iteration computational and memory complexity when b — oo



Training deep equilibrium models becomes
expensive as the number of measurements grows

Consider data-fidelity terms that can be expressed as
| b
g(x) = A Zgi(w)
1=1

DEQ gradient becomes impractical to compute when the
number of measurements grows

VIO) = (VoTo(Z)) b
o To(a' ) =a'~ —y (Vo(a'™) + (@'~ Re(a')))

b« F(b'™ 1) = (VaTe(@) ' + (Z — x*)

Question: Can we train AR priors for PnP with complexity independent of b7



Stochastic PnP methods are useful for
reducing the per-iteration cost during inference



Stochastic PnP methods are useful for
reducing the per-iteration cost during inference

Consider a mini-batch approximation of the data-fidelity term

w

1 e w K b is the mini-batch size
D _gi(

g(x) = w

o1 e complexity independent of b

Sun et al, “An Online Plug-and-Play Algorithm for Regularized Image Reconstruction,” IEEE Trans Compute Imag, 2019
Wau et al, “SIMBA: Scalable Inversion in Optical Tomography using Deep Denoising Priors,” IEEE J Sel Topics Signal Process, 2020



Stochastic PnP methods are useful for
reducing the per-iteration cost during inference

Consider a mini-batch approximation of the data-fidelity term

if {i1,... iy} are iid

uniform random variables

i(@) = > g () E [§()) = g(x)

Sun et al, “An Online Plug-and-Play Algorithm for Regularized Image Reconstruction,” IEEE Trans Compute Imag, 2019
Wau et al, “SIMBA: Scalable Inversion in Optical Tomography using Deep Denoising Priors,” IEEE J Sel Topics Signal Process, 2020



Stochastic PnP methods are useful for
reducing the per-iteration cost during inference

Consider a mini-batch approximation of the data-fidelity term

@) = >0 (@) Efga)] =ga) | o) el

uniform random variables

SIMBA is a type of PnP-SGD algorithm

t—l)

' — To(x = 't —y(Vg(z'"™") +7(z'" = De(z'1)))

Remark: Complexity of the SIMBA iteration is independent of b!

Wau et al, “SIMBA: Scalable Inversion in Optical Tomography using Deep Denoising Priors,” IEEE J Sel Topics Signal Process, 2020



Stochastic PnP methods are useful for
reducing the per-iteration cost during inference

Consider a mini-batch approximation of the data-fidelity term

@) = >0 (@) Efga)] =ga) | o) el

uniform random variables

SIMBA is a type of PnP-SGD algorithm

t—l)
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A theoretical error bound on the convergence of SIMBA
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Stochastic PnP methods are useful for
reducing the per-iteration cost during inference

Consider a mini-batch approximation of the data-fidelity term

@) = >0 (@) Efga)] =ga) | o) el

uniform random variables

SIMBA is a type of PnP-SGD algorithm

t—l)

' — To(x = 't~y (Vg(z"™") +7(z'"" —De(z'1)))

A theoretical error bound on the convergence of SIMBA
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Remark: SIMBA can in expectation approximate the fixed points of the full PnP
algorithm up to an error term that depends on v and w!
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ODER extends stochastic PnP for efficient training
of AR priors with theoretical guarantees

Consider a mini-batch approximation of the data-fidelity term
. 1 A
§@) == g.(@) E[§(@)] = g(x)
s=1

ODER seeks to approximate the implicit gradient as

A

VI(0) = (Vg_/l:g (:UT))TbT T > 1 forward and backward iterations
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ODER extends stochastic PnP for efficient training
of AR priors with theoretical guarantees

Consider a mini-batch approximation of the data-fidelity term
. 1 A
§@) == g.(@) E[§(@)] = g(x)
s=1

ODER seeks to approximate the implicit gradient as

A
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' To(a'™!) = 2" — v (Vg(x'™") + 7(x'" = Re(z'™")))

AN
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Remark: Complexity of ODER is independent of b!
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ODER extends stochastic PnP for efficient training
of AR priors with theoretical guarantees

Consider a mini-batch approximation of the data-fidelity term
. 1 A
§@) == g.(@) E[§(@)] = g(x)
s=1

ODER seeks to approximate the implicit gradient as

A

VIO) = (VoTo(z™))Tb"
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A theoretical error bound on SGD learning using ODER gradients
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ODER is a framework for efficiently training
AR priors for PnP with theoretical guarantees

Consider a mini-batch approximation of the data-fidelity term
. 1 A
§@) == g.(@) E[§(@)] = g(x)
s=1

ODER seeks to approximate the implicit gradient as

A

VIO) = (VoTo(z™))Tb"
2 To(a' ') =2 — 5 (Vi@ ™)+ r(z"" — Ro(z')))

AN AN

b’ < F(b' 1) = (VaTe(x!)) bt 4 (2! — 2*)

A theoretical error bound on SGD learning using ODER gradients

R

ODER can approximate the DEQ learning with controllable accuracy!




ODER achieves nearly 2.5x improvement in
training time on IDT for the same image quality

4 Training loss against time 45 Training SNR against time 75 Training time against epoch
10° ‘ , : : ‘ :
——ODER (100/500) 40.82 dB I ODER (100/500)
——ODER (250/500) |  ["TTTTTTT o ese s oo oanseenes I ODER (250/500)
——RED (DEQ) | IIRED (DEQ)
2 <
]
e )
— S
S
0

0 35 65 O 35 65 40 80 120 180
Time (hr) Time (hr) Epoch

Remark: 2.5x Faster training in IDT for a similar loss and SNR!

Liu et al, “Online Deep Equilibrium Learning for Regularization by Denoising,” Proc NeurlPS, 2022



ODER achieves SOTA reconstruction performance
in parallel MRI and sparse-view CT

Ground truth B RED (Den0|smg) RED_(UnfoId) ODER (48/96) RED (DEQ)

10% sampling

90 projections

B S SR RURE R JBRT B

Note the similar performance of ODER and RED (DEQ), and the improvement
over RED (Denoising) and RED (Unfold) due to DEQ learning!

Liu et al, “Online Deep Equilibrium Learning for Regularization by Denoising,” Proc NeurlPS, 2022
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Outline for the rest of the talk

© Deep Continuous Artifact-Free Fields (Nature Ml 2022)
A new PnP framework for continuous image recovery
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Recovery of Continuous 3D Refractive Index Maps from
Discrete Intensity-Only Measurements using Neural Fields

The FIRST Neural Field method for Intensity Diffract

Renhao Liu™!, Yu Sun™', Jiabei Zhu?, Lei Tian?, Ulugbek S. Kamilov'
1Computational Imaging Group (CIG), Washington University in St. Louis
2Computational Imaging Systems Lab, Boston University
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Liu et al, “"Recovery of Continuous 3D Refractive Index Maps from Discrete Intensity-
Only Measurements using Neural Fields,” Nature Machine Intelligence, 2022
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DeCAF is a PnP method that enables the recovery
of continuous images represented by neural fields

e Traditional PnP formulations seek to reconstruct images
represented using a pre-defined pixel grid

e DeCAF is a variant of PnP that continuously represents the
desired image by using a coordinate-based neural network

e Continuous representation in DeCAF decouples the representation
of the solution from any pre-defined pixel grid

e We tested DeCAF on a large-scale 3D IDT problem, where it is
difficult to have ground-truth training data for the refractive index
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DeCAF is a PnP method that enables the recovery
of continuous images represented by neural fields

DeCAF maps coordinates to image values using a deep network
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3D Coordinates Feature Encoding Deep Network 3D Image

Image formation is formulated as a stochastic PnP algorithm

g g g S .

: b E
¢* = arg min 1 Zgi(mqs) + h(zo) I\/Iir.1imization.over ne’Fwork
E ' . weights; not image pixel values

.........................................................................................................

Quadratic data-tfidelity Pre-trained deep prior

1 T
g(xe) = = |yi — Ai(ze)|; h(zg) = = |xs — Do(xg)l|:
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DeCAF is a PnP method that enables the recovery
of continuous images represented by neural fields

P R T

( )

*—o— o o
R

i . § Y

> 9 o

)
o0 g%

............................................................................................

.........
...............

Tt Sy T
s il L0

denser grid 31.8 X discrete image )

continuous neural representation enables flexible sampling



& Washington

University in St Louis

DeCAF is a PnP method that enables the recovery
of continuous images represented by neural fields

DeCAF maps coordinates to image values using a deep network

s
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3D Coordinates Feature Encoding Deep Network 3D Image

Image formation is performed by integrating DeCAF into PnP

P = argd)min {g9(xg) + h(xy)}

The key benefits of DeCAF include:

(a) representation is decoupled from any pre-defined voxel grid
(b) subimages can be synthesized at will during optimization
(c) image prior is trained on natural images
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DeCAF can recover high-quality 3D Rl volumes
from experimentally collected 2D IDT images

Groundtruth DeCAF SIMBA
PSNR 24.03 dB 22.39 dB

1.020

!

1.0

Note how DeCAF outperforms SIMBA by about 1.5x dB on simulated data;
SIMBA is a traditional (discrete) online PnP method!



DeCAF can recover high-quality 3D Rl volumes
from experimentally collected 2D IDT images

= Lateral view

DeCAF (ours) [Ling et al 2019]

Note the optical sectioning ability of DeCAF on
this Diatom Algae sample!



DeCAF can recover high-quality 3D Rl volumes
from experimentally collected 2D IDT images

Bilinear Bicubic
‘ | ‘ '

Upsampllng by 26.7 X

Note how DeCAF can synthesize different parts of
this Diatom Algae sample on any grid!



DeCAF can recover high-quality 3D Rl volumes
from experimentally collected 2D IDT images

- Lateral view

DeCAF (ours) [Ling et al 2019]

Note the optical sectioning ability of DeCAF on
this Human Buccal Epithelial Cells sample!



DeCAF can recover high-quality 3D Rl volumes
from experimentally collected 2D IDT images

z (m)

55 -5.22 -4.86 -4.5 414 -3.78 -35

Note how DeCAF can be used to synthesize any slice of
this Human Buccal Epithelial Cells sample along the z dimension!



To conclude

@ PnP is one of the most influential class of methods across
computational imaging and inverse problems

e We presented three recent extensions of the PnP models for
solving large-scale inverse problems in IDT, CT, and MRI

e ODER is a framework for training implicit online neural nets
with theoretical error bounds on the accuracy

e DeCAF is a PnP framework for directly reconstructing an
iImage continuously represented by a neural field

e DOLCE is a conditional diffusion model for sampling realistic-
looking images from few limited-angle CT data
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