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By-example Texture Synthesis

Notation:
• Ω ⊂ Z2 finite discrete rectangle.
• Image x : Ω→ R3

x(i) = (xR(i), xG(i), xB(i))

• π probability distribution on Rd , d = 3|Ω|
(stationary random field).

Goal:
• Estimate a distribution π from an exemplar image x0.
• Sample π.
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Parametric Texture Synthesis

• Suppose that we have a family of statistical measurements (“features”)

f = (fk )16k6p : Rd −→ Rp

that captures the “perceptual aspect” of the texture.
• We want to design a random field X on Ω such that

E[f (X )] = f (x0) (macrocanonical model).

or even
f (X ) = f (x0) a.s. (microcanonical model).

• We also need a model which is “as random as possible”
−→ maximum entropy principle
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Different Models for Different Statistics

• Covariance/Fourier Spectrum
−→ Sparse convolution, spectrum painting [Lewis, 1984]
−→ Spot noise, Random phase noise, Gaussian models

[Van Wijk, 1991], [Galerne et al., 2011], [Xia et al., 2014]
−→ Local random phase noise [Gilet et al., 2014]

• Wavelet statistics
−→ Histograms of subbands [Heeger & Bergen, 1995]
−→ First-order responses to a bank of filters FRAME [Zhu et al., 1998]
−→ Second-order wavelet statistics [Portilla & Simoncelli, 2000]
−→ First-order dictionary statistics + spectrum [Tartavel et al., 2014]

• Neural networks statistics
−→ First-order neural statistics [Lu et al., 2015]
−→ Second-order neural statistics [Gatys et al., 2015]

• Scattering statistics
−→ First-order scattering statistics [Zhang & Mallat, 2017], [Bruna & Mallat, 2019]
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Different Models for Different Statistics

Red: Microcanonical models
Green: Macrocanonical Models
• Covariance/Fourier Spectrum
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−→ First-order responses to a bank of filters FRAME [Zhu et al., 1998]
−→ Second-order wavelet statistics [Portilla & Simoncelli, 2000]
−→ First-order dictionary statistics + spectrum [Tartavel et al., 2014]

• Neural networks statistics
−→ First-order neural statistics [Lu et al., 2015]
−→ Second-order neural statistics [Gatys et al., 2015]

• Scattering statistics
−→ First-order scattering statistics [Zhang & Mallat, 2017], [Bruna & Mallat, 2019]
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Motivation

Why studying macrocanonical models?

−→ It is one principled formulation of by-example texture synthesis.

−→ Link with the modified Julesz conjecture (1981):

“It seems that only the first-order statistics
of these textons [non-linear features] have perceptual significance.”

−→ Helps to better understand the chosen statistics/features.

−→ Connections with nice results on MCMC and stochastic optimization.
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Entropy

Let P be the set of probability distributions on Rd .
Let µ be a reference probability measure on Rd (e.g. µ(dx) ∝ e−J(x)dx where J(x) = ε

2‖x‖
2)

The entropy H : P → [−∞,+∞) (w.r.t. µ) is defined by

∀π ∈ P, H(π) =

−
∫
Rd

log

(
dπ
dµ

(x)

)
dπ
dµ

(x)µ(dx) if
dπ
dµ

exists

−∞ otherwise.
.

Notice that
• H(π) = −KL(π|µ)

• H is strictly concave.
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Macrocanonical/Microcanonical Models

Definition
Let x0 ∈ Rd be the exemplar texture and f : Rd → Rp measurable.
• A microcanonical model associated with x0 for the statistics f (with reference measure µ) is a

probability distribution π ∈ P that solves

max H(π)

over all π ∈ P such that X ∼ π ⇒ f (X ) = f (x0) a.s.
• A macrocanonical model associated with x0 for the statistics f (with reference measure µ) is a

probability distribution π ∈ P that solves

max H(π)

over all π ∈ P such that EX∼π[f (X )] = f (x0).
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Maximum Entropy Principle

For θ ∈ Rp, if e−θ·f ∈ L1(µ), we define

πθ(dx) =
1

Z (θ)
e−θ·f (x)µ(dx) = pθ(x)µ(dx) where Z (θ) =

∫
Rd

e−θ·f (x)µ(dx).

Theorem (De Bortoli, Desolneux, Galerne, Leclaire, 2019)
Assume that

a) ∀θ ∈ Rp,

∫
Rd

e‖θ‖‖f (x)‖µ(dx) <∞,

b) ∀θ ∈ Rp, µ
({

x ∈ Rd | θ · f (x) < θ · f (x0)
})

> 0.

Then there exists θ∗ ∈ Rp such that πθ∗ is a macrocanonical model associated with x0 for the
statistics f . Besides, θ∗ is a solution to the convex minimization problem

Argmin
θ∈Rp

(
θ · f (x0) + log Z (θ)

)
= Argmin

θ∈Rp
log

(∫
Rd

e−θ·(f (x)−f (x0))µ(dx)

)
.
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Proof: solving for θ∗

The parameter θ∗ can be found by maximum-likelihood.

L(θ) = log pθ(x0) = −θ · f (x0)− log Z (θ).

Notice that

∂L
∂θk

= −fk (x0)− 1
Z (θ)

∂Z
∂θk

= −fk (x0) +
1

Z (θ)

∫
RΩ

fk (x)e−θ·f (x)µ(dx) = −fk (x0) + Eπθ

[
fk (X )

]
.

In other words,
∇L(θ) = Eπθ [f (X )]− f (x0) .

Similarly,

∇2L(θ) = −Eπθ

[
(f (X )− Eπθ [f (X )])(f (X )− Eπθ [f (X )])T

]
= −Covπθ (f (X ))

−L is a smooth convex function that can be minimized with gradient descent.
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Model Estimation

A Monte-Carlo method is used to estimate the gradient

∇L(θ) = Eπθ

[
f (X )

]
− f (x0)

Algorithm: Estimate θ from exemplar image x0

• Compute observed statistics f (x0).
• Initialize θ ← 0, x ← 0.
• For n = 1, . . . ,N,

· x ← Sample(πθ)
· Compute estimated statistics f (x).
· Update θ ← θ + δn(f (x)− f (x0))

• Return θ.

After N iterations, we get a synthesized image x .
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Exponential Models for Textures

• Stationary Gaussian model
Assume for simplicity that x(i) ∈ R for all i ∈ Ω (graylevel images).
−→ Let us consider f (x) = (x̄ , x ∗ x̃) with

x̄ =
1
|Ω|
∑
i∈Ω

x(i) and ∀i ∈ Ω, x ∗ x̃(i) =
∑
i′∈Ω

x(i ′)x(i + i ′).

−→ Then the associated macrocanonical model reads as

πθ(dx) =
1

Z (θ)
exp

−θ0x̄ −
∑

i,i′∈Ω

θ(i)x(i ′)x(i + i ′)− ε

2
‖x‖2

 dx .

Remark: If (kj ) is a bank of linear filters and

fj,j′(x) =
1
|Ω|
∑
i∈Ω

kj ∗ x ∗ k̃j′ ∗ x(i),

then the associated macrocanonical model is still a Gaussian distribution.
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Exponential Models for Textures

•Original FRAME Model [Zhu, Wu, Mumford, 1998]
FRAME: “Filters, Random fields, And Maximum Entropy”

−→ The features extract quantized responses of a set of linear (intensity, Laplacian of Gaussian,
Gabor) and non-linear filters (modulus of Gabor):

fj,α(x) =
1
|Ω|
∑
i∈Ω

1Bα
j

(Fj ∗ x(i))

where Fj is a filter and Bαj are histogram bins.

Original Synthesis
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Exponential Models for Textures

•Original FRAME Model [Zhu, Wu, Mumford, 1998]
FRAME: “Filters, Random fields, And Maximum Entropy”

−→ Here, µ is the uniform distribution on {0, . . . , 7}Ω.
−→ FRAME model is limited to quantized images (8 greylevels)
−→ Synthesizing the FRAME model relies on Gibbs sampling.
−→ A greedy procedure selects a small subset of filters (≈ 6)

Original Synthesis
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Exponential Models for Textures

• DeepFRAME: Model using CNN [Lu, Zhu, Wu, 2016]
−→ The features extract responses to a given layer of a pre-learned convolutional neural
network (CNN)

fk (x) =
1
|Ω|
∑
i∈Ω

Fk (x)(i)

where (Fk (x))16k6p is the response at one particular layer of a CNN.

Original Synthesis Original Synthesis
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Statistics used in DeepFrame

They use the CNN designed by the Visual Geometry Group (VGG) in Oxford.

[VGG-16, Simonyan, Zisserman, 2015]
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Statistics used in DeepFrame

They use the CNN designed by the Visual Geometry Group (VGG) in Oxford.

[VGG-16, Simonyan, Zisserman, 2015]
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Neural Network Features

Let us consider

∀x ∈ Rd , F(x) = (F1(x), . . . ,Fp(x)) ∈
p∏

k=1

Rdk

where Fk (x) is one response to a layer of a CNN with a non-linear unit ϕ ∈ C 1(R).
More precisely,

Fj (x) = (ϕ ◦ Aj ◦ ϕ ◦ Aj−1 ◦ . . . ◦ ϕ ◦ A1)(x)

where Aj : Rnj → Rnj+1 is linear, and ϕ is applied on each component.
Example: for a convolutional neural network,

Aj (y) = kj ∗ y

where kj : Ωj → Rnj+1×nj is a matrix convolution kernel.
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Neural Network Features

We define

f (x) =

 d1∑
i=1

F1(x)(i), . . . ,
dp∑

i=1

Fp(x)(i)

 .

The corresponding macrocanonical model is stationary (because of the spatial summation).

Proposition (De Bortoli, Desolneux, Galerne, Leclaire, 2019)
Let x0 ∈ Rd and assume that df (x0) has rank min(d , p) = p.
Assume that ϕ ∈ C 1(R) and that

∃c > 0, ∀x ∈ R, |ϕ(x)| 6 c(1 + |x |).

Then the maximum entropy principle holds with J(x) = ε
2‖x‖

2 for any ε > 0.
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How to sample πθ ?
Let

V (x , θ) = θ · (f (x)− f (x0)) + J(x) so that πθ(x) ∝ e−V (x,θ)dx .

We consider the Langevin dynamics

Xn+1 = Xn − γn+1∇x V (Xn, θ) +
√

2γn+1Zn

where
• (Zn) is a collection of independent normalized Gaussian white noises
• γn > 0 is a sequence of step sizes

Equivalently, (Xn) is a inhomogeneous Markov chain with kernel

Rγn (x , ·) = N (x − γn∇x V (x , θ), 2γn).

Theorem (Durmus, Moulines, 2016)
Under some hypotheses on V , and if

∑
γn = +∞ and

∑
γ2

n <∞, we have

Xn
(d)−−−→

n→∞
πθ
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Sampling a GMM with Langevin Dynamics

A brief video interlude.
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Combined Dynamics

We can now approximate ∇L(θ) with a Langevin-based MCMC method.

−→ Stochastic Optimization with Unadjusted Langevin (SOUL)

SOUL algorithm

Initialization: X 0
0 ∈ Rd .

X n
k+1 = X n

k − γn+1∇x V (X n
k , θn) +

√
2γn+1Z n

k+1

for k = 0, . . . ,mn − 1 , with Z n
k+1 ∼ N (0, I)

θn+1 = ProjΘ

(
θn −

δn+1

mn

mn∑
k=1

∇θV (X n
k , θn)

)
X n+1

0 = X n
mn

where Θ is a closed convex set of Rd .
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Convergence of SOUL algorithm

Notice that −L is convex, C 1 with Lipschitz gradient on Θ compact.

Theorem (De Bortoli, Durmus, Pereyra, Fernandez Vidal, 2019)
Assume that

1. Θ is a convex compact set of Rp.

2. J, f1, . . . , fp are differentiable on Rd with Lipschitz gradients.

3. There exist η, c,M > 0 such that ∀θ ∈ Θ, ∀x ∈ Rd , 〈∇x V (x , θ), x〉 > η‖x‖21|x|>M − c.

4. (δn), (γn) are non-increasing positive with δ0, γ0 sufficiently small and∑
δn = +∞,

∑
δn+1
√
γn <∞,

∑ δn+1

mnγn
<∞.

Then θn −→ θ∗ ∈ Argmin (−L) almost surely and in L1.

NB: f may be non-convex (e.g. with differentiable neural networks).
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Link with Microcanonical Model

For V (x , θ) = θ · (f (x)− f (x0)) + J(x) and J(x) = ε
2‖x‖

2, the update reads

X n
k+1 = X n

k − γn+1

p∑
j=1

θn,j∇fj (X n
k )− γn+1∇J(X n

k ) +
√

2γnZ n
k+1

= X n
k − γn+1df (X n

k )T .θn − γn+1εX n
k +

√
2γnZ n

k+1.

θn+1 = θn −
δn+1

mn

mn∑
k=1

(f (X n
k )− f (x0))

Taking mn = 1, δn = 1, γn+1 = 1
n , ε = 0, θ0 = 0, and removing the noise we get

Xn+1 = Xn − df (Xn)T

(
1
n

n−1∑
k=0

f (Xk )− f (x0)

)
.

We get back a momentum-like gradient method to minimize Φ(x) = ‖f (x)− f (x0)‖2
2.



25/36

Exponential Models Langevin Dynamics and SOUL algorithm Visual Results

Outline

Exponential Models

Langevin Dynamics and SOUL algorithm

Visual Results



26/36

Exponential Models Langevin Dynamics and SOUL algorithm Visual Results

Experimental setup
• f (x) : spatially averaged reponses to differentiable VGG-19 at layers 3, 4, 5, 6, 7, 11, 12, 14.
• Initialization: Gaussian random field with correct second-order statistics.
• δn = O( 1

n ), γn = O( 1
n ), mn = 1

• ε = 0.1 i.e. µ(dx) ∝ e−0.05‖x‖2

• Θ = Rp (no projection)
• The color distribution is reimposed afterwards.
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Synthesis Results

Original (256× 256) Initialization (Gaussian) After 5000 iterations
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Synthesis Results

Original (512× 512) Initialization (Gaussian) After 5000 iterations



29/36

Exponential Models Langevin Dynamics and SOUL algorithm Visual Results

Empirical Convergence

Iteration 0



29/36

Exponential Models Langevin Dynamics and SOUL algorithm Visual Results

Empirical Convergence

Iteration 100
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Empirical Convergence

Iteration 200
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Empirical Convergence

Iteration 300
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Empirical Convergence

Iteration 400
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Empirical Convergence

Iteration 500
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Empirical Convergence

Iteration 600
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Empirical Convergence

Iteration 700
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Empirical Convergence

Iteration 800
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Empirical Convergence

Iteration 900
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Empirical Convergence

Iteration 1000
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Empirical Convergence

Iteration 2000
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Empirical Convergence

Iteration 4000
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Comparison with DeepFrame

Original DeepFrame Our result Original DeepFrame Our result
[Lu et al.] [Lu et al.]
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Synthesis Results

Original (512× 512) Initialization (Gaussian) After 5000 iterations
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Synthesis Results

Original (512× 512) Initialization (Gaussian) After 5000 iterations
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Synthesis Results

Original (512× 512)
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Synthesis Results

After 5000 iterations



32/36

Exponential Models Langevin Dynamics and SOUL algorithm Visual Results

Synthesis Results

Initialization (Gaussian)
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Comparison

Original (512 × 512) [Galerne et al.] [Gatys et al.]

DeepFrame [Lu et al.] Our Result GAN [Jetchev et al.]
(resolution /2)
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Comparison

Original [Galerne et al.] [Gatys et al.]

[Portilla & Simoncelli] Our result SGAN [Jetchev et al.]
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Comparison

Original [Galerne et al.] [Gatys et al.]

[Portilla & Simoncelli] Our result SGAN [Jetchev et al.]
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Conclusion - Perspectives

• Langevin sampling allows to design a generalization of FRAME
−→ with a continuous state-space
−→ only needs to differentiate the features (Auto-Diff)
• Provably convergent sampling and estimation algorithms (under hypotheses).
• Able to synthesize textures using VGG features (although mixing time is large).
• A model with only 2560 parameters.

PERSPECTIVES

• Can we handle non-differentiable features?
• Include other statistics (wavelets, scattering, etc).
• Microcanonical and macrocanonical models asymptotically coincide when Ω→ Z2 ?

THANK YOU FOR YOUR ATTENTION!
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Randomly Weighted Network

Original (512× 512) With VGG19 With Random weights
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Comparison with DeepFrame

Original DeepFrame Our result Original DeepFrame Our result
[Lu et al.] [Lu et al.]
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Comparison with Scattering

Original Scattering Our result Original Scattering Our result
[Bruna & Mallat] [Bruna & Mallat]
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Comparison

Original
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Comparison

DeepFrame [Lu et al.] (warning : reduced resolution)
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Comparison

Our Result
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Comparison

[Gatys et al.]
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Comparison

GAN [Jetchev et al.]
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Comparison

Original [Galerne et al.] [Gatys et al.]

[Portilla & Simoncelli] Our result SGAN [Jetchev et al.]
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Comparison

Original [Galerne et al.] [Gatys et al.]

[Portilla & Simoncelli] Our result SGAN [Jetchev et al.]
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