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Introduction
The class of texture images is not really well defined. However, one
can think of a texture as an image whose content consists in repeated
patterns with a certain amount of randomness [Wei et al., 2009].

One can distinguish between

• macro-textures,

• micro-textures.
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Introduction

In this talk, we will be interested in the example-based synthesis of
microtextures.

We are looking for a fast and flexible synthesis scheme.
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Introduction

We will first present the Gaussian and Spot Noise texture models.

1 spot 10 spots 100 spots

1000 spots 10000 spots Gaussian limit

[Van Wijk, 1991], [Galerne et al., 2011]
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Introduction

Main Question: Given a small support S and an exemplar texture,
how to find a kernel h with support ⊂ S such that the spot noise
model associated to h is a good approximation of the Gaussian
texture, even with a reasonably low number of spots?
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Introduction

At the end of the talk, we will be able to do this:

Exemplar 1 spot 10 spots 100 spots

Kernel 1000 spots 10000 spots Gaussian limit
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Outline

The Spot Noise Model
Spot Noise Model
Simulation
Spot Noise Synthesis by Example
Optimal Transport Distance between ADSN Models

A Synthesis-Oriented Texton
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Non-normalized Spot Noise
Let h : Z2 → Rd be a function with compact support Sh.

The discrete Spot Noise on Z2 with spot h and intensity λ is the
stationary random process Fh,λ : Z2 → Rd defined by

∀x ∈ Z2, Fh,λ(x) =
∑
i>1

h(x− Xi ) ,

where (Xi ) is a Poisson point process on Z2 with intensity λ.

If we set Pλ(y) = |{i > 1 | Xi = y}| one has Fh,λ = h ∗ Pλ.

∗ =

h Pλ Fh,λ
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Normalized Spot Noise and Gaussian Limit
Denoting Σh =

∑
x h(x) and h̃(x) = h(−x), we have

E
(

Fh,λ(x)
)

= λ · Σh ,

E
(

(Fh,λ(x)−m)(Fh,λ(x + v)−m)T
)

= λ · h ∗ h̃T (v) .

Therefore, the normalized Spot Noise

Fh,λ − E(Fh,λ)√
λ

=
1√
λ

(
h ∗ Pλ − λ · Σh

)
,

has zero-mean and covariance function h ∗ h̃T .

Theorem (Papoulis, 1971)

DSNλ(h) :=
1√
λ

(
h ∗ Pλ − λ ·

∑
h
)

(d)−−−−−→
λ→+∞

h ∗W =: ADSN(h) ,

where W is a scalar Gaussian white noise on Z2 with mean 0 and
variance 1.
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Circular Discrete Spot Noise

One can define "circular" or periodic spot noise models on

Θ = Z/MZ× Z/NZ .

Using circular convolutions, one can define

CDSNλ(h) =
1
λ

(
h � Pλ − λ ·

∑
h
)
,

CADSN(h) = h �W .

The discrete Fourier transform gives

ĥ �W = ĥŴ ,

leading to a simple algorithm of simulation for the CADSN (with
complexity O(MN log(MN))). Idem with the CDSN.
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DSN simulation on a finite domain
Notice that the value at x is only affected by spots located at x− Sh.

0

Ω− Sh := { x− z ; x ∈ Ω , z ∈ Sh }

Consequences:

• Underlying white noise processes need only be sampled
on Ω := Ω− Sh.

• The restrictions on Ω of circular or non-circular models
computed on R are the same.
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DSN simulation on a finite domain

Algorithm 1: DSN simulation on a finite domain Ω

- Set Ω̄ = Ω− Sh = {x− y ; x ∈ Ω,y ∈ Sh}.

- Draw n with Poisson distribution of intensity λ|Ω̄|.

- Draw x1, . . . ,xn independently and uniformly in Ω̄.

- ∀x ∈ Ω, g(x) :=
1√
λ

(
n∑

i=1

h(x− xi )− λ
∑

h

)
.

Linear mean computational cost:

Nimp = λ|Sh|

operations per pixel (number of impacts per pixel).
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Parallel Spot Noise Synthesis
DSN synthesis can be parallelized using a grid-based simulation
scheme for the Poisson point process [Lagae et al., 2009].

Kernel Support:

Random Seeds:

Poisson Process:

Evaluation point:
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Spot Noise examples

h CDSN10−4 (h) CDSN10−2 (h) CDSN1(h) CADSN(h)
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Estimation of a circular spot noise model

Goal: Synthesize an exemplar u : Ω→ Rd on the same domain.

• The mean value can be estimated by

ū =
1
|Ω|
∑
x∈Ω

u(x) .

• For the covariance, identifying Ω to a circular domain Θ, we can
consider the estimator

cu(v) =
1
|Ω|
∑
x∈Ω

(
u(x)− ū

)(
u
(
x + v mod Ω

)
− ū

)T
,

which rewrites cu = tu � t̃T
u where tu = 1√

|Ω|
(u − ū).
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Examples
Therefore, a circular Gaussian texture synthesis is obtained by
drawing a realization of ū + CADSN(tu) = ū + tu �W .

First row: Original textures.
Second row: CADSN synthesis.
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Remarks

• A circular model is not legitimate for non-periodic exemplars.
→ Periodicity can be forced by taking the periodic component of
the exemplar as a pre-computation step [Moisan, 2011].

• Among the kernels h such that

h � h̃T = cu ,

is there one that is more interesting?
→ For the graylevel case, the authors of [Desolneux et al., 2012]
isolated the one with zero-phase, called canonical texton of u. It
is obtained in Fourier domain as

t̂can =
√

ĉu = |̂tu| .
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Synthesis on Z2

Goal: Synthesize an exemplar u : Ω→ Rd on a wider domain.

→ One possible choice is to extend tu by zero-padding

τu(x) =

{
tu(x) = 1√

|Ω|
(u(x)− ū) if x ∈ Ω

0 if x /∈ Ω
.

Original u Synthesis ū + ADSN(τu)

→ In order to avoid high-frequency artifacts, the border discontinuity
of tu can be attenuated by a smooth window [Galerne et al., 2011].
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Optimal Transport Distance and Model Projection

• [Xia et al., 2013] showed that the L2 optimal transport distance
between µ0 = CADSN(h0) and µ1 = CADSN(h1) is given by

dOT (µ0, µ1)2 =
1
|Θ|

∑
ξ∈Θ

‖ĥ0(ξ)‖2 + ‖ĥ1(ξ)‖2 − 2|ĥ0(ξ)∗ĥ1(ξ)| .

• This allows us to define a projection of h1 on the set of kernels
associated to the model µ0 as a solution of

Argmin
h, h�h̃=h0�h̃0

dOT (CADSN(h),CADSN(h1)) .

• One particular solution ph0 (h1) can be computed by

p̂h0 (h1) = ĥ0
ĥ0
∗
ĥ1

|ĥ0
∗
ĥ1|

1ĥ0
∗

ĥ1 6=0 + ĥ0 1ĥ0
∗

ĥ1=0 .



20/32

The Spot Noise Model A Synthesis-Oriented Texton

Outline

The Spot Noise Model

A Synthesis-Oriented Texton
Motivation
Alternating projections algorithm
Results
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A texton for Spot Noise synthesis?

Let u : Ω→ R3, and a finite S ⊂ Z2.

Goal: Compute a kernel h with support Sh ⊂ S such that

1. a piece of ADSN(h) looks like u (which means h ∗ h̃T ≈ cu) ,

2. DSNλ(h) is a good approximation of ADSN(h), even for
reasonably low λ (which means...?) .

This would allow to synthesize u with DSNλ(h) for low λ.
Benefits:

• Very fast (faster than the DFT-based method for large domains).

• Evaluations can be parallelized (using a coherent evaluation
scheme for the Poisson point process).

• Allows for local evaluations.
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SOT computation

Inspired by the phase-retrieval litterature [Hayes, 1982], we propose
the following algorithm to compute a Synthesis-Oriented Texton.

Algorithm 2: SOT computation

• Compute tu = 1√
MN

(u − ū) and its DFT.

• Initialization: t ← Gaussian white noise.

• Main loop: Repeat (n ' 50 times)

- Spectral projection: t ← ptu (t).
- Support projection: t ← t · 1S.

Recall that

p̂h(t) = ĥ
ĥ∗ t̂

|ĥ∗ t̂ |
1ĥ∗ t̂ 6=0 + ĥ 1ĥ∗ t̂=0 .
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Convergence to a random point

• We observed that Algorithm 2 converges to a random point.

• Considering the relative model error

RME(t , tu)2 =

∑
ξ

(
|̂tu|2 + |̂t |2 − |̂t∗u t̂ |

)
(ξ)∑

ξ |̂tu|2(ξ)
,

the mean RME stabilizes after a few iterations.
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DSN synthesis of a natural texture, comparison

u DSN(t), 50 imp./px DSN(tcrop
lum ) DSN(trpn)

t
RME = 0.50

tcrop
lum

RME = 0.52
trpn

RME = 0.70

DSN results obtained with kernels of size 31× 31:

• a synthesis-oriented texton t ,

• the cropped luminance texton tcrop
lum [Desolneux, et al. 2012],

• a cropped realization of the random phase noise associated to u.
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Synthesis of color textures

Original SOT DSN synthesis
(384× 256) (31× 31) (50 impacts per pixel)
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Possible color correction

Let t : Z2 → R3 be a color SOT computed with Algorithm 2.

• The covariance of one pixel value of ADSN(t) is the matrix

C(0) =
∑
x∈S

t(x)t(x)T .

Nothing ensures that C(0) = cu(0) =⇒ Possible color loss.

• As in [Desolneux et al., 2012], we suggest to apply a color
transformation matrix

M =
√

cu(0)
√

C−1
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Results with color correction

Original (384 × 256)

t
RME = 0.51

tcc
RME = 0.54

DSN (50 imp./px)

DSN synthesis with SOT of size 31× 31.
Up: without color correction.
Bottom: with color correction.
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Results with color correction

Original (384 × 256)

t
RME = 0.49

tcc
RME = 0.52

DSN (50 imp./px)

DSN synthesis with SOT of size 51× 51.
Up: without color correction.
Bottom: with color correction.
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Influence of the support size

u ADSN(t11) ADSN(t31) ADSN(t51)
(51× 51) RME = 0.56 RME = 0.49 RME = 0.43

From left to right, a Gaussian texture, and samples of the models
obtained with SOTs t r with circular supports of radius r ∈ {5,15,25}.
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Conclusion

• The SOT is a very compact summary of a Gaussian texture (solution of
inverse texture synthesis [Wei et al., 2008] in the Gaussian case).

• With the SOT, the "visual convergence" of the DSN is very fast. We get
a satisfying synthesis with only 50 impacts per pixel!

• The DSN is naturally defined on Z2 and allows for parallel evaluation.

• The DSN associated to the SOT is thus a fast and flexible method for
Gaussian texture synthesis, with a small memory footprint.

Our paper, codes and several examples are available on my webpage:

http://www.math-info.univ-paris5.fr/~aleclair/sot/

Questions and perspectives:

• How to measure the DSN visual convergence towards the ADSN?

• Continuous version of the SOT... for procedural texture synthesis.

• Dual approach: compact approximation of the covariance inverse.
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Thanks!

THANK YOU FOR YOUR ATTENTION
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