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By-example Texture Synthesis

Notation:
e Q c 72 finite discrete rectangle.
* Image x : Q — R®
x(i) = (xa(i), xa(1), xa(i))
e 7 probability distribution on R?, d = 3|Q|
(stationary random field).

Goal:
e Estimate a distribution 7 from an exemplar image xo.
e Sample 7.
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Parametric Texture Synthesis

® Suppose that we have a family of statistical measurements (“features”)
f= (fk)1gkgp : Rd — Rp

that captures the “perceptual aspect” of the texture.
* We want to design a random field X on €2 such that

E[f(X)] = f(x0) (macrocanonical model).

or even
f(X) = f(xo) a.s. (microcanonical model).

* We also need a model which is “as random as possible”
— maximum entropy principle
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Different Models for Different Statistics

Covariance/Fourier Spectrum
— Sparse convolution, spectrum painting [Lewis, 1984]
— Spot noise, Random phase noise, Gaussian models
[Van Wijk, 1991], [Galerne et al., 2011], [Xia et al., 2014]
— Local random phase noise [Gilet et al., 2014]

Wavelet statistics

— Histograms of subbands [Heeger & Bergen, 1995]

— First-order responses to a bank of filters FRAME [Zhu et al., 1998]
— Second-order wavelet statistics [Portilla & Simoncelli, 2000]

— First-order dictionary statistics + spectrum [Tartavel et al., 2014]

Neural networks statistics
— First-order neural statistics [Lu et al., 2015]
— Second-order neural statistics [Gatys et al., 2015]

Scattering statistics
— First-order scattering statistics [Zhang & Mallat, 2017], [Bruna & Mallat, 2019]
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Different Models for Different Statistics

Red: Microcanonical models
Green: Macrocanonical Models

e Covariance/Fourier Spectrum
— Sparse convolution, spectrum painting [Lewis, 1984]
— Spot noise, Random phase noise, Gaussian models
[Van Wijk, 1991], [Galerne et al., 2011], [Xia et al., 2014]
— Local random phase noise [Gilet et al., 2014]

e Wavelet statistics
— Histograms of subbands [Heeger & Bergen, 1995]
— First-order responses to a bank of filters FRAME [Zhu et al., 1998]
— Second-order wavelet statistics [Portilla & Simoncelli, 2000]
— First-order dictionary statistics + spectrum [Tartavel et al., 2014]

¢ Neural networks statistics
— First-order neural statistics [Lu et al., 2015]
— Second-order neural statistics [Gatys et al., 2015]
e Scattering statistics
— First-order scattering statistics [Zhang & Mallat, 2017], [Bruna & Mallat, 2019]
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Motivation

Why studying macrocanonical models?

—
—

It is one principled formulation of by-example texture synthesis.
Link with the modified Julesz conjecture (1981):

“It seems that only the first-order statistics
of these textons [non-linear features] have perceptual significance.”

Helps to better understand the chosen statistics/features.
Connections with nice results on MCMC and stochastic optimization.
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Entropy

Let P be the set of probability distributions on RY.
Let u be a reference probability measure on R (e.g. u(dx) oc e™/™dx where J(x) = £|x|]%)
The entropy H : & — [—o0, +00) (W.r.t. p) is defined by

- /R log <S—Z(x)) S—Z(X)u(dx) it % exists

—00 otherwise.

Vr e P, H(r)= {
Notice that

* H(m) = —KL(r|p)
e His strictly concave.
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Macrocanonical/Microcanonical Models

Definition
Let xo € R? be the exemplar texture and f : RY — RP measurable.

* A microcanonical model associated with x, for the statistics f (with reference measure p) is a
probability distribution = € P that solves

max H(m)

overall m € P suchthat X ~ 7 = f(X) = f(x) a.s.

* A macrocanonical model associated with xp for the statistics f (with reference measure p) is a
probability distribution = € P that solves

max H(r)

over all m € P such that Ex.[f(X)] = f(xo).
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Maximum Entropy Principle
For 0 € R, if e € L'(u), we define

mo(dx) = =—e "™ u(dx) = po(x)u(dx)  where  Z() = / defe"(x)u(dx)A

Z(e)

Theorem (De Bortoli, Desolneux, Galerne, Leclaire, 2019)
Assume that
a) Vo € RP, / el (ax) < oo,
R
b) VO e RP, pu({x €RY|0-f(x) <0-f(x)})>0.

Then there exists .. € RP such that ws, is a macrocanonical model associated with x, for the
statistics f. Besides, 0.. is a solution to the convex minimization problem

Argmin (9 f(xo) + IogZ(G)) Argmin log (/ e’g‘(f(x)’f("‘)))p(dx)) .
R

OERP OCRP
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Proof: solving for 6,

The parameter 6.. can be found by maximume-likelihood.

L(0) = log py(x0) = —0 - f(x0) — log Z(0).
Notice that
(%Lk = —f(x0) — %S—GZK = —f(x0) + % /RQ f(x)e "™ p(dx) = —fe(x0) + Ex, [c(X)].
In other words,
VL(0) = Ex, [f(X)] — f(X0) -
Similarly,

VEL(0) = ~Ex, [ (F(X) = Exg [FOOD(F(X) = Exy [{XO])] = ~Cova, (£(X))

‘ —L is a smooth convex function that can be minimized with gradient descent. ‘
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Model Estimation

A Monte-Carlo method is used to estimate the gradient

VL) = Ex, [(X)] — f(0)

Algorithm: Estimate 0 from exemplar image x

e Compute observed statistics f(xo).
® |nitialize 6 < 0, x < 0.
e Forn=1,...,N,

- X < Sample(my)

- Compute estimated statistics f(x).
- Update 0 < 6 + dn(f(x) — f(xp))

® Return 6.

After N iterations, we get a synthesized image x.
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Exponential Models for Textures

« Stationary Gaussian model
Assume for simplicity that x(/) € R for all i € Q (graylevel images).
— Let us consider f(x) = (X, x = X) with

X = |Q\ ZX(I) and VieQ, xxXx(i)= Z ()i + 7).
ieQ P

— Then the associated macrocanonical model reads as

mo(dx) = % ( Oox — Z ONXx(Nx(i+i") — Z||x||2> ax

ii'eQ
Remark: If (k;) is a bank of linear filters and
fir(x) = Zk*x*k/*x()
|Q| i€eQ

then the associated macrocanonical model is still a Gaussian distribution.
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Exponential Models for Textures

« Original FRAME Model [Zhu, Wu, Mumford, 1998]
FRAME: “Filters, Random fields, And Maximum Entropy”

— The features extract quantized responses of a set of linear (intensity, Laplacian of Gaussian,
Gabor) and non-linear filters (modulus of Gabor):

a0 = g 3 Tey (Fy + x()

ieQ

where F; is a filter and B* are histogram bins.

Original
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Exponential Models for Textures

« Original FRAME Model [Zhu, Wu, Mumford, 1998]
FRAME: “Filters, Random fields, And Maximum Entropy”

— Here, . is the uniform distribution on {0, ..., 7}

— FRAME model is limited to quantized images (8 greylevels)
— Synthesizing the FRAME model relies on Gibbs sampling.
— A greedy procedure selects a small subset of filters (=~ 6)

Original
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Exponential Models for Textures

« DeepFRAME: Model using CNN [Lu, Zhu, Wu, 2016]

— The features extract responses to a given layer of a pre-learned convolutional neural
network (CNN)

f(x) = fﬁ S Fdx)(0)

ieQ

where (Fk(x))1<k<p is the response at one particular layer of a CNN.

i
NeEiTES
eigizes
U A
eSS

v ) o
Original Synthesis Original
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Statistics used in DeepFrame

They use the CNN designed by the Visual Geometry Group (VGG) in Oxford.

224x224x3 224x224x64

@ convolution+ReLU
max pooling

7 fully connected+ReLU
(1) softmax
[VGG-16, Simonyan, Zisserman, 2015]
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Statistics used in DeepFrame

They use the CNN designed by the Visual Geometry Group (VGG) in Oxford.

224 x224x3 224x224x64

@ convolution+ReLU
@ max pooling
# fully connected+ReLU

) softmax

[VGG-16, Simonyan, Zisserman, 2015]
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Neural Network Features

Let us consider

Vx € R, F(x) = (Fi(x), ..., Fp(x)) € f[R"*

where Fi(x) is one response to a layer of a CNN with a non-linear unit ¢ € €' (R).

More precisely,
]:I(X) = (@OA}O(pOAj_1 O...O(pOA1)(X)

where A; : R — R+ is linear, and ¢ is applied on each component.
Example: for a convolutional neural network,

Ay) =kxy

where k; : Q; — R"+1*V is a matrix convolution kernel.

17/36



Exponential Models in Dynamics and SOUL algorithm
000000000008 00
Neural Network Features
We define

) = | SR, -, > Fox) (i)

i=1 i=1
The corresponding macrocanonical model is stationary (because of the spatial summation).

Proposition (De Bortoli, Desolneux, Galerne, Leclaire, 2019)

Let xo € RY and assume that df(x,) has rank min(d, p) = p.
Assume that ¢ € €' (R) and that

de>0, Vx eR, |o(x)| <c(1+ |x]).

Then the maximum entropy principle holds with J(x) = § |x||? for any e > 0.
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Outline

Langevin Dynamics and SOUL algorithm
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How to sample 7y ?
Let
V(x,0) =60 - (f(x) — f(x0)) + J(x)  sothat  mg(x)ox e Ddx.

We consider the Langevin dynamics

Xni1 = Xo — Y11V V(Xn, 9) + vV 2Yn11Zn

where
® (Z,) is a collection of independent normalized Gaussian white noises
® ~, > 0 is a sequence of step sizes

Equivalently, (X,) is a inhomogeneous Markov chain with kernel

R’Yn(Xz ) = N(X — InVx V(X,@),Z’yn)‘

Theorem (Durmus, Moulines, 2016)
Under some hypotheses on V, and if " vn = 400 and 3" 72 < oo, we have

Xni)ﬂg

n— oo
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Sampling a GMM with Langevin Dynamics

A brief video interlude.
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Combined Dynamics

We can now approximate VL(6) with a Langevin-based MCMC method.
— Stochastic Optimization with Unadjusted Langevin (SOUL)

SOUL algorithm
Initialization: X{ € RY.
Xl?+1 =Xk — 11 Vx V(XK 0n) + /27011 24
fork=0,...,m,—1, with Z{ ; ~ N(0,/)
Bt
. 1
On+1 = Projg <0n — rnr;; ng V(X;Q’ﬁ,,))

k=1

n+1 n
XO - an

where © is a closed convex set of RY.
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Convergence of SOUL algorithm

Notice that —L is convex, %' with Lipschitz gradient on © compact.
Theorem (De Bortoli, Durmus, Pereyra, Fernandez Vidal, 2019)
Assume that
1. © is a convex compact set of R”.
2. J,h,...,k are differentiable on RY with Lipschitz gradients.
3. There existn,c, M > 0 such thatV0 € ©, ¥x € RY,  (V,V(x,0),x) > n||x|[*1x>um — C.
4. (6n), (vn) are non-increasing positive with &q,~o sufficiently small and

> bn=400, > Snp13/n < 00, Z‘S"“ < o0

MnYn

Then 0, — 0. € Argmin(—L) almost surely and in L.

NB: f may be non-convex (e.g. with differentiable neural networks).
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Link with Microcanonical Model
For V(x,0) =0 - (f(x) — f(x)) + J(x) and J(x) = 5||x|?, the update reads

p
Xt = X8 = Y011 Y 00 VEXK) — 1 VIXE) + V2 Ziss
j=1

= X0 — 1 dFOXE) 00 — Vi1 eXi + /2902y

Snit
Ot = 0n = “ 0> (FXK) — 1(x0))
L

Taking mp =1,6n = 1,yp41 = ‘; e =0, 6p = 0, and removing the noise we get

Xop1 = Xo — df(Xn)" < Zf(Xk fxo>

We get back a momentum-like gradient method to minimize ®(x) = ||f(x) — f(xo)||3.
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Experimental setup
f(x) : spatially averaged reponses to differentiable VGG-19 at layers 3,4,5,6,7,11,12, 14.
Initialization: Gaussian random field with correct second-order statistics.
b0 = O(). 30 = O(3), My = 1
—0.05]|x|12

® c=0.1ie pldx)xe
© = IR” (no projection)
The color distribution is reimposed afterwards.

VGG-19 [Simonyan, Zissermann, 2015]
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Synthesis Results
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Synthesis Results
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Empirical Convergence
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Empirical Convergence

Iteration 100
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Empirical Convergence
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Empirical Convergence
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Empirical Convergence

lteration 400
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Empirical Convergence
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Empirical Convergence

Jfial
.:q 5

%_ VISR

AT ,-.:.,I

J

Iteration 600

29/36



Visual Results

Langevin Dynamics and SOUL algorithm

000000

Exponential Models

0000®0000000

000000000000

Empirical Convergence

Iteration 700
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Empirical Convergence

Iteration 800
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Empirical Convergence

Iteration 1000
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Empirical Convergence
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Comparison with DeepFrame
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Original DeepFrame Our result Original DeepFrame Our result
[Luetal] [Luetal]
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Synthesis Results

Original (512 x 512) Initialization (Gaussian) After 5000 iterations
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Synthesis Results
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Synthesis Results

Original (512 x 512)
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Synthesis Results
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Synthesis Results

Initialization (Gaussian)
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Comparison

[Galerne et al.] [Gatys et al.]

Original (512 x 512)

DeepFrame [Lu et al.] Our Result GAN [Jetchev et al.]
(resolution /2)
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Comparison

Original [Galerne et al.] [Gatys et al.]

[Portilla & Simoncelli] Our result SGAN [Jetchev et al.]
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Comparison

[Portilla & Simoncelli] Our result

[Gatys et aI.]

SGAN [Jetchev et al.]

Visual Results
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Conclusion - Perspectives

® |angevin sampling allows to design a generalization of FRAME
— with a continuous state-space
— only needs to differentiate the features (Auto-Diff)

® Provably convergent sampling and estimation algorithms (under hypotheses).
® Able to synthesize textures using VGG features (although mixing time is large).
® A model with only 2560 parameters.

PERSPECTIVES
¢ Can we handle non-differentiable features?
® Include other statistics (wavelets, scattering, etc).
¢ Microcanonical and macrocanonical models asymptotically coincide when Q — 72 ?

THANK YOU FOR YOUR ATTENTION!
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Comparison with DeepFrame

e ‘ g L P 4. . -
Original DeepFrame DeepFrame
[Lu et al.] [Lu et al.]
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Comparison with Scattering

i 2 ‘I‘i“
.
IJ F i | )BF

Original Scattering Our regult ' Original Scattering
[Bruna & Mallat] [Bruna & Mallat]

ur result

39/36



000e00

Comparison

Original
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Comparison

DeepFrame [Lu et al.] (warning : reduced resolution)
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Comparison

Our Result
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Comparison

[Gatys et al.]
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Comparison

GAN [Jetchev et al.]
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Comparison

Original [Gatys et al.]

[Portilla & Simoncelli] Our result SGAN [Jetchev et al.]

[Galerne et al.]
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